101
|
Lu J, Doyle AD, Shinsato Y, Wang S, Bodendorfer MA, Zheng M, Yamada KM. Basement Membrane Regulates Fibronectin Organization Using Sliding Focal Adhesions Driven by a Contractile Winch. Dev Cell 2020; 52:631-646.e4. [PMID: 32004443 DOI: 10.1016/j.devcel.2020.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023]
Abstract
We have discovered that basement membrane and its major components can induce rapid, strikingly robust fibronectin organization. In this new matrix assembly mechanism, α5β1 integrin-based focal adhesions slide actively on the underlying matrix toward the ventral cell center through the dynamic shortening of myosin IIA-associated actin stress fibers to drive rapid fibronectin fibrillogenesis distal to the adhesion. This mechanism contrasts with classical fibronectin assembly based on stable or fixed-position focal adhesions containing αVβ3 integrins plus α5β1 integrin translocation into proximal fibrillar adhesions. On basement membrane components, these sliding focal adhesions contain standard focal adhesion constituents but completely lack classical αVβ3 integrins. Instead, peripheral α3β1 or α2β1 adhesions mediate initial cell attachment but over time are switched to α5β1 integrin-based sliding focal adhesions to assemble fibronectin matrix. This basement-membrane-triggered mechanism produces rapid fibronectin fibrillogenesis, providing a mechanistic explanation for the well-known widespread accumulation of fibronectin at many organ basement membranes.
Collapse
Affiliation(s)
- Jiaoyang Lu
- School of Medicine, Shandong University, Jinan, Shandong 250012, China; Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Gastroenterology, Qilu Hospital, Jinan, Shandong 250012, China
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinari Shinsato
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Molly A Bodendorfer
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
102
|
Guided migration analyses at the single-clone level uncover cellular targets of interest in tumor-associated myeloid-derived suppressor cell populations. Sci Rep 2020; 10:1189. [PMID: 31988310 PMCID: PMC6985212 DOI: 10.1038/s41598-020-57941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immune cells that exert immunosuppression within the tumor, protecting cancer cells from the host’s immune system and/or exogenous immunotherapies. While current research has been mostly focused in countering MDSC-driven immunosuppression, little is known about the mechanisms by which MDSCs disseminate/infiltrate cancerous tissue. This study looks into the use of microtextured surfaces, coupled with in vitro and in vivo cellular and molecular analysis tools, to videoscopically evaluate the dissemination patterns of MDSCs under structurally guided migration, at the single-cell level. MDSCs exhibited topographically driven migration, showing significant intra- and inter-population differences in motility, with velocities reaching ~40 μm h−1. Downstream analyses coupled with single-cell migration uncovered the presence of specific MDSC subpopulations with different degrees of tumor-infiltrating and anti-inflammatory capabilities. Granulocytic MDSCs showed a ~≥3-fold increase in maximum dissemination velocities and traveled distances, and a ~10-fold difference in the expression of pro- and anti-inflammatory markers. Prolonged culture also revealed that purified subpopulations of MDSCs exhibit remarkable plasticity, with homogeneous/sorted subpopulations giving rise to heterogenous cultures that represented the entire hierarchy of MDSC phenotypes within 7 days. These studies point towards the granulocytic subtype as a potential cellular target of interest given their superior dissemination ability and enhanced anti-inflammatory activity.
Collapse
|
103
|
|
104
|
Zhang P, Yao J, Wang B, Qin L. Microfluidics-Based Single-Cell Protrusion Analysis for Screening Drugs Targeting Subcellular Mitochondrial Trafficking in Cancer Progression. Anal Chem 2020; 92:3095-3102. [DOI: 10.1021/acs.analchem.9b04702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
| | | | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
105
|
Fructuoso M, Legrand M, Mousson A, Steffan T, Vauchelles R, De Mey J, Sick E, Rondé P, Dujardin D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol Cell 2020; 112:53-72. [PMID: 31859373 DOI: 10.1111/boc.201900041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibroblasts executing directional migration position their centrosome, and their Golgi apparatus, in front of the nucleus towards the cell leading edge. Centrosome positioning relative to the nucleus has been associated to mechanical forces exerted on the centrosome by the microtubule-dependent molecular motor cytoplasmic dynein 1, and to nuclear movements such as rearward displacement and rotation events. Dynein has been proposed to regulate the position of the centrosome by exerting pulling forces on microtubules from the cell leading edge, where the motor is enriched during migration. However, the mechanism explaining how dynein acts at the front of the cells has not been elucidated. RESULTS We present here results showing that the protein Focal Adhesion Kinase (FAK) interacts with dynein and regulates the enrichment of the dynein/dynactin complex at focal adhesions at the cell the leading edge of migrating fibroblasts. This suggests that focal adhesions provide anchoring sites for dynein during the polarisation process. In support of this, we present evidence indicating that the interaction between FAK and dynein, which is regulated by the phosphorylation of FAK on its Ser732 residue, is required for proper centrosome positioning. Our results further show that the polarisation of the centrosome can occur independently of nuclear movements. Although FAK regulates both nuclear and centrosome motilities, downregulating the interaction between FAK and dynein affects only the nuclear independent polarisation of the centrosome. CONCLUSIONS Our work highlights the role of FAK as a key player in the regulation of several aspects of cell polarity. We thus propose a model in which the transient localisation of dynein with focal adhesions provides a tuneable mechanism to bias dynein traction forces on microtubules allowing proper centrosome positioning in front of the nucleus. SIGNIFICANCE We unravel here a new role for the cancer therapeutic target FAK in the regulation of cell morphogenesis.
Collapse
Affiliation(s)
- Marta Fructuoso
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France.,ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marlène Legrand
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Antoine Mousson
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Tania Steffan
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Jan De Mey
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Emilie Sick
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Philippe Rondé
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Migration, invasion and microenvironnement, Faculté de Pharmacie, UMR7021 CNRS, LBP, Université de Strasbourg, Illkirch, France
| |
Collapse
|
106
|
Luo X, Seveau de Noray V, Aoun L, Biarnes-Pelicot M, Strale PO, Studer V, Valignat MP, Theodoly O. Lymphocyte perform reverse adhesive haptotaxis mediated by integrins LFA-1. J Cell Sci 2020; 133:jcs.242883. [DOI: 10.1242/jcs.242883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/13/2020] [Indexed: 01/10/2023] Open
Abstract
Cell Guidance by anchored molecules, or haptotaxis, is crucial in development, immunology and cancer. Adhesive haptotaxis, or guidance by adhesion molecules, is well established for mesenchymal cells like fibroblasts, whereas its existence remains unreported for amoeboid cells that require less or no adhesion to migrate. We show here in vitro that amoeboid human T lymphocytes develop adhesive haptotaxis versus densities of integrin ligands expressed by high endothelial venules. Moreover, lymphocytes orient towards increasing adhesion with VLA-4 integrins, like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins, which has never been observed. This counterintuitive ‘reverse haptotaxis’ cannot be explained with the existing mesenchymal mechanisms of competition between cells’ pulling edges or of lamellipodia growth activated by integrins, which favor orientation towards increasing adhesion. Mechanisms and functions of amoeboid adhesive haptotaxis remain unclear, however multidirectional integrin-mediated haptotaxis may operate around transmigration ports on endothelium, stromal cells in lymph nodes, and inflamed tissue where integrin ligands are spatially modulated.
Collapse
Affiliation(s)
- Xuan Luo
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | - Laurene Aoun
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | | | - Vincent Studer
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS UMR 5297, F-33000 Bordeaux, France
| | | | | |
Collapse
|
107
|
Caballero D, Reis RL, Kundu SC. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:43-64. [PMID: 32285364 DOI: 10.1007/978-3-030-36588-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional in vitro and in vivo models typically used in cancer research have demonstrated a low predictive power for human response. This leads to high attrition rates of new drugs in clinical trials, which threaten cancer patient prognosis. Tremendous efforts have been directed towards the development of a new generation of highly predictable pre-clinical models capable to reproduce in vitro the biological complexity of the human body. Recent advances in nanotechnology and tissue engineering have enabled the development of predictive organs-on-a-chip models of cancer with advanced capabilities. These models can reproduce in vitro the complex three-dimensional physiology and interactions that occur between organs and tissues in vivo, offering multiple advantages when compared to traditional models. Importantly, these models can be tailored to the biological complexity of individual cancer patients resulting into biomimetic and personalized cancer patient-on-a-chip platforms. The individualized models provide a more accurate and physiological environment to predict tumor progression on patients and their response to drugs. In this chapter, we describe the latest advances in the field of cancer patient-on-a-chip, and discuss about their main applications and current challenges. Overall, we anticipate that this new paradigm in cancer in vitro models may open up new avenues in the field of personalized - cancer - medicine, which may allow pharmaceutical companies to develop more efficient drugs, and clinicians to apply patient-specific therapies.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal
| |
Collapse
|
108
|
Wang C, Wang J, Fu D, Yan Q, Pang D, Zhang Z. Topography guiding the accelerated and persistently directional cell migration induced by vaccinia virus. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
109
|
Hennig K, Wang I, Moreau P, Valon L, DeBeco S, Coppey M, Miroshnikova YA, Albiges-Rizo C, Favard C, Voituriez R, Balland M. Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. SCIENCE ADVANCES 2020; 6:eaau5670. [PMID: 31921998 PMCID: PMC6941913 DOI: 10.1126/sciadv.aau5670] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/29/2019] [Indexed: 05/18/2023]
Abstract
Directional cell motility relies on the ability of single cells to establish a front-rear polarity and can occur in the absence of external cues. The initiation of migration has often been attributed to the spontaneous polarization of cytoskeleton components, while the spatiotemporal evolution of cell-substrate interaction forces has yet to be resolved. Here, we establish a one-dimensional microfabricated migration assay that mimics the complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters of NIH-3T3 fibroblasts and RPE1 epithelial cells reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to trigger cell motility in 1D in the absence of pre-established polarity. A theoretical model validates the crucial role of adhesion dynamics, proposing that front-rear polarity can emerge independently of a complex self-polarizing system.
Collapse
Affiliation(s)
- K. Hennig
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - I. Wang
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - P. Moreau
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - L. Valon
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75015 Paris, France
| | - S. DeBeco
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris, France
| | - M. Coppey
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris, France
| | - Y. A. Miroshnikova
- DYSAD, Institut for Advanced Biosciences, Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, La Tronche, France
| | - C. Albiges-Rizo
- DYSAD, Institut for Advanced Biosciences, Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, La Tronche, France
| | - C. Favard
- Membrane Domains and Viral Assembly, IRIM, UMR9004 CNRS/Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| | - R. Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, Tour 13-12, 5eme etage, 4 place Jussieu, 75252 Paris Cedex 05, France
- Corresponding author. (M.B.); (R.V.)
| | - M. Balland
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
- Corresponding author. (M.B.); (R.V.)
| |
Collapse
|
110
|
Chen J, Ananthanarayanan B, Springer KS, Wolf KJ, Sheyman SM, Tran VD, Kumar S. Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Res 2020; 80:69-78. [PMID: 31641031 PMCID: PMC6942638 DOI: 10.1158/0008-5472.can-19-1237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
The aggressive brain tumor glioblastoma (GBM) is characterized by rapid cellular infiltration of brain tissue, raising the possibility that disease progression could potentially be slowed by disrupting the machinery of cell migration. The LIM kinase isoforms LIMK1 and LIMK2 (LIMK1/2) play important roles in cell polarization, migration, and invasion and are markedly upregulated in GBM and many other infiltrative cancers. Yet, it remains unclear whether LIMK suppression could serve as a viable basis for combating GBM infiltration. In this study, we investigated effects of LIMK1/2 suppression on GBM invasion by combining GBM culture models, engineered invasion paradigms, and mouse xenograft models. While knockdown of either LIMK1 or LIMK2 only minimally influenced invasion in culture, simultaneous knockdown of both isoforms strongly reduced the invasive motility of continuous culture models and human GBM tumor-initiating cells (TIC) in both Boyden chamber and 3D hyaluronic acid spheroid invasion assays. Furthermore, LIMK1/2 functionally regulated cell invasiveness, in part, by disrupting polarized cell motility under confinement and cell chemotaxis. In an orthotopic xenograft model, TICs stably transduced with LIMK1/2 shRNA were implanted intracranially in immunocompromised mice. Tumors derived from LIMK1/2 knockdown TICs were substantially smaller and showed delayed growth kinetics and more distinct margins than tumors derived from control TICs. Overall, LIMK1/2 suppression increased mean survival time by 30%. These findings indicate that LIMK1/2 strongly regulate GBM invasive motility and tumor progression and support further exploration of LIMK1/2 as druggable targets. SIGNIFICANCE: Targeting the actin-binding proteins LIMK1 and LIMK2 significantly diminishes glioblastoma invasion and spread, suggesting the potential value of these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | | | - Kelsey S Springer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Kayla J Wolf
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sharon M Sheyman
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California.
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
111
|
Zhong J, Yang Y, Liao L, Zhang C. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomater Sci 2020; 8:2734-2755. [DOI: 10.1039/c9bm01809c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microenvironments that cells encounter with in vitro.
Collapse
Affiliation(s)
- Jiajun Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yuexiong Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
112
|
Padhi A, Thomson AH, Perry JB, Davis GN, McMillan RP, Loesgen S, Kaweesa EN, Kapania R, Nain AS, Brown DA. Bioenergetics underlying single-cell migration on aligned nanofiber scaffolds. Am J Physiol Cell Physiol 2019; 318:C476-C485. [PMID: 31875698 DOI: 10.1152/ajpcell.00221.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - Alexander H Thomson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Grace N Davis
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia.,Virginia Tech Metabolism Core, Blacksburg, Virginia
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | | | - Rakesh Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia.,Virginia Tech Center for Drug Discovery, Blacksburg, Virginia.,Virginia Tech Metabolism Core, Blacksburg, Virginia
| |
Collapse
|
113
|
Microtubule-Actomyosin Mechanical Cooperation during Contact Guidance Sensing. Cell Rep 2019; 25:328-338.e5. [PMID: 30304674 PMCID: PMC6226003 DOI: 10.1016/j.celrep.2018.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023] Open
Abstract
Cancer cell migration through and away from tumors is driven in part by migration along aligned extracellular matrix, a process known as contact guidance (CG). To concurrently study the influence of architectural and mechanical regulators of CG sensing, we developed a set of CG platforms. Using flat and nanotextured substrates with variable architectures and stiffness, we show that CG sensing is regulated by substrate stiffness and define a mechanical role for microtubules and actomyosin-microtubule interactions during CG sensing. Furthermore, we show that Arp2/3-dependent lamellipodia dynamics can compete with aligned protrusions to diminish the CG response and define Arp2/3- and Formins-dependent actin architectures that regulate microtu-bule-dependent protrusions, which promote the CG response. Thus, our work represents a comprehen-sive examination of the physical mechanisms influ-encing CG sensing. Aligned extracellular matrix architectures in tumors direct migration of invasive cancer cells. Tabdanov et al. show that the mechanical properties of aligned extracellular matrix environments influence invasive cell behavior and define a mechanical role for microtubules and actomyosin-microtubule interactions during sensing of contact guidance cues that arise from aligned extracellular matrix.
Collapse
|
114
|
Liu R, Song K, Hu Z, Cao W, Shuai J, Chen S, Nan H, Zheng Y, Jiang X, Zhang H, Han W, Liao Y, Qu J, Jiao Y, Liu L. Diversity of collective migration patterns of invasive breast cancer cells emerging during microtrack invasion. Phys Rev E 2019; 99:062403. [PMID: 31330694 DOI: 10.1103/physreve.99.062403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Understanding the mechanisms underlying the diversity of tumor invasion dynamics, including single-cell migration, multicellular streaming, and the emergence of various collective migration patterns, is a long-standing problem in cancer research. Here we have designed and fabricated a series of microchips containing high-throughput microscale tracks using protein repelling coating technology, which were then covered with a thin Matrigel layer. By varying the geometrical confinement (track width) and microenvironment factors (Matrigel concentration), we have reproduced a diversity of collective migration patterns in the chips, which were also observed in vivo. We have further classified the collective patterns and quantified the emergence probability of each class of patterns as a function of microtrack width and Matrigel concentration to devise a quantitive "collective pattern diagram." To elucidate the mechanisms behind the emergence of various collective patterns, we employed cellular automaton simulations, incorporating the effects of both direct cell-cell interactions and microenvironment factors (e.g., chemical gradient and extracellular matrix degradation). Our simulations suggest that tumor cell phenotype heterogeneity, and the associated dynamic selection of a favorable phenotype via cell-microenivronment interactions, are key to the emergence of the observed collective patterns in vitro.
Collapse
Affiliation(s)
- Ruchuan Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Zhijian Hu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Wenbin Cao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Shaohua Chen
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Xuefeng Jiang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Weijing Han
- Shenzhen Shengyuan Biotechnology Co. Ltd., Shenzhen 518000, China
| | - Yong Liao
- Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400331, China
| | - Junle Qu
- Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
115
|
Alkmin S, Brodziski R, Simon H, Hinton D, Goldsmith RH, Patankar M, Campagnola P. Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomater 2019; 100:92-104. [PMID: 31568876 DOI: 10.1016/j.actbio.2019.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
A profound remodeling of the collagen in the extracellular matrix (ECM) occurs in human ovarian cancer but it is unknown how this affects migration dynamics and ultimately tumor growth. Here, we investigate the influence of collagen morphology on ovarian cell migration through the use of second harmonic generation (SHG) image-based models of ovarian tumors. The scaffolds are fabricated by multiphoton excited (MPE) polymerization, where the process is akin to 3D printing except it achieves much greater resolution (∼0.5 µm) and utilizes collagen and collagen analogs. We used this technique to create scaffolds with complex 3D submicron features representing the collagen fiber morphology in normal stroma, high risk stroma, benign tumors, and high grade ovarian tumors. We found the highly aligned malignant stromal structure promoted enhanced motility and also increased cell and f-Actin alignment relative to the other tissues. However, using models based on fiber crimping characteristics, we found cells seeded on linear fibers based on normal stromal models yielded the highest degree of alignment but least motility. These results show that both the fiber properties themselves and as well as their overall alignment govern the resulting migration dynamics. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology. STATEMENT OF SIGNIFICANCE: The extracellular matrix collagen in ovarian cancer is highly remodeled but the consequences on cell function remain unknown. It is important to understand the operative cell matrix interactions, as this could lead to better prognostics and better prediction of therapeutic efficacy. We probe migration dynamics using high resolution (∼0.5 µm) multiphoton excited fabrication to synthesize scaffolds whose designs are derived directly from Second Harmonic Generation microscope images of the collagen in normal ovarian tissues as well as benign and malignant tumors. Collectively our results show the importance of the matrix morphology (fiber shape and alignment) on driving cell motility, cell shape and f-Actin alignment. These collagen-based models have complex fiber morphology and cannot be created by conventional fabrication technologies.
Collapse
|
116
|
Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr Opin Cell Biol 2019; 62:86-95. [PMID: 31739264 DOI: 10.1016/j.ceb.2019.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/19/2023]
Abstract
Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures. Microtubule density, longevity, and post-translational modifications strongly depend on the dynamics of their plus ends. Factors controlling microtubule plus-end dynamics are often part of cortical assemblies that integrate cytoskeletal organization, cell adhesion, and secretion and are subject to microtubule-dependent feedback regulation. Finally, microtubules can mechanically contribute to cell asymmetry by promoting cell elongation, a property that might be important for cells with dense microtubule arrays growing in soft environments.
Collapse
|
117
|
Le Borgne-Rochet M, Angevin L, Bazellières E, Ordas L, Comunale F, Denisov EV, Tashireva LA, Perelmuter VM, Bièche I, Vacher S, Plutoni C, Seveno M, Bodin S, Gauthier-Rouvière C. P-cadherin-induced decorin secretion is required for collagen fiber alignment and directional collective cell migration. J Cell Sci 2019; 132:jcs.233189. [PMID: 31604795 DOI: 10.1242/jcs.233189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of β1 integrin and of the β-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.
Collapse
Affiliation(s)
- Maïlys Le Borgne-Rochet
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Lucie Angevin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Elsa Bazellières
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, Cedex 09, France
| | - Laura Ordas
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Franck Comunale
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia.,Tomsk State University, 634050 Tomsk, Russia
| | - Lubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Martial Seveno
- BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, 34094 Montpellier, France
| | - Stéphane Bodin
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| | - Cécile Gauthier-Rouvière
- CRBM, Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, 34000 Montpellier, France Montpellier University, 34000 Montpellier, France
| |
Collapse
|
118
|
Morrow CM, Mukherjee A, Traore MA, Leaman EJ, Kim A, Smith EM, Nain AS, Behkam B. Integrating nanofibers with biochemical gradients to investigate physiologically-relevant fibroblast chemotaxis. LAB ON A CHIP 2019; 19:3641-3651. [PMID: 31560021 DOI: 10.1039/c9lc00602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Persistent cell migration can occur due to anisotropy in the extracellular matrix (ECM), the gradient of a chemo-effector, or a combination of both. Through a variety of in vitro platforms, the contributions of either stimulus have been extensively studied, while the combined effect of both cues remains poorly described. Here, we report an integrative microfluidic chemotaxis assay device that enables the study of single cell chemotaxis on ECM-mimicking, aligned, and suspended nanofibers. Using this assay, we evaluated the effect of fiber spacing on the morphology and chemotaxis response of embryonic murine NIH/3T3 fibroblasts in the presence of temporally invariant, linear gradients of platelet-derived growth factor-BB (PDGF-BB). We found that the strength of PDGF-mediated chemotaxis response depends on not only the gradient slope but also the cell morphology. Low aspect ratio (3.4 ± 0.2) cells on flat substrata exhibited a chemotaxis response only at a PDGF-BB gradient of 0-10 ng mL-1. However, high aspect ratio (19.1 ± 0.7) spindle-shaped cells attached to individual fibers exhibited maximal chemotaxis response at a ten-fold shallower gradient of 0-1 ng mL-1, which was robustly maintained up to 0-10 ng mL-1. Quadrilateral-shaped cells of intermediate aspect ratio (13.6 ± 0.8) attached to two fibers exhibited a weaker response compared to the spindle-shaped cells, but still stronger compared to cells attached to 2D featureless substrata. Through pharmacological inhibition, we show that the mesenchymal chemotaxis pathway is conserved in cells on fibers. Altogether, our findings show that chemotaxis on ECM-mimicking fibers is modulated by fiber spacing-driven cell shape and can be significantly different from the behavior observed on flat 2D substrata. We envisage that this microfluidic platform will have wide applicability in understanding the combined role of ECM architecture and chemotaxis in physiological and pathological processes.
Collapse
Affiliation(s)
- Carmen M Morrow
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric J Leaman
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - AhRam Kim
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Evan M Smith
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
119
|
Doolin MT, Stroka KM. Integration of Mesenchymal Stem Cells into a Novel Micropillar Confinement Assay. Tissue Eng Part C Methods 2019; 25:662-676. [PMID: 31347455 PMCID: PMC6998058 DOI: 10.1089/ten.tec.2019.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Mechanical cues such as stiffness have been shown to influence cell gene expression, protein expression, and cell behaviors critical for tissue engineering. The mechanical cue of confinement is also a pervasive parameter affecting cells in vivo and in tissue-engineered constructs. Despite its prevalence, the mechanical cue of confinement lacks assays that provide precise control over the degree of confinement induced on cells, yield a large sample size, enable long-term culture, and enable easy visualization of cells over time. In this study, we developed a process to systematically confine cells using micropillar arrays. Using photolithography and polydimethylsiloxane (PDMS) molding, we created PDMS arrays of micropillars that were 5, 10, 20, or 50 μm in spacing and between 13 and 17 μm in height. The tops of micropillars were coated with Pluronic F127 to inhibit cell adhesion, and we observed that mesenchymal stem cells (MSCs) robustly infiltrated into the micropillar arrays. MSC and nucleus morphology were altered by narrowing the micropillar spacing, and cytoskeletal elements within MSCs appeared to become more diffuse with increasing confinement. Specifically, MSCs exhibited a ring of actin around their periphery and punctate focal adhesions. MSC migration speed was reduced by narrowing micropillar spacing, and distinct migration behaviors of MSCs emerged in the presence of micropillars. MSCs continued to proliferate within micropillar arrays after 3 weeks in culture, displaying our assay's capability for long-term studies. Our assay also has the capacity to provide adequate cell numbers for quantitative assays to investigate the effect of confinement on gene and protein expression. Through deeper understanding of cell mechanotransduction in the context of confinement, we can modify tissue-engineered constructs to be optimal for a given purpose. Impact Statement In this study, we developed a novel process to systematically confine cells using micropillar arrays. Our assay provides insight into cell behavior in response to mechanical confinement. Through deeper understanding of how cells sense and respond to confinement, we can fine tune tissue-engineered constructs to be optimal for a given purpose. By combining confinement with other physical cues, we can harness mechanical properties to encourage or inhibit cell migration, direct cells down a particular lineage, induce cell secretion of specific cytokines or extracellular vesicles, and ultimately direct cells to behave in a way conducive to tissue engineering.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
- Biophysics Program, University of Maryland, College Park, Maryland
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
120
|
Toffoli A, Parisi L, Bianchi MG, Lumetti S, Bussolati O, Macaluso GM. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110250. [PMID: 31761226 DOI: 10.1016/j.msec.2019.110250] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate how a thermal treatment to increase titanium wettability influences proteins adsorption from blood serum and osteoblasts responses. METHODS Titanium discs with machined or micro-rough profiles were thermally treated to obtain hydrophilic surfaces. The adsorption kinetics of two representative serum proteins were determined by Bradford assay, while the stable protein adsorption pattern from blood serum was investigated by SDS-PAGE and Western Blot analysis. Subsequently, MC3T3-E1 cells were cultured on titanium for 24h and assayed for adhesion and morphology. RESULTS Thermally-induced hydrophilicity dramatically improved the capacity of titanium to selectively adsorb fibronectin and fibrinogen from blood serum, without evident influence on other representative serum proteins. The selective adsorption of fibronectin was linked to the improved capacity of MC3T3-E1 cells to adhere and spread on hydrophilic surfaces. SIGNIFICANCE We identified a potential method to improve selective protein adsorption on titanium by enhancing implant surface wettability through a thermal treatment. Selective fibronectin adsorption was further indicated as the responsible for improved osteoblasts adhesion. Targeting specific cell response by selective protein adsorption appears to be crucial to conceive even more performant therapies.
Collapse
Affiliation(s)
- Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | | | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ovidio Bussolati
- Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43124, Parma, PR, Italy.
| |
Collapse
|
121
|
Abstract
Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
122
|
Jana A, Nookaew I, Singh J, Behkam B, Franco AT, Nain AS. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response. FASEB J 2019; 33:10618-10632. [PMID: 31225977 PMCID: PMC6766658 DOI: 10.1096/fj.201900131r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/30/2019] [Indexed: 01/14/2023]
Abstract
Biomechanical cues within tissue microenvironments are critical for maintaining homeostasis, and their disruption can contribute to malignant transformation and metastasis. Once transformed, metastatic cancer cells can migrate persistently by adapting (plasticity) to changes in the local fibrous extracellular matrix, and current strategies to recapitulate persistent migration rely exclusively on the use of aligned geometries. Here, the controlled interfiber spacing in suspended crosshatch networks of nanofibers induces cells to exhibit plasticity in migratory behavior (persistent and random) and the associated cytoskeletal arrangement. At dense spacing (3 and 6 µm), unexpectedly, elongated cells migrate persistently (in 1 dimension) at high speeds in 3-dimensional shapes with thick nuclei, and short focal adhesion cluster (FAC) lengths. With increased spacing (18 and 36 µm), cells attain 2-dimensional morphologies, have flattened nuclei and longer FACs, and migrate randomly by rapidly detaching their trailing edges that strain the nuclei by ∼35%. At 54-µm spacing, kite-shaped cells become near stationary. Poorly developed filamentous actin stress fibers are found only in cells on 3-µm networks. Gene-expression profiling shows a decrease in transcriptional potential and a differential up-regulation of metabolic pathways. The consistency in observed phenotypes across cell lines supports using this platform to dissect hallmarks of plasticity in migration in vitro.-Jana, A., Nookaew, I., Singh, J., Behkam, B., Franco, A. T., Nain, A. S. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Intawat Nookaew
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jugroop Singh
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aime T. Franco
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
123
|
Micropattern-based platform as a physiologically relevant model to study epithelial morphogenesis and nephrotoxicity. Biomaterials 2019; 218:119339. [DOI: 10.1016/j.biomaterials.2019.119339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023]
|
124
|
Morikura T, Miyata S. Effect of Mechanical Compression on Invasion Process of Malignant Melanoma Using In Vitro Three-Dimensional Cell Culture Device. MICROMACHINES 2019; 10:mi10100666. [PMID: 31575066 PMCID: PMC6843826 DOI: 10.3390/mi10100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022]
Abstract
Malignant melanoma in the plantar surface of the foot is subjected to various mechanical stimuli generated by daily human activity such as walking. Some studies have reported that mechanical compression affects the development and progression of melanoma. However, little is known about how mechanical compression affects the behavior of malignant melanoma cells in a physiological condition due to the complexity of the invasion mechanisms. In this study, we developed an in vitro three-dimensional cell culture device using microporous membrane in order to evaluate the effects of mechanical compression on the invasion process of malignant melanoma. Our results suggest that the invasion of melanoma cells under the compressive stress for 8 h of culture was promoted with the elongation of F-actin filaments compared to control groups, whereas there was no significant difference between both groups at 32 h of culture, with increasing cell death associated with promoting melanin synthesis. The results of this study contribute to the elucidation of the invasion mechanisms of malignant melanoma caused by mechanical stimulation.
Collapse
Affiliation(s)
- Takashi Morikura
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| |
Collapse
|
125
|
Long EG, Buluk M, Gallagher MB, Schneider JM, Brown JL. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium. Bioact Mater 2019; 4:249-255. [PMID: 31667441 PMCID: PMC6812408 DOI: 10.1016/j.bioactmat.2019.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Orthopedic implants rely on facilitating a robust interaction between the implant material surface and the surrounding bone tissue. Ideally, the interface will encourage osseointegration with the host bone, resulting in strong fixation and implant stability. However, implant failure can occur due to the lack of integration with bone tissue or bacterial infection. The chosen material and surface topography of orthopedic implants are key factors that influence the early events following implantation and may ultimately define the success of a device. Early attachment, rapid migration and improved differentiation of stem cells to osteoblasts are necessary to populate the surface of biomedical implants, potentially preventing biofilm formation and implant-associated infection. This article explores these early stem cell specific events by seeding human mesenchymal stem cells (MSCs) on four clinically relevant materials: polyether ether ketone (PEEK), Ti6Al4V (smooth Ti), macro-micro rough Ti6Al4V (Endoskeleton®), and macro-micro-nano rough Ti6Al4V (nanoLOCK®). The results demonstrate the incorporation of a hierarchical macro-micro-nano roughness on titanium produces a stellate morphology typical of mature osteoblasts/osteocytes, rapid and random migration, and improved osteogenic differentiation in seeded MSCs. Literature suggests rapid coverage of a surface by stem cells coupled with stimulation of bone differentiation minimizes the opportunity for biofilm formation while increasing the rate of device integration with the surrounding bone tissue.
Collapse
Affiliation(s)
- Emily G Long
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Merve Buluk
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Michelle B Gallagher
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Jennifer M Schneider
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| |
Collapse
|
126
|
Li X, He S, Xu J, Li P, Ji B. Cooperative Contraction Behaviors of a One-Dimensional Cell Chain. Biophys J 2019; 115:554-564. [PMID: 30089244 DOI: 10.1016/j.bpj.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Collective behaviors of multiple cells play important roles in various physiological and pathological processes, but the mechanisms of coordination among cells are highly unknown. Here, we build a one-dimensional cell-chain model to quantitatively study cell cooperativity. Combining experimental and theoretical approaches, we showed that the matrix stiffness, intercellular adhesion strength, and cell-chain length have a significant effect on the cooperative contraction of the cell chains. Cells have strong cooperativity, i.e., exhibiting a united contraction mode, in shorter cell chains or on softer matrix or with higher intercellular adhesion strength. In contrast, cells would exhibit a divided contraction when the cell chain was long or on stiffer matrix or with weaker adhesion strength. In addition, our quantitative results indicated that the cooperativity of cells is regulated by the coupling between matrix stiffness and intercellular adhesion, which can be quantified by an explicit parameter group. These results may provide guidelines for regulating the cooperativity of cells in their collective behaviors in tissue morphogenesis and tissue engineering in biomedical applications.
Collapse
Affiliation(s)
- Xiaojun Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiayi Xu
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
127
|
Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. NATURE REVIEWS. MATERIALS 2019; 4:606-622. [PMID: 33552558 PMCID: PMC7864216 DOI: 10.1038/s41578-019-0129-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Organoids are 3D cell culture systems that mimic some of the structural and functional characteristics of an organ. Organoid cultures provide the opportunity to study organ-level biology in models that mimic human physiology more closely than 2D cell culture systems or non-primate animal models. Many organoid cultures rely on decellularized extracellular matrices as scaffolds, which are often poorly chemically defined and allow only limited tunability and reproducibility. By contrast, the biochemical and biophysical properties of engineered matrices can be tuned and optimized to support the development and maturation of organoid cultures. In this Review, we highlight how key cell-matrix interactions guiding stem-cell decisions can inform the design of biomaterials for the reproducible generation and control of organoid cultures. We survey natural, synthetic and protein-engineered hydrogels for their applicability to different organoid systems and discuss biochemical and mechanical material properties relevant for organoid formation. Finally, dynamic and cell-responsive material systems are investigated for their future use in organoid research.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alexis J. Seymour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Thomas L. Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
128
|
Azimzade Y, Saberi AA, Sahimi M. Regulation of migration of chemotactic tumor cells by the spatial distribution of collagen fiber orientation. Phys Rev E 2019; 99:062414. [PMID: 31330715 DOI: 10.1103/physreve.99.062414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 02/03/2023]
Abstract
Collagen fibers, an important component of the extracellular matrix (ECM), can both inhibit and promote cellular migration. In vitro studies have revealed that the fibers' orientations are crucial to cellular invasion, while in vivo investigations have led to the development of tumor-associated collagen signatures (TACS) as an important prognostic factor. Studying biophysical regulation of cell invasion and the effect of the fibers' orientation not only deepens our understanding of the phenomenon, but also helps classify the TACSs precisely, which is currently lacking. We present a stochastic model for random or chemotactic migration of cells in fibrous ECM, and study the role of the various factors in it. The model provides a framework for quantitative classification of the TACSs, and reproduces quantitatively recent experimental data for cell motility. It also indicates that the spatial distribution of the fibers' orientations and extended correlations between them, hitherto ignored, as well as dynamics of cellular motion all contribute to regulation of the cells' invasion length, which represents a measure of metastatic risk. Although the fibers' orientations trivially affect randomly moving cells, their effect on chemotactic cells is completely nontrivial and unexplored, which we study in this paper.
Collapse
Affiliation(s)
- Youness Azimzade
- Department of Physics, The University of Tehran, Tehran 14395-547, Iran
| | - Abbas Ali Saberi
- Department of Physics, The University of Tehran, Tehran 14395-547, Iran
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
129
|
Zhovmer AS, Tabdanov ED, Miao H, Wen H, Chen J, Luo X, Ma X, Provenzano PP, Adelstein RS. The role of nonmuscle myosin 2A and 2B in the regulation of mesenchymal cell contact guidance. Mol Biol Cell 2019; 30:1961-1973. [PMID: 31318315 PMCID: PMC6727766 DOI: 10.1091/mbc.e19-01-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Erdem D Tabdanov
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Houxun Miao
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Han Wen
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Paolo P Provenzano
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| |
Collapse
|
130
|
Yoon C, Choi C, Stapleton S, Mirabella T, Howes C, Dong L, King J, Yang J, Oberai A, Eyckmans J, Chen CS. Myosin IIA-mediated forces regulate multicellular integrity during vascular sprouting. Mol Biol Cell 2019; 30:1974-1984. [PMID: 31318321 PMCID: PMC6727772 DOI: 10.1091/mbc.e19-02-0076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenic sprouting is a critical process involved in vascular network formation within tissues. During sprouting, tip cells and ensuing stalk cells migrate collectively into the extracellular matrix while preserving cell–cell junctions, forming patent structures that support blood flow. Although several signaling pathways have been identified as controlling sprouting, it remains unclear to what extent this process is mechanoregulated. To address this question, we investigated the role of cellular contractility in sprout morphogenesis, using a biomimetic model of angiogenesis. Three-dimensional maps of mechanical deformations generated by sprouts revealed that mainly leader cells, not stalk cells, exert contractile forces on the surrounding matrix. Surprisingly, inhibiting cellular contractility with blebbistatin did not affect the extent of cellular invasion but resulted in cell–cell dissociation primarily between tip and stalk cells. Closer examination of cell–cell junctions revealed that blebbistatin impaired adherens-junction organization, particularly between tip and stalk cells. Using CRISPR/Cas9-mediated gene editing, we further identified NMIIA as the major isoform responsible for regulating multicellularity and cell contractility during sprouting. Together, these studies reveal a critical role for NMIIA-mediated contractile forces in maintaining multicellularity during sprouting and highlight the central role of forces in regulating cell–cell adhesions during collective motility.
Collapse
Affiliation(s)
- Christine Yoon
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Colin Choi
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Sarah Stapleton
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Teodelinda Mirabella
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Caroline Howes
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Li Dong
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712
| | - Jessica King
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Jinling Yang
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Assad Oberai
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.,Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Jeroen Eyckmans
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| |
Collapse
|
131
|
Müller A, Müller S, Nasufovic V, Arndt HD, Pompe T. Actin stress fiber dynamics in laterally confined cells. Integr Biol (Camb) 2019; 11:175-185. [DOI: 10.1093/intbio/zyz016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Abstract
Multiple cellular processes are affected by spatial constraints from the extracellular matrix and neighboring cells. In vitro experiments using defined micro-patterning allow for in-depth analysis and a better understanding of how these constraints impact cellular behavior and functioning. Herein we focused on the analysis of actin cytoskeleton dynamics as a major determinant of mechanotransduction mechanisms in cells. We seeded primary human umbilical vein endothelial cells onto stripe-like cell-adhesive micro-patterns with varying widths and then monitored and quantified the dynamic reorganization of actin stress fibers, including fiber velocities, orientation and density, within these live cells using the cell permeable F-actin marker SiR-actin. Although characteristic parameters describing the overall stress fiber architecture (average orientation and density) were nearly constant throughout the observation time interval of 60 min, we observed permanent transport and turnover of individual actin stress fibers. Stress fibers were more strongly oriented along stripe direction with decreasing stripe width, (5° on 20 μm patterns and 10° on 40 μm patterns), together with an overall narrowing of the distribution of fiber orientation. Fiber dynamics was characterized by a directed movement from the cell edges towards the cell center, where fiber dissolution frequently took place. By kymograph analysis, we found median fiber velocities in the range of 0.2 μm/min with a weak dependence on pattern width. Taken together, these data suggest that cell geometry determines actin fiber orientation, while it also affects actin fiber transport and turnover.
Collapse
Affiliation(s)
- Andreas Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Sandra Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Veselin Nasufovic
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Hohe Str. 6, Dresden, Germany
| |
Collapse
|
132
|
Hisey CL, Mitxelena-Iribarren O, Martínez-Calderón M, Gordon JB, Olaizola SM, Benavente-Babace A, Mujika M, Arana S, Hansford DJ. A versatile cancer cell trapping and 1D migration assay in a microfluidic device. BIOMICROFLUIDICS 2019; 13:044105. [PMID: 31372193 PMCID: PMC6656575 DOI: 10.1063/1.5103269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/05/2019] [Indexed: 05/12/2023]
Abstract
Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine.
Collapse
Affiliation(s)
- Colin L. Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | - Jaymeson B. Gordon
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | - Derek J. Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
133
|
Disanza A, Bisi S, Frittoli E, Malinverno C, Marchesi S, Palamidessi A, Rizvi A, Scita G. Is cell migration a selectable trait in the natural evolution of cancer development? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180224. [PMID: 31431177 DOI: 10.1098/rstb.2018.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sara Bisi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuela Frittoli
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Malinverno
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Stefano Marchesi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Palamidessi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
134
|
Jenkins TL, Little D. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. NPJ Regen Med 2019; 4:15. [PMID: 31263573 PMCID: PMC6597555 DOI: 10.1038/s41536-019-0076-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering often uses synthetic scaffolds to direct cell responses during engineered tissue development. Since cells reside within specific niches of the extracellular matrix, it is important to understand how the matrix guides cell response and then incorporate this knowledge into scaffold design. The goal of this review is to review elements of cell-matrix interactions that are critical to informing and evaluating cellular response on synthetic scaffolds. Therefore, this review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional (2D) and three dimensional (3D) synthetic scaffolds. Variations in fiber diameter, alignment, and scaffold porosity guide stem cells toward different lineages. Cells generally exhibit rounded morphology on nanofibers, randomly oriented fibers, and low-porosity scaffolds. Conversely, cells exhibit elongated, spindle-shaped morphology on microfibers, aligned fibers, and high-porosity scaffolds. Cells migrate with higher velocities on nanofibers, aligned fibers, and high-porosity scaffolds but migrate greater distances on microfibers, aligned fibers, and highly porous scaffolds. Incorporating relevant biomimetic factors into synthetic scaffolds destined for specific tissue application could take advantage of and further enhance these responses.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Dianne Little
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
135
|
Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat Commun 2019; 10:2797. [PMID: 31243273 PMCID: PMC6594963 DOI: 10.1038/s41467-019-10729-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Collective cell migration occurs in many patho-physiological states, including wound healing and invasive cancer growth. The integrity of the expanding epithelial sheets depends on extracellular cues, including cell-cell and cell-matrix interactions. We show that the nano-scale topography of the extracellular matrix underlying epithelial cell layers can strongly affect the speed and morphology of the fronts of the expanding sheet, triggering partial and complete epithelial-mesenchymal transitions (EMTs). We further demonstrate that this behavior depends on the mechano-sensitivity of the transcription regulator YAP and two new YAP-mediated cross-regulating feedback mechanisms: Wilms Tumor-1-YAP-mediated downregulation of E-cadherin, loosening cell-cell contacts, and YAP-TRIO-Merlin mediated regulation of Rho GTPase family proteins, enhancing cell migration. These YAP-dependent feedback loops result in a switch-like change in the signaling and the expression of EMT-related markers, leading to a robust enhancement in invasive cell spread, which may lead to a worsened clinical outcome in renal and other cancers. Reorganisation of the extracellular matrix (ECM) controls processes involving epithelial-mesenchymal transition (EMT). Here, the authors show that EMT occurring in epithelial cells on a fabricated nano-engineered cell adhesion surface is triggered by mechanical cues from the ECM.
Collapse
|
136
|
Yamada KM, Collins JW, Cruz Walma DA, Doyle AD, Morales SG, Lu J, Matsumoto K, Nazari SS, Sekiguchi R, Shinsato Y, Wang S. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int J Exp Pathol 2019; 100:144-152. [PMID: 31179622 DOI: 10.1111/iep.12329] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
This review describes how direct visualization of the dynamic interactions of cells with different extracellular matrix microenvironments can provide novel insights into complex biological processes. Recent studies have moved characterization of cell migration and invasion from classical 2D culture systems into 1D and 3D model systems, revealing multiple differences in mechanisms of cell adhesion, migration and signalling-even though cells in 3D can still display prominent focal adhesions. Myosin II restrains cell migration speed in 2D culture but is often essential for effective 3D migration. 3D cell migration modes can switch between lamellipodial, lobopodial and/or amoeboid depending on the local matrix environment. For example, "nuclear piston" migration can be switched off by local proteolysis, and proteolytic invadopodia can be induced by a high density of fibrillar matrix. Particularly, complex remodelling of both extracellular matrix and tissues occurs during morphogenesis. Extracellular matrix supports self-assembly of embryonic tissues, but it must also be locally actively remodelled. For example, surprisingly focal remodelling of the basement membrane occurs during branching morphogenesis-numerous tiny perforations generated by proteolysis and actomyosin contractility produce a microscopically porous, flexible basement membrane meshwork for tissue expansion. Cells extend highly active blebs or protrusions towards the surrounding mesenchyme through these perforations. Concurrently, the entire basement membrane undergoes translocation in a direction opposite to bud expansion. Underlying this slowly moving 2D basement membrane translocation are highly dynamic individual cell movements. We conclude this review by describing a variety of exciting research opportunities for discovering novel insights into cell-matrix interactions.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Joshua W Collins
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shaimar Gonzalez Morales
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Jiaoyang Lu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shayan S Nazari
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Yoshinari Shinsato
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
137
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
138
|
Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and Phenotype Control of Human Dermal Fibroblasts by Electrospun Fibrous Substrates. Adv Healthc Mater 2019; 8:e1801378. [PMID: 30901162 DOI: 10.1002/adhm.201801378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Electrospun fibrous matrices, mimicking extracellular matrix (ECM) hierarchical structures, are potential scaffolds for wound healing. To design functional scaffolds, it is important to explore the interactions between scaffold topographic features and cellular responses, especially directional migration and phenotypic changes, which are critical functional aspects during wound healing. Here, accelerated and persistent migration of human dermal fibroblasts (HDFs) is observed on fibers with aligned orientation. Furthermore, aligned fibers can induce fibroblast-to-myofibroblast differentiation of HDFs. During wound healing, the presence of myofibroblasts advances wound repair by rendering contractile force and ECM deposition within the early and middle courses, but its continuous persistence in the later event may not be desired due to the contribution in pathological scarring. To tune the balance, it is noted in this work that the introduction of matricellular protein angiopoietin-like 4 (ANGPTL4) is capable of reversing the phenotypic alteration induced by aligned fibers, in a time-dependent manner. These results indicate fibrous matrices with oriented configuration are functional in mediating directional cell migration and phenotypic change. The discoveries further suggest that tissue-engineered fibrous grafts with precise alignment modulation and ANGPTL4 releasing properties may thus be promising to promote wound repair with minimizing scar formation.
Collapse
Affiliation(s)
- Huizhi Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Interdisciplinary Graduate SchoolNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yuan Siang Lui
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhen Wei Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Justin Yin Hao Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 59 Nanyang Drive Singapore 636921 Singapore
| | - Lay Poh Tan
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
139
|
Barbier L, Sáez PJ, Attia R, Lennon-Duménil AM, Lavi I, Piel M, Vargas P. Myosin II Activity Is Selectively Needed for Migration in Highly Confined Microenvironments in Mature Dendritic Cells. Front Immunol 2019; 10:747. [PMID: 31031752 PMCID: PMC6474329 DOI: 10.3389/fimmu.2019.00747] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/19/2019] [Indexed: 01/04/2023] Open
Abstract
Upon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes (LNs) to activate T lymphocytes and initiate the adaptive immune response. This fast and tightly regulated process is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration mostly relies on acto-myosin flow and contractility that depend on non-muscular Myosin IIA (MyoII) activity. However, the specific contribution of this molecular motor for mDCs navigation in complex microenvironments has yet to be fully established. Here, we identified a specific role of MyoII activity in the regulation of mDCs migration in highly confined microenvironments. Using microfluidic systems, we observed that during mDCs chemotaxis in 3D collagen gels under defined CCL21 gradients, MyoII activity was required to sustain their fast speed but not to orientate them toward the chemokine. Indeed, despite the fact that mDCs speed declined, these cells still migrated through the 3D gels, indicating that this molecular motor has a discrete function during their motility in this irregular microenvironment. Consistently, using microchannels of different sizes, we found that MyoII activity was essential to maintain fast cell speed specifically under strong confinement. Analysis of cell motility through micrometric holes further demonstrated that cell contractility facilitated mDCs passage only over very small gaps. Altogether, this work highlights that high contractility acts as an adaptation mechanism exhibited by mDCs to optimize their motility in restricted landscapes. Hence, MyoII activity ultimately facilitates their navigation in highly confined areas of structurally irregular tissues, contributing to the fine-tuning of their homing to LNs to initiate adaptive immune responses.
Collapse
Affiliation(s)
- Lucie Barbier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Pablo J Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Rafaele Attia
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | | | - Ido Lavi
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| |
Collapse
|
140
|
Buskermolen ABC, Suresh H, Shishvan SS, Vigliotti A, DeSimone A, Kurniawan NA, Bouten CVC, Deshpande VS. Entropic Forces Drive Cellular Contact Guidance. Biophys J 2019; 116:1994-2008. [PMID: 31053262 PMCID: PMC6531843 DOI: 10.1016/j.bpj.2019.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
Contact guidance-the widely known phenomenon of cell alignment induced by anisotropic environmental features-is an essential step in the organization of adherent cells, but the mechanisms by which cells achieve this orientational ordering remain unclear. Here, we seeded myofibroblasts on substrates micropatterned with stripes of fibronectin and observed that contact guidance emerges at stripe widths much greater than the cell size. To understand the origins of this surprising observation, we combined morphometric analysis of cells and their subcellular components with a, to our knowledge, novel statistical framework for modeling nonthermal fluctuations of living cells. This modeling framework is shown to predict not only the trends but also the statistical variability of a wide range of biological observables, including cell (and nucleus) shapes, sizes, and orientations, as well as stress-fiber arrangements within the cells with remarkable fidelity with a single set of cell parameters. By comparing observations and theory, we identified two regimes of contact guidance: 1) guidance on stripe widths smaller than the cell size (w ≤ 160 μm), which is accompanied by biochemical changes within the cells, including increasing stress-fiber polarization and cell elongation; and 2) entropic guidance on larger stripe widths, which is governed by fluctuations in the cell morphology. Overall, our findings suggest an entropy-mediated mechanism for contact guidance associated with the tendency of cells to maximize their morphological entropy through shape fluctuations.
Collapse
Affiliation(s)
- Antonetta B C Buskermolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hamsini Suresh
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Siamak S Shishvan
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom; Department of Structural Engineering, University of Tabriz, Tabriz, East Azarbayjan, Iran
| | - Andrea Vigliotti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom; Innovative Materials, Italian Aerospace Research Center, Capua, Caserta, Italy
| | - Antonio DeSimone
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; SISSA - International School for Advanced Studies, Trieste, Italy
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
141
|
Malik AA, Gerlee P. Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis. J Math Biol 2019; 78:2289-2315. [PMID: 30972438 PMCID: PMC6534528 DOI: 10.1007/s00285-019-01344-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/25/2019] [Indexed: 12/17/2022]
Abstract
Durotaxis, the phenomena where cells migrate up a gradient in substrate stiffness, remains poorly understood. It has been proposed that durotaxis results from the reinforcement of focal adhesions on stiff substrates. In this paper we formulate a mathematical model of single cell migration on elastic substrates with spatially varying stiffness. We develop a stochastic model where the cell moves by updating the position of its adhesion sites at random times, and the rate of updates is determined by the local stiffness of the substrate. We investigate two physiologically motivated mechanisms of stiffness sensing. From the stochastic model of single cell migration we derive a population level description in the form of a partial differential equation for the time evolution of the density of cells. The equation is an advection–diffusion equation, where the advective velocity is proportional to the stiffness gradient. The model shows quantitative agreement with experimental results in which cells tend to cluster when seeded on a matrix with periodically varying stiffness.
Collapse
Affiliation(s)
- Adam A Malik
- Mathematical Sciences, Chalmers University of Technology, 41296, Göteborg, Sweden. .,Mathematical Sciences, University of Gothenburg, 41296, Göteborg, Sweden.
| | - Philip Gerlee
- Mathematical Sciences, Chalmers University of Technology, 41296, Göteborg, Sweden.,Mathematical Sciences, University of Gothenburg, 41296, Göteborg, Sweden
| |
Collapse
|
142
|
Park J, Kim DH, Levchenko A. Topotaxis: A New Mechanism of Directed Cell Migration in Topographic ECM Gradients. Biophys J 2019; 114:1257-1263. [PMID: 29590582 DOI: 10.1016/j.bpj.2017.11.3813] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
Living cells orient the cytoskeleton polarity and directional migration in response to spatial gradients of multiple types of cues. The resulting tactic behaviors are critical for the proper cell localization in the context of complex single-cell and tissue behaviors. In this perspective, we highlight the recent discovery of, to our knowledge, a new -taxis phenomenon, the topotaxis, which mediates directional cell migration in response to the gradients of such topographic features as the density of extracellular matrix fibers. The direction of topotactic migration critically depends on the effective stiffness of the cortical cytoskeleton, which is controlled by the balance between two parallel signaling pathways activated by the extracellular matrix input. Topotaxis can account for such striking cell behaviors as the opposite directionality of migration of benign and metastatic cancer cells and certain aspects of the wound-healing process. We anticipate that, in conjunction with other tactic phenomena, topotaxis can provide critical information for understanding and design of tissue structure and function.
Collapse
Affiliation(s)
- JinSeok Park
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
143
|
Paul CD, Hruska A, Staunton JR, Burr HA, Daly KM, Kim J, Jiang N, Tanner K. Probing cellular response to topography in three dimensions. Biomaterials 2019; 197:101-118. [PMID: 30641262 PMCID: PMC6390976 DOI: 10.1016/j.biomaterials.2019.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
Biophysical aspects of in vivo tissue microenvironments include microscale mechanical properties, fibrillar alignment, and architecture or topography of the extracellular matrix (ECM). These aspects act in concert with chemical signals from a myriad of diverse ECM proteins to provide cues that drive cellular responses. Here, we used a bottom-up approach to build fibrillar architecture into 3D amorphous hydrogels using magnetic-field driven assembly of paramagnetic colloidal particles functionalized with three types of human ECM proteins found in vivo. We investigated if cells cultured in matrices comprised of fibrils of the same size and arranged in similar geometries will show similar behavior for each of the ECM proteins tested. We were able to resolve spatial heterogeneities in microscale mechanical properties near aligned fibers that were not observed in bulk tissue mechanics. We then used this platform to examine factors contributing to cell alignment in response to topographical cues in 3D laminin-rich matrices. Multiple human cell lines extended protrusions preferentially in directions parallel or perpendicular to aligned fibers independently of the ECM coating. Focal adhesion proteins, as measured by paxillin localization, were mainly diffuse in the cytoplasm, with few puncta localized at the protrusions. Integrin β1 and fascin regulated protrusion extension but not protrusion alignment. Myosin II inhibition did not reduce observed protrusion length. Instead, cells with reduced myosin II activity generated protrusions in random orientations when cultured in hydrogels with aligned fibers. Similarly, myosin II dependence was observed in vivo, where cells no longer aligned along the abluminal surfaces of blood vessels upon treatment with blebbistatin. These data suggest that myosin II can regulate sensing of topography in 3D engineered matrices for both normal and transformed cells.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Alex Hruska
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Hannah A Burr
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kathryn M Daly
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Jiyun Kim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Nancy Jiang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|
144
|
Eftekharjoo M, Palmer D, McCoy B, Maruthamuthu V. Fibrillar force generation by fibroblasts depends on formin. Biochem Biophys Res Commun 2019; 510:72-77. [PMID: 30660364 DOI: 10.1016/j.bbrc.2019.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
Fibroblasts in the extra-cellular matrix (ECM) often adopt a predominantly one-dimensional fibrillar geometry by virtue of their adhesion to the fibrils in the ECM. How much forces such fibrillar fibroblasts exert and how they respond to the extended stiffness of their micro-environment comprising of other ECM components and cells are not clear. We use fibroblasts adherent on fibronectin lines micropatterned onto soft polyacrylamide gels as an in vitro experimental model that maintains fibrillar cell morphology while still letting the cell mechanically interact with a continuous micro-environment of specified stiffness. We find that the exerted traction, quantified as the strain energy or the maximum exerted traction stress, is not a function of cell length. Both the strain energy and the maximum traction stress exerted by fibrillar cells are similar for low (13 kPa) or high (45 kPa) micro-environmental stiffness. Furthermore, we find that fibrillar fibroblasts exhibit prominent linear actin structures. Accordingly, inhibition of the formin family of nucleators strongly decreases the exerted traction forces. Interestingly, fibrillar cell migration is, however, not affected under formin inhibition. Our results suggest that fibrillar cell migration in such soft microenvironments is not dependent on high cellular force exertion in the absence of other topological constraints.
Collapse
Affiliation(s)
- Mohamad Eftekharjoo
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Dakota Palmer
- Department of Biological Sciences and Old Dominion University, Norfolk, VA, 23529, USA
| | - Breanna McCoy
- Department of Engineering Technology, Old Dominion University, Norfolk, VA, 23529, USA
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
145
|
Cheng D, Jayne RK, Tamborini A, Eyckmans J, White AE, Chen CS. Studies of 3D directed cell migration enabled by direct laser writing of curved wave topography. Biofabrication 2019; 11:021001. [PMID: 30721899 DOI: 10.1088/1758-5090/ab047f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell migration, critical to numerous biological processes, can be guided by surface topography. Studying the effects of topography on cell migration is valuable for enhancing our understanding of directional cell migration and for functionally engineering cell behavior. However, fabrication limitations constrain topography studies to geometries that may not adequately mimic physiological environments. Direct Laser Writing (DLW) provides the necessary 3D flexibility and control to create well-defined waveforms with curvature and length scales that are similar to those found in physiological settings, such as the luminal walls of blood vessels that endothelial cells migrate along. We find that endothelial cells migrate fastest along square waves, intermediate along triangular waves, and slowest along sine waves and that directional cell migration on sine waves decreases as sinusoid wavelength increases. Interestingly, inhibition of Rac1 decreases directional migration on sine wave topographies but not on flat surfaces with micropatterned lines, suggesting that cells may utilize different molecular pathways to sense curved topographies. Our study demonstrates that DLW can be employed to investigate the effects and mechanisms of topography on cell migration by fabricating a wide array of physiologically-relevant surfaces with curvatures that are challenging to fabricate using conventional manufacturing techniques.
Collapse
Affiliation(s)
- Daniel Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | | | | | | | | | | |
Collapse
|
146
|
Garcia-Arcos JM, Chabrier R, Deygas M, Nader G, Barbier L, Sáez PJ, Mathur A, Vargas P, Piel M. Reconstitution of cell migration at a glance. J Cell Sci 2019; 132:132/4/jcs225565. [PMID: 30745333 DOI: 10.1242/jcs.225565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of in vitro reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration in vivo These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.
Collapse
Affiliation(s)
- Juan Manuel Garcia-Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Renaud Chabrier
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
| | - Mathieu Deygas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Guilherme Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Lucie Barbier
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Pablo José Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Aastha Mathur
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France .,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| |
Collapse
|
147
|
TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc Natl Acad Sci U S A 2019; 116:1992-1997. [PMID: 30674675 DOI: 10.1073/pnas.1811095116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca2+) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca2+ oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca2+-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca2+ signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca2+ oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca2+ signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.
Collapse
|
148
|
Hui J, Pang S. Cell traction force in a confined microenvironment with double-sided micropost arrays. RSC Adv 2019; 9:8575-8584. [PMID: 35518671 PMCID: PMC9061871 DOI: 10.1039/c8ra10170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) cell migrations are regulated by force interactions between cells and a 3D extracellular matrix (ECM). Mapping the 3D traction force generated by cells on the surrounding ECM with controlled confinement and contact area will be useful in understanding cell migration. In this study, double-sided micropost arrays were fabricated. The cell traction force was mapped by microposts on the top and bottom of opposing surfaces with a controlled separating distance to create different confinements. The density of micropost arrays was modified to investigate the effect of cell contact area on 3D traction force development. Using MC3T3-E1 osteoblastic cells, the leading traction force was found to increase with additional contact surface on the top. Summing force vectors on both surfaces, a large force imbalance was found from the leading to trailing regions for fast migrating cells. With 10 μm separation and densely arranged microposts, the traction force on the top surface was the largest at 28.6 ± 2.5 nN with the highest migration speed of 0.61 ± 0.07 μm min−1. Decreasing the density of the top micropost arrays resulted in a reduced traction force on the top and lower migration speed. With 15 μm separation, the cell traction force on the top and migration speed further decreased simultaneously. These results revealed traction force development on 3D ECM with varied degrees of confinement and contact area, which is important in regulating 3D cell migration. Double-sided micropost arrays to monitor three-dimensional cell traction force development over time on top and bottom surfaces with controlled confinement and contact area.![]()
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| | - Stella W. Pang
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
149
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
150
|
Wang WY, Pearson AT, Kutys ML, Choi CK, Wozniak MA, Baker BM, Chen CS. Extracellular matrix alignment dictates the organization of focal adhesions and directs uniaxial cell migration. APL Bioeng 2018; 2:046107. [PMID: 31069329 PMCID: PMC6481732 DOI: 10.1063/1.5052239] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/20/2018] [Indexed: 01/16/2023] Open
Abstract
Physical features of the extracellular matrix (ECM) heavily influence cell migration strategies and efficiency. Migration in and on fibrous ECMs is of significant physiologic importance, but limitations in the ability to experimentally define the diameter, density, and alignment of native ECMs in vitro have hampered our understanding of how these properties affect this basic cell function. Here, we designed a high-throughput in vitro platform that models fibrous ECM as collections of lines of cell-adhesive fibronectin on a flat surface to eliminate effects of dimensionality and topography. Using a microcontact printing approach to orthogonally vary line alignment, density, and size, we determined each factor's individual influence on NIH3T3 fibroblast migration. High content imaging and statistical analyses revealed that ECM alignment is the most critical parameter in influencing cell morphology, polarization, and migratory behavior. Specifically, increasing ECM alignment led cells to adopt an elongated uniaxial morphology and migrate with enhanced speed and persistence. Intriguingly, migration speeds were tightly correlated with the organization of focal adhesions, where cells with the most aligned adhesions migrated fastest. Highly organized focal adhesions and associated actin stress fibers appeared to define the number and location of protrusive fronts, suggesting that ECM alignment influences active Rac1 localization. Utilizing a novel microcontact-printing approach that lacks confounding influences of substrate dimensionality, mechanics, or differences in the adhesive area, this work highlights the effect of ECM alignment on orchestrating the cytoskeletal machinery that governs directed uniaxial cell migration.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | - Michele A Wozniak
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|