101
|
Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. Biomolecular Markers within the Core Axis of Aging and Particulate Air Pollution Exposure in the Elderly: A Cross-Sectional Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:943-50. [PMID: 26672058 PMCID: PMC4937852 DOI: 10.1289/ehp.1509728] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/30/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Telomere length and mitochondrial DNA (mtDNA) content are markers of aging and aging-related diseases. There is inconclusive evidence concerning the mechanistic effects of airborne particulate matter (PM) exposure on biomolecular markers of aging. OBJECTIVE The present study examines the association between short- and long-term PM exposure with telomere length and mtDNA content in the elderly and investigates to what extent this association is mediated by expression of genes playing a role in the telomere-mitochondrial axis of aging. METHODS Among 166 nonsmoking elderly participants, we used qPCR to measure telomere length and mtDNA content in leukocytes and RNA from whole blood to measure expression of SIRT1, TP53, PPARGC1A, PPARGC1B, NRF1, and NFE2L2. Associations between PM exposure and markers of aging were estimated using multivariable linear regression models adjusted for sex, age, BMI, socioeconomic status, statin use, past smoking status, white blood cell count, and percentage of neutrophils. Mediation analysis was performed to explore the role of age-related markers between the association of PM exposure and outcome. Annual PM2.5 exposure was calculated for each participant's home address using a high-resolution spatial-temporal interpolation model. RESULTS Annual PM2.5 concentrations ranged from 15 to 23 μg/m3. A 5-μg/m3 increment in annual PM2.5 concentration was associated with a relative decrease of 16.8% (95% CI: -26.0%, -7.4%, p = 0.0005) in telomere length and a relative decrease of 25.7% (95% CI: -35.2%, -16.2%, p < 0.0001) in mtDNA content. Assuming causality, results of the mediation analysis indicated that SIRT1 mediated 19.5% and 22.5% of the estimated effect of PM2.5 exposure on telomere length and mtDNA content, respectively. CONCLUSIONS Our findings suggest that the estimated effects of PM2.5 exposure on the telomere-mitochondrial axis of aging may play an important role in chronic health effects of PM2.5. CITATION Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. 2016. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect 124:943-950; http://dx.doi.org/10.1289/ehp.1509728.
Collapse
Affiliation(s)
- Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
- Address correspondence to T.S. Nawrot, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium. Telephone: 32-11-268382. E-mail:
| |
Collapse
|
102
|
|
103
|
Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats. Behav Brain Res 2016; 305:65-75. [DOI: 10.1016/j.bbr.2016.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
104
|
Lenart P, Krejci L. Reprint of "DNA, the central molecule of aging". Mutat Res 2016; 788:25-31. [PMID: 27133220 DOI: 10.1016/j.mrfmmm.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/16/2016] [Accepted: 01/30/2016] [Indexed: 01/05/2023]
Abstract
Understanding the molecular mechanism of aging could have enormous medical implications. Despite a century of research, however, there is no universally accepted theory regarding the molecular basis of aging. On the other hand, there is plentiful evidence suggesting that DNA constitutes the central molecule in this process. Here, we review the roles of chromatin structure, DNA damage, and shortening of telomeres in aging and propose a hypothesis for how their interplay leads to aging phenotypes.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
105
|
Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul Pharmacol 2016; 82:41-50. [PMID: 26903240 DOI: 10.1016/j.vph.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Hypertension is a predominant risk factor for cardiovascular diseases and a major health care burden. Accumulating epidemiological and experimental evidence suggest that adult-onset hypertension may have its origins during early development. Upon exposure to glucocorticoids, the fetus develops hypertension, and the offspring may be programmed to continue the hypertensive trajectory into adulthood. Elevated oxidative stress and deranged nitric oxide system are not only hallmarks of adult hypertension but are also observed earlier in life. Endothelial dysfunction and remodeling of the vasculature, which are robustly associated with increased incidence of hypertension, are likely to have been pre-programmed during fetal life. Apparently, genomic, non-genomic, and epigenomic factors play a significant role in the development of hypertension, including glucocorticoid-driven effects on blood pressure. In this review, we discuss the involvement of the aforementioned participants in the pathophysiology of hypertension and suggest therapeutic opportunities for targeting epigenome modifiers, potentially for personalized medicine.
Collapse
|
106
|
DNA, the central molecule of aging. Mutat Res 2016; 786:1-7. [PMID: 26871429 DOI: 10.1016/j.mrfmmm.2016.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/16/2016] [Accepted: 01/30/2016] [Indexed: 02/07/2023]
Abstract
Understanding the molecular mechanism of aging could have enormous medical implications. Despite a century of research, however, there is no universally accepted theory regarding the molecular basis of aging. On the other hand, there is plentiful evidence suggesting that DNA constitutes the central molecule in this process. Here, we review the roles of chromatin structure, DNA damage, and shortening of telomeres in aging and propose a hypothesis for how their interplay leads to aging phenotypes.
Collapse
|
107
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
108
|
Martins IJ. Magnesium Therapy Prevents Senescence with the Reversal of Diabetes and Alzheimer’s Disease. Health (London) 2016. [DOI: 10.4236/health.2016.87073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One 2015; 10:e0141334. [PMID: 26506620 PMCID: PMC4624638 DOI: 10.1371/journal.pone.0141334] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.
Collapse
Affiliation(s)
- William H. Yong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Maryam Shabihkhani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuai Yang
- Department of Neurosurgery, General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan L. Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jimmy C. Menjivar
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bowen Wei
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gregory M. Lucey
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sergey Mareninov
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zugen Chen
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linda M. Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert Lai
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy F. Cloughesy
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Cho-Lea Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
110
|
Abstract
The sirtuins (SIRTs; of which there are seven in mammals) are NAD(+)-dependent enzymes that regulate a large number of cellular pathways and forestall the progression of ageing and age-associated diseases. In recent years, the role of sirtuins in cancer biology has become increasingly apparent, and growing evidence demonstrates that sirtuins regulate many processes that go awry in cancer cells, such as cellular metabolism, the regulation of chromatin structure and the maintenance of genomic stability. In this article, we review recent advances in our understanding of how sirtuins affect cancer metabolism, DNA repair and the tumour microenvironment and how activating or inhibiting sirtuins may be important in preventing or treating cancer.
Collapse
Affiliation(s)
- Angeliki Chalkiadaki
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
| | - Leonard Guarente
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Kendall Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
111
|
Langsfeld ES, Bodily JM, Laimins LA. The Deacetylase Sirtuin 1 Regulates Human Papillomavirus Replication by Modulating Histone Acetylation and Recruitment of DNA Damage Factors NBS1 and Rad51 to Viral Genomes. PLoS Pathog 2015; 11:e1005181. [PMID: 26405826 PMCID: PMC4583417 DOI: 10.1371/journal.ppat.1005181] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPV) regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that modulates the acetylation of a number of cellular substrates, resulting in activation of pathways controlling gene expression and DNA damage repair. Our studies indicate that SIRT1 levels are increased in cells containing episomes of high-risk HPV types through the combined action of the E6 and E7 oncoproteins. Knockdown of SIRT1 in these cells with shRNAs impairs viral activities including genome maintenance, amplification and late gene transcription, with minimal effects on cellular proliferation ability. Abrogation of amplification was also seen following treatment with the SIRT1 deacetylase inhibitor, EX-527. Importantly, SIRT1 binds multiple regions of the HPV genome in undifferentiated cells, but this association is lost upon of differentiation. SIRT1 regulates the acetylation of Histone H1 (Lys26) and H4 (Lys16) bound to HPV genomes and this may contribute to regulation of viral replication and gene expression. The differentiation-dependent replication of high-risk HPVs requires activation of factors in the Ataxia Telangiectasia Mutated (ATM) pathway and SIRT1 regulates the recruitment of both NBS1 and Rad51 to the viral genomes. These observations demonstrate that SIRT1 is a critical regulator of multiple aspects of the high-risk HPV life cycle. Human papillomaviruses regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that regulates the acetylation of a number of cellular substrates, resulting in activation of pathways involved in gene expression and DNA damage repair. We report here that SIRT1 protein levels are elevated in cells stably maintaining genomes of oncogenic HPVs and that SIRT1 knockdown impairs genome maintenance, productive replication and late gene transcription. The DNA damage sensing and repair pathways are critical for the HPV viral life cycle and members of this pathway, such as NBS1 and Rad51, are targets of SIRT1. Our studies demonstrate that SIRT1 binds the HPV genome and regulates both viral chromatin remodeling as well as binding of members of the homologous repair pathway to viral DNA. These findings demonstrate that binding of SIRT1 to the HPV genome is necessary for histone deacetylation and recruitment of DNA damage repair factors and is a critical step in the HPV life cycle.
Collapse
Affiliation(s)
- Erika S. Langsfeld
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
112
|
Sui B, Hu C, Jin Y. Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology 2015; 17:267-79. [DOI: 10.1007/s10522-015-9609-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
|
113
|
Jeong SM, Haigis MC. Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Mol Cells 2015; 38:750-8. [PMID: 26420294 PMCID: PMC4588717 DOI: 10.14348/molcells.2015.0167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022] Open
Abstract
Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
114
|
Grosbellet E, Zahn S, Arrivé M, Dumont S, Gourmelen S, Pévet P, Challet E, Criscuolo F. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J 2015; 29:4794-803. [PMID: 26260033 DOI: 10.1096/fj.14-266817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022]
Abstract
Chronic jet lag or shift work is deleterious to human metabolic health, in that such circadian desynchronization is associated with being overweight and the prevalence of altered glucose metabolism. Similar metabolic changes are observed with age, suggesting that chronic jet lag and accelerated cell aging are intimately related, but the association remains to be determined. We addressed whether jet lag induces metabolic and cell aging impairments in young grass rats (2-3 mo old), using control old grass rats (12-18 mo old) as an aging reference. Desynchronized young and control old subjects had impaired glucose tolerance (+60 and +280%) when compared with control young animals. Despite no significant variation in liver DNA damage, shorter telomeres were characterized, not only in old animal liver cells (-18%), but also at an intermediate level in desynchronized young rats (-9%). The same pattern was found for deacetylase sirtuin (SIRT)-1 (-57 and -29%), confirming that jet-lagged young rats have an intermediate aging profile. Our data indicate that an experimental circadian desynchronization in young animals is associated with a precocious aging profile based on 3 well-known markers, as well as a prediabetic phenotype. Such chronic jet lag-induced alterations observed in a diurnal species constitute proof of principle of the need to develop preventive treatments in jet-lagged persons and shift workers.
Collapse
Affiliation(s)
- Edith Grosbellet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Sandrine Zahn
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Stéphanie Dumont
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Sylviane Gourmelen
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - François Criscuolo
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
115
|
de Kreutzenberg SV, Ceolotto G, Cattelan A, Pagnin E, Mazzucato M, Garagnani P, Borelli V, Bacalini MG, Franceschi C, Fadini GP, Avogaro A. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr Metab Cardiovasc Dis 2015; 25:686-693. [PMID: 25921843 DOI: 10.1016/j.numecd.2015.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/24/2015] [Accepted: 03/15/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Prediabetes increases cardiovascular risk and is associated with excess mortality. In preclinical models, metformin has been shown to exert anti-ageing effects. In this study, we sought to assess whether metformin modulates putative effector longevity programs in prediabetic subjects. METHODS AND RESULTS In a randomized, single-blind, placebo-controlled trial, 38 prediabetic subjects received metformin (1500 mg/day) or placebo for 2 months. At baseline and after treatment, we collected anthropometric and metabolic parameters. Gene and protein levels of SIRT1, mTOR, p53, p66Shc, SIRT1 activity, AMPK activation, telomere length, and SIRT1 promoter chromatin accessibility were determined in peripheral blood mononuclear cells (PBMCs). Plasma N-glycans, non-invasive surrogate markers of ageing, were also analysed. Compared to baseline, metformin significantly improved metabolic parameters and insulin sensitivity, increased SIRT1 gene/protein expression and SIRT1 promoter chromatin accessibility, elevated mTOR gene expression with concomitant reduction in p70S6K phosphorylation in subjects' PBMCs, and modified the plasma N-glycan profile. Compared to placebo, metformin increased SIRT1 protein expression and reduced p70S6K phosphorylation (a proxy of mTOR activity). Plasma N-glycans were also favourably modified by metformin compared to placebo. CONCLUSION In individuals with prediabetes, metformin ameliorated effector pathways that have been shown to regulate longevity in animal models. ClinicalTrials. gov identifier: NCT01765946 - January 2013.
Collapse
Affiliation(s)
| | - G Ceolotto
- Department of Medicine - DIMED, University of Padova, Italy
| | - A Cattelan
- Department of Medicine - DIMED, University of Padova, Italy
| | - E Pagnin
- Department of Medicine - DIMED, University of Padova, Italy
| | - M Mazzucato
- Department of Medicine - DIMED, University of Padova, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - V Borelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - M G Bacalini
- Interdepartmental Centre "L. Galvani" for Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Italy
| | - C Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - G P Fadini
- Department of Medicine - DIMED, University of Padova, Italy; Venetian Institute of Molecular Medicine - VIMM, Padova, Italy
| | - A Avogaro
- Department of Medicine - DIMED, University of Padova, Italy; Venetian Institute of Molecular Medicine - VIMM, Padova, Italy.
| |
Collapse
|
116
|
Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun 2015; 6:7505. [PMID: 26106036 PMCID: PMC4491827 DOI: 10.1038/ncomms8505] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of haploinsufficiency-induced senescence (HIS) specific to epithelial cells, which is triggered by pRb pathway activation rather than p53 induction. HIS and telomere erosion in HMECs correlate with misregulation of SIRT1 leading to increased levels of acetylated pRb as well as acetylated H4K16 both globally and at telomeric regions. These results identify a novel form of cellular senescence and provide a potential molecular basis for the rapid cell- and tissue- specific predisposition of breast cancer development associated with BRCA1 haploinsufficiency.
Collapse
|
117
|
Cheng D, Zhao L, Xu Y, Ou R, Li G, Yang H, Li W. K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumour Biol 2015; 36:7221-32. [DOI: 10.1007/s13277-015-3429-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022] Open
|
118
|
Kovacic JC, Moreno P, Hachinski V, Nabel EG, Fuster V. Cellular senescence, vascular disease, and aging: Part 1 of a 2-part review. Circulation 2015; 123:1650-60. [PMID: 21502583 DOI: 10.1161/circulationaha.110.007021] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
119
|
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7:235-242. [PMID: 25815111 PMCID: PMC4369483 DOI: 10.4252/wjsc.v7.i2.235] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer’s disease and stroke. With the climbing lifespan of the world’s population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cell proliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.
Collapse
|
120
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
121
|
Merrick CJ, Jiang RHY, Skillman KM, Samarakoon U, Moore RM, Dzikowski R, Ferdig MT, Duraisingh MT. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains. PLoS One 2015; 10:e0118865. [PMID: 25780929 PMCID: PMC4364008 DOI: 10.1371/journal.pone.0118865] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.
Collapse
Affiliation(s)
- Catherine J. Merrick
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rays H. Y. Jiang
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kristen M. Skillman
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rachel M. Moore
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
122
|
Pieters N, Janssen BG, Valeri L, Cox B, Cuypers A, Dewitte H, Plusquin M, Smeets K, Nawrot TS. Molecular responses in the telomere-mitochondrial axis of ageing in the elderly: a candidate gene approach. Mech Ageing Dev 2015; 145:51-7. [PMID: 25736869 DOI: 10.1016/j.mad.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/22/2015] [Accepted: 02/27/2015] [Indexed: 11/18/2022]
Abstract
Experimental evidence shows that telomere shortening induces mitochondrial damage but so far studies in humans are scarce. Here, we investigated the association between leukocyte telomere length (LTL) and mitochondrial DNA (mtDNA) content in elderly and explored possible intermediate mechanisms by determining the gene expression profile of candidate genes in the telomere-mitochondrial axis of ageing. Among 166 non-smoking elderly, LTL, leukocyte mtDNA content and expression of candidate genes: sirtuin1 (SIRT1), tumor protein p53 (TP53), peroxisome proliferator-activated receptor γ-coactivator1α (PGC-1α), peroxisome proliferator-activated receptor γ-coactivator1β (PGC-1β), nuclear respiratory factor 1 (NRF1) and nuclear factor, erythroid 2 like 2 (NRF2), using a quantitave real time polymerase chain assay (qPCR). Statistical mediation analysis was used to study intermediate mechanisms of the telomere-mitochondrial axis of ageing. LTL correlated with leukocyte mtDNA content in our studied elderly (r = 0.23, p = 0.0047). SIRT1 gene expression correlated positively with LTL (r = 0.26, p = 0.0094) and leukocyte mtDNA content (r = 0.43, p < 0.0001). The other studied candidates showed significant correlations in the telomere-mitochondrial interactome but not independent from SIRT1. SIRT1 gene expression was estimated to mediate 40% of the positive association between LTL and leukocyte mtDNA content. The key finding of our study was that SIRT1 expression plays a pivotal role in the telomere-mitochondrial interactome.
Collapse
Affiliation(s)
- Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Linda Valeri
- Department of Biostatistics, School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA, USA
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Harrie Dewitte
- Primary Health Care Centre GVHV, Keinkesstraat 3a, Genk, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium; Department of Public Health, Occupational & Environmental Medicine, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
123
|
Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, Wagner KR, Shay JW, Wright WE. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev 2015; 28:2464-76. [PMID: 25403178 PMCID: PMC4233240 DOI: 10.1101/gad.251041.114] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for "telomere position effect over long distances." Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response.
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kathyrin R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; Department of Neurology, Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
124
|
Tajbakhsh S, Aliakbari K, Hussey DJ, Lower KM, Donato AJ, Sokoya EM. Differential Telomere Shortening in Blood versus Arteries in an Animal Model of Type 2 Diabetes. J Diabetes Res 2015; 2015:153829. [PMID: 26346823 PMCID: PMC4545169 DOI: 10.1155/2015/153829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
Vascular dysfunction is an early feature of diabetic vascular disease, due to increased oxidative stress and reduced nitric oxide (NO) bioavailability. This can lead to endothelial cell senescence and clinical complications such as stroke. Cells can become senescent by shortened telomeres and oxidative stress is known to accelerate telomere attrition. Sirtuin 1 (SIRT1) has been linked to vascular health by upregulating endothelial nitric oxide synthase (eNOS), suppressing oxidative stress, and attenuating telomere shortening. Accelerated leukocyte telomere attrition appears to be a feature of clinical type 2 diabetes (T2D) and therefore the telomere system may be a potential therapeutic target in preventing vascular complications of T2D. However the effect of T2D on vascular telomere length is currently unknown. We hypothesized that T2D gives rise to shortened leukocyte and vascular telomeres alongside reduced vascular SIRT1 expression and increased oxidative stress. Accelerated telomere attrition was observed in circulating leukocytes, but not arteries, in T2D compared to control rats. T2D rats had blunted arterial SIRT1 and eNOS protein expression levels which were associated with reduced antioxidant defense capacity. Our findings suggest that hyperglycemia and a deficit in vascular SIRT1 per se are not sufficient to prematurely shorten vascular telomeres.
Collapse
Affiliation(s)
- Samira Tajbakhsh
- Discipline of Biotechnology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Kamelya Aliakbari
- Discipline of Biotechnology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Damian J. Hussey
- Discipline of Surgery, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen M. Lower
- Discipline of Haematology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Anthony J. Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Elke M. Sokoya
- Discipline of Human Physiology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
- *Elke M. Sokoya:
| |
Collapse
|
125
|
Abstract
Accumulation of DNA damage has been linked to the process of aging and to the onset of age-related diseases including diabetes. Studies on progeroid syndromes have suggested that the DNA damage response is involved in regulation of metabolic homeostasis. DNA damage could impair metabolic organ functions by causing cell death or senescence. DNA damage also could induce tissue inflammation that disturbs the homeostasis of systemic metabolism. Various roles of molecules related to DNA repair in cellular metabolism are being uncovered, and such molecules could also have an impact on systemic metabolism. This review explores mechanisms by which the DNA damage response could contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
126
|
Hwang ES. Senescence suppressors: their practical importance in replicative lifespan extension in stem cells. Cell Mol Life Sci 2014; 71:4207-19. [PMID: 25052377 PMCID: PMC11113678 DOI: 10.1007/s00018-014-1685-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
Abstract
Recent animal and clinical studies report promising results for the therapeutic utilization of stem cells in regenerative medicine. Mesenchymal stem cells (MSCs), with their pluripotent nature, have advantages over embryonic stem cells in terms of their availability and feasibility. However, their proliferative activity is destined to slow by replicative senescence, and the limited proliferative potential of MSCs not only hinders the preparation of sufficient cells for in vivo application, but also draws a limitation on their potential for differentiation. This calls for the development of safe and efficient means to increase the proliferative as well as differentiation potential of MSCs. Recent advances have led to a better understanding of the underlying mechanisms and significance of cellular senescence, facilitating ways to manipulate the replicative lifespan of a variety of primary cells, including MSCs. This paper introduces a class of proteins that function as senescence suppressors. Like tumor suppressors, these proteins are lost in senescence, while their forced expression delays the onset of senescence. Moreover, treatments that increase the expression or the activity of senescence suppressors, therefore, cause expansion of the replicative and differentiation potential of MSCs. The nature of the activities and putative underlying mechanisms of the senescence suppressors will be discussed to facilitate their evaluation.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul, 130-743, Republic of Korea,
| |
Collapse
|
127
|
Polese C, Mottet D. [HDAC5 inhibition: a tool to stop cancer cell immortality]. Med Sci (Paris) 2014; 30:730-2. [PMID: 25174744 DOI: 10.1051/medsci/20143008005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Catherine Polese
- Laboratoire de recherche sur les métastases, groupe HDAC, Université de Liège, Institut de pathologie B23, B-4000 Liège (Sart-Tilman), Belgique - Adresse actuelle : Signalisation et interaction des protéines, GIGA-R (B34), avenue de l'Hôpital, 1, B-4000 Liège, Belgique
| | - Denis Mottet
- Laboratoire de recherche sur les métastases, groupe HDAC, Université de Liège, Institut de pathologie B23, B-4000 Liège (Sart-Tilman), Belgique - Adresse actuelle : Signalisation et interaction des protéines, GIGA-R (B34), avenue de l'Hôpital, 1, B-4000 Liège, Belgique
| |
Collapse
|
128
|
Assembly of telomeric chromatin to create ALTernative endings. Trends Cell Biol 2014; 24:675-85. [PMID: 25172551 DOI: 10.1016/j.tcb.2014.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Circumvention of the telomere length-dependent mechanisms that control the upper boundaries of cellular proliferation is necessary for the unlimited growth of cancer. Most cancer cells achieve cellular immortality by up-regulating the expression of telomerase to extend and maintain their telomere length. However, a small but significant number of cancers do so via the exchange of telomeric DNA between chromosomes in a pathway termed alternative lengthening of telomeres, or ALT. Although it remains to be clarified why a cell chooses the ALT pathway and how ALT is initiated, recently identified mutations in factors that shape the chromatin and epigenetic landscape of ALT telomeres are shedding light on these mechanisms. In this review, we examine these recent findings and integrate them into the current models of the ALT mechanism.
Collapse
|
129
|
Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients 2014; 6:3303-25. [PMID: 25195642 PMCID: PMC4145310 DOI: 10.3390/nu6083303] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a pathologic accumulation of fat in the form of triglycerides (TG) in the liver (steatosis) that is not caused by alcohol. A subgroup of NAFLD patients shows liver cell injury and inflammation coupled with the excessive fat accumulation (steatohepatitis), which is referred to as non-alcoholic steatohepatitis (NASH). Patients with NASH may develop cirrhosis and hepatocellular carcinoma (HCC). NAFLD shares the key features of metabolic syndrome including obesity, hyperlipidemia, hypertension, and insulin resistance. The pathogenesis of NAFLD is multi-factorial, however the oxidative stress seems to plays a major role in the development and progression of the disease. The emerging field of epigenetics provides a new perspective on the pathogenesis of NAFLD. Epigenetics is an inheritable but reversible phenomenon that affects gene expression without altering the DNA sequence and refers to DNA methylation, histone modifications and microRNAs. Epigenetic manipulation through metabolic pathways such as one-carbon metabolism has been proposed as a promising approach to retard the progression of NAFLD. Investigating the epigenetic modifiers in NAFLD may also lead to the development of preventive or therapeutic strategies for NASH-associated complications.
Collapse
|
130
|
Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol 2014; 90:1349-58. [PMID: 25039464 DOI: 10.1111/php.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
The possible regulation mechanism of red light was determined to discover how to retard UVA-induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light-emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm(-2), and the total doses of red light were 0.18 J cm(-2). Various indicators were measured before and after irradiation, including cell morphology, viability, β-galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging-related genes. Red light irradiation retarded the cumulative low-dose UVA irradiation-induced skin photoaging, decreased the expression of senescence-associated β-galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP-1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA-treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways.
Collapse
Affiliation(s)
- Tianhui Niu
- Aviation Medicine Research Laboratory, The General Hospital of the Air Force, Beijing, China
| | | | | | | | | | | |
Collapse
|
131
|
Janssen BG, Byun HM, Cox B, Gyselaers W, Izzi B, Baccarelli AA, Nawrot TS. Variation of DNA methylation in candidate age-related targets on the mitochondrial-telomere axis in cord blood and placenta. Placenta 2014; 35:665-72. [PMID: 25047690 DOI: 10.1016/j.placenta.2014.06.371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Epigenetics is tissue-specific and potentially even cell-specific, but little information is available from human reproductive studies about the concordance of DNA methylation patterns in cord blood and placenta, as well as within-placenta variations. We evaluated methylation levels at promoter regions of candidate genes in biological ageing pathways (SIRT1, TP53, PPARG, PPARGC1A, and TFAM), a subtelomeric region (D4Z4) and the mitochondrial genome (MT-RNR1, D-loop). METHODS Ninety individuals were randomly chosen from the ENVIRONAGE birth cohort to evaluate methylation concordance between cord blood and placenta using highly quantitative bisulfite-PCR pyrosequencing. In a subset of nineteen individuals, a more extensive sampling scheme was performed to examine within-placenta variation. RESULTS The DNA methylation levels of the subtelomeric region and mitochondrial genome showed concordance between cord blood and placenta with correlation coefficients ranging from r = 0.31 to 0.43, p ≤ 0.005, and also between the maternal and foetal sides of placental tissue (r = 0.53 to 0.72, p ≤ 0.05). For the majority of targets, an agreement in methylation levels between four foetal biopsies was found (with intra-class correlation coefficients ranging from 0.16 to 0.72), indicating small within-placenta variation. CONCLUSIONS The methylation levels of the subtelomeric region (D4Z4) and mitochondrial genome (MT-RNR1, D-loop) showed concordance between cord blood and placenta, suggesting a common epigenetic signature of these targets between tissues. Concordance was lacking between the other genes that were studied. In placental tissue, methylation patterns of most targets on the mitochondrial-telomere axis were not strongly influenced by sample location.
Collapse
Affiliation(s)
- B G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - H M Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA, USA
| | - B Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - W Gyselaers
- Department of Obstetrics, East-Limburg Hospital, Genk, Belgium; Department of Physiology, Hasselt University, Diepenbeek, Belgium
| | - B Izzi
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven (KULeuven), Leuven, Belgium
| | - A A Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA, USA
| | - T S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| |
Collapse
|
132
|
Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 2014; 26:24-32. [PMID: 25005742 DOI: 10.1016/j.gde.2014.05.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/11/2014] [Accepted: 05/26/2014] [Indexed: 12/24/2022]
Abstract
Cells evolve to actively coordinate nutrient availability with cellular activity in order to maintain metabolic homeostasis. In addition, active pathways to repair DNA damage are crucial to avoid deleterious genomic instability. In recent years, it has become increasingly clear that availability of intermediate metabolites may play an important role in DNA repair, suggesting that these two seemingly distant cellular activities may be highly coordinated. The sirtuin family of proteins now described as deacylases (they can also remove acyl groups other than acetyl moieties), it appears to have evolved to control both metabolism and DNA repair. In this review, we discuss recent advances that lay the foundation to understanding the role of sirtuins in these two biological processes, and the potential crosstalk to coordinate them.
Collapse
Affiliation(s)
- Jee-Eun Choi
- Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA; The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
133
|
Abstract
Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony-forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For these reasons, adoptive transfer of endothelial progenitor cells is being used in more than 150 ongoing clinical trials of diverse cardiovascular diseases. Attempts to rejuvenate this cell population either ex vivo or in situ are emerging. The progress in this field is paramount to regenerate the injured kidney.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, Department of Pharmacology, and Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, NY.
| |
Collapse
|
134
|
Chen H, Liu X, Zhu W, Chen H, Hu X, Jiang Z, Xu Y, Wang L, Zhou Y, Chen P, Zhang N, Hu D, Zhang L, Wang Y, Xu Q, Wu R, Yu H, Wang J. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci 2014; 6:103. [PMID: 24917814 PMCID: PMC4042159 DOI: 10.3389/fnagi.2014.00103] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/14/2014] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) senescence is an age-related process that impairs the capacity for tissue repair and compromises the clinical use of autologous MSCs for tissue regeneration. Here, we describe the effects of SIRT1, a NAD+-dependent deacetylase, on age-related MSCs senescence. Knockdown of SIRT1 in young MSCs induced cellular senescence and inhibited cell proliferation whereas overexpression of SIRT1 in aged MSCs reversed the senescence phenotype and stimulated cell proliferation. These results suggest that SIRT1 plays a key role in modulating age-induced MSCs senescence. Aging-related proteins, P16 and P21 may be downstream effectors of the SIRT1-mediated anti-aging effects. SIRT1 protected MSCs from age-related DNA damage, induced telomerase reverse transcriptase (TERT) expression and enhanced telomerase activity but did not affect telomere length. SIRT1 positively regulated the expression of tripeptidyl peptidase 1 (TPP1), a component of the shelterin pathway that protects chromosome ends from DNA damage. Together, the results demonstrate that SIRT1 quenches age-related MSCs senescence by mechanisms that include enhanced TPP1 expression, increased telomerase activity and reduced DNA damage.
Collapse
Affiliation(s)
- Huiqiang Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Wei Zhu
- Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Zhi Jiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Lihan Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yu Zhou
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Panpan Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Na Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Dexing Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Ling Zhang
- Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yaping Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Qiyuan Xu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Rongrong Wu
- Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Hong Yu
- Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China ; Key Lab of Cardiovascular Disease, Second Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
135
|
Granzotto A, Zatta P. Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition. Front Aging Neurosci 2014; 6:95. [PMID: 24860502 PMCID: PMC4030174 DOI: 10.3389/fnagi.2014.00095] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
Cognitive impairment is the final outcome of a complex network of molecular mechanisms ultimately leading to dementia. Despite major efforts aimed at unraveling the molecular determinants of dementia of Alzheimer type (DAT), effective disease-modifying approaches are still missing. An interesting and still largely unexplored avenue is offered by nutraceutical intervention. For instance, robust epidemiological data have suggested that moderate intake of red wine may protect against several age-related pathological conditions (i.e., cardiovascular diseases, diabetes, and cancer) as well as DAT-related cognitive decline. Wine is highly enriched in many polyphenols, including resveratrol. Resveratrol is a well recognized antioxidant which may modulate metal ion deregulation outcomes as well as main features of the Alzheimer’s disease (AD) brain. The review will discuss the potentiality of resveratrol as a neuroprotectant in dementia in relation to the oxidative stress produced by amyloid and metal dysmetabolism.
Collapse
Affiliation(s)
- Alberto Granzotto
- Molecular Neurology Unit, Center of Excellence on Aging (Ce.S.I.) Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua "Metalloproteins" Unit, Department of Biology, University of Padua Padua, Italy
| |
Collapse
|
136
|
Getting down to the core of histone modifications. Chromosoma 2014; 123:355-71. [PMID: 24789118 DOI: 10.1007/s00412-014-0465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The identification of an increasing number of posttranslationally modified residues within histone core domains is furthering our understanding of how nucleosome dynamics are regulated. In this review, we first discuss how the targeting of specific histone H3 core residues can directly influence the nucleosome structure and then apply this knowledge to provide functional reasoning for their localization to distinct genomic regions. While we focus mainly on transcriptional implications, the principles discussed in this review can also be applied to their roles in other cellular processes. Finally, we highlight some examples of how aberrant modifications of core histone residues can facilitate the pathogenesis of some diseases.
Collapse
|
137
|
De Bonis ML, Ortega S, Blasco MA. SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Reports 2014; 2:690-706. [PMID: 24936455 PMCID: PMC4050480 DOI: 10.1016/j.stemcr.2014.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
The NAD-dependent deacetylase SIRT1 is involved in chromatin silencing and genome stability. Elevated SIRT1 levels in embryonic stem cells also suggest a role for SIRT1 in pluripotency. Murine SIRT1 attenuates telomere attrition in vivo and is recruited at telomeres in induced pluripotent stem cells (iPSCs). Because telomere elongation is an iPSC hallmark, we set out to study the role of SIRT1 in pluripotency in the setting of murine embryonic fibroblasts reprogramming into iPSCs. We find that SIRT1 is required for efficient postreprogramming telomere elongation, and that this effect is mediated by a c-MYC-dependent regulation of the mTert gene. We further demonstrate that SIRT1-deficient iPSCs accumulate chromosomal aberrations and show a derepression of telomeric heterochromatin. Finally, SIRT1-deficient iPSCs form larger teratomas that are poorly differentiated, highlighting a role for SIRT1 in exit from pluripotency. In summary, this work demonstrates a role for SIRT1 in the maintenance of pluripotency and modulation of differentiation.
Collapse
Affiliation(s)
- Maria Luigia De Bonis
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
138
|
Qian Q, Nasr SH. Diagnosis and treatment of glomerular diseases in elderly patients. Adv Chronic Kidney Dis 2014; 21:228-46. [PMID: 24602472 DOI: 10.1053/j.ackd.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Glomerular diseases are common in elderly patients and are a major cause of kidney failure. Most glomerular diseases in the elderly are caused by chronic systemic diseases, including arterial hypertension, diabetes, and atherosclerotic vascular diseases, although acute systemic vasculitis, especially anti-neutrophil-cytoplamic-antibody-mediated vasculitis, and membranous nephropathy related to malignancy, drug toxicity, and idiopathic form also occur often. Complex age-related changes and sensitivity to drug toxicity can render diagnosis and treatment for elderly patients challenging. As the general population is aging and the rate of CKD rising, updating knowledge on managing these patients is critical for care providers. We provide a comprehensive review and update of the diagnosis and treatment of glomerular diseases in the elderly.
Collapse
|
139
|
Szafranski K, Mekhail K. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus 2014; 5:56-65. [PMID: 24637399 PMCID: PMC4028356 DOI: 10.4161/nucl.27929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) is generally linked to lifespan extension in various organisms and may limit age-associated diseases. Processes through which caloric restriction promotes lifespan include obesity-countering weight loss, increased DNA repair, control of ribosomal and telomeric DNA repeats, mitochondrial regulation, activation of antioxidants, and protective autophagy. Several of these protective cellular processes are linked to the suppression of TOR (target of rapamycin) or the activation of sirtuins. In stark contrast, CR fails to extend or even shortens lifespan in certain settings. CR-dependent lifespan shortening is linked to weight loss in the non-obese, mitochondrial hyperactivity, genomic inflexibility, and several other processes. Deciphering the balance between positive and negative effects of CR is critical to understanding its ultimate impact on aging. This knowledge is especially needed in order to fulfil the promise of using CR or its mimetic drugs to counteract age-associated diseases and unhealthy aging.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology; Faculty of Medicine, University of Toronto; Toronto, ON Canada; Canada Research Chairs Program; Faculty of Medicine, University of Toronto; Toronto, ON Canada
| |
Collapse
|
140
|
Zhang B, Chen J, Cheng ASL, Ko BCB. Depletion of sirtuin 1 (SIRT1) leads to epigenetic modifications of telomerase (TERT) gene in hepatocellular carcinoma cells. PLoS One 2014; 9:e84931. [PMID: 24416313 PMCID: PMC3885646 DOI: 10.1371/journal.pone.0084931] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that is implicated in plethora of biological processes, including metabolism, aging, stress response, and tumorigenesis. Telomerase (TERT) is essential for telomere maintenance. Activation of TERT is considered a crucial step in tumorigenesis, and therefore it is a potential therapeutic target against cancer. We have recently found that SIRT1 expression is highly elevated in hepatocellular carcinoma, and the depletion of SIRT1 leads to substantial reduction in TERT mRNA and protein expression. However, the underlying molecular mechanism of SIRT1-dependent TERT expression remains uncharacterized. Here, we elucidated if SIRT1 regulates TERT expression via transcriptional, epigenetic and post-transcriptional mechanisms. We report that depletion of SIRT1 does not lead to significant change in transcriptional activity and CpG methylation patterns of the TERT promoter, nor does it affect mRNA stability or 3′-UTR regulation of TERT. Intriguingly, depletion of SIRT1 is associated with substantial induction of acetylated histone H3-K9 and reduction of trimethyl H3-K9 at the TERT gene, which are known to be associated with gene activation. Our data revealed that SIRT1 regulates histone acetylation and methylation at the TERT promoter. We postulated that SIRT1 may regulate TERT expression via long-range interaction, or via yet unidentified histone modifications.
Collapse
Affiliation(s)
- Bin Zhang
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Alfred S. L. Cheng
- Institute of Digestive diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben C. B. Ko
- The Hong Kong Polytechnic University Shenzhen Research Institute, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail:
| |
Collapse
|
141
|
Ogrocká A, Polanská P, Majerová E, Janeba Z, Fajkus J, Fojtová M. Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants. Nucleic Acids Res 2013; 42:2919-31. [PMID: 24334955 PMCID: PMC3950684 DOI: 10.1093/nar/gkt1285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.
Collapse
Affiliation(s)
- Anna Ogrocká
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic and Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
142
|
Ye F, Zhang Y, Liu Y, Yamada K, Tso JL, Menjivar JC, Tian JY, Yong WH, Schaue D, Mischel PS, Cloughesy TF, Nelson SF, Liau LM, McBride W, Tso CL. Protective properties of radio-chemoresistant glioblastoma stem cell clones are associated with metabolic adaptation to reduced glucose dependence. PLoS One 2013; 8:e80397. [PMID: 24260384 PMCID: PMC3832364 DOI: 10.1371/journal.pone.0080397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 10/02/2013] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment–introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD+ levels accompanied by upregulated mRNA levels of SIRT1/PGC-1α axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma.
Collapse
Affiliation(s)
- Fei Ye
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yibei Zhang
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Orthopedics, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yue Liu
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kazunari Yamada
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Advanced Molecular and Cell Therapy, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Jonathan L. Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jimmy C. Menjivar
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jane Y. Tian
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dörthe Schaue
- Department of Radiation-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Paul S. Mischel
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy F. Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - William McBride
- Department of Radiation-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cho-Lea Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
143
|
Woo SR, Byun JG, Kim YH, Park ER, Joo HY, Yun M, Shin HJ, Kim SH, Shen YN, Park JE, Park GH, Lee KH. SIRT1 suppresses cellular accumulation of β-TrCP E3 ligase via protein degradation. Biochem Biophys Res Commun 2013; 441:831-7. [PMID: 24211209 DOI: 10.1016/j.bbrc.2013.10.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
β-Transducin repeat-containing protein (β-TrCP), an E3 ligase, promotes the degradation of substrate proteins in response to various stimuli. Even though several β-TrCP substrates have been identified to date, limited information of its upstream regulators is available. Here, we showed that SIRT1 suppresses β-TrCP protein synthesis via post-translational degradation. SIRT1 depletion led to a significant increase in the β-TrCP accumulation without affecting the mRNA level. Consistently, β-TrCP protein accumulation induced by resveratrol was further enhanced upon SIRT1 depletion. Rescue of SIRT1 reversed the effect of resveratrol, leading to reduced β-TrCP protein levels. Proteasomal inhibition led to recovery of β-TrCP in cells with SIRT1 overexpression. Notably, the recovered β-TrCP colocalized mostly with SIRT1. Thus, SIRT1 acts as a negative regulator of β-TrCP synthesis via promoting protein degradation.
Collapse
Affiliation(s)
- Seon Rang Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Liu J, Kim J, Oberdoerffer P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 2013; 4:182. [PMID: 24065984 PMCID: PMC3779809 DOI: 10.3389/fgene.2013.00182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023] Open
Abstract
The maintenance of genomic integrity in response to DNA damage is tightly linked to controlled changes in the damage-proximal chromatin environment. Many of the chromatin modifying enzymes involved in DNA repair depend on metabolic intermediates as cofactors, suggesting that changes in cellular metabolism can have direct consequences for repair efficiency and ultimately, genome stability. Here, we discuss how metabolites may contribute to DNA double-strand break repair, and how alterations in cellular metabolism associated with both aging and tumorigenesis may affect the integrity of our genomes.
Collapse
Affiliation(s)
- Jinping Liu
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | | | |
Collapse
|
145
|
Abstract
NAD(+)-dependent deacetylase SIRT1 is a master regulator of nucleosome positioning and chromatin structure, thereby reprogramming gene expression. In acute inflammation, chromatin departs from, and returns to, homeostasis in an orderly sequence. This sequence depends on shifts in NAD(+) availability for SIRT1 activation and deacetylation of signaling proteins, which support orderly gene reprogramming during acute inflammation by switching between euchromatin and heterochromatin. In contrast, in chronic inflammation and cancer, limited availability of NAD(+) and reduced expression of SIRT1 may sustain aberrant chromatin structure and functions. SIRT1 also influences inflammation and cancer by directly deacetylating targets like NFκB p65 and p53. Here, we review SIRT1 in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Tie Fu Liu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
146
|
Epigenetic regulation of hepatocellular carcinoma in non-alcoholic fatty liver disease. Semin Cancer Biol 2013; 23:471-82. [PMID: 24018165 DOI: 10.1016/j.semcancer.2013.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
Emerging evidence that epigenetics converts alterations in nutrient and metabolism into heritable pattern of gene expression has profound implications in understanding human physiology and diseases. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome including obesity and diabetes which elevate the risk of hepatocellular carcinoma (HCC) especially in male. This review focuses on the molecular connections between metabolic dysfunction and aberrant epigenetic alterations in the development of HCC in NAFLD. The metabolites derived from excessive insulin, glucose and lipid may perturb epigenetic gene regulation through DNA methylation, histone modifications, and RNA interference, leading to activation of pro-inflammatory signaling and deregulation of metabolic pathways. The interplay and crosstalk of chromatin-modifying enzymes, microRNAs, signaling pathways and the downstream transcription factors result in epigenomic reprogramming that drives hepatocellular transformation. The interactions between sex hormone pathways and the epigenetic machineries that influence chromatin states in NAFLD provide potential molecular mechanisms of gender disparity in HCC. A deeper understanding of these connections and comprehensive molecular catalog of hepatocarcinogenesis may shed light in the identification of druggable epigenetic targets for the prevention and treatment of HCC in obese or diabetic patients.
Collapse
|
147
|
Bosch-Presegué L, Vaquero A. Sirtuins in stress response: guardians of the genome. Oncogene 2013; 33:3764-75. [DOI: 10.1038/onc.2013.344] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
|
148
|
The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Ageing Res Rev 2013; 12:867-83. [PMID: 23831960 DOI: 10.1016/j.arr.2013.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterised by extracellular amyloid deposits, neurofibrillary tangles, synaptic loss, inflammation and extensive oxidative stress. Polyphenols, which include resveratrol, epigallocatechin gallate and curcumin, have gained considerable interest for their ability to reduce these hallmarks of disease and their potential to slow down cognitive decline. Although their antioxidant and free radical scavenging properties are well established, more recently polyphenols have been shown to produce other important effects including anti-amyloidogenic activity, cell signalling modulation, effects on telomere length and modulation of the sirtuin proteins. Brain accessible polyphenols with multiple effects on pathways involved in neurodegeneration and ageing may therefore prove efficacious in the treatment of age-related diseases such as AD, although the evidence for this so far is limited. This review aims to explore the known effects of polyphenols from various natural and synthetic sources on brain ageing and neurodegeneration, and to examine their multiple mechanisms of action, with an emphasis on the role that the sirtuin pathway may play and the implications this may have for the treatment of AD.
Collapse
|
149
|
Roh JI, Sung YH, Lee HW. Clinical implications of antitelomeric drugs with respect to the nontelomeric functions of telomerase in cancer. Onco Targets Ther 2013; 6:1161-6. [PMID: 24009427 PMCID: PMC3762763 DOI: 10.2147/ott.s50918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Telomerase is responsible for maintaining the length of telomeres at the ends of chromosomes. Although most somatic cells do not exhibit telomerase activity, it is reactivated in approximately 85% of cancers. This simple and attractive phenomenon steers the development of anticancer drugs targeting telomeres and telomerase. Recent studies have been revealing extratelomeric roles of telomerase in normal tissues, affecting processes that are critical for survival and aging of organisms. In this review, we will discuss the current therapeutic strategies targeting telomeres and telomerase and evaluate their potential advantages and risks with respect to nontelomeric functions.
Collapse
Affiliation(s)
- Jae-Il Roh
- Mouse Molecular Genetics Laboratory, Department of Biochemistry, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
150
|
Kiran S, Chatterjee N, Singh S, Kaul SC, Wadhwa R, Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J 2013; 280:3451-66. [PMID: 23680022 DOI: 10.1111/febs.12346] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
Abstract
Sirtuins belong to a class of NAD-dependent deacetylases, and include seven distinct isoforms, of which SIRT7 is the least studied member. In the present study, the subcellular expression of SIRT7 in primary fibroblasts undergoing senescence was evaluated by immunocytochemistry and immunoblot assay. Expression of nucleolar SIRT7 in young fibroblast was very prominent, decreased in pre-senescent cells, and became undetectable in the senescent cells. Interestingly, we observed previously unreported staining for cytoplasmic SIRT7 in fibroblasts, and report the existence of a steady-state level of SIRT7 in cytoplasm. Selective localization of the high-molecular-mass (47.5 kDa) SIRT7 in the cytoplasmic fraction and the low-molecular-mass (45 kDa) SIRT7 in the nuclear fraction was observed in the immunoblot analysis of various cell types. The specificity of the N-terminal antibodies for detection of cytoplasmic SIRT7 was confirmed by RNAi and peptide competition assays. The two forms of SIRT7 showed reciprocal expression following serum starvation, nocodazole and okadaic acid treatments, and also during senescence. Using a combination of deletion constructs and site-directed mutagenesis, we defined the role of two distinct SIRT7 sequences in the N-terminal region (amino acids 61-76, LQGRSRRREGLKRRQE) and the C-terminal region (amino acids 392-400, KRTKRKKVT) for nuclear and nucleolar import, respectively. In conclusion, we report for the first time the existence of a cytoplasmic pool of SIRT7 in addition to its well-known nucleolar form, identify distinct localization signals for its nuclear/nucleolar targeting, and describe an association between loss of nucleolar SIRT7 and replicative senescence.
Collapse
Affiliation(s)
- Shashi Kiran
- Centre for DNA Fingerprinting and Diagnostics, Laboratory Complex, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|