101
|
Aureille J, Buffière‐Ribot V, Harvey BE, Boyault C, Pernet L, Andersen T, Bacola G, Balland M, Fraboulet S, Van Landeghem L, Guilluy C. Nuclear envelope deformation controls cell cycle progression in response to mechanical force. EMBO Rep 2019; 20:e48084. [PMID: 31368207 PMCID: PMC6726894 DOI: 10.15252/embr.201948084] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
The shape of the cell nucleus can vary considerably during developmental and pathological processes; however, the impact of nuclear morphology on cell behavior is not known. Here, we observed that the nuclear envelope flattens as cells transit from G1 to S phase and inhibition of myosin II prevents nuclear flattening and impedes progression to S phase. Strikingly, we show that applying compressive force on the nucleus in the absence of myosin II-mediated tension is sufficient to restore G1 to S transition. Using a combination of tools to manipulate nuclear morphology, we observed that nuclear flattening activates a subset of transcription factors, including TEAD and AP1, leading to transcriptional induction of target genes that promote G1 to S transition. In addition, we found that nuclear flattening mediates TEAD and AP1 activation in response to ROCK-generated contractility or cell spreading. Our results reveal that the nuclear envelope can operate as a mechanical sensor whose deformation controls cell growth in response to tension.
Collapse
Affiliation(s)
- Julien Aureille
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Valentin Buffière‐Ribot
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Ben E Harvey
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Cyril Boyault
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Lydia Pernet
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Tomas Andersen
- Laboratoire Interdisciplinaire de PhysiqueUMR CNRS 5588Université Grenoble AlpesGrenobleFrance
| | - Gregory Bacola
- Department of Molecular Biomedical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Martial Balland
- Laboratoire Interdisciplinaire de PhysiqueUMR CNRS 5588Université Grenoble AlpesGrenobleFrance
| | - Sandrine Fraboulet
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Christophe Guilluy
- Institute for Advanced BiosciencesCentre de recherche UGA – INSERM U1209 – CNRS UMR 5309GrenobleFrance
| |
Collapse
|
102
|
Mohammed M, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Peter K, Khoshmanesh K, Baratchi S. Studying the Response of Aortic Endothelial Cells under Pulsatile Flow Using a Compact Microfluidic System. Anal Chem 2019; 91:12077-12084. [DOI: 10.1021/acs.analchem.9b03247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mokhaled Mohammed
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
103
|
Bräutigam J, Bischoff I, Schürmann C, Buchmann G, Epah J, Fuchs S, Heiss E, Brandes RP, Fürst R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J Mol Cell Cardiol 2019; 135:97-108. [PMID: 31381906 DOI: 10.1016/j.yjmcc.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The process of angiogenesis is involved in several pathological conditions, such as tumor growth or age-related macular degeneration. Although the available anti-angiogenic drugs have improved the therapy of these diseases, major drawbacks, such as unwanted side effects and resistances, still exist. Consequently, the search for new anti-angiogenic substances is still ongoing. Narciclasine, a plant alkaloid from different members of the Amaryllidaceae family, has extensively been characterized as anti-tumor compound. Beyond the field of cancer, the compound has recently been shown to possess anti-inflammatory properties. Surprisingly, potential actions of narciclasine on endothelial cells in the context of angiogenesis have been neglected so far. Thus, we aimed to analyze the effects of narciclasine on angiogenic processes in vitro and in vivo and to elucidate the underlying mechanism. Narciclasine (100-300 nM) effectively inhibited the proliferation, undirected and directed migration, network formation and angiogenic sprouting of human primary endothelial cells. Moreover, narciclasine (1 mg/kg/day) strongly reduced the VEGF-triggered angiogenesis in vivo (Matrigel plug assay in mice). Narciclasine mediated its anti-angiogenic effects in part by a RhoA-independent activation of the Rho kinase ROCK. Most importantly, however, the compound reduced the de novo protein synthesis in endothelial cells by approx. 50% without exhibiting considerable cytotoxic effects. As a consequence, narciclasine diminished the presence of proteins with a short half-life, such as the VEGF receptor 2, which is the basis for its anti-angiogenic effects. Taken together, our study highlights narciclasine as an interesting anti-angiogenic compound that is worth to be further evaluated in preclinical studies.
Collapse
Affiliation(s)
- Jacqueline Bräutigam
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Giulia Buchmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Jeremy Epah
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Simone Fuchs
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Elke Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany.
| |
Collapse
|
104
|
Park J, Kim T, Choi JC, Doh J. In Situ Subcellular Detachment of Cells Using a Cell-Friendly Photoresist and Spatially Modulated Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900566. [PMID: 31380216 PMCID: PMC6661940 DOI: 10.1002/advs.201900566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Dynamic adhesion and detachment of subcellular regions occur during cell migration, thus a technique allowing precise control of subcellular detachment of cells will be useful for cell migration study. Previous methods for cell detachment were developed either for harvesting cells or cell sheets attached on surfaces with low resolution patterning capability, or for detaching subcellular regions located on predefined electrodes. In this paper, a method that allows in situ subcellular detachment of cells with ≈1.5 µm critical feature size while observing cells under a fluorescence microscope is introduced using a cell-friendly photoresist and spatially modulated light. Using this method, a single cell, regions in cell sheets, and a single focal adhesion complex within a cell are successfully detached. Furthermore, different subcellular regions of migrating cells are detached and changes in cell polarity and migration direction are quantitatively analyzed. This method will be useful for many applications in cell detachment, in particular when subcellular resolution is required.
Collapse
Affiliation(s)
- Jeehun Park
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio)Pohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Taeyup Kim
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Jong Chul Choi
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Junsang Doh
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐roGwanak‐guSeoul08826South Korea
| |
Collapse
|
105
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
106
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
107
|
Rothenberg KE, Scott DW, Christoforou N, Hoffman BD. Vinculin Force-Sensitive Dynamics at Focal Adhesions Enable Effective Directed Cell Migration. Biophys J 2019; 114:1680-1694. [PMID: 29642037 DOI: 10.1016/j.bpj.2018.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.
Collapse
Affiliation(s)
| | - David W Scott
- Lineberger Comprehensive Cancer Center, UNC Chapel, Chapel Hill, North Carolina
| | | | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
108
|
Regulation of Actin Dynamics in the C. elegans Somatic Gonad. J Dev Biol 2019; 7:jdb7010006. [PMID: 30897735 PMCID: PMC6473838 DOI: 10.3390/jdb7010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The reproductive system of the hermaphroditic nematode C. elegans consists of a series of contractile cell types—including the gonadal sheath cells, the spermathecal cells and the spermatheca–uterine valve—that contract in a coordinated manner to regulate oocyte entry and exit of the fertilized embryo into the uterus. Contraction is driven by acto-myosin contraction and relies on the development and maintenance of specialized acto-myosin networks in each cell type. Study of this system has revealed insights into the regulation of acto-myosin network assembly and contractility in vivo.
Collapse
|
109
|
Springer R, Zielinski A, Pleschka C, Hoffmann B, Merkel R. Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining. PLoS One 2019; 14:e0210570. [PMID: 30865622 PMCID: PMC6415792 DOI: 10.1371/journal.pone.0210570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, actin, microtubules, and various types of cytoplasmic intermediate filaments respond to external stretching. Here, we investigated the underlying processes in endothelial cells plated on soft substrates from silicone elastomer. After cyclic stretch (0.13 Hz, 14% strain amplitude) for periods ranging from 5 min to 8 h, cells were fixed and double-stained for microtubules and either actin or vimentin. Cell images were analyzed by a two-step routine. In the first step, micrographs were segmented for potential fibrous structures. In the second step, the resulting binary masks were auto- or cross-correlated. Autocorrelation of segmented images provided a sensitive and objective measure of orientational and translational order of the different cytoskeletal systems. Aligning of correlograms from individual cells removed the influence of only partial alignment between cells and enabled determination of intrinsic cytoskeletal order. We found that cyclic stretching affected the actin cytoskeleton most, microtubules less, and vimentin mostly only via reorientation of the whole cell. Pharmacological disruption of microtubules had barely any influence on actin ordering. The similarity, i.e., cross-correlation, between vimentin and microtubules was much higher than the one between actin and microtubules. Moreover, prolonged cyclic stretching slightly decoupled the cytoskeletal systems as it reduced the cross-correlations in both cases. Finally, actin and microtubules were more correlated at peripheral regions of cells whereas vimentin and microtubules correlated more in central regions.
Collapse
Affiliation(s)
- Ronald Springer
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Zielinski
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Catharina Pleschka
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|
110
|
Meiring JCM, Bryce NS, Cagigas ML, Benda A, Whan RM, Ariotti N, Parton RG, Stear JH, Hardeman EC, Gunning PW. Colocation of Tpm3.1 and myosin IIa heads defines a discrete subdomain in stress fibres. J Cell Sci 2019; 132:jcs.228916. [DOI: 10.1242/jcs.228916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/06/2019] [Indexed: 01/06/2023] Open
Abstract
Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform specific manner. Previous work has implicated specific roles for at least 5 different tropomyosin isoforms in stress fibres, as depletion of any of these 5 isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study we investigate tropomyosin organisation in stress fibres using super resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. Tpm3.1/3.2 co-localises with non-muscle myosin IIa/IIb heads and are in register but do not overlap with non-muscle myosin IIa/IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.
Collapse
Affiliation(s)
- Joyce C. M. Meiring
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Lastra Cagigas
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aleš Benda
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas Ariotti
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert G. Parton
- Cell Biology and Molecular Medicine Division, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey H. Stear
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
111
|
Jiu Y, Kumari R, Fenix AM, Schaible N, Liu X, Varjosalo M, Krishnan R, Burnette DT, Lappalainen P. Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles. Curr Biol 2018; 29:81-92.e5. [PMID: 30581023 DOI: 10.1016/j.cub.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.
Collapse
Affiliation(s)
- Yaming Jiu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Reena Kumari
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niccole Schaible
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaonan Liu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
112
|
Ciuba K, Hawkes W, Tojkander S, Kogan K, Engel U, Iskratsch T, Lappalainen P. Calponin-3 is critical for coordinated contractility of actin stress fibers. Sci Rep 2018; 8:17670. [PMID: 30518778 PMCID: PMC6281606 DOI: 10.1038/s41598-018-35948-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023] Open
Abstract
Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland
| | - William Hawkes
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland
| | - Ulrike Engel
- Nikon Imaging Center at Heidelberg University and Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Pekka Lappalainen
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
113
|
Rauch AD, Vuong AT, Yoshihara L, Wall WA. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3139. [PMID: 30070046 DOI: 10.1002/cnm.3139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we propose a finite element-based immersed method to treat the mechanical coupling between a deformable porous medium model (PM) and an immersed solid model (ISM). The PM is formulated as a homogenized, volume-coupled two-field model, comprising a nearly incompressible solid phase that interacts with an incompressible Darcy-Brinkman flow. The fluid phase is formulated with respect to the Lagrangian finite element mesh, following the solid phase deformation. The ISM is discretized with an independent Lagrangian mesh and may behave arbitrarily complex (it may, eg, be compressible, grow, and perform active deformations). We model two distinct types of interactions, namely, (1) the immersed fluid-structure interaction (FSI) between the ISM and the fluid phase in the PM and (2) the immersed structure-structure interaction (SSI) between the ISM and the solid phase in the PM. Within each time step, we solve both FSI and SSI, employing strongly coupled partitioned schemes. This novel finite element method establishes a main building block of an evolving computational framework for modeling and simulating complex biomechanical problems, with focus on key phenomena during cell migration. Cell movement is strongly influenced by mechanical interactions between the cell body and the surrounding tissue, ie, the extracellular matrix (ECM). In this context, the PM represents the ECM, ie, a fibrous scaffold of structural proteins interacting with interstitial flow, and the ISM represents the cell body. The FSI models the influence of fluid drag, and the SSI models the force transmission between cell and ECM at adhesions sites.
Collapse
Affiliation(s)
- Andreas D Rauch
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Anh-Tu Vuong
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Lena Yoshihara
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| |
Collapse
|
114
|
Pomp W, Schakenraad K, Balcıoğlu HE, van Hoorn H, Danen EHJ, Merks RMH, Schmidt T, Giomi L. Cytoskeletal Anisotropy Controls Geometry and Forces of Adherent Cells. PHYSICAL REVIEW LETTERS 2018; 121:178101. [PMID: 30411958 DOI: 10.1103/physrevlett.121.178101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
We investigate the geometrical and mechanical properties of adherent cells characterized by a highly anisotropic actin cytoskeleton. Using a combination of theoretical work and experiments on micropillar arrays, we demonstrate that the shape of the cell edge is accurately described by elliptical arcs, whose eccentricity expresses the degree of anisotropy of the internal cell stresses. This results in a spatially varying tension along the cell edge, that significantly affects the traction forces exerted by the cell on the substrate. Our work highlights the strong interplay between cell mechanics and geometry and paves the way towards the reconstruction of cellular forces from geometrical data.
Collapse
Affiliation(s)
- Wim Pomp
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Koen Schakenraad
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, Netherlands
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands
| | - Hayri E Balcıoğlu
- Toxicology, Leiden Academic Center for Drug Research, Leiden University, Netherlands
| | - Hedde van Hoorn
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Erik H J Danen
- Toxicology, Leiden Academic Center for Drug Research, Leiden University, Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | - Thomas Schmidt
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
115
|
Park B, Oh S, Jo S, Kang D, Lim J, Jung Y, Lee H, Jun SC. Determination of the molecular assembly of actin and actin-binding proteins using photoluminescence. Colloids Surf B Biointerfaces 2018; 169:462-469. [DOI: 10.1016/j.colsurfb.2018.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 11/27/2022]
|
116
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
117
|
Dharmarajan A, Floren M, Cox L, Ding Y, Johnson R, Tan W. Mechanochemical Effects on Extracellular Signal-Regulated Kinase Dynamics in Stem Cell Differentiation. Tissue Eng Part A 2018; 24:1179-1189. [PMID: 29969368 PMCID: PMC6080114 DOI: 10.1089/ten.tea.2017.0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding how key signaling molecules are coregulated by biochemical agents and physical stimuli during stem cell differentiation is critical but often lacking. Due to the important role of extracellular signal-regulated kinase (ERK), this study has examined its temporal dynamics to determine the coregulation of mechanochemical cues on ERK phosphorylation for smooth muscle cell (SMC) differentiation. To assess ERK1/2 activity, a fluorescence resonance energy transfer-based biosensor was transfected into mesenchymal stem cells. The influences of nanopatterned substrates, growth factors, and drugs on ERK activities were related to their effects on SMC differentiation. Results revealed that nanopatterned substrates significantly increased ERK activity in cells, overriding ERK response from administered biochemical factors. The nanopatterned substrates reduced expression of SMC markers after a 48-h biochemical treatment, except for the combination with ERK inhibitor PD98059 treatment, which enhanced expression of mature SMC marker MYH11. Immunofluorescent staining for focal adhesion proteins, vinculin and zyxin, indicated no significant differences in vinculin cluster distribution or dimension, while the location of zyxin changed from adhesion sites of cell periphery on nonpatterned substrate to actin filaments on nanopatterned substrate. The zyxin-reinforced stress fibers likely enhanced the cytoskeletal tension to increase ERK dynamics. Collectively, results suggest that physical stimuli play a dominating role in initial ERK signaling and early-stage differentiation through focal adhesion changes, and the capability of monitoring signaling events in real time could be exploited to guide the engineering of cell microenvironment.
Collapse
Affiliation(s)
- Anirudh Dharmarajan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Michael Floren
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Lewis Cox
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Richard Johnson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
118
|
Tojkander S, Ciuba K, Lappalainen P. CaMKK2 Regulates Mechanosensitive Assembly of Contractile Actin Stress Fibers. Cell Rep 2018; 24:11-19. [DOI: 10.1016/j.celrep.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
|
119
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
120
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
121
|
Uzer G, Bas G, Sen B, Xie Z, Birks S, Olcum M, McGrath C, Styner M, Rubin J. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access. J Biomech 2018; 74:32-40. [PMID: 29691054 PMCID: PMC5962429 DOI: 10.1016/j.jbiomech.2018.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin.
Collapse
Affiliation(s)
- Gunes Uzer
- Boise State University,University of North Carolina Chapel Hill,Corresponding author: Gunes Uzer PhD, Boise State University, Department of Mechanical & Biomedical Engineering, 1910 University Drive, MS-2085, Boise, ID 83725-2085, Ph. (208) 426-4461,
| | | | - Buer Sen
- University of North Carolina Chapel Hill
| | - Zhihui Xie
- University of North Carolina Chapel Hill
| | | | | | | | | | | |
Collapse
|
122
|
Kishimoto M, Akashi M, Kakei Y, Kusumoto J, Sakakibara A, Hasegawa T, Furudoi S, Sasaki R, Komori T. Ionizing Radiation Enhances Paracellular Permeability Through Alteration of Intercellular Junctions in Cultured Human Lymphatic Endothelial Cells. Lymphat Res Biol 2018; 16:390-396. [PMID: 29862914 DOI: 10.1089/lrb.2017.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A problematic complication after radiation therapy is lymphedema. Development of lymphedema is associated with an increase in lymphatic paracellular permeability. The current study investigated the effects of radiation on intercellular junctions and paracellular permeability in cultured human dermal lymphatic endothelial cells (HDLECs). METHODS AND RESULTS Double immunofluorescence staining with vascular endothelial (VE)-cadherin and actin immediately after X-ray irradiation (5 or 20 Gy) was performed. Morphological changes induced by irradiation were assessed. Cell viability and paracellular permeability after irradiation were also evaluated. Broad junctions in which VE-cadherin was accumulated at cell-cell contacts and almost colocalized with actin were significantly decreased in a dose-dependent manner in confluent and sparse irradiated HDLECs. Irradiation shortened the width of VE-cadherin-positive areas at the cell-cell contacts. Actin filaments did not colocalize with VE-cadherin after 20 Gy irradiation. Although cell viability was not affected by irradiation, paracellular permeability significantly increased in a dose-dependent manner. CONCLUSIONS A dose of 5 or 20 Gy irradiation in HDLECs does not affect cell viability, but changes VE-cadherin mediated intercellular junctions and actin structure, resulting in an increase of paracellular permeability. Further investigations on the regulatory proteins involved in radiation-induced changes, which were observed in the current study, may contribute to development of lymphedema therapy.
Collapse
Affiliation(s)
- Megumi Kishimoto
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Masaya Akashi
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Yasumasa Kakei
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Junya Kusumoto
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Akiko Sakakibara
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Takumi Hasegawa
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Shungo Furudoi
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Ryohei Sasaki
- 2 Department of Radiation Oncology, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Takahide Komori
- 1 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| |
Collapse
|
123
|
Yuan H, Marzban B, Kit Parker K. Myofibrils in Cardiomyocytes Tend to Assemble Along the Maximal Principle Stress Directions. J Biomech Eng 2018; 139:2653368. [PMID: 28857113 DOI: 10.1115/1.4037795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying the spatial organization of self-assembled myofibrils in cardiac tissues remain incompletely understood. By modeling cells as elastic solids under active cytoskeletal contraction, we found a good correlation between the predicted maximal principal stress directions and the in vitro myofibril orientations in individual cardiomyocytes. This implies that actomyosin fibers tend to assemble along the maximal tensile stress (MTS) directions. By considering the dynamics of focal adhesion and myofibril formation in the model, we showed that different patterns of myofibril organizations in mature versus immature cardiomyocytes can be explained as the consequence of the different levels of force-dependent remodeling of focal adhesions. Further, we applied the mechanics model to cell pairs and showed that the myofibril organizations can be regulated by a combination of multiple factors including cell shape, cell-substrate adhesions, and cell-cell adhesions. This mechanics model can guide the rational design in cardiac tissue engineering where recapitulating in vivo myofibril organizations is crucial to the contractile function of the heart.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881 e-mail:
| | - Bahador Marzban
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 e-mail:
| |
Collapse
|
124
|
Yang Y, Qu R, Fan T, Zhu X, Feng Y, Yang Y, Deng T, Peng Y, Huang W, Ouyang J, Dai J. Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2018; 9:125. [PMID: 29720241 PMCID: PMC5930445 DOI: 10.1186/s13287-018-0836-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022] Open
Abstract
Background Adipose-derived stem cells (ASCs) that show multidifferentiation and anti-immune rejection capacities have been widely used in plastic and reconstructive surgery. Previous studies have indicated that mechanical and biophysical interactions between cells and their surrounding environment regulate essential processes, such as growth, survival, and differentiation, and the cytoskeleton system plays an important role in the mechanotransduction. However, the role of mechanical force in the determination of lineage fate is still unclear. Methods Human ASCs (hASCs) were obtained from three different donors by liposuction. Adipogenesis and osteogenesis were determined by Oil Red O and Alizarin Red staining, respectively. The mRNA levels of the cytoskeleton system, PPARγ, and C/EBPα were determined by real-time polymerase chain reaction (RT-PCR). The level of cytoskeleton, PPARγ, and C/EBPα protein levels were measured by Western blotting. The morphology of the cytoskeleton system during adipogenesis was observed with confocal microscopy. hASCs were transfected with a SUN2-specific shRNA to knockdown sun2, and a nontargeting shRNA was used as a control. Results We found that disrupting the physiological balance between the cytoskeleton and the linker of the nucleoskeleton and cytoskeleton (LINC) complex (especially SUN2) could impact the adipogenesis of hASCs in vitro. Microtubule (MT) depolymerization with nocodazole (which interferes with the polymerization of MTs) increased the expression of SUN2 and PPARγ, while taxol (an inhibitor of MT disassembly) showed the opposite results. Meanwhile, hASCs with sun2 knockdown overexpressed MTs and decreased PPARγ expression, thereby inhibiting the adipogenesis. Furthermore, knockdown of sun2 changed the structure of perinuclear MTs. Conclusions We demonstrated the presence of cross-talk between MT and SUN2, and this cross-talk plays a critical role in the rebalance of the mechanical environment and is involved in the regulation of PPARγ transport during adipogenic differentiation of hASCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0836-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiting Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Zhu
- Departments of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanting Feng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Deng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Peng
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jingxing Dai
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
125
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
126
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
127
|
Zhao H, Zhang K, Tang R, Meng H, Zou Y, Wu P, Hu R, Liu X, Feng H, Chen Y. TRPV4 Blockade Preserves the Blood-Brain Barrier by Inhibiting Stress Fiber Formation in a Rat Model of Intracerebral Hemorrhage. Front Mol Neurosci 2018; 11:97. [PMID: 29636662 PMCID: PMC5880899 DOI: 10.3389/fnmol.2018.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Blood–brain barrier (BBB) disruption and subsequent brain edema play important roles in the secondary neuronal death and neurological dysfunction that are observed following intracerebral hemorrhage (ICH). In previous studies, transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanosensitive channel, was shown to induce cytotoxicity in many types of cells and to play a role in orchestrating barrier functions. In the present study, we explored the role of TRPV4 in ICH-induced brain injury, specifically investigating its effect on BBB disruption. Autologous arterial blood was injected into the basal ganglia of rats to mimic ICH. Adult male Sprague Dawley rats were randomly assigned to sham and experimental groups for studies on the time course of TRPV4 expression after ICH. The selective TRPV4 antagonist HC-067047 and TRPV4 siRNA were administered to evaluate the effects of TRPV4 inhibition. GSK1016790A, a TRPV4 agonist, was administered to naive rats to verify the involvement of TRPV4-induced BBB disruption. A PKC inhibitor, dihydrochloride (H7), and a selective RhoA inhibitor, C3 transferase, were administered to clarify the involvement of the PKCα/RhoA/MLC2 pathway following ICH. Post-ICH assessments including functional tests, brain edema measurements, Evans blue extravasation, western blotting and immunohistochemical assays were performed. TRPV4 inhibition remarkably ameliorated neurological symptoms, brain edema, and neuronal death, as well as BBB disruption, 24–72 h following ICH. Meanwhile, TRPV4 blockade preserved the expression of adherens and tight junction proteins, as well as BBB integrity, by inhibiting stress fiber formation, which might be correlated with the regulation of components of the PKCα/RhoA/MLC2 pathway. Furthermore, adherens and tight junction protein degradation induced by GSK1016790A treatment in naive rats was also related to PKCα/RhoA/MLC2-pathway-mediated stress fiber formation. Based on these findings, therapeutic interventions targeting TRPV4 may represent a novel approach to ameliorate secondary brain injury following ICH.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaiyuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongjie Zou
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
128
|
Rupprecht JF, Singh Vishen A, Shivashankar GV, Rao M, Prost J. Maximal Fluctuations of Confined Actomyosin Gels: Dynamics of the Cell Nucleus. PHYSICAL REVIEW LETTERS 2018; 120:098001. [PMID: 29547335 DOI: 10.1103/physrevlett.120.098001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 12/19/2017] [Indexed: 06/08/2023]
Abstract
We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in nonequilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus, and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)PNASA60027-842410.1073/pnas.1513189113].
Collapse
Affiliation(s)
- J-F Rupprecht
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore
| | - A Singh Vishen
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore
| | - M Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - J Prost
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| |
Collapse
|
129
|
Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 2018; 50:79-85. [PMID: 29482169 DOI: 10.1016/j.ceb.2018.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 01/03/2023]
Abstract
Myosin-driven contraction of the actin cytoskeleton is at the base of cell and tissue morphogenesis. At the molecular level, myosin motors drive contraction by sliding actin filaments past one another using energy produced by ATP hydrolysis. How this microscopic sliding activity gives rise to cell-scale contractions has been an active research question first in muscle cells, and over the last few decades in non-muscle cells. While many early investigations focused on myosin motor activity, increasingly, the nanoscale architecture of the actin network emerges as a key regulator of contractility. Here we review theoretical and in vitro reconstitution studies that have uncovered some of the key mechanisms by which actin network organization controls contractile tension generation. We then discuss recent findings indicating that similar principles apply in cells.
Collapse
|
130
|
Limsakul P, Peng Q, Wu Y, Allen ME, Liang J, Remacle AG, Lopez T, Ge X, Kay BK, Zhao H, Strongin AY, Yang XL, Lu S, Wang Y. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface. Cell Chem Biol 2018; 25:370-379.e4. [PMID: 29396288 DOI: 10.1016/j.chembiol.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/01/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
Abstract
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells.
Collapse
Affiliation(s)
- Praopim Limsakul
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Molly E Allen
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Albert G Remacle
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alex Y Strongin
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
131
|
Spiliotis ET. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases. J Cell Sci 2018; 131:jcs207555. [PMID: 29326311 PMCID: PMC5818061 DOI: 10.1242/jcs.207555] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin and microtubule cytoskeletons comprise a variety of networks with distinct architectures, dynamics and protein composition. A fundamental question in eukaryotic cell biology is how these networks are spatially and temporally controlled, so they are positioned in the right intracellular places at the right time. While significant progress has been made in understanding the self-assembly of actin and microtubule networks, less is known about how they are patterned and regulated in a site-specific manner. In mammalian systems, septins are a large family of GTP-binding proteins that multimerize into higher-order structures, which associate with distinct subsets of actin filaments and microtubules, as well as membranes of specific curvature and lipid composition. Recent studies have shed more light on how septins interact with actin and microtubules, and raised the possibility that the cytoskeletal topology of septins is determined by their membrane specificity. Importantly, new functions have emerged for septins regarding the generation, maintenance and positioning of cytoskeletal networks with distinct organization and biochemical makeup. This Review presents new and past findings, and discusses septins as a unique regulatory module that instructs the local differentiation and positioning of distinct actin and microtubule networks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Drexel University, Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
132
|
Abstract
The actin cytoskeleton-a collection of actin filaments with their accessory and regulatory proteins-is the primary force-generating machinery in the cell. It can produce pushing (protrusive) forces through coordinated polymerization of multiple actin filaments or pulling (contractile) forces through sliding actin filaments along bipolar filaments of myosin II. Both force types are particularly important for whole-cell migration, but they also define and change the cell shape and mechanical properties of the cell surface, drive the intracellular motility and morphogenesis of membrane organelles, and allow cells to form adhesions with each other and with the extracellular matrix.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, 221 Leidy Labs, Philadelphia, Pennsylvania 19104
| |
Collapse
|
133
|
Lisowska J, Rödel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E, De Mets R, Lee HH, Destaing O, Mertani H, Boulday G, Tournier-Lasserve E, Balland M, Abdelilah-Seyfried S, Albiges-Rizo C, Faurobert E. Cerebral Cavernous Malformation 1/2 complex controls ROCK1 and ROCK2 complementary functions for endothelial integrity. J Cell Sci 2018; 131:jcs.216093. [DOI: 10.1242/jcs.216093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This cross-talk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in CCM genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. Our study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1/2-depleted endothelial monolayers and rescues cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down of Rock2 but not Rock1 in WT zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it identifies solely the ROCK1 isoform as therapeutic target for the CCM disease.
Collapse
Affiliation(s)
- Justyna Lisowska
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Sandra Manet
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Yekaterina A. Miroshnikova
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Cyril Boyault
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Emmanuelle Planus
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Richard De Mets
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Hsiao-Hui Lee
- Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| | - Olivier Destaing
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Hichem Mertani
- INSERM UMR 1052, CNRS 5286 CRCL Centre Léon Bérard F-69373 Lyon Cedex 08, France
| | - Gwénola Boulday
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Elisabeth Tournier-Lasserve
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Martial Balland
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Corinne Albiges-Rizo
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Eva Faurobert
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| |
Collapse
|
134
|
Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 2017; 64:6-16. [DOI: 10.1016/j.matbio.2017.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
135
|
Wilson HK, Faubion MG, Hjortness MK, Palecek SP, Shusta EV. Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition. Tissue Eng Part C Methods 2017; 22:1085-1094. [PMID: 27846787 DOI: 10.1089/ten.tec.2016.0345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis but also presents a major obstacle to brain drug delivery. Brain microvascular endothelial cells (BMECs) form the principal barrier and therefore represent the major cellular component of in vitro BBB models. Such models are often used for mechanistic studies of the BBB in health and disease and for drug screening. Recently, human induced pluripotent stem cells (iPSCs) have emerged as a new source for generating BMEC-like cells for use in in vitro human BBB studies. However, the inability to cryopreserve iPSC-BMECs has impeded implementation of this model by requiring a fresh differentiation to generate cells for each experiment. Cryopreservation of differentiated iPSC-BMECs would have a number of distinct advantages, including enabling production of larger scale lots, decreasing lead time to generate purified iPSC-BMEC cultures, and facilitating use of iPSC-BMECs in large-scale screening. In this study, we demonstrate that iPSC-BMECs can be successfully cryopreserved at multiple differentiation stages. Cryopreserved iPSC-BMECs retain high viability, express standard endothelial and BBB markers, and reach a high transendothelial electrical resistance (TEER) of ∼3000 Ω·cm2, equivalent to nonfrozen controls. Rho-associated coiled coil-containing kinase (ROCK) inhibitor Y-27632 substantially increased survival and attachment of cryopreserved iPSC-BMECs, as well as stabilized TEER above 800 Ω·cm2 out to 7 days post-thaw. Overall, cryopreservation will ease handling and storage of high-quality iPSC-BMECs, reducing a key barrier to greater implementation of these cells in modeling the human BBB.
Collapse
Affiliation(s)
- Hannah K Wilson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | - Madeline G Faubion
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | - Michael K Hjortness
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
136
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 591] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
137
|
Zhu R, Antoku S, Gundersen GG. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr Biol 2017; 27:3097-3110.e5. [PMID: 28988861 DOI: 10.1016/j.cub.2017.08.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
Nuclear movement is critical for developmental events, cell polarity, and migration and is usually mediated by linker of nucleoskeleton and cytoskeleton (LINC) complexes connecting the nucleus to cytoskeletal elements. Compared to active nuclear movement, relatively little is known about homeostatic positioning of nuclei, including whether it is an active process. To explore homeostatic nuclear positioning, we developed a method to displace nuclei in adherent cells using centrifugal force. Nuclei displaced by centrifugation rapidly recentered by mechanisms that depended on cell context. In cell monolayers with wounds oriented orthogonal to the force, nuclei were displaced toward the front and back of the cells on the two sides of the wound. Nuclei recentered from both positions, but at different rates and with different cytoskeletal linkage mechanisms. Rearward recentering was actomyosin, nesprin-2G, and SUN2 dependent, whereas forward recentering was microtubule, dynein, nesprin-2G, and SUN1 dependent. Nesprin-2G engaged actin through its N terminus and microtubules through a novel dynein interacting site near its C terminus. Both activities were necessary to maintain nuclear position in uncentrifuged cells. Thus, even when not moving, nuclei are actively maintained in position by engaging the cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
138
|
Fredriksson-Lidman K, Van Itallie CM, Tietgens AJ, Anderson JM. Sorbin and SH3 domain-containing protein 2 (SORBS2) is a component of the acto-myosin ring at the apical junctional complex in epithelial cells. PLoS One 2017; 12:e0185448. [PMID: 28961272 PMCID: PMC5621683 DOI: 10.1371/journal.pone.0185448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
SORBS2 is a scaffolding protein associated with Abl/Arg non-receptor tyrosine kinase pathways and is known to interact with actin and several other cytoskeletal proteins in various cell types. Previous BioID proximity labeling of tight and adherens junction proteins suggested that SORBS2 is a component of the apical junction complex of epithelial cells. We asked whether SORBS2 plays a previously unappreciated role in controlling perijunctional actin and tight junction barrier function. Using super resolution imaging we confirmed that SORBS2 is localized at the apical junction complex but farther from the membrane than ZO-1 and located partially overlapping both the tight- and adherens junctions with a periodic concentration that alternates with myosin IIB in polarized epithelial cells. Overexpression of GFP-SORBS2 recruited alpha-actinin, vinculin and N-WASP, and possibly CIP4 to cellular junctions. However, CRISPR-Cas9 knock-out of SORBS2 did not alter the localization- or immunofluorescent staining intensity of these or several other junctional- and cytoskeletal proteins. SORBS2 knock-out also did not affect the barrier function as measured by TER and dextran flux; nor did it change actin-dependent junction re-assembly as measured by Ca2+-switch and Latrunculin-B wash-out assays. The kinetics of HGF-induced cell scattering and wound healing, and dextran flux increase induced by PDGF also were unaffected by SORBS2 knock-out. SORBS2 concentrates with apical junctional actin that accumulates in response to knock-down of ZO-1 and ZO-2. In spite of our finding that SORBS2 is clearly a component of the apical junction complex, it does not appear to be required for either normal tight- or adherens junction assembly, structure or function or for growth factor-mediated changes in tight junction dynamics.
Collapse
Affiliation(s)
- Karin Fredriksson-Lidman
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Christina M. Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amber J. Tietgens
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James M. Anderson
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
139
|
Zhang X, Lv Y. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2272-2282. [PMID: 28919351 DOI: 10.1016/j.bbamcr.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
140
|
Miao C, Schiffhauer ES, Okeke EI, Robinson DN, Luo T. Parallel Compression Is a Fast Low-Cost Assay for the High-Throughput Screening of Mechanosensory Cytoskeletal Proteins in Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28168-28179. [PMID: 28795554 PMCID: PMC5891216 DOI: 10.1021/acsami.7b04622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellular mechanosensing is critical for many biological processes, including cell differentiation, proliferation, migration, and tissue morphogenesis. The actin cytoskeletal proteins play important roles in cellular mechanosensing. Many techniques have been used to investigate the mechanosensory behaviors of these proteins. However, a fast, low-cost assay for the quantitative characterization of these proteins is still lacking. Here, we demonstrate that compression assay using agarose overlay is suitable for the high throughput screening of mechanosensory proteins in live cells while requiring minimal experimental setup. We used several well-studied myosin II mutants to assess the compression assay. On the basis of elasticity theories, we simulated the mechanosensory accumulation of myosin II's and quantitatively reproduced the experimentally observed protein dynamics. Combining the compression assay with confocal microscopy, we monitored the polarization of myosin II oligomers at the subcellular level. The polarization was dependent on the ratio of the two principal strains of the cellular deformations. Finally, we demonstrated that this technique could be used on the investigation of other mechanosensory proteins.
Collapse
Affiliation(s)
- Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
| | - Eric S. Schiffhauer
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Evelyn I. Okeke
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Douglas N. Robinson
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230000, China
- Departments of Cell Biology, Pharmacology and Molecular Medicine, and Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Corresponding Author:
| |
Collapse
|
141
|
Suleiman HY, Roth R, Jain S, Heuser JE, Shaw AS, Miner JH. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2017; 2:94137. [PMID: 28814668 DOI: 10.1172/jci.insight.94137] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
The architectural integrity of tissues requires complex interactions, both between cells and between cells and the extracellular matrix. Fundamental to cell and tissue homeostasis are the specific mechanical forces conveyed by the actomyosin cytoskeleton. Here we used super-resolution imaging methods to visualize the actin cytoskeleton in the kidney glomerulus, an organized collection of capillaries that filters the blood to make the primary urine. Our analysis of both mouse and human glomeruli reveals a network of myosin IIA-containing contractile actin cables within podocyte cell bodies and major processes at the outer aspects of the glomerular tuft. These likely exert force on an underlying network of myosin IIA-negative, noncontractile actin fibers present within podocyte foot processes that function to both anchor the cells to the glomerular basement membrane and stabilize the slit diaphragm against the pressure of fluid flow. After injuries that disrupt the kidney filtration barrier and cause foot process effacement, the podocyte's contractile actomyosin network relocates to the basolateral surface of the cell, manifesting as sarcomere-like structures juxtaposed to the basement membrane. Our findings suggest a new model of the podocyte actin cytoskeleton in health and disease and suggest the existence of novel mechanisms that regulate podocyte architecture.
Collapse
Affiliation(s)
- Hani Y Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John E Heuser
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | | | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
142
|
Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion. Cell Rep 2017; 20:1893-1905. [DOI: 10.1016/j.celrep.2017.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
|
143
|
Sato Y, Murakami Y, Takahashi M. Semi-retentive cytoskeletal fractionation (SERCYF): A novel method for the biochemical analysis of the organization of microtubule and actin cytoskeleton networks. Biochem Biophys Res Commun 2017; 488:614-620. [PMID: 28526408 DOI: 10.1016/j.bbrc.2017.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
Abstract
A variety of biochemical fractionation methods are available for the quantification of cytoskeletal components. However, each method is designed to target only one cytoskeletal network, either the microtubule (MT) or actin cytoskeleton, and non-targeted cytoskeletal networks are ignored. Considering the importance of MT-actin crosstalk, the organization of both the targeted and non-targeted cytoskeletal networks must be retained intact during fractionation for the accurate analysis of cytoskeletal organization. In this study, we reveal that existing fractionation methods, represented by the MT-sedimentation-method for MTs and the Triton X-100 solubility assay-method for actin cytoskeletons, disrupt the organizations of the non-targeted cytoskeletons. We demonstrate a novel fractionation method for the accurate analysis of the cytoskeletal organizations using a taxol-containing PEM-based permeabilization buffer, which we name "semi-retentive cytoskeletal fractionation (SERCYF)-method". The organizations of both MTs and actin cytoskeletons were retained intact even after permeabilization with this buffer. By using the SERCYF-method, we analyzed the effects of nocodazole on the cytoskeletal organizations biochemically and showed promotion of the actin cytoskeletal organization by MT depolymerization.
Collapse
Affiliation(s)
- Yuta Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yota Murakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
144
|
Owen LM, Adhikari AS, Patel M, Grimmer P, Leijnse N, Kim MC, Notbohm J, Franck C, Dunn AR. A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol Biol Cell 2017; 28:1959-1974. [PMID: 28592635 PMCID: PMC5541846 DOI: 10.1091/mbc.e17-02-0102] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional (3D), and structurally heterogeneous ECM environments such as occur in vivo. We used time-lapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton is mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances, the cytoskeletal architecture is dominated by contractile actin bundles attached at their ends to large, stable, integrin-based adhesions. Time-lapse imaging reveals that α-actinin-1 puncta within actomyosin bundles move more quickly than the paxillin-rich adhesion plaques, which in turn move more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable, yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result and support a picture in which cells respond to the effective stiffness of local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.
Collapse
Affiliation(s)
- Leanna M Owen
- Biophysics, Stanford University, Stanford, CA 94305
- Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Mohak Patel
- School of Engineering, Brown University, Providence, RI 02912
| | - Peter Grimmer
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53711
| | | | - Min Cheol Kim
- Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53711
| | | | | |
Collapse
|
145
|
Fedorov EG, Shemesh T. Physical Model for Stabilization and Repair of Trans-endothelial Apertures. Biophys J 2017; 112:388-397. [PMID: 28122224 DOI: 10.1016/j.bpj.2016.11.3207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/13/2023] Open
Abstract
Bacterial toxins that disrupt the stability of contractile structures in endothelial cells promote the opening of large-scale apertures, thereby breaching the endothelium barrier. These apertures are formed by fusion of the basal and apical membranes into a tunnel that spans the height of the cell. Subsequent to the aperture formation, an active repair process, driven by a stimulated polymerization of actin, results in asymmetrical membrane protrusions and, ultimately, the closure of the aperture. Here, we propose a physics-based model for the generation, stabilization and repair of trans-endothelial apertures. Our model is based on the mechanical interplay between tension in the plasma membrane and stresses that develop within different actin structures at the aperture's periphery. We suggest that accumulation of cytoskeletal fragments around the aperture's rim during the expansion phase results in parallel bundles of actin filaments and myosin motors, generating progressively greater contraction forces that resist further expansion of the aperture. Our results indicate that closure of the tunnel is driven by mechanical stresses that develop within a cross-linked actin gel that forms at localized regions of the aperture periphery. We show that stresses within the gel are due to continuous polymerization of actin filaments against the membrane surfaces of the aperture's edges. Based on our mechanical model, we construct a dynamic simulation of the aperture repair process. Our model fully accounts for the phenomenology of the trans-endothelial aperture formation and stabilization, and recaptures the experimentally observed asymmetry of the intermediate aperture shapes during closure. We make experimentally testable predictions for localization of myosin motors to the tunnel periphery and of adhesion complexes to the edges of apertures undergoing closure, and we estimate the minimal nucleation size of cross-linked actin gel that can lead to a successful repair of the aperture.
Collapse
Affiliation(s)
- Eduard G Fedorov
- Department of Biology, Israel Institute of Technology, Haifa, Israel
| | - Tom Shemesh
- Department of Biology, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
146
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
147
|
Novel Therapeutic Effects of Leonurine On Ischemic Stroke: New Mechanisms of BBB Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7150376. [PMID: 28690765 PMCID: PMC5485366 DOI: 10.1155/2017/7150376] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of morbidity and mortality globally. Leonurine (also named SCM-198), a compound extracted from Herba leonuri, was effective on the prevention of various cardiovascular and brain diseases. The purpose of this study was to explore the possible therapeutic potential of SCM-198 against ischemia reperfusion injury and underlying mechanisms. In the in vivo transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could decrease infarct volume and improve neurological deficit by protecting against blood-brain barrier (BBB) breakdown. In the in vitro model of cell oxygen-glucose deprivation and reoxygenation (OGD/R), consistent results were obtained with decreased reactive oxygen species (ROS) production and maintained the BBB integrity. Further study demonstrated that SCM-198 increased the expression of histone deacetylase- (HDAC-) 4 which could inhibit NADPH oxidase- (NOX-) 4 and matrix metalloproteinase- (MMP-) 9 expression, resulting in the elevation of tight junction proteins, including claudin-5, occludin, and zonula occluden- (ZO-) 1. These results indicated SCM-198 protected BBB integrity by regulating the HDAC4/NOX4/MMP-9 tight junction pathway. Our findings provided novel insights into the protective effects and mechanisms of SCM-198 on ischemic stroke, indicating SCM-198 as a new class of potential drug against acute onset of ischemic stroke.
Collapse
|
148
|
Stretch-induced actomyosin contraction in epithelial tubes: Mechanotransduction pathways for tubular homeostasis. Semin Cell Dev Biol 2017; 71:146-152. [PMID: 28610943 DOI: 10.1016/j.semcdb.2017.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
Many tissues in our body have a tubular shape and are constantly exposed to various stresses. Luminal pressure imposes tension on the epithelial and myoepithelial or smooth muscle cells surrounding the lumen of the tubes. Contractile forces generated by actomyosin assemblies within these cells oppose the luminal pressure and must be calibrated to maintain tube diameter homeostasis and tissue integrity. In this review, we discuss mechanotransduction pathways that can lead from sensation of cell stretch to activation of actomyosin contractility, providing rapid mechanochemical feedback for proper tubular tissue function.
Collapse
|
149
|
Zhang Z, Xia S, Kanchanawong P. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs. BMC Bioinformatics 2017; 18:268. [PMID: 28532442 PMCID: PMC5440974 DOI: 10.1186/s12859-017-1684-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. RESULT Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. CONCLUSION We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Shumin Xia
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Republic of Singapore.
| |
Collapse
|
150
|
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS JOURNAL 2017; 19:957-972. [PMID: 28484963 DOI: 10.1208/s12248-017-0091-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA.
| |
Collapse
|