101
|
Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM, Mitchell CA. The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci 2010; 123:3071-83. [PMID: 20736309 DOI: 10.1242/jcs.060103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-phosphate [PtdIns(3)P] regulates endocytic trafficking and the sorting of receptors through early endosomes, including the rapid recycling of transferrin (Tfn). However, the phosphoinositide phosphatase that selectively opposes this function is unknown. The myotubularins are a family of eight catalytically active and six inactive enzymes that hydrolyse PtdIns(3)P to form PtdIns. However, the role each myotubularin family member plays in regulating endosomal PtdIns(3)P and thereby endocytic trafficking is not well established. Here, we identify the myotubularin family member MTMR4, which localizes to early endosomes and also to Rab11- and Sec15-positive recycling endosomes. In cells with MTMR4 knockdown, or following expression of the catalytically inactive MTMR4, MTMR4(C407A), the number of PtdIns(3)P-decorated endosomes significantly increased. MTMR4 overexpression delayed the exit of Tfn from early endosomes and its recycling to the plasma membrane. By contrast, expression of MTMR4(C407A), which acts as a dominant-negative construct, significantly accelerated Tfn recycling. However, in MTMR4 knockdown cells Tfn recycling was unchanged, suggesting that other MTMs might also contribute to recycling. MTMR4 regulated the subcellular distribution of Rab11 and, in cells with RNAi-mediated knockdown of MTMR4, Rab11 was directed away from the pericentriolar recycling compartment. The subcellular distribution of VAMP3, a v-SNARE protein that resides in recycling endosomes and endosome-derived transport vesicles, was also regulated by MTMR4. Therefore, MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway.
Collapse
Affiliation(s)
- Monica J Naughtin
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Tan Y, Chiow KH, Huang D, Wong SH. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells. Br J Pharmacol 2010; 159:1497-510. [PMID: 20233216 DOI: 10.1111/j.1476-5381.2009.00627.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. EXPERIMENTAL APPROACH We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. KEY RESULTS Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. CONCLUSION AND IMPLICATIONS This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.
Collapse
Affiliation(s)
- Y Tan
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
103
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
104
|
Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D, Swarup G. Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol 2010; 11:4. [PMID: 20085643 PMCID: PMC2826298 DOI: 10.1186/1471-2121-11-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 01/19/2010] [Indexed: 12/16/2022] Open
Abstract
Background Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process. Results We show that the knockdown of optineurin impairs trafficking of transferrin receptor to the juxtanuclear region. A point mutation (D474N) in the ubiquitin-binding domain abrogates localization of optineurin to the recycling endosomes and interaction with transferrin receptor. The function of ubiquitin-binding domain of optineurin is also needed for trafficking of transferrin to the juxtanuclear region. A disease causing mutation, E50K, impairs endocytic recycling of transferrin receptor as shown by enlarged recycling endosomes, slower dynamics of E50K vesicles and decreased transferrin uptake by the E50K-expressing cells. This impaired trafficking by the E50K mutant requires the function of its ubiquitin-binding domain. Compared to wild type optineurin, the E50K optineurin shows enhanced interaction and colocalization with transferrin receptor and Rab8. The velocity of Rab8 vesicles is reduced by co-expression of the E50K mutant. These results suggest that the E50K mutant affects Rab8-mediated transferrin receptor trafficking. Conclusions Our results suggest that optineurin regulates endocytic trafficking of transferrin receptor to the juxtanuclear region. The E50K mutant impairs trafficking at the recycling endosomes due to altered interactions with Rab8 and transferrin receptor. These results also have implications for the pathogenesis of glaucoma caused by the E50K mutation because endocytic recycling is vital for maintaining homeostasis.
Collapse
|
105
|
Abstract
Endocytosed molecules are sorted in endosomes to different cellular destinations (e.g., to lysosomes or to the plasma membrane). Diverse endosomal sorting results have been reported for different ligands and receptors in a variety of cell types, but the general principles governing these sorting outcomes are not well understood. For example, we observed a wide range of sorting outcomes with the epidermal growth factor (EGF)/receptor system in fibroblasts using several members of the EGF family and site-directed ligand and receptor mutants. In this article we describe a mechanistic mathematical model of endosomal sorting based on the hypothesis that receptors may be selectively retained by the endosomal sorting apparatus and that this process may be modulated by receptor occupancy. Our results show that this single mechanism can account for the wide variety of observed sorting outcomes. By providing a conceptual framework for understanding endosomal sorting, this model not only helps interpret our experimental results for the EGF/receptor system, but also provides some insight into the principles governing sorting. For example, the model predicts that the influence of selective endosomal retention of receptor/ligand complexes is seen in deviations of ligand sorting outcomes from pure fluid phase sorting behavior. Furthermore, the model suggests that selective endosomal retention of complexes within endosomes gives rise to three sorting regimes characterized by distinguishable qualitative trends in the dependence of ligand sorting fractions on intracellular ligand concentrations.
Collapse
Affiliation(s)
- A R French
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
106
|
Ivy MT, Newkirk RF, Wang Y, Townsel JG. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation. J Neurochem 2009; 112:1295-304. [PMID: 20015153 DOI: 10.1111/j.1471-4159.2009.06543.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.
Collapse
Affiliation(s)
- Michael T Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | | | | | |
Collapse
|
107
|
SRC-mediated phosphorylation of dynamin and cortactin regulates the "constitutive" endocytosis of transferrin. Mol Cell Biol 2009; 30:781-92. [PMID: 19995918 DOI: 10.1128/mcb.00330-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which epithelial cells regulate clathrin-mediated endocytosis (CME) of transferrin are poorly defined and generally viewed as a constitutive process that occurs continuously without regulatory constraints. In this study, we demonstrate for the first time that endocytosis of the transferrin receptor is a regulated process that requires activated Src kinase and, subsequently, phosphorylation of two important components of the endocytic machinery, namely, the large GTPase dynamin 2 (Dyn2) and its associated actin-binding protein, cortactin (Cort). To our knowledge these findings are among the first to implicate an Src-mediated endocytic cascade in what was previously presumed to be a nonregulated internalization process.
Collapse
|
108
|
Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl Med Biol 2009; 36:81-8. [PMID: 19181272 DOI: 10.1016/j.nucmedbio.2008.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/16/2008] [Accepted: 10/21/2008] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Radioimmunotherapy, which utilizes monoclonal antibodies and therapeutic radioisotopes against antigen-expressing tumor tissues, is an attractive therapeutic approach for cancer therapy. Trastuzumab (Herceptin) is a humanized anti-HER-2/neu monoclonal antibody for breast cancer treatment. In this paper, we introduce a new radioimmunoagent, (188)Re-trastuzumab, via a bifunctional ligand, succinimidyl 3,6-diaza-5-oxo-3-[2-((triphenylmethyl)thio)ethyl]-8-[(triphenylmethyl)thio]octanoate (SOCTA), and evaluate its potential to be a therapeutic radiopharmaceutical for breast cancer treatment. METHODS Equimolar amounts of SOCTA and trastuzumab were selected to react, and the conjugation ratio of SOCTA-trastuzumab was evaluated by the MALDI-TOF method. The immunoreactivity of SOCTA-trastuzumab was compared with nonconjugated trastuzumab in HER-2/neu overexpressing human breast cancer cell BT-474. Biodistribution experiment and microSPECT/CT images of (188)Re-SOCTA-trastuzumab being administered intravenously to SCID mice bearing xenografted BT-474 breast cancer were investigated to evaluate the tumor-targeting capability. RESULTS The covalent attachment of SOCTA to trastuzumab (at 1:1 molar ratio) resulted in the averaged conjugation ratio of 0.27+/-0.06 (n=3). The complex could easily be labeled with (188)Re and achieve 95% radiochemical purity (RCP) after 1 h of reaction at room temperature. The in vitro stability study also revealed that the RCP of (188)Re-SOCTA-trastuzumab was at a value of more than 85% after 48 h of incubation with human serum. The immunoreactivity evaluation showed that SOCTA-trastuzumab and nonconjugated trastuzumab had similar binding capacity (B(max)) to HER-2/neu receptor in BT-474 cells. The animal experiments showed that (188)Re-SOCTA-trastuzumab accumulated more intensively in the tumor site as compared to normal tissue. CONCLUSION We suggest that (188)Re-SOCTA-trastuzumab could be a potential candidate for radioimmunotherapy.
Collapse
|
109
|
Razi M, Chan EYW, Tooze SA. Early endosomes and endosomal coatomer are required for autophagy. ACTA ACUST UNITED AC 2009; 185:305-21. [PMID: 19364919 PMCID: PMC2700373 DOI: 10.1083/jcb.200810098] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential. We show that fusion of AVs with functional early endosomes is required for autophagy. Inhibition of early endosome function by loss of COPI subunits (β′, β, or α) results in accumulation of autophagosomes, but not an increased autophagic flux. COPI is required for ER-Golgi transport and early endosome maturation. Although loss of COPI results in the fragmentation of the Golgi, this does not induce the formation of autophagosomes. Loss of COPI causes defects in early endosome function, as both transferrin recycling and EGF internalization and degradation are impaired, and this loss of function causes an inhibition of autophagy, an accumulation of p62/SQSTM-1, and ubiquitinated proteins in autophagosomes.
Collapse
Affiliation(s)
- Minoo Razi
- London Research Institute, Cancer Research UK, London WC2A 3PX, England, UK
| | | | | |
Collapse
|
110
|
Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A 2009; 106:6111-6. [PMID: 19307578 DOI: 10.1073/pnas.0807883106] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid reagents, including small interfering RNA (siRNA) and plasmid DNA, are important tools for the study of mammalian cells and are promising starting points for the development of new therapeutic agents. Realizing their full potential, however, requires nucleic acid delivery reagents that are simple to prepare, effective across many mammalian cell lines, and nontoxic. We recently described the extensive surface mutagenesis of proteins in a manner that dramatically increases their net charge. Here, we report that superpositively charged green fluorescent proteins, including a variant with a theoretical net charge of +36 (+36 GFP), can penetrate a variety of mammalian cell lines. Internalization of +36 GFP depends on nonspecific electrostatic interactions with sulfated proteoglycans present on the surface of most mammalian cells. When +36 GFP is mixed with siRNA, protein-siRNA complexes approximately 1.7 mum in diameter are formed. Addition of these complexes to five mammalian cell lines, including four that are resistant to cationic lipid-mediated siRNA transfection, results in potent siRNA delivery. In four of these five cell lines, siRNA transfected by +36 GFP suppresses target gene expression. We show that +36 GFP is resistant to proteolysis, is stable in the presence of serum, and extends the serum half-life of siRNA and plasmid DNA with which it is complexed. A variant of +36 GFP can mediate DNA transfection, enabling plasmid-based gene expression. These findings indicate that superpositively charged proteins can overcome some of the key limitations of currently used transfection agents.
Collapse
|
111
|
Abstract
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.
Collapse
Affiliation(s)
- Alexander Sorkin
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado 80045-0508, USA.
| | | |
Collapse
|
112
|
Gao X, Lorinczi M, Hill KS, Brooks NC, Dokainish H, Ireton K, Elferink LA. Met receptor tyrosine kinase degradation is altered in response to the leucine-rich repeat of the Listeria invasion protein internalin B. J Biol Chem 2008; 284:774-83. [PMID: 18990695 DOI: 10.1074/jbc.m805989200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entry of the bacterial pathogen Listeria monocytogenes into host epithelial cells is critical for infection and virulence. One major pathway for Listeria entry involves binding of the bacterial protein Internalin B to the host receptor tyrosine kinase Met (hepatocyte growth factor receptor). Activation of Met and downstream signaling cascades is critical for Listeria entry. Internalin B is composed of several structural domains including an N-terminal leucine-rich repeat that is sufficient for binding Met and stimulating downstream signal transduction. Internalin B is monomeric, whereas the leucine-rich repeat is dimeric when expressed as an isolated fragment. The different quaternary states of Internalin B and the leucine-rich repeat suggest that these two Met ligands might cause distinct biological effects. Here we demonstrate that Internalin B and the leucine-rich repeat fragment exhibit agonist properties that differentially influence Met down-regulation in lysosomes. Specifically, Met stability is increased in response to the leucine-rich repeat fragment compared with Internalin B. Interestingly, Internalin B and the leucine-rich repeat stimulate equivalent rates of clathrin-mediated Met internalization. However, the leucine-rich repeat is defective in promoting lysosomal down-regulation of Met and instead enhances receptor recycling to the cell surface. In addition, the leucine-rich repeat causes prolonged Met activation (phosphorylation) and increased cell motility compared with Internalin B. Taken together, our findings indicate that individual domains of Internalin B differentially regulate Met trafficking. The ability of the leucine-rich repeat fragment to promote Met recycling could account for the increased cell motility induced by this ligand.
Collapse
Affiliation(s)
- Xiu Gao
- Department of Neuroscience and Cell Biology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Zhao Y, Keen JH. Gyrating clathrin: highly dynamic clathrin structures involved in rapid receptor recycling. Traffic 2008; 9:2253-64. [PMID: 18817526 DOI: 10.1111/j.1600-0854.2008.00819.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here detection of novel intracellular clathrin-coated structures revealed by continuous high-speed imaging of cells expressing green fluorescent protein fusion proteins. These structures, which we operationally term 'gyrating clathrin' (G-clathrin), are characterized by localized but extremely rapid movement, leading to the hypothesis that they are coated buds on waving membrane tubules. G-clathrin structures have structurally and functionally distinct features. They lack detectable adaptor proteins AP-1 and AP-2 but contain GGA1 [Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding protein] as well as the cation-dependent mannose-6-phosphate receptor. While they accumulate internalized transferrin (Tf), they do not contain detectable levels of cargos targeted for the late endosome/lysosome pathway such as EGF and dextran. Pulse-chase studies indicate that Tf appears in G-clathrin structures in the cell periphery after sorting endosomes (SEs), but before filling of the perinuclear endocytic recycling compartment. Furthermore, the inhibitors LY294002 and wortmannin, which inhibit direct recycling of Tf from SEs to the plasma membrane, also block its appearance in G-clathrin. These observations suggest that peripheral G-clathrin contributes to rapid recycling, a kinetically defined compartment that has largely eluded structural identification. More generally, the rapid continuous live cell imaging reported here reveals new aspects of membrane trafficking.
Collapse
Affiliation(s)
- Yanqiu Zhao
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB/915, Philadelphia, PA 19107, USA
| | | |
Collapse
|
114
|
Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008; 314:3093-106. [PMID: 18793634 DOI: 10.1016/j.yexcr.2008.08.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 02/07/2023]
Abstract
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.
Collapse
|
115
|
Liang YJ, Wu DF, Stumm R, Höllt V, Koch T. Membrane glycoprotein M6A promotes mu-opioid receptor endocytosis and facilitates receptor sorting into the recycling pathway. Cell Res 2008; 18:768-79. [PMID: 18574501 DOI: 10.1038/cr.2008.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The interaction of mu-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of delta-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-endocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrs from the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.
Collapse
Affiliation(s)
- Ying-Jian Liang
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
116
|
Yamamoto H, Sakane H, Yamamoto H, Michiue T, Kikuchi A. Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev Cell 2008; 15:37-48. [PMID: 18606139 DOI: 10.1016/j.devcel.2008.04.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 03/29/2008] [Accepted: 04/29/2008] [Indexed: 01/04/2023]
Abstract
Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
117
|
Liu T, Wu LY, Kazak M, Berkman CE. Cell-Surface labeling and internalization by a fluorescent inhibitor of prostate-specific membrane antigen. Prostate 2008; 68:955-64. [PMID: 18361407 DOI: 10.1002/pros.20753] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND [corrected] Prostate-specific membrane antigen (PSMA) remains an attractive target for imaging and therapeutic applications for prostate cancer. Recent efforts have been made to conjugate inhibitors of PSMA with imaging agents. Compared to antibodies, small-molecule inhibitors of PSMA possess apparent advantages for in vivo applications. To date, there are no reports on the cellular fate of such constructs once bound the extracellular domain of PSMA. The present study was focused on precisely defining the binding specificity, time-dependent internalization, cellular localization, and retention of inhibitor conjugates targeted to PSMA on LNCaP cells. A novel fluorescent inhibitor was prepared as a model to examine these processes. METHODS Fluorescence microscopy of LNCaP and PC-3 cell lines was used to monitor the specificity, time-dependent internalization, cellular localization, and retention of a fluorescent PSMA inhibitor. RESULTS Fluorescent inhibitor 2 was found to be a potent inhibitor (IC50 = 0.35 nM) of purified PSMA. Its high affinity for PSMA on living cells was confirmed by antibody blocking and competitive binding experiments. Specificity for LNCaP cells was demonstrated as no labeling by 2 was observed for negative control PC-3 cells. Internalization of 2 by viable LNCaP cells was detected after 30 min incubation at 37 degrees C, followed by accumulation in the perinuclear endosomes. It was noted that internalized fluorescent inhibitor can be retained within endosomes for up to 150 min without loss of signal. CONCLUSIONS Our results suggest that potent, small-molecule inhibitors of PSMA can be utilized as carriers for targeted delivery for prostate cancer for future imaging and therapeutic applications.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | | | | | | |
Collapse
|
118
|
Osborne A, Flett A, Smythe E. Endocytosis assays in intact and permeabilized cells. ACTA ACUST UNITED AC 2008; Chapter 11:11.18.1-11.18.24. [PMID: 18228459 DOI: 10.1002/0471143030.cb1118s27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clathrin-coated pits and vesicles represent the major ports of entry into most eukaryotic cells. As well as performing housekeeping functions (e.g., allowing cells to take up essential nutrients), the endocytic pathway participates in a number of tissue-specific events such as synaptic-vesicle recycling, control of morphogen gradients during development, downregulation of receptor tyrosine kinases, and immune surveillance. To understand the role played by clathrin-mediated uptake, it is therefore essential to have robust endocytosis assays in intact cells. The clathrin-coated vesicle cycle requires a complicated interplay of proteins and lipids that is regulated in space and time. Reconstitution assays in permeabilized cells provide a powerful approach to understanding how this complex process is regulated.
Collapse
|
119
|
Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia 2008; 9:1099-110. [PMID: 18084617 DOI: 10.1593/neo.07721] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) in epithelial tumors is associated with poor prognosis and is the target for a number of cancer therapeutics. Monoclonal antibody (mAb) 806 is a novel anti-EGFR antibody with significant therapeutic efficacy in tumor models when used as a single agent, and displays synergistic antitumor activity in combination with other EGFR therapeutics. Unlike other EGFR antibodies, mAb 806 is selective for tumor cells and does not bind to normal tissue, making it an ideal candidate for generation of radioisotope or toxin conjugates. Ideally, antibodies suited to these therapeutic applications must bind to and actively internalize their cognate receptor. We investigated the intracellular trafficking of fluorescently tagged mAb 806 in live cells and analyzed its biodistribution in a tumor xenografted nude mouse model. Following binding to EGFR, mAb 806 was internalized through dynamin-dependent, clathrin-mediated endocytosis. Internalized mAb 806 localized to early endosomes and subsequently trafficked to and accumulation in lysosomal compartments. Furthermore, biodistribution analysis in nude mice showed specific uptake and retention of radiolabeled mAb 806 to human tumor xenografts. These results highlight the potential use of mAb 806 for generation of conjugates suitable for diagnostic and therapeutic use in patients with EGFR-positive malignancies.
Collapse
|
120
|
McKenzie J, Johannes L, Taguchi T, Sheff D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 2008; 276:1581-95. [PMID: 19220458 DOI: 10.1111/j.1742-4658.2009.06890.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both Shiga holotoxin and the isolated B subunit, navigate a retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER) of mammalian cells to deliver catalytic A subunits into the cytosol. This route passes through early/recycling endosomes and then through the Golgi. Although passage through the endosomes takes only 30 min, passage through the Golgi is much slower, taking hours. This suggests that Golgi passage is a key step in retrograde traffic. However, there is no empirical data demonstrating that Golgi passage is required for the toxins to enter the ER. In fact, an alternate pathway bypassing the Golgi is utilized by SV40 virus. Here we find that blocking Shiga toxin B access to the entire Golgi with AlF(4)(-) treatment, temperature block or subcellular surgery prevented Shiga toxin B from reaching the ER. This suggests that there is no direct endosome to ER route available for retrograde traffic. Curiously, when Shiga toxin B was trapped in endosomes, it entered the cytosol directly from the endosomal compartment. Our results suggest that trafficking through the Golgi apparatus is required for Shiga toxin B to reach the ER and that diversion into the Golgi may prevent toxin escape from endosomes into the cytosol.
Collapse
Affiliation(s)
- Jenna McKenzie
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-2600, USA
| | | | | | | |
Collapse
|
121
|
Weinglass AB, Köhler MG, Nketiah EO, Liu J, Schmalhofer W, Thomas A, Williams B, Beers L, Smith L, Hafey M, Bleasby K, Leone J, Tang YS, Braun M, Ujjainwalla F, McCann ME, Kaczorowski GJ, Garcia ML. Madin-Darby canine kidney II cells: a pharmacologically validated system for NPC1L1-mediated cholesterol uptake. Mol Pharmacol 2008; 73:1072-84. [PMID: 18187582 DOI: 10.1124/mol.107.043844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Absorption of dietary cholesterol in the proximal region of the intestine is mediated by Niemann-Pick C1-like protein (NPC1L1) and is sensitive to the cholesterol absorption inhibitor ezetimibe (EZE). Although a correlation exists between EZE binding to NPC1L1 in vitro and efficacy in vivo, the precise nature of interaction(s) between NPC1L1, EZE, and cholesterol remain unclear. Here, we analyze the direct relationship between EZE analog binding to NPC1L1 and its influence on cholesterol influx in a novel in vitro system. Using the EZE analog [(3)H]AS, an assay that quantitatively measures the expression of NPC1L1 on the cell surface has been developed. It is noteworthy that whereas two cell lines (CaCo-2 and HepG2) commonly used for studying NPC1L1-dependent processes express almost undetectable levels of NPC1L1 at the cell surface, polarized Madin-Darby canine kidney (MDCKII) cells endogenously express 4 x 10(5) [(3)H]AS sites/cell under basal conditions. Depleting endogenous cholesterol with the HMG CoA reductase inhibitor lovastatin leads to a 2-fold increase in the surface expression of NPC1L1, supporting the contention that MDCKII cells respond to changes in cholesterol homeostasis by up-regulating a pathway for cholesterol influx. However, a significant increase in surface expression levels of NPC1L1 is necessary to characterize a pharmacologically sensitive, EZE-dependent pathway of cholesterol uptake in these cells. Remarkably, the affinity of EZE analogs for binding to NPC1L1 is almost identical to the IC(50) blocking cholesterol flux through NPC1L1 in MDCKII cells. From a mechanistic standpoint, these observations support the contention that EZE analogs and cholesterol share the same/overlapping binding site(s) or are tightly coupled through allosteric interactions.
Collapse
Affiliation(s)
- Adam B Weinglass
- Department of Ion Channels, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Chibalina MV, Seaman MNJ, Miller CC, Kendrick-Jones J, Buss F. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J Cell Sci 2007; 120:4278-88. [PMID: 18029400 DOI: 10.1242/jcs.014217] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myosin VI is an actin-based retrograde motor protein that plays a crucial role in both endocytic and secretory membrane trafficking pathways. Myosin VI's targeting to and function in these intracellular pathways is mediated by a number of specific binding partners. In this paper we have identified a new myosin-VI-binding partner, lemur tyrosine kinase 2 (LMTK2), which is the first transmembrane protein and kinase that directly binds to myosin VI. LMTK2 binds to the WWY site in the C-terminal myosin VI tail, the same site as the endocytic adaptor protein Dab2. When either myosin VI or LMTK2 is depleted by siRNAs, the transferrin receptor (TfR) is trapped in swollen endosomes and tubule formation in the endocytic recycling pathway is dramatically reduced, showing that both proteins are required for the transport of cargo, such as the TfR, from early endosomes to the endocytic recycling compartment.
Collapse
Affiliation(s)
- Margarita V Chibalina
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
123
|
Raposo G, Marks MS. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8:786-97. [PMID: 17878918 PMCID: PMC2786984 DOI: 10.1038/nrm2258] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France.
| | | |
Collapse
|
124
|
Belleudi F, Leone L, Nobili V, Raffa S, Francescangeli F, Maggio M, Morrone S, Marchese C, Torrisi MR. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 2007; 8:1854-1872. [PMID: 17944804 DOI: 10.1111/j.1600-0854.2007.00651.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.
Collapse
Affiliation(s)
- Francesca Belleudi
- Dipartimento di Medicina Sperimentale, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Jurgeit A, Berlato C, Obrist P, Ploner C, Massoner P, Schmölzer J, Haffner MC, Klocker H, Huber LA, Geley S, Doppler W. Insulin-like growth factor-binding protein-5 enters vesicular structures but not the nucleus. Traffic 2007; 8:1815-1828. [PMID: 17892529 DOI: 10.1111/j.1600-0854.2007.00655.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to its extracellular function as a secreted protein, IGF-binding protein (IGFBP)-5 has been postulated to act as a signaling molecule in the nucleus. This study aims to assess the significance of this postulated nuclear localization. By confocal immunofluorescence microscopy, we detected IGFBP-5 in the vesicular compartment of mammary epithelial cells in culture, while no nuclear staining was observed. Immunohistochemistry performed on paraffin sections of the involuting mammary gland revealed IGFBP-5 positive staining of epithelial cells only outside the nucleus. To evaluate the contribution of reuptake of extracellular IGFBP-5, T47D cells were incubated with Alexa Fluor 647-labeled IGFBP-5. The protein was taken up into intracellular vesicles and again was neither detectable in the cytoplasm outside of vesicular structures nor in the nucleus. Quantification of the time and concentration dependence of uptake by immunoblotting revealed that the process was saturable at IGFBP-5 concentrations between 1 and 2 mum and partially reversible with 30% remaining in the cell after a 1-h chase. The observation of nuclear uptake of IGFBP-5 was restricted to artificial conditions such as expression of non-secreted forms of IGFBP-5 or selective permeabilization of the plasma membrane by digitonin.
Collapse
Affiliation(s)
- Andreas Jurgeit
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
- Present address: Institute of Zoology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chiara Berlato
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Peter Obrist
- Department of Pathology, St. Vinzenz Hospital Zams, 6511 Zams, Austria
| | - Christian Ploner
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Petra Massoner
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Judith Schmölzer
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Michael C Haffner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| | - Wolfgang Doppler
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria
| |
Collapse
|
126
|
Payne CK, Jones SA, Chen C, Zhuang X. Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic 2007; 8:389-401. [PMID: 17394486 PMCID: PMC2715839 DOI: 10.1111/j.1600-0854.2007.00540.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using multicolor live cell imaging in combination with biochemical assays, we have investigated an endocytic pathway mediated by cell surface proteoglycans, primary receptors for many cationic ligands. We have characterized this pathway for a variety of proteoglycan-binding ligands including cationic polymers, lipids and polypeptides. Following clathrin- and caveolin-independent, but flotillin- and dynamin-dependent internalization, proteoglycan-bound ligands associate with flotillin-1-positive vesicles and are efficiently trafficked to late endosomes. The route to late endosomes differs considerably from that following clathrin-mediated endocytosis. The proteoglycan-dependent pathway to late endosomes does not require microtubule-dependent transport or phosphatidyl-inositol-3-OH kinase-dependent sorting from early endosomes. The pathway taken by these ligands is identical to that taken by an antibody against heparan sulfate proteoglycans, suggesting that this mechanism may be used generally by cell surface proteoglycans and proteoglycan-binding ligands that lack secondary receptors.
Collapse
Affiliation(s)
- Christine K Payne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
127
|
Abstract
We have investigated whether Ca(2+)-binding proteins, which have been implicated in the control of neurons and neuroendocrine secretion, play a role in controlling mast cell function. These studies have identified synaptotagmins (Syts) II, III, and IX as well as neuronal Ca(2+) sensor 1 (NCS-1) as important regulators of mast cell function. Strikingly, we find that these Ca(2+)-binding proteins contribute to mast cell function by regulating specific endocytic pathways. Syt II, the most abundant Syt homologue in mast cells, resides in an amine-free lysosomal compartment. Studying the function of Syt II-knocked down rat basophilic leukemia cells has shown a dual function of this homologue. Syt II is required for the downregulation of protein kinase Calpha, but it negatively regulates lysosomal exocytosis. Syt III, the next most abundant homologue, localizes to early endosomes and is required for the formation of the endocytic recycling compartment (ERC). Syt IX and NCS-1 localize to the ERC and regulate ERC export, NCS-1 by activating phosphatidylinositol 4-kinase beta. Finally, we show that recycling through the ERC is needed for secretory granule protein sorting as well as for the activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1 and 2. Accordingly, NCS-1 stimulates Fc epsilon RI-triggered exocytosis and release of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
128
|
Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, Sheff D. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol Biol Cell 2007; 18:2687-97. [PMID: 17494872 PMCID: PMC1924834 DOI: 10.1091/mbc.e05-09-0873] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.
Collapse
Affiliation(s)
| | - Randy Nessler
- Imaging Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Dolora Wisco
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | - Eric Anderson
- Department of Cell Biology, Yale School of Medicine and Ludwig Institute for Cancer Research, New Haven, CT 06520
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA 22908; and
| | | |
Collapse
|
129
|
Abstract
Because of the discovery of coated pits and vesicles more than 40 years ago and the identification of clathrin as a major component of the coat, it has been assumed that clathrin-coated pits (CCPs) are responsible for the uptake of most plasma membrane receptors undergoing internalization. The recent molecular characterization of clathrin-independent routes of endocytosis confirms that several alternative endocytic pathways operate at the plasma membrane of mammalian cells. This heterogeneous view of endocytosis has been expanded still further by recent studies, suggesting that different subpopulations of CCPs responsible for the internalization of specific sets of cargo may coexist. In the present review, we have discussed the experimental evidence in favor or against the existence of distinct parallel clathrin-dependent pathways at the plasma membrane.
Collapse
Affiliation(s)
- Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 75014 Paris, France, and INSERM, U567, 75014 Paris, France.
| | | |
Collapse
|
130
|
Shankaran H, Resat H, Wiley HS. Cell surface receptors for signal transduction and ligand transport: a design principles study. PLoS Comput Biol 2007; 3:e101. [PMID: 17542642 PMCID: PMC1885276 DOI: 10.1371/journal.pcbi.0030101] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/20/2007] [Indexed: 11/19/2022] Open
Abstract
Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor–ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i) avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation. Cells interact with their environment using molecules on their surface known as receptors. Receptors bind specific companion molecules known as ligands, which either carry information about the outside environment or are critical cell nutrients. Signaling receptors bind the former ligand type and convert information about the outside environment to a cell response such as migration or growth. Transport receptors bind the latter class of ligand and deliver them to the cell interior. A variety of receptors are internalized into the cell through a process known as endocytosis. Receptors display a wide range of endocytosis patterns, but the functional motivation behind the observed differences is not well understood. We have constructed a generalized model to understand how receptor endocytosis and other receptor–ligand properties affect the function of receptor systems. We find that the efficiency and robustness of receptor systems are encoded by two fundamental parameters: i) the avidity which quantifies the ability of a receptor system to capture ligand, and ii) the consumption which quantifies the ability to internalize bound ligand. By examining a number of receptor systems, we demonstrate that the internalization dynamics of receptor systems can be explained by examining its effect on the avidity and consumption parameters.
Collapse
Affiliation(s)
- Harish Shankaran
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Haluk Resat
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - H. Steven Wiley
- Systems Biology Program, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
131
|
Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S. EHD1 and Eps15 interact with phosphatidylinositols via their Eps15 homology domains. J Biol Chem 2007; 282:16612-22. [PMID: 17412695 DOI: 10.1074/jbc.m609493200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal Eps15 homology domain-containing protein, EHD1, regulates the recycling of receptors from the endocytic recycling compartment to the plasma membrane. In cells, EHD1 localizes to tubular and spherical recycling endosomes. To date, the mode by which EHD1 associates with endosomal membranes remains unknown, and it has not been determined whether this interaction is direct or via interacting proteins. Here, we provide evidence demonstrating that EHD1 has the ability to bind directly and preferentially to an array of phospholipids, preferring phosphatidylinositols with a phosphate at position 3. Previous studies have demonstrated that EH domains coordinate calcium binding and interact with proteins containing the tripeptide asparagine-proline-phenylalanine (NPF). Using two-dimensional nuclear magnetic resonance analysis, we now describe a new function for the Eps15 homology (EH) domain of EHD1 and show that it is capable of directly binding phosphatidylinositol moieties. Moreover, we have expanded our studies to include the C-terminal EH domain of EHD4 and the second of the three N-terminal EH domains of Eps15 and demonstrated that phosphatidylinositol binding may be a more general property shared by certain other EH domains. Further studies identified a positively charged lysine residue (Lys-483) localized within the third helix of the EH domain, on the opposite face of the NPF-binding pocket, as being critical for the interaction with the phosphatidylinositols.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | | | |
Collapse
|
132
|
Abstract
AbstractOur knowledge of mammalian iron metabolism has advanced dramatically over recent years. Iron is an essential element for virtually all living organisms. Its intestinal absorption and accurate cellular regulation is strictly required to ensure the coordinated synthesis of the numerous iron-containing proteins involved in key metabolic processes, while avoiding the uptake of excess iron that can lead to organ damage. A range of different proteins exist to ensure this fine control within the various tissues of the body. Among these proteins, transferrin receptor (TFR2) seems to play a key role in the regulation of iron homeostasis. Disabling mutations in TFR2 are responsible for type 3 hereditary hemochromatosis (Type 3 HH). This review describes the biological properties of this membrane receptor, with a particular emphasis paid to the structure, function and cellular localization. Although much information has been garnered on TFR2, further efforts are needed to elucidate its function in the context of the iron regulatory network.
Collapse
|
133
|
Lepelletier Y, Camara-Clayette V, Jin H, Hermant A, Coulon S, Dussiot M, Arcos-Fajardo M, Baude C, Canionni D, Delarue R, Brousse N, Benaroch P, Benhamou M, Ribrag V, Monteiro RC, Moura IC, Hermine O. Prevention of Mantle Lymphoma Tumor Establishment by Routing Transferrin Receptor toward Lysosomal Compartments. Cancer Res 2007; 67:1145-54. [PMID: 17283149 DOI: 10.1158/0008-5472.can-06-1962] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mantle cell lymphoma (MCL) is one of the most frequent of the newly recognized non-Hodgkin's lymphomas. The major problem of MCL therapy is the occurrence of relapse and subsequent resistance to chemotherapy and immunotherapy in virtually all cases. Here, we show that one injection of anti-human transferrin receptor (TfR) monoclonal antibody A24 totally prevented xenografted MCL tumor establishment in nude mice. It also delayed and inhibited tumor progression of established tumors, prolonging mice survival. In vitro, A24 induced up to 85% reduction of MCL cell proliferation (IC(50) = 3.75 nmol/L) independently of antibody aggregation, complement-dependent or antibody-dependent cell-mediated cytotoxicity. A24 induced MCL cell apoptosis through caspase-3 and caspase-9 activation, either alone or synergistically with chemotherapeutic agents. A24 induced TfR endocytosis via the clathrin adaptor protein-2 complex pathway followed by transport to lysosomal compartments. Therefore, A24-based therapies alone or in association with classic chemotherapies could provide a new alternative strategy against MCL, particularly in relapsing cases.
Collapse
Affiliation(s)
- Yves Lepelletier
- Centre National de la Recherche Scientifique UMR 8147, Université Paris V, Hôpital Necker, 161 rue de Sevres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Haberman Y, Ziv I, Gorzalczany Y, Hirschberg K, Mittleman L, Fukuda M, Sagi-Eisenberg R. Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 2006; 109:3385-92. [PMID: 17164344 DOI: 10.1182/blood-2006-07-033126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory granules (SGs) of secretory cells of the hematopoietic lineage, such as the mast cells, are lysosome-related organelles whose membrane proteins travel through the plasma membrane and the endocytic system. Therefore, a mechanism must exist to prevent proteins destined to recycling or to the trans-Golgi network (TGN) from reaching the SGs. We now show that synaptotagmin (Syt) IX, a Syt homologue that is required for recycling from the endocytic recycling compartment (ERC) in rat basophilic leukemia (RBL-2H3) cultured mast cells, is involved in segregating recycling proteins from the SGs. By using as a marker the recycling protein TGN38, which cycles between the TGN, plasma membrane, and the ERC, we show that knock-down of Syt IX results in mistargeting of HA-tagged TGN38 to the SGs. We further demonstrate that Syt IX binds directly the small GTPase ARF1 and associates with the clathrin adaptor complex AP-1. These results therefore implicate Syt IX as an essential factor for the correct sorting of SGs proteins. Moreover, they place Syt IX as part of the machinery that is involved in the formation of transport carriers that mediate SGs protein sorting.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
135
|
Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 2006; 17:4130-41. [PMID: 16837555 PMCID: PMC1593177 DOI: 10.1091/mbc.e05-11-1014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We demonstrate that recycling through the endocytic recycling compartment (ERC) is an essential step in Fc epsilonRI-induced activation of extracellular signal-regulated kinase (ERK)1/2. We show that ERK1/2 acquires perinuclear localization and colocalizes with Rab 11 and internalized transferrin in Fc epsilonRI-activated cells. Moreover, a close correlation exists between the amount of ERC-localized ERK1/2 and the amount of phospho-ERK1/2 that resides in the nucleus. We further show that by activating phosphatidylinositol 4-kinase beta (PI4Kbeta) and increasing the cellular level of phosphatidylinositol(4) phosphate, neuronal calcium sensor-1 (NCS-1), a calmodulin-related protein, stimulates recycling and thereby enhances Fc epsilonRI-triggered activation and nuclear translocation of ERK1/2. Conversely, NCS-1 short hairpin RNA, a kinase dead (KD) mutant of PI4Kbeta (KD-PI4Kbeta), the pleckstrin homology (PH) domain of FAPP1 as well as RNA interference of synaptotagmin IX or monensin, which inhibit export from the ERC, abrogate Fc epsilonRI-induced activation of ERK1/2. Consistently, NCS-1 also enhances, whereas both KD-PI4Kbeta and FAPP1-PH domain inhibit, Fc epsilonRI-induced release of arachidonic acid/metabolites, a downstream target of ERK1/2 in mast cells. Together, our results demonstrate a novel role for NCS-1 and PI4Kbeta in regulating ERK1/2 signaling and inflammatory reactions in mast cells. Our results further identify the ERC as a crucial determinant in controlling ERK1/2 signaling.
Collapse
Affiliation(s)
| | | | - Koret Hirschberg
- Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
136
|
Ng PP, Helguera G, Daniels TR, Lomas SZ, Rodriguez JA, Schiller G, Bonavida B, Morrison SL, Penichet ML. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor. Blood 2006; 108:2745-54. [PMID: 16804109 PMCID: PMC1895578 DOI: 10.1182/blood-2006-04-020263] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have previously reported that an anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) inhibits the proliferation of an erythroleukemia-cell line. We have now found that anti-hTfR IgG3-Av also inhibits the proliferation of additional human malignant B and plasma cells. Anti-hTfR IgG3-Av induces internalization and rapid degradation of the TfR. These events can be reproduced in cells treated with anti-hTfR IgG3 cross-linked with a secondary Ab, suggesting that they result from increased TfR cross-linking. Confocal microscopy of cells treated with anti-hTfR IgG3-Av shows that the TfR is directed to an intracellular compartment expressing the lysosomal marker LAMP-1. The degradation of TfR is partially blocked by cysteine protease inhibitors. Furthermore, cells treated with anti-hTfR IgG3-Av exhibit mitochondrial depolarization and activation of caspases 9, 8, and 3. The mitochondrial damage and cell death can be prevented by iron supplementation, but cannot be fully blocked by a pan-caspase inhibitor. These results suggest that anti-hTfR IgG3-Av induces lethal iron deprivation, but the resulting cell death does not solely depend on caspase activation. This report provides insights into the mechanism of cell death induced by anti-TfR Abs such as anti-hTfR IgG3-Av, a molecule that may be useful in the treatment of B-cell malignancies such as multiple myeloma.
Collapse
Affiliation(s)
- Patrick P Ng
- Division of Surgical Oncology, Department of Surgery, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Xiao J, Dai R, Negyessy L, Bergson C. Calcyon, a Novel Partner of Clathrin Light Chain, Stimulates Clathrin-mediated Endocytosis. J Biol Chem 2006; 281:15182-93. [PMID: 16595675 DOI: 10.1074/jbc.m600265200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the central nervous system, clathrin-mediated endocytosis is crucial for efficient synaptic transmission. Clathrin-coated vesicle assembly and disassembly is regulated by some 30 adaptor and accessory proteins, most of which interact with clathrin heavy chain. Using the calcyon cytosolic domain as bait, we isolated clathrin light chain in a yeast two-hybrid screen. The interaction domain was mapped to the heavy chain binding domain and C-terminal regions of light chain. Further, the addition of the calcyon C terminus stimulated clathrin self-assembly in a dose-dependent fashion. Calcyon, which is a single transmembrane protein predominantly expressed in brain, localized to vesicular compartments within pre- and postsynaptic structures. There was a high degree of overlap in the distribution of LC and calcyon in neuronal dendrites, spines, and cell bodies. Co-immunoprecipitation studies further suggested an association of calcyon with the clathrin-mediated endocytic machinery. Compared with controls, HEK293 cells overexpressing calcyon exhibited significantly enhanced transferrin uptake but equivalent levels of recycling. Conversely, transferrin uptake was largely abolished in neocortical neurons obtained from mice homozygous for a calcyon null allele, whereas recycling proceeded at wild type levels. Collectively, these data indicate a role for calcyon in clathrin-mediated endocytosis in brain.
Collapse
Affiliation(s)
- Jiping Xiao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
138
|
Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 2006; 124:997-1009. [PMID: 16530046 PMCID: PMC2660893 DOI: 10.1016/j.cell.2005.12.038] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/16/2005] [Accepted: 12/15/2005] [Indexed: 12/12/2022]
Abstract
Cells rely on the correct sorting of endocytic ligands and receptors for proper function. Early endosomes have been considered as the initial sorting station where cargos for degradation separate from those for recycling. Using live-cell imaging to monitor individual endosomes and ligand particles in real time, we have discovered a sorting mechanism that takes place prior to early endosome entry. We show that early endosomes are in fact comprised of two distinct populations: a dynamic population that is highly mobile on microtubules and matures rapidly toward late endosomes and a static population that matures much more slowly. Several cargos destined for degradation are preferentially targeted to the dynamic endosomes, whereas the recycling ligand transferrin is nonselectively delivered to all early endosomes and effectively enriched in the larger, static population. This pre-early endosome sorting process begins at clathrin-coated vesicles, depends on microtubule-dependent motility, and appears to involve endocytic adaptors.
Collapse
Affiliation(s)
| | | | - Xiaowei Zhuang
- To whom correspondence should be addressed, E-mail: . Tel: (617)-496-9558
| |
Collapse
|
139
|
Liang XJ, Mukherjee S, Shen DW, Maxfield FR, Gottesman MM. Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Res 2006; 66:2346-53. [PMID: 16489040 PMCID: PMC1382193 DOI: 10.1158/0008-5472.can-05-3436] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The clinical utility of cisplatin to treat human malignancies is often limited by the development of drug resistance. We have previously shown that cisplatin-resistant human KB adenocarcinoma cells that are cross-resistant to methotrexate and heavy metals have altered endocytic recycling. In this work, we tracked lipids in the endocytic recycling compartment (ERC) and found that the distribution of the ERC is altered in KB-CP.5 cells compared with parental KB-3-1 cells. A tightly clustered ERC is located near the nucleus in parental KB-3-1 cells but it appears loosely arranged and widely dispersed throughout the cytoplasm in KB-CP.5 cells. The altered distribution of the ERC in KB-CP.5 cells is related to the amount and distribution of stable detyrosinated microtubules (Glu-alpha-tubulin), as previously shown in Chinese hamster ovary B104-5 cells that carry a temperature-sensitive Glu-alpha-tubulin allele. In addition, B104-5 cells with a dispersed ERC under nonpermissive conditions were more resistant to cisplatin compared with B104-5 cells with a clustered ERC under permissive conditions. We conclude that resistance to cisplatin might be due, in part, to reduced uptake of cisplatin resulting from an endocytic defect reflecting defective formation of the ERC, possibly related to a shift in the relative amounts and distributions of stable microtubules.
Collapse
Affiliation(s)
- Xing-Jie Liang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, NewYork, NY 10021
| | - Ding-Wu Shen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, NewYork, NY 10021
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
140
|
Abstract
Muscle cells grow by proliferation and protein accumulation. During the initial stages of development the participation of nerves is not always required. Myoblasts and satellite cells proliferate, fusing to form myotubes which further differentiate to muscle fibers. Myotubes and muscle fibers grow by protein accumulation and fusion with other myogenic cells. Muscle fibers finally reach a quasi-steady state which is then maintained for a long period. The mechanism of maintenance is not well understood. However, it is clear that protein metabolism plays a paramount role. The role played by satellite cells in the maintenance of muscle fibers is not known. Growth and maintenance of muscle cells are under the influence of various tissues and substances. Among them are Tf and the motor nerve, the former being the main object of this review and essential for both DNA and protein synthesis. Two sources of Tf have been proposed, i.e., the motor nerve and the tissue fluid. The first proposal is that the nervous trophic influence on muscle cells is mediated by Tf which is released from the nerve terminals. In this model, the sole source of Tf which is donated to muscle cells should be the nerve, and Tf should not be provided for muscle fiber at sites other than the synaptic region; otherwise, denervation atrophy would not occur, since Tf provided from TfR located at another site would cancel the effect of denervation. The second proposal is that Tf is provided from tissue fluid. This implies that an adequate amount of Tf is transferred from serum to tissue fluid; in this case TfR may be distributed over the entire surface of the cells. The trophic effects of the motor neuron have been studied in vivo, but its effects of myoblast proliferation have not been determined. There are few experiments on its effects on myotubes. Most work has been made on muscle fibers, where innervation is absolutely required for their maintenance. Without it, muscle fibers atrophy, although they do not degenerate. In contrast, almost all the work on Tf has been performed in vitro. Its effects on myoblast proliferation and myotube growth and maintenance have been established; myotubes degenerate following Tf removal. But its effects on mature muscle fibers in vivo are not well understood. Muscle fibers possess TfR all over on their cell surface and contain a variety of Fe-binding proteins, such as myoglobin. It is entirely plausible that muscle fibers require an amount of Tf, and that this is provided by TfR scattered on the cell surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
141
|
Naslavsky N, Rahajeng J, Sharma M, Jovic M, Caplan S. Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol Biol Cell 2005; 17:163-77. [PMID: 16251358 PMCID: PMC1345656 DOI: 10.1091/mbc.e05-05-0466] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eps15 homology domain (EHD) 1 enables membrane recycling by controlling the exit of internalized molecules from the endocytic recycling compartment (ERC) en route to the plasma membrane, similar to the role described for Rab11. However, no physical or functional connection between Rab11 and EHD-family proteins has been demonstrated yet, and the mode by which they coordinate their regulatory activity remains unknown. Here, we demonstrate that EHD1 and EHD3 (the closest EHD1 paralog), bind to the Rab11-effector Rab11-FIP2 via EH-NPF interactions. The EHD/Rab11-FIP2 associations are affected by the ability of the EHD proteins to bind nucleotides, and Rab11-FIP2 is recruited to EHD-containing membranes. These results are consistent with a coordinated role for EHD1 and Rab11-FIP2 in regulating exit from the ERC. However, because no function has been attributed to EHD3, the significance of its interaction with Rab11-FIP2 remained unclear. Surprisingly, loss of EHD3 expression prevented the delivery of internalized transferrin and early endosomal proteins to the ERC, an effect differing from that described upon EHD1 knockdown. Moreover, the subcellular localization of Rab11-FIP2 and endogenous Rab11 were altered upon EHD3 knockdown, with both proteins absent from the ERC and retained in the cell periphery. The results presented herein promote a coordinated role for EHD proteins and Rab11-FIP2 in mediating endocytic recycling and provide evidence for the function of EHD3 in early endosome to ERC transport.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | |
Collapse
|
142
|
Gibson A, Lewis AP, Affleck K, Aitken AJ, Meldrum E, Thompson N. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J Biol Chem 2005; 280:27205-12. [PMID: 15919655 DOI: 10.1074/jbc.m504654200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the CLCA gene family have been proposed to mediate calcium-activated chloride currents. In this study, we used detailed bioinformatics analysis and found that no transmembrane domains are predicted in hCLCA1 or mCLCA3 (Gob-5). Further analysis suggested that they are globular proteins containing domains that are likely to be involved in protein-protein interactions. In support of the bioinformatics analysis, biochemical studies showed that hCLCA1 and mCLCA3, when expressed in HEK293 cells, could be removed from the cell surface and could be detected in the extracellular medium, even after short incubation times. The accumulation in the medium was shown to be brefeldin A-sensitive, demonstrating that hCLCA1 is constitutively secreted. The N-terminal cleavage products of hCLCA1 and mCLCA3 could be detected in bronchoalveolar lavage fluid taken from asthmatic subjects and ovalbumin-challenged mice, demonstrating release from cells in a physiological setting. We conclude that hCLCA1 and mCLCA3 are non-integral membrane proteins and therefore cannot be chloride channels in their own right.
Collapse
Affiliation(s)
- Adele Gibson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
PURPOSE To investigate if the cross-linking of transferrin receptor (TfR) induced by Tf-oligomers alters the endocytosis of receptor-ligand complexes in cultured tumor cells and hence increases intracellular drug release. METHODS An average of 3.5 Tf molecules per aggregate were cross-linked either by using homobifunctional linker (1, 11-bis-maleimidotetraethyleneglycol) [Tf(3.5-BM(PEO)4)] or heterobifunction linker [succinimidyl 4-(-p-maleimidophenyl)-butyrate] (Tf(3.5-SMPB)). Cell surface binding and competition experiments with 125I-Tf for TfR binding were studied to demonstrate that Tf-oligomers maintain specificity of the TfR-binding. To determine the degradation of Tf-oligomers in TfR-mediated endocytosis, cultured tumor cells were pulsed for 15 min with 125I-Tf-oligomers and chased for 2 h at 37 degrees C in the presence of excess unlabeled Tf. The chase medium was subjected to TCA precipitation to separate the intact and degraded Tf. To investigate if the alteration of TfR-trafficking facilitates the intracellular release of the drug from the Tf-conjugated form, methotrexate (MTX) was conjugated to Tf-oligomer (Agg-Tf-MTX) and its antiproliferative activity was compared with monomeric-Tf-MTX (Mono-Tf-MTX) in human colon carcinoma (Caco-2) cells, human breast adenocarcinoma (MCF-7) cells, wild-type Chinese hamster ovary (CHO) cells, and MTX-resistant CHO (CHO-MTX-RII) cells. RESULTS TfR-mediated degradation of Tf-oligomers was higher than that of monomeric Tf in both Caco-2 and MCF-7 cells. The IC50 of Agg-Tf-MTX was lower than that of Mono-Tf-MTX in both tumor cell lines. The IC50 of MTX and Mono-Tf-MTX in CHO-MTX-RII cells was higher than that in wild-type CHO cells, whereas the Agg-Tf-MTX was almost identical in both the resistant and wild-type cells. CONCLUSIONS Cross-linking of TfR induced by oligomeric Tf binding alters the intracellular trafficking of Tf-TfR complexes, redirects them out of the recycling pathway, and targets them to intracellular degradation in cultured tumor cells. The alteration of TfR-trafficking facilitates the intracellular release of the drug from the Tf-conjugated form. Consequently, Agg-Tf-MTX is more effective than Mono-Tf-MTX as a TfR-mediated antiproliferative agent in tumor cells, as well as in MTX-resistant transport deficient cells. Therefore, Tf-oligomers are potentially effective TfR-targeting carriers for intracellular delivery of anticancer drugs.
Collapse
Affiliation(s)
- Ching-Jou Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angles, California 90089, USA
| | | |
Collapse
|
144
|
Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470-82. [PMID: 15772161 PMCID: PMC1087250 DOI: 10.1091/mbc.e04-11-1014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
145
|
Mukerjee S, McKnight ME, Glassy MC. Immunoscreening protocols for the identification of clinically useful antibodies and antigens. Expert Opin Investig Drugs 2005; 7:373-89. [PMID: 15991979 DOI: 10.1517/13543784.7.3.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The antigen-antibody interaction is a powerful tool for the immuno-screening of several diseases, including cancer and genetic disorders. The high specificity of monoclonal antibodies (mAbs) enables them to target antigens and form complexes that can be detected with enzymes, radionuclides, fluorescent dyes or other markers. The antibody molecule, which has an antigen binding site, can be used as an intact molecule or as a fragment, for example, F(ab)(2), Fab, Fv or scFv. Similarly, the antigen can also be varied. In this review, immuno-screening techniques that can be used to detect clinically relevant antibody-antigen interactions will be discussed.
Collapse
Affiliation(s)
- S Mukerjee
- Novopharm Biotech, Inc., 10246 Parkdale Ave., San Diego, CA 92126, USA
| | | | | |
Collapse
|
146
|
Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chrétien M, Prat A, Seidah NG. NARC-1/PCSK9 and Its Natural Mutants. J Biol Chem 2004; 279:48865-75. [PMID: 15358785 DOI: 10.1074/jbc.m409699200] [Citation(s) in RCA: 482] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of autosomal dominant hypercholesterolemic patients with mutations in the PCSK9 gene, encoding the proprotein convertase NARC-1, resulting in the missense mutations suggested a role in low density lipoprotein (LDL) metabolism. We show that the endoplasmic reticulum-localized proNARC-1 to NARC-1 zymogen conversion is Ca2+-independent and that within the zymogen autocatalytic processing site SSVFAQ [downward arrow]SIP Val at P4 and Pro at P3' are critical. The S127R and D374Y mutations result in approximately 50-60% and > or =98% decrease in zymogen processing, respectively. In contrast, the double [D374Y + N157K], F216L, and R218S natural mutants resulted in normal zymogen processing. The cell surface LDL receptor (LDLR) levels are reduced by 35% in lymphoblasts of S127R patients. The LDLR levels are also reduced in stable HepG2 cells overexpressing NARC-1 or its natural mutant S127R, and this reduction is abrogated in the presence of 5 mm ammonium chloride, suggesting that overexpression of NARC-1 increases the turnover rate of the LDLR. Adenoviral expression of wild type human NARC-1 in mice resulted in a maximal approximately 9-fold increase in circulating LDL cholesterol, while in LDLR-/- mice a delayed approximately 2-fold increase in LDL cholesterol was observed. In conclusion, NARC-1 seems to affect both the level of LDLR and that of circulating apoB-containing lipoproteins in an LDLR-dependent and -independent fashion.
Collapse
Affiliation(s)
- Suzanne Benjannet
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Schapiro FB, Soe TT, Mallet WG, Maxfield FR. Role of cytoplasmic domain serines in intracellular trafficking of furin. Mol Biol Cell 2004; 15:2884-94. [PMID: 15075375 PMCID: PMC420111 DOI: 10.1091/mbc.e03-09-0653] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Furin is a transmembrane protein that cycles between the plasma membrane, endosomes, and the trans-Golgi network, maintaining a predominant distribution in the latter. It has been shown previously that Tac-furin, a chimeric protein expressing the extracellular and transmembrane domains of the interleukin-2 receptor alpha chain (Tac) and the cytoplasmic domain of furin, is delivered from the plasma membrane to the TGN through late endosomes, bypassing the endocytic recycling compartment. Tac-furin also recycles in a loop between the TGN and late endosomes. Localization of furin to the TGN is modulated by a six-amino acid acidic cluster that contains two phosphorylatable serines (SDSEED). We investigated the role of these serines in the trafficking of Tac-furin by using a mutant chimera in which the SDS sequence was replaced by the nonphosphorylatable sequence ADA (Tac-furin/ADA). Although the mutant construct is internalized and delivered to the TGN, both the postendocytic trafficking and the steady-state distribution were found to differ from the wild-type. In contrast with Tac-furin, Tac-furin/ADA does not enter late endosomes after being internalized. Instead, it traffics with transferrin to the endocytic recycling compartment, and from there it is delivered to the TGN. As with Tac-furin, Tac-furin/ADA is sorted from the TGN into late endosomes at steady state, but its retrieval from the late endosomes to the TGN is inhibited. These results suggest that serine phosphorylation plays an important role in at least two steps of Tac-furin trafficking, acting as an active sorting signal that mediates the selective sorting of Tac-furin into late endosomes after internalization, as well as its retrieval from late endosomes back to the TGN.
Collapse
Affiliation(s)
- Florencia B Schapiro
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
148
|
Naslavsky N, Boehm M, Backlund PS, Caplan S. Rabenosyn-5 and EHD1 interact and sequentially regulate protein recycling to the plasma membrane. Mol Biol Cell 2004; 15:2410-22. [PMID: 15020713 PMCID: PMC404033 DOI: 10.1091/mbc.e03-10-0733] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
EHD1 has been implicated in the recycling of internalized proteins to the plasma membrane. However, the mechanism by which EHD1 mediates recycling and its relationship to Rab-family-controlled events has yet to be established. To investigate further the mode of EHD1 action, we sought to identify novel interacting partners. GST-EHD1 was used as bait to isolate a approximately 120-kDa species from bovine and murine brain cytosol, which was identified by mass spectrometry as the divalent Rab4/Rab5 effector Rabenosyn-5. We mapped the sites of interaction to the EH domain of EHD1, and the first two of five NPF motifs of Rabenosyn-5. Immunofluorescence microscopy studies revealed that EHD1 and Rabenosyn-5 partially colocalize to vesicular and tubular structures in vivo. To address the functional roles of EHD1 and Rabenosyn-5, we first demonstrated that RNA interference (RNAi) dramatically reduced the level of expression of each protein, either individually or in combination. Depletion of either EHD1 or Rabenosyn-5 delayed the recycling of transferrin and major histocompatibility complex class I to the plasma membrane. However, whereas depletion of EHD1 caused the accumulation of internalized cargo in a compact juxtanuclear compartment, Rabenosyn-5-RNAi caused its retention within a dispersed peripheral compartment. Simultaneous RNAi depletion of both proteins resulted in a similar phenotype to that observed with Rabenosyn-5-RNAi alone, suggesting that Rabenosyn-5 acts before EHD1 in the regulation of endocytic recycling. Our studies suggest that Rabenosyn-5 and EHD1 act sequentially in the transport of proteins from early endosomes to the endosomal recycling compartment and back to the plasma membrane.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
149
|
Alvarez P, Buscaglia CA, Campetella O. Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences. J Biol Chem 2003; 279:3375-81. [PMID: 14612434 DOI: 10.1074/jbc.m311356200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of primary amino acid sequences in protein pharmacokinetics, an issue of relevance in both basic knowledge and biotechnology, was addressed here using as a starting point two repetitive antigens from the hemoflagellate Trypanosoma cruzi that are known to stabilize their associated proteins in the bloodstream. A major drawback to their pharmacological application is that these repetitive sequences are highly immunogenic, being therefore the deletion of this characteristic desirable. Based on sequence homology and epitope mapping analyses, an artificial repetitive sequence (PSTAD) was engineered. This motif was tested by genetic fusion to the C terminus of both the trypanosomal trans-sialidase and the rat tyrosine aminotransferase and found to produce a 4.5-6-fold increase in the half-life of the associated proteins in blood while displaying significantly lower immunogenicity. Residues involved in the stabilizing properties of the novel peptide were mapped by a site-directed mutagenesis approach, allowing us to successfully identify another two motifs. Searching databases for sequences displaying some homology, embedded in proline frameworks and associated to shed virulence factors from unrelated microorganisms, resulted in the identification of four other protein extensions. Remarkably, three of them (from Streptococcus pneumoniae, Actinomyces viscosus, and Escherichia coli) revealed similar pharmacokinetic features, suggesting therefore an analogous evolutionarily acquired mechanism to ensure the biodistribution of their corresponding proteins. Our findings indicate that the insertion of defined motifs into a proline-rich framework constitutes a suitable alternative to construct a chimeric protein with extended half-life in blood.
Collapse
Affiliation(s)
- Paula Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, B1650WAB San Martín, Buenos Aires, Argentina
| | | | | |
Collapse
|
150
|
Haberman Y, Grimberg E, Fukuda M, Sagi-Eisenberg R. Synaptotagmin IX, a possible linker between the perinuclear endocytic recycling compartment and the microtubules. J Cell Sci 2003; 116:4307-18. [PMID: 12966166 DOI: 10.1242/jcs.00719] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pericentriolar endocytic recycling compartment (ERC) is involved in receptor and lipid recycling as well as in the delivery of internalized cargo from early endosomes to the trans Golgi network (TGN). We show that synaptotagmin (Syt) IX, a member of the Syt family of proteins, localizes to the ERC and is required for export from the ERC to the cell surface. We demonstrate that rat basophilic leukemia (RBL-2H3) mast cells endogenously express Syt IX mRNA and protein. Localization studies employing fractionation on linear sucrose gradients combined with confocal microscopy by indirect immunofluorescence or stable expression of a Syt IX-green fluorescent fusion protein demonstrate that Syt IX colocalizes with internalized transferrin (Tfn) and with Rab 11 at the perinuclear ERC. Syt IX also colocalizes with tubulin at the microtubules organizing center (MTOC) and remains associated with tubulin clusters formed in taxol-treated cells. Moreover, Syt IX coimmunoprecipitates with tubulin from intact RBL cells, and chimeric fusion proteins comprising either the C2A or the C2B domain of Syt IX are able to pull down tubulin from RBL cell lysates. To study the functional role of Syt IX, we have stably transfected RBL cells with Syt IX sense or antisense cDNA and monitored the routes of Tfn internalization and recycling in cells that overexpress (RBL-Syt IX+) or display substantially reduced (<90%) levels of Syt IX (RBL-Syt IX-). In these cells, Tfn binding and internalization into early endosomes and the ERC are unaltered. However, recycling from the ERC to the cell surface is significantly slowed down in the RBL-Syt IX- cells. These results therefore indicate that Syt IX is involved in regulating transport from the ERC to the cell surface, and suggest that it may play a role in linking vesicles that exit the ERC with the microtubules network.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|