101
|
Zheng Y, Vig M, Lyons J, Van Parijs L, Beg AA. Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor kappaB in regulating mature T cell survival and in vivo function. J Exp Med 2003; 197:861-74. [PMID: 12668645 PMCID: PMC2193891 DOI: 10.1084/jem.20021610] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-kappaB pathway in regulating mature T cell function by using CD4+ T cells from p50-/- cRel-/- mice, which exhibit virtually no inducible kappaB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-kappaB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-kappaB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-kappaB-inducing IkappaB kinase beta showed that NF-kappaB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-kappaB in both IL-2 and Akt-induced survival pathways. In vivo, p50-/- cRel-/- mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-kappaB proteins in regulating T cell function in vivo and establish a critically important function of NF-kappaB in TCR-induced regulation of survival.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
102
|
Szegezdi E, Kiss I, Simon A, Blaskó B, Reichert U, Michel S, Sándor M, Fésüs L, Szondy Z. Ligation of retinoic acid receptor alpha regulates negative selection of thymocytes by inhibiting both DNA binding of nur77 and synthesis of bim. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3577-84. [PMID: 12646620 DOI: 10.4049/jimmunol.170.7.3577] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Negative selection refers to the selective deletion of autoreactive thymocytes. Its molecular mechanisms have not been well defined. Previous studies in our laboratory have demonstrated that retinoic acids, physiological ligands for the nuclear retinoid receptors, selectively inhibit TCR-mediated death under in vitro conditions, and the inhibition is mediated via the retinoic acid receptor (RAR) alpha. The present studies were undertaken to investigate whether ligation of RARalpha leads to inhibition of TCR-mediated death in vivo and to identify the molecular mechanisms involved. Three models of TCR-mediated death were studied: anti-CD3-mediated death of thymocytes in wild-type mice, and Ag- and bacterial superantigen-driven thymocyte death in TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c in the context of the E(k) (class II MHC) molecule. Our data demonstrate that the molecular program of both anti-CD3- and Ag-driven, but not that of superantigen-mediated apoptosis involves up-regulation of nur77, an orphan nuclear receptor, and bim, a BH3-only member of the proapoptotic bcl-2 protein family, proteins previously implicated to participate in the negative selection. Ligation of RARalpha by the synthetic agonist CD336 inhibited apoptosis, DNA binding of nur77, and synthesis of bim induced by anti-CD3 or the specific Ag, but had no effect on the superantigen-driven cell death. Our data imply that retinoids are able to inhibit negative selection in vivo as well, and they interfere with multiple steps of the T cell selection signal pathway.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Apoptosis/drug effects
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- Bcl-2-Like Protein 11
- Benzoates/administration & dosage
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/biosynthesis
- Clonal Deletion/drug effects
- Clonal Deletion/immunology
- Columbidae
- Cytochrome c Group/administration & dosage
- Cytochrome c Group/immunology
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/metabolism
- Enterotoxins/administration & dosage
- Injections, Intraperitoneal
- Ligands
- Male
- Membrane Proteins
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Protein Binding/drug effects
- Protein Binding/immunology
- Proto-Oncogene Proteins
- Receptors, Cytoplasmic and Nuclear
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Receptors, Steroid
- Retinoic Acid Receptor alpha
- Retinoids/metabolism
- Staphylococcus aureus/immunology
- Superantigens/administration & dosage
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tetrahydronaphthalenes/administration & dosage
- Thymus Gland/cytology
- Thymus Gland/drug effects
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/biosynthesis
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Eva Szegezdi
- Department of Biochemistry and Molecular Biology,University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Tato CM, Villarino A, Caamaño JH, Boothby M, Hunter CA. Inhibition of NF-kappa B activity in T and NK cells results in defective effector cell expansion and production of IFN-gamma required for resistance to Toxoplasma gondii. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3139-46. [PMID: 12626571 DOI: 10.4049/jimmunol.170.6.3139] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To define the role of NF-kappa B in the development of T cell responses required for resistance to Toxoplasma gondii, mice in which T cells are transgenic for a degradation-resistant (Delta N) form of I kappa B alpha, an inhibitor of NF-kappa B, were challenged with T. gondii and their response to infection compared with control mice. I kappa B alpha(Delta N)-transgenic (Tg) mice succumbed to T. gondii infection between days 12 and 35, and death was associated with an increased parasite burden compared with wild-type (Wt) controls. Analysis of the responses of infected mice revealed that IL-12 responses were comparable between strains, but Tg mice had a marked reduction in systemic levels of IFN-gamma, the major mediator of resistance to T. gondii. In addition, the infection-induced increase in NK cell activity observed in Wt mice was absent from Tg mice and this correlated with NK cell expression of the transgene. Infection-induced activation of CD4(+) T cells was similar in Wt and Tg mice, but expansion of activated CD4(+)T cells was markedly reduced in the Tg mice. This difference in T cell numbers correlated with a reduced capacity of these cells to proliferate after stimulation and was associated with a major defect in the ability of CD4(+) T cells from infected mice to produce IFN-gamma. Together, these studies reveal that inhibition of NF-kappa B activity in T and NK cells results in defective effector cell expansion and production of IFN-gamma required for resistance to T. gondii.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Division/genetics
- Cell Division/immunology
- Cytotoxicity, Immunologic/genetics
- Female
- Genetic Predisposition to Disease
- I-kappa B Proteins/genetics
- Immunity, Innate/genetics
- Interferon-gamma/biosynthesis
- Interferon-gamma/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Toxoplasma/immunology
- Toxoplasmosis, Animal/genetics
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/pathology
- Transgenes/immunology
Collapse
Affiliation(s)
- Cristina M Tato
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
104
|
Wan YY, DeGregori J. The survival of antigen-stimulated T cells requires NFkappaB-mediated inhibition of p73 expression. Immunity 2003; 18:331-42. [PMID: 12648451 DOI: 10.1016/s1074-7613(03)00053-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have explored the interactions between the NFkappaB and Cdk-Rb-E2F pathways in controlling T cell fate following antigen stimulation. The inhibition of NFkappaB in antigen-stimulated T cells results in apoptosis but does not inhibit E2F activation and S phase entry. IkappaB-induced apoptosis coincides with the superinduction of p73 expression and activity. G1 Cdk activity is required for IkappaB-induced apoptosis and the induction of p73. Importantly, p73 deficiency rescues activated T cells from the apoptosis resulting from the inhibition of NFkappaB. Thus, Cdk2 activation sends signals for both cell cycle progression and apoptosis, the latter of which must be blocked by NFkappaB to allow for proliferation.
Collapse
Affiliation(s)
- Yisong Y Wan
- Program in Molecular Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
105
|
Artis D, Speirs K, Joyce K, Goldschmidt M, Caamaño J, Hunter CA, Scott P. NF-kappa B1 is required for optimal CD4+ Th1 cell development and resistance to Leishmania major. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1995-2003. [PMID: 12574369 DOI: 10.4049/jimmunol.170.4.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB family of transcription factors regulates the expression of a wide range of immune response genes involved in immunity to pathogens. However, the need for individual family members in regulating innate and adaptive immune responses in vivo has yet to be clearly defined. We investigated the role of NF-kappaB1 in the induction of protective IL-12-dependent Th1 cell responses following infection with the intracellular protozoan parasite Leishmania major. Whereas wild-type C57BL/6 mice controlled parasite replication, NF-kappaB1 knockout (KO) mice were susceptible to infection, developing chronic unresolving lesions associated with persistent parasites. There was a profound defect in Ag-specific CD4(+) T cell proliferation and IFN-gamma production in infected KO mice, although innate responses-including IL-12 production and control of intracellular parasite replication by macrophages-were intact. In vitro polyclonal stimulation of purified naive KO T cells revealed an intrinsic defect in CD4(+) T cell proliferation associated with reduced IL-2 receptor expression, but operating independently of APC function and IL-2 production. Critically, the frequency of proliferating KO CD4(+) T cells secreting IFN-gamma matched that of wild-type cells, suggesting that NF-kappaB1 was not required for efficient transcription of the IFN-gamma gene. Taken together, these results identify a novel role for NF-kappaB1 in CD4(+) T cell proliferation and the development of Th1 cell responses required for protective immunity against intracellular pathogens.
Collapse
Affiliation(s)
- David Artis
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Espinosa L, Inglés-Esteve J, Robert-Moreno A, Bigas A. IkappaBalpha and p65 regulate the cytoplasmic shuttling of nuclear corepressors: cross-talk between Notch and NFkappaB pathways. Mol Biol Cell 2003; 14:491-502. [PMID: 12589049 PMCID: PMC149987 DOI: 10.1091/mbc.e02-07-0404] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 09/13/2002] [Accepted: 10/21/2002] [Indexed: 01/24/2023] Open
Abstract
Notch and NFkappaB pathways are key regulators of numerous cellular events such as proliferation, differentiation, or apoptosis. In both pathways, association of effector proteins with nuclear corepressors is responsible for their negative regulation. We have previously described that expression of a p65-NFkappaB mutant that lacks the transactivation domain (p65DeltaTA) induces cytoplasmic translocation of N-CoR leading to a positive regulation of different promoters. Now, we show that cytoplasmic sequestration of p65 by IkappaBalpha is sufficient to both translocate nuclear corepressors SMRT/N-CoR to the cytoplasm and upregulate transcription of Notch-dependent genes. Moreover, p65 and IkappaBalpha are able to directly bind SMRT, and this interaction can be inhibited in a dose-dependent manner by the CREB binding protein (CBP) coactivator and after TNF-alpha treatment, suggesting that p65 acetylation is modulating this interaction. In agreement with this, TNF-alpha treatment results in downregulation of the Hes1 gene. Finally, we present evidence on how this mechanism may influence cell differentiation in the 32D myeloid progenitor system.
Collapse
Affiliation(s)
- Lluís Espinosa
- Centre Oncologia Molecular, Institut de Recerca Oncologica, Hospitalet, Barcelona 08907, Spain
| | | | | | | |
Collapse
|
107
|
Hsu SC, Wu CC, Han J, Lai MZ. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood 2003; 101:970-6. [PMID: 12393706 DOI: 10.1182/blood-2002-03-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive selection of thymocytes during T-cell development is mediated by T-cell receptor (TCR)-activated signals. For different mitogen-activated protein kinases (MAPKs) activated by TCR complex, a selective involvement of extracellular signal-regulated kinase, but not p38 MAPK, in positive selection has been suggested. Using transgenic mice with dominant-negative mutation of both MAP kinase kinase 3 (MMK3) and MKK6, we obtained mice with different extents of inhibition of p38 MAPK activation. Partial inhibition of p38 MAPK impaired CD4(-)CD8(-) thymocyte development and T-cell proliferation, but not positive selection. Interference with thymocyte positive selection was observed in mice with effective suppression of p38 MAPK. Our results suggest that, in addition to early thymocyte development, p38 is involved in positive selection.
Collapse
Affiliation(s)
- Shu-Ching Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
108
|
Zhou P, Hwang KW, Palucki DA, Guo Z, Boothby M, Newell KA, Alegre ML. Impaired NF-kappaB activation in T cells permits tolerance to primary heart allografts and to secondary donor skin grafts. Am J Transplant 2003; 3:139-47. [PMID: 12603209 DOI: 10.1034/j.1600-6143.2003.00033.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T-cell activation is essential for acute allograft rejection. However, the biochemical signaling pathways used by T cells mediating rejection have not been extensively investigated. In vitro, T-cell activation is associated with nuclear translocation of specific transcription factors that regulate expression of genes critical for T-cell function. Given the central role of NF-kappaB in T-cell activation In vitro, we examined its role in the acute rejection of skin and cardiac allografts using mice with defective NF-kappaB translocation in T cells due to the presence of a super repressor IkappaBalpha transgene. T-cell-intrinsic NF-kappaB activation was required for cardiac but not skin allograft rejection, suggesting differential T-cell priming by the two tissues. Strikingly, priming with heart allografts induced complete acceptance of subsequently transplanted donor skin grafts, indicating that impaired NF-kappaB activation in T cells facilitates the induction of donor-specific tolerance to highly immunogenic tissues. These data suggest the biochemical pathways necessary for allograft rejection vary, based on the antigen and the context in which it is presented, and that inhibition of T-cell-intrinsic NF-kappaB activation during allogeneic priming may represent a novel strategy whereby tolerance to transplanted organs can be achieved.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Iwashima M. Kinetic perspectives of T cell antigen receptor signaling. A two-tier model for T cell full activation. Immunol Rev 2003; 191:196-210. [PMID: 12614361 DOI: 10.1034/j.1600-065x.2003.00024.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
T-cell activation consists of multiple layers of signaling events. Interleukin-2 production is of interest for many, since its expression determines a critical difference between partial and full T-cell activation. To achieve full activation of T cells, it is necessary for the T-cell antigen receptor (TCR) to be engaged for an extended period of time. However, why extended stimulation is required for full T-cell activation is not understood at the molecular level. In this review, orchestrated events of TCR signal transduction will be analyzed in a kinetic manner and connected toward the understanding of the mechanism of T-cell activation. Based on recent results, a model of the mechanism that dictates the threshold between partial and full T-cell activation is proposed.
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| |
Collapse
|
110
|
Tiong Ong S, Ly C, Nguyen M, Kay Brightman B, Fan H. Expression profiling of a transformed thymocyte cell line undergoing maturation in vitro identifies multiple genes involved in positive selection. Cell Immunol 2003; 221:64-79. [PMID: 12742383 DOI: 10.1016/s0008-8749(03)00065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biochemical and genetic studies of thymocyte maturation would be facilitated by the development of cultured cell lines that reflect stages of positive selection. We have derived a CD4(+)CD8(+)TCR(+) T-lymphoid cell line (M20) from a murine thymic tumor induced by a retrovirus carrying the v-myc oncogene (M-MuLV(myc)). M20 subclones undergo several aspects of positive selection in response to co-culture with a thymic stromal cell line (St3), including down-regulation of CD4 and CD8, and up-regulation of CD5 and TCR. M20 possesses a functional TCR complex, and ligation of this complex produces changes similar to co-culture with St3 stroma. Expression profiling of M20 cells in this system identified 23 genes previously shown to be important in thymocyte maturation, as well as several novel candidate genes. This system provides a new model to elucidate the molecular mechanisms of thymocyte maturation and TCR-mediated cell signaling in double-positive thymocytes.
Collapse
Affiliation(s)
- S Tiong Ong
- Division of Hematology/Oncology, Department of Medicine, College of Medicine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
111
|
Pruett SB, Fan R, Zheng Q. Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int Immunopharmacol 2003; 3:1-16. [PMID: 12538030 DOI: 10.1016/s1567-5769(02)00081-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was conducted to determine if selected events in glucocorticoid receptor (GR) signaling that have been identified using mostly in vitro approaches with synthetic glucocorticoids also occur in mature T cells exposed to relevant levels of corticosterone in vivo. In contrast to effects reported in vitro, corticosterone did not cause significant translocation of GR to the nucleus in splenic T cells, though it did increase the amount of nuclear GR in these cells capable of binding to a glucocorticoid response element. At most time points and dosages, corticosterone caused little or no change in cytoplasmic IkappaB or nuclear NFkappaB levels. Activation of T cells by anti-CD3 increased the amount of NFkappaB in the nucleus and decreased the amount of IkappaB in the cytoplasm. Corticosterone did not significantly inhibit the decrease in cytoplasmic IkappaB, but it did slightly diminish the increase in nuclear NFkappaB. The same dosages of corticosterone substantially suppressed anti-CD3-induced cytokine gene expression, indicating that a meaningful amount of glucocorticoid-mediated signaling (of some type) occurred in this experimental system. Thus, GR translocation per se seems not to be critical for GR-mediated signaling in vivo. Other considerations, such as the make-up of GR-containing complexes in the nucleus or unexpected sensitivity to small changes in total nuclear GR, may be important. Additionally, upregulation of IkappaB and consequent inhibition of NFkappaB activation are not prominent in vivo, in contrast to results obtained in vitro or with a synthetic glucocorticoid.
Collapse
Affiliation(s)
- Stephen B Pruett
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
112
|
Finn PW, He H, Ma C, Mueller T, Stone JR, Liou H, Boothby MR, Perkins DL. Molecular profiling of the role of the NF‐κB family of transcription factors during alloimmunity. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Patricia W. Finn
- Pulmonary Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medicine and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hongzhen He
- Pulmonary Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medicine and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chunyan Ma
- Laboratory of Molecular Immunology, and Departments of Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medicine and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Mueller
- Laboratory of Molecular Immunology, and Departments of Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medicine and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - James R. Stone
- Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hsiou‐Chi Liou
- Graduate School of Medical Sciences, Weill Medical College, Cornell University Medical Center, New York, New York; and
| | - Mark R. Boothby
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - David L. Perkins
- Laboratory of Molecular Immunology, and Departments of Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Medicine and Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
113
|
Abstract
The nuclear factor-kappaB (NF-kappaB)/REL family of transcription factors has a central role in coordinating the expression of a wide variety of genes that control immune responses. There has been intense scientific activity in the NF-kappaB field owing to the involvement of these factors in the activation and regulation of key molecules that are associated with diseases ranging from inflammation to cancer. In this review, we focus on our current understanding of NF-kappaB regulation and its role in the immune system and inflammatory diseases. We also discuss the role of NF-kappaB proteins as potential therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Qiutang Li
- The Salk Institute, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
114
|
Haddad JJ. Oxygen homeostasis, thiol equilibrium and redox regulation of signalling transcription factors in the alveolar epithelium. Cell Signal 2002; 14:799-810. [PMID: 12135701 DOI: 10.1016/s0898-6568(02)00022-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing evidence linking the pathophysiology of lung disease to an imbalance state of reduction-oxidation (redox) equilibrium. The therapeutic potential of glutathione, an ubiquitous sulfhydryl thiol, and its immunopharmacological properties in the airway epithelium bears clinical consequences for the paediatric treatment of respiratory distress (RD). Dynamic variation in alveolar pO(2) and its effect on redox state may impose a direct role in modulating the pattern of gene expression in lung tissues and, accordingly, could be pivotal in determining cellular fate under these conditions. Hypoxia-inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB) are redox-sensitive transcription factors of particular importance because their differential activation by reducing and oxidizing signals, respectively, regulate the expression/suppression of O(2)-responsive genes. The regulation of these transcription factors, therefore, which is redox sensitive, is consistent with their roles in coordinating adaptive homeostatic responses to oxidative stress. Functionally, the relationship between O(2), glutathione biosynthesis and transcription factor activity bears typical implications for the pattern of cellular survivorship and alveolarization on exposure to O(2)-linked stresses. In this review, I discuss (1) the HIF-1alpha/NF-kappaB responsiveness to dynamic changes in pO(2) characteristic of the transition period from placental to pulmonary-based respiration, (2) the capacity of the alveolar epithelium to engage in glutathione biosynthesis and redox shuttling, effectively forming a feedback mechanism governing gene expression, (3) the restitution of antioxidant/prooxidant equilibrium following oxidative challenge and its dependency on the adaptive coordination of responses between redox-associated signalling pathways controlling apoptosis and genetic regulatory factors and (4) a likely association between oxidative stress and the evolution of an inflammatory signal through the pleiotropic O(2)-sensitive cytokines.
Collapse
Affiliation(s)
- John J Haddad
- Neuroscience Research Laboratory, Department of Anesthesia and Perioperative Care, University of California at San Francisco, Medical Sciences Building S-261, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
115
|
You Z, Madrid LV, Saims D, Sedivy J, Wang CY. c-Myc sensitizes cells to tumor necrosis factor-mediated apoptosis by inhibiting nuclear factor kappa B transactivation. J Biol Chem 2002; 277:36671-7. [PMID: 12149248 DOI: 10.1074/jbc.m203213200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) plays a key role in suppression of tumor necrosis factor (TNF)-mediated apoptosis by inducing a variety of anti-apoptotic genes. Expression of c-Myc has been shown to sensitize cells to TNF-mediated apoptosis by inhibiting NF-kappaB activation. However, the precise step in the NF-kappaB signaling pathway and apoptosis modified by c-Myc has not been identified. Using the inducible c-MycER system and c-Myc null fibroblasts, we found that expression of c-Myc inhibited NF-kappaB activation by interfering with RelA/p65 transactivation but not nuclear translocation of NF-kappaB. Activation of c-Myc promoted TNF-induced release of cytochrome c from mitochondria to the cytosol because of the inhibition of NF-kappaB. Furthermore, we found that NF-kappaB-inducible gene A1 was attenuated by expression of c-Myc and that the restoration of A1 expression suppressed c-Myc-induced TNF sensitization. Our results elucidate the molecular mechanisms by which c-Myc increases cell susceptibility to TNF-mediated apoptosis, indicating that c-Myc may exhibit its pro-apoptotic activities by repression of cell survival genes.
Collapse
Affiliation(s)
- Zongbing You
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
116
|
Tian Y, Rabson AB, Gallo MA. Ah receptor and NF-kappaB interactions: mechanisms and physiological implications. Chem Biol Interact 2002; 141:97-115. [PMID: 12213387 DOI: 10.1016/s0009-2797(02)00068-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aryl hydrocarbon (Ah) receptor mediates most of the toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, which are ubiquitous environmental contaminants causing toxic responses in human and wildlife. Nuclear factor kappa B (NF-kappaB) is a pleiotropic transcription factor that plays a pivotal role in a wide array of physiological and pathological responses including immune modulation, inflammatory responses and apoptosis. Many physiological functions adversely affected by TCDD are also known to be regulated by NF-kappaB, such as immune activation, maintenance of skin differentiation, control of cell proliferation and survival, as well as induction of xenobiotic metabolizing enzymes. In the past few years, evidence has emerged to show that the Ah receptor and NF-kappaB interact and transcriptionally modulate each other. This review discusses Ah receptor-NF-kappaB interactions and examines potential mechanistic explanations for toxic responses as a result of TCDD exposure and the suppression of cytochrome P450 1A1/1A2 by stress stimuli such as inflammation and infection.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Veterinary Physiology and Pharmacology, MS 4466, Texas A&M University, College Station 77843, USA.
| | | | | |
Collapse
|
117
|
Harlin H, Podack E, Boothby M, Alegre ML. TCR-independent CD30 signaling selectively induces IL-13 production via a TNF receptor-associated factor/p38 mitogen-activated protein kinase-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2451-9. [PMID: 12193714 DOI: 10.4049/jimmunol.169.5.2451] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Initiation of T lymphocyte responses to most Ags requires concurrent stimulation through the TCR and costimulatory receptors such as CD28. Following initial activation, secondary receptors are up-regulated that can costimulate T cells in concert with TCR engagement. One such receptor is the TNFR family member CD30. In this study, we report that unlike CD28, ligation of CD30 on normal effector T cells induces IL-13 production in the absence of concurrent TCR engagement. TCR-independent CD30-mediated IL-13 release correlated with activation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), and NF-kappaB, and was completely inhibited by the expression of a TNFR-associated factor 2 (TRAF2) dominant-negative transgene (TRAF2.DN-Tg), but not by that of an I-kappaBalpha dominant-negative transgene. In parallel, expression of the TRAF2.DN-Tg selectively prevented the induction of c-Jun N-terminal kinase and p38 MAPK, but not that of NF-kappaB. Furthermore, IL-13 production was reduced in a dose-dependent manner by the p38 MAPK inhibitor SB203580. Together, these results suggest that TCR-independent CD30-mediated production of IL-13 is triggered by association of CD30 with TRAF family members and subsequent activation of p38 MAPK. Inasmuch as IL-13 can promote airway inflammation and cancer progression, production of IL-13 in a TCR-independent manner has important pathological implications in vivo.
Collapse
Affiliation(s)
- Helena Harlin
- Committee on Immunology and Department of Medicine, Section of Rheumatology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
118
|
Caamaño J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 2002; 15:414-29. [PMID: 12097249 PMCID: PMC118079 DOI: 10.1128/cmr.15.3.414-429.2002] [Citation(s) in RCA: 388] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription factors of the Rel/NF-kappaB family are activated in response to signals that lead to cell growth, differentiation, and apoptosis, and these proteins are critical elements involved in the regulation of immune responses. The conservation of this family of transcription factors in many phyla and their association with antimicrobial responses indicate their central role in the regulation of innate immunity. This is illustrated by the association of homologues of NF-kappaB, and their regulatory proteins, with resistance to infection in insects and plants (M. S. Dushay, B. Asling, and D. Hultmark, Proc. Natl. Acad. Sci. USA 93:10343-10347, 1996; D. Hultmark, Trends Genet. 9:178-183, 1993; J. Ryals et al., Plant Cell 9:425-439, 1997). The aim of this review is to provide a background on the biology of NF-kappaB and to highlight areas of the innate and adaptive immune response in which these transcription factors have a key regulatory function and to review what is currently known about their roles in resistance to infection, the host-pathogen interaction, and development of human disease.
Collapse
Affiliation(s)
- Jorge Caamaño
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6008, USA
| | | |
Collapse
|
119
|
Yu CT, Feng MHL, Shih HM, Lai MZ. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol 2002; 22:4556-66. [PMID: 12052865 PMCID: PMC133898 DOI: 10.1128/mcb.22.13.4556-4566.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Positive selection of T cells is postulated to be dependent on the counterinteraction between glucocorticoid receptor (GR)- and T-cell-receptor (TCR)-induced death signals. In this study we used T-cell-specific expression of p300 to investigate whether GR-TCR cross talk between thymocytes was affected. Activation of the p300-transgenic T cells led to enhanced thymocyte proliferation and increased interleukin 2 production. Thymocyte death, induced by TCR engagement, was no longer prevented by dexamethasone in p300-transgenic mice, indicating an absence of GR-TCR cross-inhibition. This was accompanied by a 50% reduction in the number of thymocytes in p300-transgenic mice. However, the CD4/CD8 profile of thymocytes remained unchanged in p300-transgenic mice. There was no effect on positive selection of the bulk thymocytes or thymocytes with transgenic TCR in p300-transgenic mice. In addition, there was no apparent TCR repertoire "hole" in the selected antigens examined. Our results illustrate a critical role of CBP/p300 in thymic GR-TCR counterinteraction yet do not support the involvement of GR-TCR antagonism in thymocyte positive selection.
Collapse
Affiliation(s)
- Cheng-Tai Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
120
|
Riccardi C, Bruscoli S, Ayroldi E, Agostini M, Migliorati G. GILZ, a glucocorticoid hormone induced gene, modulates T lymphocytes activation and death through interaction with NF-kB. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 495:31-9. [PMID: 11774584 DOI: 10.1007/978-1-4615-0685-0_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- C Riccardi
- Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | | | | | | | | |
Collapse
|
121
|
Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 2002; 16:1053-68. [PMID: 12040437 DOI: 10.1038/sj.leu.2402482] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/21/2002] [Indexed: 11/09/2022]
Abstract
Nuclear factor kappa B (NF-kappaB) is a family of inducible transcription factors found virtually ubiquitously in all cells. Since its discovery by Sen and Baltimore in 1986, much has been discovered about its mechanisms of activation, its target genes, and its function in a variety of human diseases including those related to inflammation, asthma, atherosclerosis, AIDS, septic shock, arthritis, and cancer. Due to its role in a wide variety of diseases, NF-kappaB has become one of the major targets for drug development. Here, we review our current knowledge of NF-kappaB, the possible mechanisms of its activation, its potential role in cancer, and various strategies being employed to target the NF-kappaB signaling pathway for cancer drug development.
Collapse
Affiliation(s)
- A Garg
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
122
|
Bureau F, Vanderplasschen A, Jaspar F, Minner F, Pastoret PP, Merville MP, Bours V, Lekeux P. Constitutive nuclear factor-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes by controlling the expression of distinct Bcl-2 family proteins. Blood 2002; 99:3683-91. [PMID: 11986224 DOI: 10.1182/blood.v99.10.3683] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Constitutive nuclear factor kappaB (NF-kappaB) activity protects quiescent mature immune cells from spontaneous apoptosis. Here, we examined whether NF-kappaB exerts its antiapoptotic function in these cells through the control of Bcl-2 family proteins. Specific pharmacologic inhibitors of NF-kappaB were used to achieve total NF-kappaB inactivation in quiescent human blood lymphocytes, granulocytes, and monocytes. NF-kappaB inhibition induced drastic lymphocyte and granulocyte apoptosis, but only moderate monocyte apoptosis. T- and B-cell apoptosis was slow and associated with a gradual down-regulation of the prosurvival Bcl-2 family proteins Bcl-x(L) and Bcl-2, respectively. By contrast, granulocyte apoptosis was fast and accompanied by a rapid cellular accumulation of Bcl-x(S), the proapoptotic Bcl-x isoform that is generated from alternative splicing of the bcl-x pre-mRNA. Finally, antisense bcl-x(L) and bcl-2 knockdown in T and B cells, respectively, and induction of Bcl-x(S) expression in granulocytes through antisense oligonucleotide-mediated redirection of bcl-x pre-mRNA splicing were sufficient to induce significant apoptosis in these cells. Taken together, these results reveal that basal NF-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes through regulation of distinct members of the Bcl-2 family. This study sheds light on the constitutive mechanisms by which NF-kappaB maintains defense integrity.
Collapse
Affiliation(s)
- Fabrice Bureau
- Department of Veterinary Physiology, University of Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277:16639-47. [PMID: 11872748 DOI: 10.1074/jbc.m200360200] [Citation(s) in RCA: 699] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have shown that thalidomide (Thal) and its immunomodulatory derivatives (IMiDs), proteasome inhibitor PS-341, and As(2)O(3) act directly on multiple myeloma (MM) cells and in the bone marrow (BM) milieu to overcome drug resistance. Although Thal/IMiDs, PS-341, and As(2)O(3) inhibit nuclear factor (NF)-kappaB activation, they also have multiple and varied other actions. In this study, we therefore specifically address the role of NF-kappaB blockade in mediating anti-MM activity. To characterize the effect of specific NF-kappaB blockade on MM cell growth and survival in vitro, we used an IkappaB kinase (IKK) inhibitor (PS-1145). Our studies demonstrate that PS-1145 and PS-341 block TNFalpha-induced NF-kappaB activation in a dose- and time-dependent fashion in MM cells through inhibition of IkappaBalpha phosphorylation and degradation of IkappaBalpha, respectively. Dexamethasone (Dex), which up-regulates IkappaBalpha protein, enhances blockade of NF-kappaB activation by PS-1145. Moreover, PS-1145 blocks the protective effect of IL-6 against Dex-induced apotosis. TNFalpha-induced intracellular adhesion molecule (ICAM)-1 expression on both RPMI8226 and MM.1S cells is also inhibited by PS-1145. Moreover, PS-1145 inhibits both IL-6 secretion from BMSCs triggered by MM cell adhesion and proliferation of MM cells adherent to BMSCs. However, in contrast to PS-341, PS-1145 only partially (20-50%) inhibits MM cell proliferation, suggesting that NF-kappaB blockade cannot account for all of the anti-MM activity of PS-341. Importantly, however, TNFalpha induces MM cell toxicity in the presence of PS-1145. These studies demonstrate that specific targeting of NF-kappaB can overcome the growth and survival advantage conferred both by tumor cell binding to BMSCs and cytokine secretion in the BM milieu. Furthermore, they provide the framework for clinical evaluation of novel MM therapies based upon targeting NF-kappaB.
Collapse
Affiliation(s)
- Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Maxwell JR, Ruby C, Kerkvliet NI, Vella AT. Contrasting the roles of costimulation and the natural adjuvant lipopolysaccharide during the induction of T cell immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4372-81. [PMID: 11970979 DOI: 10.4049/jimmunol.168.9.4372] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The requirements for circumventing tolerance induction in favor of memory T cell development are poorly understood. Although two signals (Ag and costimulation) are necessary to drive effective T cell clonal expansion, few memory T cells remain after the response wanes. The adjuvant LPS can increase numbers of long-lived Ag-specific T cells, but its mechanism of action is not understood. In this report, it is shown that LPS, when combined with two-signal stimulation, profoundly enhances T cell survival in vivo. This survival does not appear to be dependent on the cytokines TNF-alpha, IL-1 beta, IL-6, and IFN-gamma, nor is it dependent on the transcription factor NF-kappa B. However, in vivo proliferation of NF-kappa B-deficient T cells was comparable to that of wild-type T cells, yet their early accumulation in the lymph nodes was severely reduced unless the mice were treated with LPS and an agonistic CD40 mAb. Most importantly, we found that activation of two different costimulatory signals, CD40 and OX40, could not substitute for LPS in rescuing T cells from peripheral deletion. Perhaps surprisingly, these data show that LPS delivers a qualitatively different signal than multiple costimulatory signals.
Collapse
Affiliation(s)
- Joseph R Maxwell
- Division of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
125
|
Ren H, Schmalstieg A, van Oers NSC, Gaynor RB. I-kappa B kinases alpha and beta have distinct roles in regulating murine T cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3721-31. [PMID: 11937522 DOI: 10.4049/jimmunol.168.8.3721] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF-kappaB is a transcription factor that regulates a variety of genes involved in the control of the immune and inflammatory responses. Activation of NF-kappaB is mediated by an inducible I-kappaB kinase (IKK) complex comprised of two catalytic subunits, IKKalpha and IKKbeta. In this study, the role of these kinases in the development and function of T lymphocytes was explored using transgenic mice expressing the dominant-negative forms of one or both kinases under the control of a T cell-specific promoter. Activation of the NF-kappaB pathway in thymocytes isolated from these transgenic mice following treatment with either PMA and ionomycin or anti-CD3 was markedly inhibited. Although inhibition of IKKalpha and/or IKKbeta function did not alter T cell development in these transgenic mice, the proliferative response to anti-CD3 was reduced in thymocytes isolated from mice expressing dominant-negative IKKbeta. However, inhibition of both IKKalpha and IKKbeta was required to markedly reduce cytokine production in thymocytes isolated from these transgenic mice. Finally, we demonstrated that IKKalpha and IKKbeta have opposite roles on the regulation of anti-CD3-induced apoptosis of double-positive thymocytes. These results suggest that IKKalpha and IKKbeta have distinct roles in regulating thymocyte function.
Collapse
Affiliation(s)
- Hong Ren
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
126
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Espinosa L, Santos S, Inglés-Esteve J, Muñoz-Canoves P, Bigas A. p65-NFκB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. J Cell Sci 2002; 115:1295-303. [PMID: 11884528 DOI: 10.1242/jcs.115.6.1295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch/RBP-Jκ and nuclear factor-κB (NFκB) complexes are key mediators of the progression of many cellular events through the activation of specific target gene transcription. Independent observations have shown that activation of Notch-dependent transcription generally correlates with inhibition of differentiation. In contrast, activated NFκB complexes are required for progression of differentiation in several systems. Although some interactions between both pathways have been observed, the physiological significance of their connection is unclear. We have now demonstrated that the increase in p65-NFκB protein levels enhances Notch-mediated activation of the Hes1 promoter up to three-fold. This effect does not require NFκB transcriptional activity, and it is independent of the previously described interaction between Notch and p50-NFκB. Furthermore, we show that p65-NFκB can modulate subcellular localization of the transcriptional corepressor N-CoR, abrogating N-CoR mediated repression of the Hes1 promoter. In addition, p65-NFκB is able to upregulate not only the Hes1 but also other promoters containing SRE and AP-1 sites, which are repressed by N-CoR. Thus, we conclude that p65-NFκB can regulate gene expression by a general mechanism that involves cytoplasmic translocation of the transcriptional corepressor protein N-CoR.
Collapse
Affiliation(s)
- Lluís Espinosa
- Centre Oncologia Molecular, Institut de Recerca Oncologica, Hospitalet, Barcelona 08907, Spain
| | | | | | | | | |
Collapse
|
128
|
Robles MS, Leonardo E, Criado LM, Izquierdo M, Martínez-A C. Inhibitor of apoptosis protein from Orgyia pseudotsugata nuclear polyhedrosis virus provides a costimulatory signal required for optimal proliferation of developing thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1770-9. [PMID: 11823509 DOI: 10.4049/jimmunol.168.4.1770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The inhibitors of apoptosis proteins (IAPs) constitute a family of endogenous inhibitors that control apoptosis in the cell by inhibiting caspase processing and activity. IAPs are also implicated in cell division, cell cycle regulation, and cancer. To address the role of IAPs in thymus development and homeostasis, we generated transgenic mice expressing IAP generated from the baculovirus Orgyia pseudotsugata nuclear polyhedrosis virus (OpIAP). Developing thymocytes expressing OpIAP show increased nuclear levels of NF-kappaB and reduced cytoplasmic levels of its inhibitor, IkappaBalpha. In mature thymocytes, OpIAP induces optimal activation and proliferation after TCR triggering in the absence of a costimulatory signal. OpIAP expression in immature thymocytes blocks TCR-induced apoptosis. Taken together, our data illustrate the pleiotropism of OpIAP in vivo.
Collapse
Affiliation(s)
- María S Robles
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Madrid Campus de Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
129
|
Chen Y, Rosloniec E, Price J, Boothby M, Chen J. Constitutive expression of BCL-X(L) in the T lineage attenuates collagen-induced arthritis in Bcl-X(L) transgenic mice. ARTHRITIS AND RHEUMATISM 2002; 46:514-21. [PMID: 11840455 DOI: 10.1002/art.10128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine if inhibition of T cell apoptosis through constitutive expression of Bcl-X(L) in the T lineage influences inflammatory arthritis in the mouse collagen-induced arthritis (CIA) model. METHODS The incidence and severity of arthritis were quantified in Bcl-X(L) transgenic mice and nontransgenic littermates after immunization with type II collagen (CII). To correlate T cell responses with disease phenotype, antigen-specific T cell proliferation was measured by (3)H-thymidine incorporation. Apoptosis and cell cycle progression were analyzed by flow cytometry using propidium iodide. Production of CII-specific interferon-gamma (IFNgamma), interleukin-5 (IL-5), and IL-10 was determined by enzyme-linked immunosorbent assay. RESULTS Disease severity in CIA was significantly attenuated in Bcl-X(L) transgenic mice compared with their nontransgenic littermates. Inhibition of CIA was associated with decreased T cell apoptosis, delayed cell cycle progression, and reduced IFNgamma production. CONCLUSION Rather than promoting inflammation, inhibition of apoptosis by expression of the Bcl-X(L) protein in the T lineage attenuates disease progression in CIA, probably through inhibition of IFNgamma production.
Collapse
Affiliation(s)
- Ying Chen
- Vanderbilt University Medical School, Nashville, Tennessee USA
| | | | | | | | | |
Collapse
|
130
|
Abstract
Transcription factor NF-kappaB is biochemically coupled to the T cell antigen receptor (TCR) and activated transiently during an adaptive immune response. The author's laboratory is investigating the signal-dependent regulation of NF-kappaB, its downstream gene targets, and its function in lymphocyte biology. Our studies have revealed novel enzymatic checkpoints in the NF-kappaB signaling pathway and constitutive repressors of NF-kappaB that might be clinically applicable for therapeutic control of the immune system. We have also found that the Tax transforming protein encoded by human T cell leukemia virus type 1 (HTLV1) binds to and persistently activates an inducible protein kinase in the TCR/NF-kappaB axis. This viral/host interaction appears to trigger the inappropriate expression of NF-kappaB and the development of HTLV1-associated disease.
Collapse
Affiliation(s)
- D W Ballard
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA.
| |
Collapse
|
131
|
Abstract
During the last three decades, immunologists and gastroenterologists have witnessed the formation of mucosal immunology as a discipline in biomedical science, and studies of reovirus infection have substantially contributed to this evolution. We have focused on mucosal T cell responses induced by reovirus in conventional, germfree, nude, and NF-kappaB deficient mice. Several major facets of T cell function in the immune responses to this mucosal pathogen have been examined, including viral selection of oligoclonal-T cells, extrathymic T cell development, and distinct signaling pathways used by CD8 sublineages. In addition, our findings with virus-specific T cells selected in the mucosa have suggested novel mechanisms for the rearrangement, selection, and expansion of TCR genes. With the increasing application of molecular tools, reovirus will continue to be a useful model pathogen to study mucosal immunology and will further our understanding of mucosal immunity in health and disease.
Collapse
MESH Headings
- Adult
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Lineage
- Clonal Deletion
- Gastric Mucosa/immunology
- Gene Rearrangement, T-Lymphocyte
- Germ-Free Life
- Humans
- Intestinal Mucosa/immunology
- Killer Cells, Natural/immunology
- Lymphoid Tissue/immunology
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Mice, Nude
- Mucous Membrane/immunology
- NF-kappa B/deficiency
- NF-kappa B/genetics
- NF-kappa B/physiology
- RNA Editing
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Reoviridae/immunology
- Reoviridae Infections/immunology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- D Chen
- Department of Research Medicine, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
132
|
Boothby M, Mora AL, Aronica MA, Youn J, Sheller JR, Goenka S, Stephenson L. IL-4 signaling, gene transcription regulation, and the control of effector T cells. Immunol Res 2002; 23:179-91. [PMID: 11444383 DOI: 10.1385/ir:23:2-3:179] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The central goal of our laboratory is to understand the regulation of lymphoid cells through molecular mechanisms of signal transduction and transcriptional control. A long-standing focus has been on changes that influence the effector function of mature lymphocytes. Work in the laboratory is oriented toward the identification of new regulatory mechanisms using cell lines and primary cells, and the validation of these in vitro findings in mouse models of immune responses and diseases. In this review, we summarize key insights into the regulation of T helper cell function during the phase of immunity where effector responses arise de novo. Particular interest has been centered on cytokine gene regulation as part of T cell differentiation into the Th1 and Th2 subsets. Information on IL-4 receptor signaling and the role of NF-kappaB transcription factors is reviewed. Our more recent work is designed to understand how regulation at the Th1/2 effector stages is related to the control of memory T cell survival, immune recall responses, and the role of these responses in immune-mediated disease.
Collapse
Affiliation(s)
- M Boothby
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232-2363, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
DeRyckere D, DeGregori J. Identification and characterization of transcription factor target genes using gene-targeted mice. Methods 2002; 26:57-75. [PMID: 12054905 DOI: 10.1016/s1046-2023(02)00008-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Critical to understanding biological roles for transcription factors is an appreciation of the target genes regulated by the transcription factor. The identification of target genes can often expand the understanding of known biological roles for a transcription factor and may reveal unappreciated and unexpected functions. This article focuses on the identification and characterization of transcription factor target genes using mouse molecular genetics. The use of genetically engineered (knockout) mice and global gene expression analysis to identify transcription factor target genes is reviewed, with emphasis on important technical considerations. Detailed protocols for the application of real-time reverse transcription polymerase chain reaction and immunohistochemistry in target gene expression analysis are described. The article closes with a discussion of the use of mouse molecular genetics for the characterization of target genes as downstream effectors of transcription factors.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, BRB802, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
134
|
Abstract
Protein modification via covalent attachment of ubiquitin has emerged as one of the most common regulatory processes in all eukaryotes; it is possibly second only to phosphorylation. In fact, ubiquitination and phosphorylation have much in common: both occur rapidly--often in response to an extracellular signal--and both are quickly reversed by a large set of dedicated enzymes termed deubiquitination enzymes and phosphatases, respectively. In addition, these two protein-modification events often cooperate in mobilizing a particular cellular pathway. Traditionally, ubiquitination has been associated with proteolytic events, mostly in conjunction with the 26S proteosome. Recently, however, ubiquitination has been implicated in other regulatory mechanisms. Some involve proteosome-independent protein degradation, whereas others are entirely proteolysis-independent, ranging from protein kinase activation to translation control. Therefore, it is not surprising that the ever-evolving immune system is an excellent mirror for the multiple roles played by ubiquitination within an organism.
Collapse
Affiliation(s)
- Yinon Ben-Neriah
- The Lautenberg Center for Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
135
|
Guerin S, Baron ML, Valero R, Herrant M, Auberger P, Naquet P. RelB reduces thymocyte apoptosis and regulates terminal thymocyte maturation. Eur J Immunol 2002; 32:1-9. [PMID: 11753998 DOI: 10.1002/1521-4141(200201)32:1<1::aid-immu1>3.0.co;2-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thymocyte maturation is controlled by successive developmental checkpoints connected to the acquisition of a functional T cell receptor (TCR). During thymocyte selection, engagement of the TCR regulates the fine balance between death and survival signals. At the final stages of single-positive (SP) thymocyte maturation, the coupling of the TCR changes from death- to proliferation-inducing signals, a competence required for optimal effector functions in the periphery. We show here that in RelB mutant thymuses, thymocyte differentiation of CD24(-) SP cells is partially impaired. Competitive bone marrow reconstitution experiments show that this defect is constitutive to the lymphoid compartment. This is accompanied by an increased proportion of apoptotic thymocytes and a drastically reduced proliferation upon activation with anti-CD3 antibody/PMA stimulation. Thus, the RelB protein contributes to the quality of cell signaling in thymocytes by providing anti-apoptotic signals. These results suggest that in addition to its major role on the activation of antigen-presenting cell function, the RelB protein is intrinsically required for terminal thymocyte differentiation and activation.
Collapse
Affiliation(s)
- Sandrine Guerin
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Transcription factor NF-kappaB is biochemically coupled to the T cell antigen receptor (TCR) and activated transiently during an adaptive immune response. The author's laboratory is investigating the signal-dependent regulation of NF-kappaB, its downstream gene targets, and its function in lymphocyte biology. Our studies have revealed novel enzymatic checkpoints in the NF-kappaB signaling pathway and constitutive repressors of NF-kappaB that might be clinically applicable for therapeutic control of the immune system. We have also found that the Tax transforming protein encoded by human T cell leukemia virus type 1 (HTLV1) binds to and persistently activates an inducible protein kinase in the TCR/NF-kappaB axis. This viral/host interaction appears to trigger the inappropriate expression of NF-kappaB and the development of HTLV1-associated disease.
Collapse
Affiliation(s)
- D W Ballard
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA.
| |
Collapse
|
137
|
Zamorano J, Mora AL, Boothby M, Keegan AD. NF-kappa B activation plays an important role in the IL-4-induced protection from apoptosis. Int Immunol 2001; 13:1479-87. [PMID: 11717189 DOI: 10.1093/intimm/13.12.1479] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IL-4 alone protects cells from apoptosis by insulin receptor substrate (IRS)-dependent and -independent mechanisms. However, in vivo cells are typically exposed to a number of signals at the same time. To determine the contribution of co-stimulatory signals to the regulation of apoptosis by IL-4, we first analyzed whether tumor necrosis factor (TNF)-alpha, which has been shown to inhibit the activation of IRS-1 by insulin, could modify IL-4 signaling and protection from apoptosis. We found that TNF-alpha cooperates with IL-4 in protecting 32D cells from factor withdrawal-induced apoptosis. This effect was independent of the expression of IRS-1, indicating that this cooperation is via an alternative anti-apoptotic pathway. Moreover, TNF-alpha had no effect on the activation of IRS-1 induced by IL-4. IL-4 enhanced TNF-alpha-induced activation of the transcription factor NF-kappaB. Interestingly, pharmacologic inhibition of NF-kappaB activation or protein synthesis resulted in the induction of cell death that could not be inhibited by IL-4, suggesting that IL-4 cooperates with NF-kappaB to signal protection from apoptosis. Supporting this hypothesis, IL-4 also increased NF-kappaB activation induced by anti-CD3 antibodies in primary T cells and protected them from apoptosis induced by receptor engagement. However, IL-4 was not able to inhibit apoptosis induced by anti-CD3 in T lymphocytes isolated from transgenic mice expressing a dominant-negative form of IkappaBalpha that prevents NF-kappaB activation. Thus, in addition to the previously identified IRS-1 pathway, IL-4-induced protection from apoptosis may also be mediated through cooperation with the NF-kappaB family of transcription factors.
Collapse
Affiliation(s)
- J Zamorano
- Department of Immunology, Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | | | |
Collapse
|
138
|
Mora AL, Stanley S, Armistead W, Chan AC, Boothby M. Inefficient ZAP-70 phosphorylation and decreased thymic selection in vivo result from inhibition of NF-kappaB/Rel. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5628-35. [PMID: 11698434 DOI: 10.4049/jimmunol.167.10.5628] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling from the TCR regulates T lymphoid survival, deletion by apoptosis, and selective clonal expansion. One set of signaling pathways activated during thymic selection leads to degradation of a cytosolic retention protein, the inhibitor of kappaB (IkappaB)alpha, followed by nuclear translocation of the NF-kappaB/Rel family of transcription factors. It has been found previously that NF-kappaB proteins mediate a pathway signaling the survival of mature T cells and protection of thymocytes against TNF-induced apoptosis. In contrast, we show in this study that a transgenic inhibitor of NF-kappaB/Rel signaling interferes with the negative selection of immature thymocytes by endogenous MHC ligands in vivo. Positive selection of the H-Y TCR also was diminished. This attenuation of thymic selection efficiency was associated with decreased ZAP-70 phosphorylation and TCR signaling of CD69 induction. These findings demonstrate that the NF-kappaB transcriptional pathway plays an important role in normal processes of clonal deletion and they indicate that the NF-kappaB/IkappaB axis can regulate the efficiency of TCR signaling.
Collapse
Affiliation(s)
- A L Mora
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
139
|
Finn PW, Stone JR, Boothby MR, Perkins DL. Inhibition of NF-kappaB-dependent T cell activation abrogates acute allograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5994-6001. [PMID: 11698479 DOI: 10.4049/jimmunol.167.10.5994] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a heterotopic model of transplantation, we investigated the role of T cell activation in vivo during allograft rejection in I-kappaB(DeltaN)-transgenic mice that express a transdominant inhibitor of NF-kappaB in T cells. Our results show indefinite prolongation of graft survival in the I-kappaB(DeltaN)-transgenic recipients. Interestingly, at the time of rejection of grafts in wild-type recipients, histology of grafts in the I-kappaB(DeltaN)-transgenic recipients showed moderate rejection; nevertheless, grafts in the I-kappaB(DeltaN) recipients survived >100 days. Analysis of acute phase cytokines, chemokine, chemokine receptors, and immune responses shows that the blockade of NF-kappaB activation in T cells inhibits up-regulation of many of these parameters. Interestingly, our data also suggest that the T cell component of the immune response exerted positive feedback regulation on the expression of multiple chemokines that are produced predominantly by non-T cells. In conclusion, our studies indicate NF-kappaB activation in T cells is necessary for acute allograft rejection.
Collapse
Affiliation(s)
- P W Finn
- Laboratory of Molecular Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
140
|
Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6021-30. [PMID: 11698483 DOI: 10.4049/jimmunol.167.10.6021] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumors produce a variety of immunosuppressive factors which can prevent the proliferation and maturation of a number of normal hemopoietic cell types. We have investigated whether primary acute myeloid leukemia (AML) cells have an effect on normal T cell function and signaling. Tumor cell supernatant (TSN) from AML cells inhibited T cell activation and Th1 cytokine production and also prevented activated T cells from entering the cell cycle. These effects occurred in the absence of AML cell-T cell contact. We have demonstrated that AML TSN contained none of the immunosuppressors described to date, namely gangliosides, nitric oxide, TGF-beta, IL-10, vascular endothelial growth factor, or PGs. Furthermore, IL-2 did not overcome the block, despite normal IL-2R expression. However, the effect was overcome by preincubation with inhibitors of protein secretion and abolished by trypsinization, indicating that the active substance includes one or more proteins. To determine the mechanism of inhibition, we have studied many of the major pathways involved in T cell activation and proliferation. We show that nuclear translocation of NFATc and NF-kappaB are markedly reduced in T cells activated in the presence of primary AML cells. In contrast, calcium mobilization and activation of other signal transduction pathways, namely extracellular signal-regulated kinase1/2, p38, and STAT5 were unaffected, but activation of c-Jun N-terminal kinase 1/2 was delayed. Phosphorylation of pRb by cyclin-dependent kinase 6/4-cyclin D and of p130 did not occur and c-Myc, cyclin D3, and p107 were not induced, consistent with cell cycle inhibition early during the transition from G(0) to G(1). Our data indicate that TSN generated by AML cells induces T cell immunosuppression and provides a mechanism by which the leukemic clone could evade T cell-mediated killing.
Collapse
Affiliation(s)
- A G Buggins
- Department of Haematological Medicine, Leukaemia Sciences, Guy's, King's and St. Thomas' School of Medicine, Rayne Institute, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
141
|
Takagi T, Harada J, Ishii S. Murine Schnurri-2 is required for positive selection of thymocytes. Nat Immunol 2001; 2:1048-53. [PMID: 11668343 DOI: 10.1038/ni728] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key step in T cell development involves the positive selection of cells that recognize antigen presented by self-major histocompatibility complex. Yet, the signals that are activated by T cell receptor engagement and lead to cell survival remain unclear. We show here that mice lacking the transcription factor Schnurri-2 (Shn-2), a large metal-finger protein, had severely defective positive selection of CD4+ and CD8+ cells. Drosophila Shn acts as a cofactor of Smad homolog and is required for Decapentaplegic signaling. Vertebrates have at least three Shn orthologs (Shn-1, Shn-2 and Shn-3), which are thought to act as nuclear targets in the bone morphogenetic protein-transforming growth factor-beta-activin signaling pathways. These data raised the possibility that the Smad-Shn-2 complex is involved in the thymic selection of T cells.
Collapse
Affiliation(s)
- T Takagi
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, CREST Research Project of JST, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
142
|
Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, Medina D, Matrisian LM, Kerr LD, Yull FE. Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell 2001; 12:1445-55. [PMID: 11359934 PMCID: PMC34596 DOI: 10.1091/mbc.12.5.1445] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors has been shown to regulate proliferation in several cell types. Although recent studies have demonstrated aberrant expression or activity of NF-kappaB in human breast cancer cell lines and tumors, little is known regarding the precise role of NF-kappaB in normal proliferation and development of the mammary epithelium. We investigated the function of NF-kappaB during murine early postnatal mammary gland development by observing the consequences of increased NF-kappaB activity in mouse mammary epithelium lacking the gene encoding IkappaBalpha, a major inhibitor of NF-kappaB. Mammary tissue containing epithelium from inhibitor kappaBalpha (IkappaBalpha)-deficient female donors was transplanted into the gland-free mammary stroma of wild-type mice, resulting in an increase in lateral ductal branching and pervasive intraductal hyperplasia. A two- to threefold increase in epithelial cell number was observed in IkappaBalpha-deficient epithelium compared with controls. Epithelial cell proliferation was strikingly increased in IkappaBalpha-deficient epithelium, and no alteration in apoptosis was detected. The extracellular matrix adjacent to IkappaBalpha-deficient epithelium was reduced. Consistent with in vivo data, a fourfold increase in epithelial branching was also observed in purified IkappaBalpha-deficient primary epithelial cells in three-dimensional culture. These data demonstrate that NF-kappaB positively regulates mammary epithelial proliferation, branching, and functions in maintenance of normal epithelial architecture during early postnatal development.
Collapse
Affiliation(s)
- D M Brantley
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Vallabhapurapu S, Ryseck RP, Malewicz M, Weih DS, Weih F. Inhibition of NF-kappaB in T cells blocks lymphoproliferation and partially rescues autoimmune disease in gld/gld mice. Eur J Immunol 2001; 31:2612-22. [PMID: 11536159 DOI: 10.1002/1521-4141(200109)31:9<2612::aid-immu2612>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Fas ligand (FasL)/Fas pathway is crucial for the maintenance of homeostasis of the peripheral immune system. Its importance is illustrated by the spontaneous mouse mutants gld andlpr which lack functional FasL and Fas receptor, respectively. These animals develop lymphadenopathy, splenomegaly, increased serum Ig and autoantibodies, leading to an autoimmune syndromeand premature death. The Rel/NF-kappaB family of transcription factors plays an important role in peripheral lymphocyte proliferation and survival. In this report, we studied the consequences of T cell-specific inhibition of NF-kappaB on the development of the gld phenotype. Transgenic gld/gld mice expressing a non-degradable form of IkappaBalpha under the control of T cell-specific regulatory elements show dramatically reduced lymphadenopathy, splenomegaly, and an almost complete elimination of Thy-1(+)B220(+)CD4(-)CD8(-) abnormal T cells, correlating with reduced proliferative responses and increased apoptosis of peripheral T cells upon TCR triggering. Interestingly, the B cell abnormalities that are characteristic of gld/gld mice, such as the production of autoantibodies, high levels of serum Ig, and the development of glomerulonephritis, are partially corrected. These results suggest that the T cell-specific inhibition of NF-kappaB opens apoptotic pathways distinct from FasL/Fas which, along with a diminished proliferative response, blocks splenomegaly and lymphadenopathy and partially rescues autoimmune disease in gld/gld mice.
Collapse
Affiliation(s)
- S Vallabhapurapu
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
144
|
Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L, D'Adamio F, Riccardi C. Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood 2001; 98:743-53. [PMID: 11468175 DOI: 10.1182/blood.v98.3.743] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously a novel gene was identified that encodes a glucocorticoid-induced leucine zipper (GILZ) whose expression is up-regulated by dexamethasone. This study analyzed the role of GILZ in the control of T-cell activation and its possible interaction with nuclear factor kappaB (NF-kappaB). Results indicate that GILZ inhibits both T-cell receptor (TCR)-induced interleukin-2/interleukin-2 receptor expression and NF-kappaB activity. In particular, GILZ inhibits NF-kappaB nuclear translocation and DNA binding due to a direct protein-to-protein interaction of GILZ with the NF-kappaB subunits. Moreover, GILZ-mediated modulation of TCR-induced responses is part of a circuit because TCR triggering down-regulates GILZ expression. These results identify a new molecular mechanism involved in the dexamethasone-induced regulation of NF-kappaB activity and T-cell activation. (Blood. 2001;98:743-753)
Collapse
Affiliation(s)
- E Ayroldi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Perugia, Via del Giochetto, 06100 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Response to 'Specificity of SN50 for NF-κB?'. Nat Immunol 2001. [DOI: 10.1038/88654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
146
|
Bour S, Perrin C, Akari H, Strebel K. The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of Ikappa B. J Biol Chem 2001; 276:15920-8. [PMID: 11278695 DOI: 10.1074/jbc.m010533200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpu protein binds to the CD4 receptor and induces its degradation by cytosolic proteasomes. This process involves the recruitment of human betaTrCP (TrCP), a key member of the SkpI-Cdc53-F-box E3 ubiquitin ligase complex that specifically interacts with phosphorylated Vpu molecules. Interestingly, Vpu itself, unlike other TrCP-interacting proteins, is not targeted for degradation by proteasomes. We now report that, by virtue of its affinity for TrCP and resistance to degradation, Vpu, but not a phosphorylation mutant unable to interact with TrCP, has a dominant negative effect on TrCP function. As a consequence, expression of Vpu in HIV-infected T cells or in HeLa cells inhibited TNF-alpha-induced degradation of IkappaB-alpha. Vpu did not inhibit TNF-alpha-mediated activation of the IkappaB kinase but instead interfered with the subsequent TrCP-dependent degradation of phosphorylated IkappaB-alpha. This resulted in a pronounced reduction of NF-kappaB activity. We also observed that in cells producing Vpu-defective virus, NF-kappaB activity was significantly increased even in the absence of cytokine stimulation. However, in the presence of Vpu, this HIV-mediated NF-kappaB activation was markedly reduced. These results suggest that Vpu modulates both virus- and cytokine-induced activation of NF-kappaB in HIV-1-infected cells.
Collapse
Affiliation(s)
- S Bour
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
147
|
Cheng N, Chen J. Tumor necrosis factor-alpha induction of endothelial ephrin A1 expression is mediated by a p38 MAPK- and SAPK/JNK-dependent but nuclear factor-kappa B-independent mechanism. J Biol Chem 2001; 276:13771-7. [PMID: 11278471 DOI: 10.1074/jbc.m009147200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that induces a broad spectrum of responses including angiogenesis. Angiogenesis promoted by TNF-alpha is mediated, at least in part, by ephrin A1, a member of the ligand family for Eph receptor tyrosine kinases. Although TNF-alpha induces ephrin A1 expression in endothelial cells, the signaling pathways mediating ephrin A1 induction remain unknown. In this study, we investigated the signaling mechanisms of TNF-alpha-dependent induction of ephrin A1 in endothelial cells. Both TNFR1 and TNFR2 appear to be involved in regulating ephrin A1 expression in endothelial cells, because neutralizing antibodies to either TNFR1 or TNFR2 inhibited TNF-alpha-induced ephrin A1 expression. Inhibition of nuclear factor-kappaB (NF-kappaB) activation by a trans-dominant inhibitory isoform of mutant IkappaBalpha did not affect ephrin A1 induction, suggesting that NF-kappaB proteins are not major regulators of ephrin A1 expression. In contrast, ephrin A1 induction was blocked by inhibition of p38 mitogen-activated protein kinase (MAPK) or SAPK/JNK, but not p42/44 MAPK, using either selective chemical inhibitors or dominant-negative forms of p38 MAPK or TNF receptor-associated factor 2. These findings indicate that TNF-alpha-induced ephrin A1 expression is mediated through JNK and p38 MAPK signaling pathways. Taken together, the results of our study demonstrated that induction of ephrin A1 in endothelial cells by TNF-alpha is mediated through both p38 MAPK and SAPK/JNK, but not p42/44 MAPK or NF-kappaB, pathways.
Collapse
MESH Headings
- Adenoviridae/genetics
- Antigens, CD/metabolism
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Ephrin-A1
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Humans
- Kinetics
- Ligands
- Mitogen-Activated Protein Kinase 9
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Phosphotransferases/metabolism
- Protein Biosynthesis
- Protein Isoforms
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Signal Transduction
- Time Factors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Umbilical Cord/cytology
- Up-Regulation
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- N Cheng
- Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
148
|
Voll RE, Ghosh S. Role of NF-kappa B in T-lymphocyte development. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:485-90. [PMID: 11232325 DOI: 10.1101/sqb.1999.64.485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R E Voll
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
149
|
Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA. NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4949-57. [PMID: 11290773 DOI: 10.4049/jimmunol.166.8.4949] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fas death receptor plays a key role in the killing of target cells by NK cells and CTLs and in activation-induced cell death of mature T lymphocytes. These cytotoxic pathways are dependent on induction of Fas expression by cytokines such as TNF-alpha and IFN-gamma or by signals generated after TCR engagement. Although much of our knowledge of the Fas death pathway has been generated from murine studies, little is known about regulatory mechanisms important for murine Fas expression. To this end, we have molecularly cloned a region of the murine Fas promoter that is responsible for mediating TNF-alpha and PMA/PHA-induced expression. We demonstrate here that induction of Fas expression by both stimuli is critically dependent on two sites that associate with RelA-containing NF-kappaB complexes. To determine whether RelA and/or other NF-kappaB subunits are also important for regulating Fas expression in primary T cells, we used CD4 T cells from RelA(-/-), c-Rel(-/-), and p50(-/-) mice. Although proliferative responses were significantly impaired, expression of Fas and activation-induced cell death was unaffected in T cells obtained from these different mice. Importantly, we show that unlike fibroblasts, which consist primarily of RelA-containing NF-kappaB complexes, T cells have high levels of both RelA and c-Rel complexes, suggesting that Fas expression in T cells may be dependent on redundant functions of these NF-kappaB subunits.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
150
|
Guerder S, Rincòn M, Schmitt-Verhulst AM. Regulation of activator protein-1 and NF-kappa B in CD8+ T cells exposed to peripheral self-antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4399-407. [PMID: 11254694 DOI: 10.4049/jimmunol.166.7.4399] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional events that control T cell tolerance to peripheral self Ags are still unknown. In this study, we analyzed the regulation of AP-1- and NF-kappa B-mediated transcription during in vivo induction of tolerance to a self Ag expressed exclusively on hepatocytes. Naive CD8(+)Désiré (Des)(+) T cells isolated from the Des TCR-transgenic mice that are specific for the H-2K(b) class I Ag were transferred into Alb-K(b)-transgenic mice that express the H-2K(b) Ag on hepatocytes only. Tolerance develops in these mice. We found that the self-reactive CD8(+)Des(+) T cells were transiently activated, then became unresponsive and were further deleted. In contrast to CD8(+)Des(+) T cells activated in vivo with APCs, which express high AP-1 and high NF-kappa B transcriptional activity, the unresponsive CD8(+)Des(+) T cells expressed no AP-1 and only weak NF-kappa B transcriptional activity. The differences in NF-kappa B transcriptional activity correlated with the generation of distinct NF-kappa B complexes. Indeed, in vivo primed T cells predominantly express p50/p50 and p65/p50 dimers, whereas these p50-containing complexes are barely detectable in tolerant T cells that express p65- and c-Rel-containing complexes. These observations suggest that fine regulation of NF-kappa B complex formation may determine T cell fate.
Collapse
Affiliation(s)
- S Guerder
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique/Université de la Méditerranée, Marseille, France.
| | | | | |
Collapse
|