101
|
Barton SM, Janve VA, McClure R, Anderson A, Matsubara JA, Gore JC, Pham W. Lipopolysaccharide Induced Opening of the Blood Brain Barrier on Aging 5XFAD Mouse Model. J Alzheimers Dis 2020; 67:503-513. [PMID: 30584141 DOI: 10.3233/jad-180755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neurotherapeutics for many neurodegenerative diseases has largely been hindered by limited pharmacologic penetration across the blood-brain barrier (BBB). Previous attempts to target and clear amyloid-β (Aβ) plaques, a key mediator of neurodegenerative changes in Alzheimer's disease (AD), have had limited clinical success due to low bioavailability in the brain because of the BBB. Here we test the effects of inducing an inflammatory response to disrupt the BBB in the 5XFAD transgenic mouse model of AD. Lipopolysaccharide (LPS), a bacterial endotoxin recognized by the innate immune system, was injected at varying doses. 24 hours later, mice were injected with either thioflavin S, a fluorescent Aβ-binding small molecule or 30 nm superparamagnetic iron oxide (SPIO) nanoparticles, both of which are unable to penetrate the BBB under normal physiologic conditions. Our results showed that when pretreated with 3.0 mg/kg LPS, thioflavin S can be found in the brain bound to Aβ plaques in aged 5XFAD transgenic mice. Following the same LPS pretreatment, SPIO nanoparticles could also be found in the brain. However, when done on wild type or young 5XFAD mice, limited SPIO was detected. Our results suggest that the BBB in aged 5XFAD mouse model is susceptible to increased permeability mediated by LPS, allowing for improved delivery of the small molecule thioflavin S to target Aβ plaques and SPIO nanoparticles, which are significantly larger than antibodies used in clinical trials for immunotherapy of AD. Although this approach demonstrated efficacy for improved delivery to the brain, LPS treatment resulted in significant weight loss even at low doses, resulting from the induced inflammatory response. These findings suggest inducing inflammation can improve delivery of small and large materials to the brain for improved therapeutic or diagnostic efficacy. However, this approach must be balanced with the risks of systemic inflammation.
Collapse
Affiliation(s)
- Shawn M Barton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Vaibhav A Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard McClure
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA.,Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, TN, USA
| |
Collapse
|
102
|
Kim SM, Vetrivel P, Kim HH, Ha SE, Saralamma VVG, Kim GS. Artemisia iwayomogi (Dowijigi) inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppressing the NF-κB signaling pathway. Exp Ther Med 2020; 19:2161-2170. [PMID: 32104280 PMCID: PMC7027351 DOI: 10.3892/etm.2020.8472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Inflammatory diseases are an important health concern and have a growing incidence worldwide. Thus, developing novel and safe drugs to treat these disorders remains an important pursuit. Artemisia iwayomogi, locally known as Dowijigi (DJ), is a perennial herb found primarily in Korea and is used to treat various diseases such as hepatitis, inflammation and immune disorders. In the present study, the anti-inflammatory effects of a polyphenolic extract from the DJ flower (PDJ) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells were investigated. Cell cytotoxicity was assessed using the MTT assay. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by Griess and ELISA analysis, respectively. The expression levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX2) were examined by western blot analysis. Reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β, as well as COX2 and iNOS. The production of NO and PGE2 was significantly decreased following treatment with PDJ. The mRNA expression levels of TNFα, IL-6, IL-1β, COX2 and iNOS were significantly decreased in LPS-induced PDJ co-treated cells compared with the group treated with LPS alone. Western blot analysis indicated that PDJ downregulated the LPS-induced expression of iNOS and COX2, as well as the expression of NF-κB proteins. In conclusion, the present study demonstrated that PDJ exerted anti-inflammatory effects in LPS-induced macrophage cells by suppressing the NF-κB signaling pathway. Therefore, PDJ may be used as a potential therapeutic agent in inflammation.
Collapse
Affiliation(s)
- Seong Min Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| |
Collapse
|
103
|
Borato DCK, Vellosa JCR. Association between soluble biomarkers - microbial translocation, inflammation and cardiovascular risk in HIV- infected individuals: a systematic review. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
104
|
Sample Preparation and Analysis of Single Cells Using High Performance MALDI FTICR Mass Spectrometry. Methods Mol Biol 2020; 2064:125-134. [PMID: 31565771 DOI: 10.1007/978-1-4939-9831-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Imaging mass spectrometry is a powerful technology that combines the molecular measurements of mass spectrometry with the spatial information inherent to microscopy. This unique combination of capabilities is ideally suited for the analysis of metabolites and lipids from single cells. This chapter describes a methodology for the sample preparation and analysis of single cells using high performance MALDI FTICR MS. Using this approach, we are able to generate profiles of lipid and metabolite expression from single cells that characterize cellular heterogeneity. This approach also enables the detection of variations in the expression profiles of lipids and metabolites induced by chemical stimulation of the cells. These results demonstrate that MALDI IMS provides an insightful view of lipid and metabolite expression useful in the characterization of a number of biological systems at the single cell level.
Collapse
|
105
|
Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, Li L, Yin L, He C, Liang X, Ye G, Lv C, Lin J, Yin Z. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 2019; 19:1824-1834. [PMID: 32104238 PMCID: PMC7027153 DOI: 10.3892/etm.2019.8396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (Res) is a natural compound that possesses anti-inflammatory properties. However, the protective molecular mechanisms of Res against lipopolysaccharide (LPS)-induced inflammation have not been fully studied. In the present study, RAW264.7 cells were stimulated with LPS in the presence or absence of Res, and the subsequent modifications to the LPS-induced signaling pathways caused by Res treatment were examined. It was identified that Res decreased the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88, TIR domain-containing adapter molecule 2, which suggested that Res may inhibit the activation of the TLR4 signaling pathway. It suppressed the expression levels of total and phosphorylated TLR4, NF-κB inhibitor, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2 and interferon (IFN) regulatory factor 3 (IRF3) proteins. Following treatment with Res or specific inhibitors, the production of pro-inflammatory mediators including tumor necrosis factor-α, interleukin (IL)-6, IL-8 and IFN-β were decreased and the expression of anti-inflammatory mediator IL-10 was increased. These results suggested that Res may inhibit the signaling cascades of NF-κB, MAPKs and IRF3, which modulate pro-inflammatory cytokines. In conclusion, Res exhibited a therapeutic effect on LPS-induced inflammation through suppression of the TLR4-NF-κB/MAPKs/IRF3 signaling cascades.
Collapse
Affiliation(s)
- Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiangxiu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Juchun Lin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
106
|
Elkamhawy A, Kim NY, Hassan AHE, Park JE, Paik S, Yang JE, Oh KS, Lee BH, Lee MY, Shin KJ, Pae AN, Lee KT, Roh EJ. Thiazolidine-2,4-dione-based irreversible allosteric IKK-β kinase inhibitors: Optimization into in vivo active anti-inflammatory agents. Eur J Med Chem 2019; 188:111955. [PMID: 31893550 DOI: 10.1016/j.ejmech.2019.111955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Selective kinase inhibitors development is a cumbersome task because of ATP binding sites similarities across kinases. On contrast, irreversible allosteric covalent inhibition offers opportunity to develop novel selective kinase inhibitors. Previously, we reported thiazolidine-2,4-dione lead compounds eliciting in vitro irreversible allosteric inhibition of IKK-β. Herein, we address optimization into in vivo active anti-inflammatory agents. We successfully developed potent IKK-β inhibitors with the most potent compound eliciting IC50 = 0.20 μM. Cellular assay of a set of active compounds using bacterial endotoxin lipopolysaccharide (LPS)-stimulated macrophages elucidated significant in vitro anti-inflammatory activity. In vitro evaluation of microsomal and plasma stabilities showed that the promising compound 7a is more stable than compound 7p. Finally, in vivo evaluation of 7a, which has been conducted in a model of LPS-induced septic shock in mice, showed its ability to protect mice against septic shock induced mortality. Accordingly, this study presents compound 7a as a novel potential irreversible allosteric covalent inhibitor of IKK-β with verified in vitro and in vivo anti-inflammatory activity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nam Youn Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong-Eun Yang
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang-Seok Oh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Byung Ho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Mi Young Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Kye Jung Shin
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
107
|
Liu C, Yao Z, Wang J, Zhang W, Yang Y, Zhang Y, Qu X, Zhu Y, Zou J, Peng S, Zhao Y, Zhao S, He B, Mi Q, Liu X, Zhang X, Du Q. Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ 2019; 27:1765-1781. [PMID: 31802034 DOI: 10.1038/s41418-019-0460-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Infiltrated macrophages are an important constituent of the tumor microenvironment and play roles in tumor initiation and progression by promoting immune evasion. However, the molecular mechanism by which macrophage-derived cytokines foster immune escape of colorectal cancer (CRC) is unclear. Here, we demonstrated that macrophage infiltration induced by lipopolysaccharide (LPS) or a high-cholesterol diet (HCD) significantly promoted CRC growth. Similarly, LPS and poly (I:C) remarkably increased the volume of CT26 cell allograft tumors. C-C motif chemokine ligand 5 (CCL5), which is secreted by macrophages, inhibited T-cell-mediated killing of HT29 cells and promoted immune escape by stabilizing PD-L1 in vitro and in vivo. Mechanistically, CCL5 resulted in formation of nuclear factor kappa-B p65/STAT3 complexes, which bound to the COP9 signalosome 5 (CSN5) promoter, leading to its upregulation. Moreover, CSN5 modulated the deubiquitination and stability of PD-L1. High expression of CSN5 in CRC was associated with significantly shorter survival. Furthermore, compound-15 was identified as an inhibitor of CSN5, and destabilized PD-L1 to alleviate the tumor burden. Our results suggest that the novel CCL5-p65/STAT3-CSN5-PD-L1 signaling axis is significantly activated by LPS or HCD-driven macrophage infiltration in an animal model of CRC, which likely has therapeutic and prognostic implications for human cancers.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhaoying Yao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jianing Wang
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wen Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yan Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu & Affiliated Hospital of Southwest Jiaotong University, 82 Qing Long Street, Chengdu, 610031, PR China
| | - Yan Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Xinliang Qu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Sishi Peng
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Yan Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Qiongyu Mi
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xu Zhang
- Department of Pharmacy, The First People's Hospital of Chengdu & Affiliated Hospital of Chengdu Medical College, 18 Wanxiang East Road, Chengdu, 610041, PR China. .,Affiliated Hospital of integrated traditional Chinese and Western Medicine of Chengdu Medical College, 783 Xindu Avenue, Chengdu, 610031, PR China. .,Affiliated Hospital of integrated traditional Chinese and Western Medicine of Chengdu University of TCM, 37, Twelve Bridges Road, Chengdu, 610031, PR China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.
| |
Collapse
|
108
|
Singha AK, Sarkar C, Majumder D, Debnath R, Saha M, Maiti D. IL-15 and GM-CSF stimulated macrophages enhances phagocytic activity in ENU induced leukemic mice. Immunobiology 2019; 225:151894. [PMID: 31839395 DOI: 10.1016/j.imbio.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
Murine splenic macrophage plays a decisive role in host immunity through phagocytosis against pathogens. It was reported that, macrophages also involves in phagocytosis of some tumour cells upon its activation initiated by certain cytokines produced by other immune cell or by indigenously treated. In this study, we have investigated the killing of leukemic blast cells by macrophages upon stimulated with IL-15 and GM-CSF alone or in combination in ENU challenged leukemic murine model. Along with, the release of TNF-α, IL-12 and IFN-γ by macrophages were assayed by ELISA. NO production by macrophages was also investigated. The molecular expressions like GM-CSF and TLRs were investigated for better understand of macrophage-leukemic cell interaction. Result shows that in disease condition macrophages have poor phagocytic activities which may be due to less release of TNF-α, IL-12 and IFN-γ by macrophages. This impaired phagocytic activity in leukemic mice was increase upon stimulation with IL-15 and GM-CSF.
Collapse
Affiliation(s)
- Ashish Kumar Singha
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Chaitali Sarkar
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Debabrata Majumder
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Rahul Debnath
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| | - Manasi Saha
- Dept. of Pathology, Agartala Govt. Medical College, Agartala-799001, Tripura, India.
| | - Debasish Maiti
- Immunology and Microbiology Lab, Dept. of Human Physiology, Tripura University, Suryamaninagar-799022, Tripura, India.
| |
Collapse
|
109
|
Yıldızlı G, Coral G, Ayaz F. Immunostimulatory Activities of Coliphages on In Vitro Activated Mammalian Macrophages. Inflammation 2019; 43:595-604. [DOI: 10.1007/s10753-019-01140-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
110
|
Xiao L, Huang R, Zhang Y, Li T, Dai J, Nannapuneni N, Chastanet TR, Chen M, Shen FH, Jin L, Dorn HC, Li X. A New Formyl Peptide Receptor-1 Antagonist Conjugated Fullerene Nanoparticle for Targeted Treatment of Degenerative Disc Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38405-38416. [PMID: 31556594 PMCID: PMC6935051 DOI: 10.1021/acsami.9b11783] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intervertebral disc degeneration associated back pain is the most common cause of disability worldwide; however, no safe and effective treatments have been available. Here, we report a new functionalized nanofullerene conjugated with a peptide that binds specifically to a formyl peptide receptor-1 (FPR-1) expressed on activated macrophages. The new nanoparticle (aka FT-C60) was synthesized by conjugating carboxyl-C60 with the primary amine group of the peptide with a fluorescence dye for easy detection. The new nanoparticle was characterized by X-ray photoelectron spectroscopy, mass spectroscopy, and gel electrophoresis. It possessed effective radical (hydroxyl and superoxide anions) scavenging capabilities in electron paramagnetic resonance spectroscopy. In cultured cells, the nanoparticle FT-C60 demonstrated preferential binding to FPR-1 on activated macrophages and significantly attenuated mRNA expressions of proinflammatory factors including interleukin-6, interleukin-1, tumor necrosis factor-alpha, and cyclooxygenase-2. In vivo animal studies exhibited that a single intravenous injection of FT-C60 effectively alleviated pain in an established mouse model of radiculopathy for up to post-operation day (POD) 12. Ex vivo near-infrared fluorescence imaging of the mouse spine confirmed the targeting property of FT-C60 toward the injured disc on POD 14. Quantitative analysis of histological staining on spine sections showed that nanoparticle FT-C60 dramatically reduced inflammation at the local injury site compared to injury only on POD 7. In summary, we developed a novel targeted nanoparticle for treatment of lumbar radiculopathy by systemic delivery. This is a first-of-its-kind study for developing a novel class of targeted and systemic nanoparticle therapeutics to treat degenerative disc diseases.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Rong Huang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 United States
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Tinghui Li
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 United States
| | - Jun Dai
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Naga Nannapuneni
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Timothy R. Chastanet
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Matthew Chen
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Francis H. Shen
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
| | - Harry C. Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 United States
- Fralin Biomedical Research Institute, Roanoke, Virginia 24016, United States
| | - Xudong Li
- Department of Orthopaedic Surgery and University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
111
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
112
|
Tiveron RDR, Costa DA, Leite MDI, Vaz CBS, Sousa M, Carlos SMCF, Oliveira CJF, Machado RR, Paulino TP. Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy. BRAZ J BIOL 2019; 80:497-505. [PMID: 31576928 DOI: 10.1590/1519-6984.193748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/11/2019] [Indexed: 11/22/2022] Open
Abstract
Little is known regarding whether photodynamic therapy (PDT)-induced cell death can substantially compromise macrophages (MΦ), which are important cells in PDT-induced immune responses. Here, parameters of PDT-mediated MΦ cytotoxicity and cytokine production in response to protoporphyrin IX (PpIX) were evaluated. Peritoneal MΦ from BALB/c mice were stimulated in vitro with PDT, light, PpIX, or lipopolysaccharide (LPS). After that, cell viability, lipid peroxidation, Nitric Oxide (NO), DNA damage, TNF-α, IL-6 and IL-10 were evaluated. Short PDT exposure reduced cell viability by 10-30%. There was a two-fold increase in NO and DNA degradation, despite the non-increase in lipoperoxidation. PDT increased TNF-α and IL-10, particularly in the presence of LPS, and decreased the production of IL-6 to 10-fold. PDT causes cellular stress, induces NO radicals and leads to DNA degradation, generating a cytotoxic microenvironment. Furthermore, PDT modulates pro- and anti-inflammatory cytokines in MΦ.
Collapse
Affiliation(s)
- R D R Tiveron
- Núcleo de Biotérios, Biotério Central, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - D A Costa
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - M D I Leite
- Programa de Mestrado em Odontologia, Universidade de Uberaba, Uberaba, MG, Brasil
| | - C B S Vaz
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - M Sousa
- Universidade de Uberaba, Uberaba, MG, Brasil
| | - S M C F Carlos
- Laboratório Multidisciplinar, Centro de Educação Profissional, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - C J F Oliveira
- Núcleo de Biotérios, Biotério Central, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - R R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - T P Paulino
- Laboratório Multidisciplinar, Centro de Educação Profissional, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| |
Collapse
|
113
|
Xia Z, Gu M, Jia X, Wang X, Wu C, Guo J, Zhang L, Du Y, Wang J. Integrated DNA methylation and gene expression analysis identifies SLAMF7 as a key regulator of atherosclerosis. Aging (Albany NY) 2019; 10:1324-1337. [PMID: 29905534 PMCID: PMC6046250 DOI: 10.18632/aging.101470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Atherosclerosis (AS) is a multifactorial disease. Exploration of DNA methylation in regulating gene transcription in a cell type- and stage-specific manner will shed light on understanding the biological processes associated with plaque stability. We identified 174 up-regulated genes with hypo-methylation in the promoter, and 86 down-regulated genes with hyper-methylation in the promoter, in AS vs. healthy controls. Among them, high expression of signaling lymphocytic activation molecule 7 (SLAM7) was examined in carotid plaque vs. intact tissue, in advanced plaque vs. early atherosclerotic tissue, and SLAMF7 protein expressed significantly higher in the unstable plaques than that in the stable plaques, especially in the CD68-positive macrophages. Depletion of SLAMF7 in plaque-derived macrophages induced a suppressed secretion of proinflammatory cytokines, and inhibited proliferation of vascular smooth muscle cells. These data provide emerging evidence that SLAMF7 could be a target of potential therapeutic intervention in carotid AS.
Collapse
Affiliation(s)
- Zhangyong Xia
- Department of Neurology Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, CAS Key Laboratory of Genomic Science and Information Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences and Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiaoting Wang
- Taishan Medical University, Taian, Shandong 271016, P.R. China
| | - Chunxia Wu
- Department of Ultrasonic Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Jiangwen Guo
- Deparment of Neurology Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, PR China
| | - Yifeng Du
- Department of Neurology Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiyue Wang
- Department of Neurosurgery Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, PR China
| |
Collapse
|
114
|
Sadowska JM, Wei F, Guo J, Guillem-Marti J, Lin Z, Ginebra MP, Xiao Y. The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis. Acta Biomater 2019; 96:605-618. [PMID: 31269454 DOI: 10.1016/j.actbio.2019.06.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/15/2022]
Abstract
Biomaterial implantation triggers inflammatory reactions. Understanding the effect of physicochemical features of biomaterials on the release of inflammatory cytokines from immune cells would be of great interest in view of designing bone graft materials to enhance the healing of bone defects. The present work investigated the interactions of two chemically and texturally different calcium phosphate (CaPs) substrates with macrophages, one of the main innate immune cells, and its further impact on osteogenic differentiation of bone forming cells. The behaviour of macrophages seeded on biomimetic calcium deficient hydroxyapatite (CDHA) and sintered β-tricalcium phosphate (β-TCP) was assessed in terms of the release of inflammatory cytokines and osteoclastogenic factors. The osteogenic differentiation of bone progenitor cells (bone marrow stromal cells (BMSCs) and osteoblastic cell line (SaOS-2)) were subsequently studied by incubating with the conditioned medium induced by macrophage-CaPs interaction in order to reveal the effect of immune cell reaction to CaPs on osteogenic differentiation. It was found that the incubation of macrophages with CaPs substrates caused a decrease of pro-inflammatory cytokines, more pronounced for β-TCP compared with CDHA showing significantly decreased IL-6, TNF-a, and iNOS. However, the macrophage-CDHA interaction resulted in a more favourable environment for osteogenic differentiation of osteoblasts with more collagen type I production and osteogenic genes (Runx2, BSP) expression, suggesting that osteogenic differentiation of bone cells is not only determined by the nature of biomaterials, but also significantly influenced by the inflammatory environment generated by the interaction of immune cells and biomaterials. STATEMENT OF SIGNIFICANCE: The field of osteoimmunology highlights the importance of the cross-talk between immune and bone cells for effective bone regeneration. This tight interaction opens the door to new strategies that encompass the development of smart cell-instructive biomaterials which performance covers the events from early inflammation to osteogenesis. The present work links the anti-inflammatory and osteoimmunomodulatory features of synthetic bone grafts to their chemistry and texture, focussing on the cross-talk between macrophages and two major orchestrators of bone healing, namely primary mesenchymal stem cells and osteoblasts. The results emphasize the importance of the microenvironment created through the interaction between the substrate and the immune cells as it can stimulate osteogenic events and subsequently foster bone healing.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Fei Wei
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Jia Guo
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia; Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guanghua Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, People's Republic of China.
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Zhengmei Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guanghua Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, People's Republic of China.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Yin Xiao
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
115
|
Selim NM, Elgazar AA, Abdel-Hamid NM, El-Magd MRA, Yasri A, Hefnawy HME, Sobeh M. Chrysophanol, Physcion, Hesperidin and Curcumin Modulate the Gene Expression of Pro-Inflammatory Mediators Induced by LPS in HepG2: In Silico and Molecular Studies. Antioxidants (Basel) 2019; 8:antiox8090371. [PMID: 31484451 PMCID: PMC6770650 DOI: 10.3390/antiox8090371] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatitis is an inflammatory condition that can develop hepatocellular carcinoma. Traditional medicine has always been the pillar of medical practice. However, it became less compatible with the current understanding of the diseases and the possible treatment. Therefore, in silico tools could be utilized for building the bridge between the legacy of the past and the current medical approaches allowing access to new therapeutic discoveries. In this work, a Chinese traditional medicine database was screened using structure-based virtual screening to identify molecules that could inhibit p38 alpha mitogen-activated protein kinase (MAPK). Out of the identified compounds, four selected compounds: chrysophanol, physcion, curcumin and hesperidin were isolated from their respective sources and their structures were confirmed by spectroscopic methods. These compounds decreased the gene expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1β) in lipopolysaccharide (LPS) induced inflammation in a hepatocellular carcinoma cell line (HepG2) in a dose-dependent manner. The molecular docking study revealed the specificity of these compounds towards p38 MAPK rather than other MAPKs. In conclusion, the molecular and in silico studies suggest that the isolated compounds could be a potential treatment for hepatitis by resolving inflammation controlled by MAPKs, thus limiting the development of further complications and lower side effects.
Collapse
Affiliation(s)
- Nabil Mohamed Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | | | - Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammed Rizk Abu El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aziz Yasri
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben-Guerir 43150, Morocco
| | | | - Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben-Guerir 43150, Morocco.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
116
|
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. NANOMATERIALS 2019; 9:nano9081074. [PMID: 31357440 PMCID: PMC6723354 DOI: 10.3390/nano9081074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
Abstract
Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (−14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.
Collapse
Affiliation(s)
- Skyla A Duncan
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Saurabh Dixit
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Rajnish Sahu
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - David Martin
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Dieudonné R Baganizi
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA 70560, USA
| | - Shree R Singh
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA
| | - Vida A Dennis
- Center for NanoBiotechnology & Life Sciences Research, Department of Biological Sciences, Alabama State University, 915 South Jackson Street, Montgomery, AL 36104, USA.
| |
Collapse
|
117
|
β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
118
|
Karaky M, Fedetz M, Potenciano V, Andrés-León E, Codina AE, Barrionuevo C, Alcina A, Matesanz F. SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-κB inhibition. Hum Mol Genet 2019; 27:4012-4023. [PMID: 30102396 DOI: 10.1093/hmg/ddy284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
SP140 locus has been associated with multiple sclerosis (MS) as well as other autoimmune diseases by genome-wide association studies (GWAS). The causal variant of these associations (rs28445040-T) alters the splicing of the SP140 gene transcripts reducing the protein expression. We aimed to understand why the reduction of SP140 expression produced by the risk variant can increase the susceptibility to MS. To this end, we determined by RNA sequencing (RNA-seq) analysis the differentially expressed genes after SP140 silencing in lymphoblastoid cell lines (LCLs). We analyzed these genes by gene ontology (GO), comparative transcriptome profiles, enrichment of transcription factors (TFs) in the promoters of these genes and colocalization with GWAS risk variants. We also monitored the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in SP140-silenced cells by luciferase reporter system. We identified 100 genes that were up-regulated and 22 genes down-regulated in SP140-silenced LCLs. GO analysis revealed that genes affected by SP140 were involved in regulation of cytokine production, inflammatory response and cell-cell adhesion. We observed enrichment of NF-κB TF in the promoter of up-regulated genes and NF-κB-increased activity in SP140-silenced cell lines. We showed enrichment of genes regulated by SP140 in GWAS-detected risk loci for MS (14.63 folds), Crohn's disease (4.82 folds) and inflammatory bowel disease (4.47 folds), not observed in other unrelated immune diseases. Our findings showed that SP140 is an important repressor of genes implicated in inflammation, suggesting that decreased expression of SP140, promoted by the rs28445040-T risk variant, may lead to up-regulation of these genes by means of NF-κB inhibition in B cells.
Collapse
Affiliation(s)
- Mohamad Karaky
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Victor Potenciano
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatic Facility, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Anna Esteve Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Barrionuevo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
119
|
Goldansaz SM, Festa C, Pagano E, De Marino S, Finamore C, Parisi OA, Borrelli F, Sonboli A, D'Auria MV. Phytochemical and Biological Studies of Nepeta asterotricha Rech. f. (Lamiaceae): Isolation of Nepetamoside. Molecules 2019; 24:molecules24091684. [PMID: 31052163 PMCID: PMC6539229 DOI: 10.3390/molecules24091684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The n-butanolic extract, from an Iranian specimen of Nepeta asterotricha Rech. f. (NABE), displayed anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated J774A.1 macrophages, which reduced nitrites and cytokines production. Bioassay guided fractionation of the extract led to the isolation of four iridoid glycosides, including a new one known as nepetamoside (1), one hexenyl-diglycoside, and some polyphenol and flavonoid components. None of the isolated iridoid components displayed significant effects on nitrites formation in an in vitro LPS-induced model of inflammation, thus suggesting that the plant anti-inflammatory effect is probably due to a synergistic action among its constituents.
Collapse
Affiliation(s)
- Seyed Mostafa Goldansaz
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, 1983969411Tehran, Iran.
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Carmen Festa
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Simona De Marino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Claudia Finamore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Olga Alessandra Parisi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C. Evin, 1983969411Tehran, Iran.
| | - Maria Valeria D'Auria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
120
|
Novel function of PiT1/SLC20A1 in LPS-related inflammation and wound healing. Sci Rep 2019; 9:1808. [PMID: 30755642 PMCID: PMC6372663 DOI: 10.1038/s41598-018-37551-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
PiT1/SLC20A1 is an inorganic phosphate transporter with additional functions including the regulation of TNFα-induced apoptosis, erythropoiesis, cell proliferation and insulin signaling. Recent data suggest a relationship between PiT1 and NF-κB-dependent inflammation: (i) Pit1 mRNA is up-regulated in the context of NF-κB pathway activation; (ii) NF-κB target gene transcription is decreased in PiT1-deficient conditions. This led us to investigate the role of PiT1 in lipopolysaccharide (LPS)-induced inflammation. MCP-1 and IL-6 concentrations were impaired in PiT1-deficient bone marrow derived macrophages (BMDMs) upon LPS stimulation. Lower MCP-1 and IL-6 serum levels were observed in Mx1-Cre; Pit1lox/lox mice dosed intraperitoneally with LPS. Lower PiT1 expression correlated with decreased in vitro wound healing and lower reactive oxygen species levels. Reduced IκB degradation and lower p65 nuclear translocation were observed in PiT1-deficient cells stimulated with LPS. Conversely, PiT1 expression was induced in vitro upon LPS stimulation. Addition of an NF-κB inhibitor abolished LPS-induced PiT1 expression. Furthermore, we showed that p65 expression activated Pit1 promoter activity. Finally, ChIP assays demonstrated that p65 directly binds to the mPit1 promoter in response to LPS. These data demonstrate a completely novel function of PiT1 in the response to LPS and provide mechanistic insights into the regulation of PiT1 expression by NF-κB.
Collapse
|
121
|
Zhang W, Lu X, Yuan Z, Shen M, Song Y, Liu H, Deng J, Zhong X, Zhang X. Establishing an osteoimmunomodulatory coating loaded with aspirin on the surface of titanium primed with phase-transited lysozyme. Int J Nanomedicine 2019; 14:977-991. [PMID: 30787611 PMCID: PMC6368129 DOI: 10.2147/ijn.s190766] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To improve osseointegration and enhance the success rate of implanted biomaterials, the surface modification technology of bone implants has developed rapidly. Intensive research on osteoimmunomodulation has shown that the surfaces of implants should possess favorable osteoimmunomodulation to facilitate osteogenesis. METHODS A novel, green and efficient phase-transited lysozyme (PTL) technique was used to prime titanium discs with a positive charge. In addition, sodium hyaluronate (HA) and self-assembled type I collagen containing aspirin (ASA) nanoparticles were decorated on PTL-primed Ti discs via electrostatic interaction. RESULTS The behaviors of bone marrow stromal cells (BMSCs) on the Ti disc surfaces containing ASA were analyzed in different conditioned media (CM) generated by macrophages. Additionally, the secretion of inflammation-related cytokines of macrophages on the surfaces of different Ti discs was investigated in in vitro experiments, which showed that the Ti surface containing ASA not only supported the migration, proliferation and differentiation of BMSCs but also reduced the inflammatory response of macrophages compared with Ti discs without surface modification. After implantation in vivo, the ASA-modified implant can significantly contribute to bone formation around the implant, which mirrors the evaluation in vitro. CONCLUSION This study highlights the significant effects of appropriate surface characteristics on the regulation of osteogenesis and osteoimmunomodulation around an implant. Implant modification with ASA potentially provides superior strategies for the surface modification of biomaterials.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xin Lu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Minjuan Shen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Huanhuan Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Jingjing Deng
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Xu Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People's Republic of China,
| |
Collapse
|
122
|
Liu Q, Zhao H, Gao Y, Meng Y, Zhao XX, Pan SN. Effects of Dandelion Extract on the Proliferation of Rat Skeletal Muscle Cells and the Inhibition of a Lipopolysaccharide-Induced Inflammatory Reaction. Chin Med J (Engl) 2018; 131:1724-1731. [PMID: 29998893 PMCID: PMC6048917 DOI: 10.4103/0366-6999.235878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Dandelion is commonly used in traditional Chinese medicine with several active compounds found in extracts. It has a variety of pharmacological effects, such as a reduction in swelling and inflammation, and detoxification. The mechanism by which dandelion extract inhibits the inflammatory response in skeletal muscle cells remains unknown; therefore, the aim of this study was to investigate the effects of dandelion extract root on the proliferation of skeletal muscle cells and the alleviation of lipopolysaccharide (LPS)-induced inflammatory response in vitro. Methods Rat skeletal muscle cells were isolated from Sprague-Dawley rat and cultured in vitro which were cultured in basal medium, or medium containing LPS or dandelion extract. Cell counting kit-8 (CCK-8) was employed to measure cell proliferation; meanwhile, the optimal concentration of dandelion extract and treatment time were selected. Crystal violet staining was used to detect the proliferation of muscle cells. Western blotting analysis was used to detect the levels of inflammatory factors, myogenic factor, and p-AKT protein expression. Results The optimal concentration and treatment time of dandelion extract for the following study were 5 mg/ml and 4 days, respectively. Dandelion extract was found to increase proliferation of rat skeletal muscle cells (t = 3.145, P < 0.05), with the highest effect observed at 5 mg/ml. LPS was found to decrease proliferation of skeletal muscle cells (t = -131.959, P < 0.001), and dandelion extract could against this affection (t = 19.466, P < 0.01). LPS could induce expression of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α (IL-1β: t = 9.118, P < 0.01; IL-6: t = 4.346, P < 0.05; TNF-α: t = 15.806, P < 0.05), and dandelion extract was shown to reduce LPS-induced expression of IL-1β, IL-6 and TNF-α (IL-1β: t = -2.823, P < 0.05; IL-6: t = -3.348, P < 0.01; and TNF-α: t = -3.710, P < 0.01). Furthermore, LPS was also shown to decrease expression of myogenic factor, including myod1 and myogenin (MyoD1: t = 4.039, P < 0.05 and myogenin: t = 3.300, P < 0.01), but dandelion extract was shown to against this effect of LPS (MyoD1: t = -3.160, P < 0.05 and myogenin: t = -3.207, P < 0.01). And then, LPS was found to increase expression of p-AKT protein (p-AKT/AKT: t = 4.432, P < 0.05). Moreover, expression of p-AKT protein was found to decrease, with 5 mg/ml of dandelion extract (p-AKT/AKT: t = -3.618, P < 0.05). Conclusions The findings indicate that dandelion extract plays an important role in skeletal muscle cells viability regulation, promote cells proliferation by increasing level of p-AKT protein expression, and reduce LPS-induced expression of inflammatory factors, inhibiting the inflammatory response of rat skeletal muscle cells.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Heng Zhao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004; Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yue Gao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yan Meng
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiang-Xuan Zhao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Shi-Nong Pan
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
123
|
Criscuolo F, Sorci G, Behaim-Delarbre M, Zahn S, Faivre B, Bertile F. Age-related response to an acute innate immune challenge in mice: proteomics reveals a telomere maintenance-related cost. Proc Biol Sci 2018; 285:rspb.2018.1877. [PMID: 30518572 DOI: 10.1098/rspb.2018.1877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Ageing is characterized by the impairment of the acute innate immune response and the upregulation of low-grade inflammation, i.e. inflammaging. At the cellular level, telomeres are considered as a marker of biological ageing as their length is progressively eroded in the absence of repair mechanisms. However, the link between telomeres and inflammaging remains underexplored. We aimed to identify proteins that are differentially expressed between age classes in response to an acute inflammatory challenge. We challenged young (two months) and old (12 months) C57BL/6 mice using bacterial lipopolysaccharide (LPS) and measured telomere length and proteomic profiles in splenocytes. In total, 233 out of the 1966 proteins we quantified differed among experimental groups. A hierarchical clustering analysis revealed that nine of those 233 proteins were differently expressed among the experimental groups. Young mice responded to LPS by increasing the expression of proteins involved in the innate immune response, and interestingly, in telomere length maintenance. However, this regulation was impaired at older ages. These results are in agreement with the assumption that the strength of selection declines with age, potentially explaining the maintenance of costly, dysregulated, immune responses at old age. We suggest that the immune response is competing with the telomere maintenance process, highlighting how telomeres reflect the ageing trade-off even in a species where telomere length is not related to lifespan.
Collapse
Affiliation(s)
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Sandrine Zahn
- CNRS, Université de Strasbourg, IPHC UMR 7178, 67000 Strasbourg, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabrice Bertile
- CNRS, Université de Strasbourg, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
124
|
Saiki P, Nakajima Y, Van Griensven LJLD, Miyazaki K. Real-time monitoring of IL-6 and IL-10 reporter expression for anti-inflammation activity in live RAW 264.7 cells. Biochem Biophys Res Commun 2018; 505:885-890. [PMID: 30301531 DOI: 10.1016/j.bbrc.2018.09.173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
In previous study, we suggested that the interleukin (IL)-6 and IL-10 could serve as a good biomarker for anti-inflammation that related to chronic inflammatory disease. Recently, we are finding new anti-inflammation compounds from natural products by screening of IL-6 and IL-10 levels. Although, we could measure IL-6 and IL-10 levels by several methods. However, all methods could not measure continuous kinetic of IL-6 and IL-10 levels. Most methods have multiple steps and take a long time. Therefore, there is no a suitable method for screening. To this end, we established IL-6 and IL-10 promoter assay which can monitor with reference gene as Glyceraldehyde 3-phosphate dehydrogenase (gapdh) promoter in living single cell. It could determine IL-6 and IL-10 levels continuously in real-time within two steps. We evaluated IL-6 and IL-10 reporter expression in LPS-induced RAW 264.7 cells with well-known anti-inflammatory compounds such as quercetin, xanthones, β-D-glucan and dexamethasone. As the results, the expression of IL-6 and IL-10 reporters were strongly induced by LPS. The expression of IL-6 reporter was inhibited by all anti-inflammation compounds in LPS-induced RAW 264.7 cells. The expression of IL-10 reporter was inhibited by quercetin, xanthones and dexamethasone in LPS-induced RAW 264.7 cells. While, expression of IL-10 reporter was induced by β-D-glucan. These results indicated that this assay could use for determination of IL-6 and IL-10 reporter expression in LPS-induced RAW 264.7 cells for anti-inflammation activity. Moreover, the results showed that natural compounds have an effect on the time course of IL-6 and IL-10 expressions. Therefore, real-time monitoring has a merit for natural compounds screening. We suggested that this assay could serve as a compound screening assay for anti-inflammation activity.
Collapse
Affiliation(s)
- Papawee Saiki
- Biomedical Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advance Industrial Science and Technology, Takamatsu, Kagawa, Japan
| | - Leo J L D Van Griensven
- Plant Research International, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Koyomi Miyazaki
- Biomedical Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
125
|
Elgazar AA, Knany HR, Ali MS. Insights on the molecular mechanism of anti-inflammatory effect of formula from Islamic traditional medicine: An in-silico study. J Tradit Complement Med 2018; 9:353-363. [PMID: 31453132 PMCID: PMC6702150 DOI: 10.1016/j.jtcme.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/09/2023] Open
Abstract
Background and aim Traditional medicine is an important source for drug discovery. However, many challenges face the scientific community to develop novel drugs from it. To investigate the rationale behind the medical legacy of centuries of precious knowledge from traditional medicine, we aimed at performing virtual screening to identify potential leads from the middle-age textbook, The Canon of Medicine. Experimental procedure A database of chemical constituents of plants mentioned within the book was built and docked against different molecular targets associated with inflammation such as phospholipase A2, p38 alpha mitogen activated protein kinase, cyclooxygenase-2 and leukotriene B4 dehydrogenase, after that literature survey was done to determine the consistency of traditional uses and molecular docking results with the current knowledge obtained from previous studies and reports. Results and conclusion The in-silico study revealed the ability of several chemical constituents, in the plants under investigation, to bind effectively to different targets associated with inflammation, which was consistent with previous reports, indicating that Islamic traditional medicine can be considered as a reliable promising source for developing new anti-inflammatory agents with low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Hamada Ramadan Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| | - Mohammed Soliman Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Egypt
| |
Collapse
|
126
|
Zhang Y, Guo H, Cheng BCY, Su T, Fu XQ, Li T, Zhu PL, Tse KW, Pan SY, Yu ZL. Dingchuan tang essential oil inhibits the production of inflammatory mediators via suppressing the IRAK/NF-κB, IRAK/AP-1, and TBK1/IRF3 pathways in lipopolysaccharide-stimulated RAW264.7 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2731-2748. [PMID: 30233137 PMCID: PMC6129014 DOI: 10.2147/dddt.s160645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dingchuan tang (asthma-relieving decoction), a formula of nine herbs, has been used for treating respiratory inflammatory diseases for >400 years in the People’s Republic of China. However, the mechanisms underlying the anti-inflammatory action of dingchuan tang is not fully understood. This study aims to investigate the effects of Dingchuan tang essential oil (DCEO) on inflammatory mediators and the underlying mechanism of action. Materials and methods DCEO was extracted by steam distillation. Lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were used as the cell model. Production of nitric oxide (NO) was determined by the Griess test. Protein secretion and mRNA levels of inflammatory mediators were measured by the enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Protein levels were examined by Western blot. Nuclear localization of nuclear factor-kappa B (NF-κB) was detected using immunofluorescence analyses. Results DCEO significantly reduced LPS-triggered production of NO and prostaglandin E2 (PGE2) and decreased protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). LPS induced upregulation of protein and mRNA levels of cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), and chemokines (monocyte chemoattractant protein-1 [MCP-1], chemokine [C-C motif] ligand 5 [CCL-5], and macrophage inflammatory protein [MIP]-1α) were suppressed by DCEO treatment. Phosphorylation and nuclear protein levels of transcription factors (activator protein-1 [AP-1], NF-κB, interferon regulatory factor 3 [IRF3]) were decreased by DCEO. Protein levels of phosphorylated IκB-α, IκB kinase α/β (IKKα/β), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), TGF β-activated kinase 1 (TAK1), TANK-binding kinase 1 (TBK1), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), and c-Jun N-terminal kinase (JNK) were lowered by DCEO. Moreover, degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 induced by LPS was inhibited by DCEO treatment. Conclusion Suppression of the interleukin-1 receptor-associated kinase (IRAK)/NF-κB, IRAK/AP-1 and TBK1/IRF3 pathways was associated with the inhibitory effects of DCEO on inflammatory mediators in LPS-stimulated RAW264.7 macrophages. This study provides a pharmacological justification for the use of dingchuan tang in managing inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Guo
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Brian Chi-Yan Cheng
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Kai-Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Si-Yuan Pan
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China,
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China, .,Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, People's Republic of China,
| |
Collapse
|
127
|
Hydroxyl Radical-Suppressing Mechanism and Efficiency of Melanin-Mimetic Nanoparticles. Int J Mol Sci 2018; 19:ijms19082309. [PMID: 30087240 PMCID: PMC6121240 DOI: 10.3390/ijms19082309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 11/16/2022] Open
Abstract
Harnessing melanins to scavenge free radicals in vivo may yield treatment methods for inflammatory disorders. Furthermore, elucidation of the mechanism underlying melanin-mediated suppression of free radicals, which is yet unclear, is warranted. Herein, we chemically synthesized melanin-mimetic nanoparticles (MeNPs) and investigated the mechanism underlying their use. MeNPs efficiently suppressed hydroxyl radicals by converting some MeNP hydroxyl groups to ketone groups. Furthermore, they suppressed hydroxyl radicals produced by lipopolysaccharide-treated Kupffer cells involved in hepatic cirrhosis pathogenesis, without causing significant cytotoxicity. The present results indicate the suitability of MeNPs to treat hepatic cirrhosis; however, further in vivo studies are warranted to determine their treatment efficacy.
Collapse
|
128
|
Interaction of hepatic stellate cells with neutrophils and macrophages in the liver following oncogenic kras activation in transgenic zebrafish. Sci Rep 2018; 8:8495. [PMID: 29855567 PMCID: PMC5981472 DOI: 10.1038/s41598-018-26612-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) plays a crucial role in the liver disease progression from liver fibrosis/cirrhosis to cancer. Here, we found a rapid change of microenvironment after krasV12-induction in zebrafish liver with progressively increased stromal cell number and enlarged liver size. Neutrophils and macrophages exhibited a faster response than HSCs. By manipulating the numbers of neutrophils and macrophages through morpholino knockdown, we found that macrophages contributed to both HSC survival and activation while neutrophils appear to be only required for HSC activation. Serotonin, which is essential for HSC survival and activation, was found up-regulated in hepatocytes and macrophages, but not in neutrophils after krasV12 induction. Serotonin receptor was highly expressed in HSCs; increase of the receptor activity by an agonist stimulated HSCs and oncogenic growth of the liver while an opposite effect was observed with an antagonist. Activated HSCs promoted the pro-tumorigenesis functions of neutrophils and macrophages through secretion of Tgfb1. Overall, these observations elucidated a cellular interaction in microenvironment where that upregulated serotonin in hepatocytes and macrophages activated HSCs. Since the microenvironment crosstalk plays a vital role in manipulation of liver carcinogenesis, the underlying mechanism may provide potential therapeutic targets for liver diseases.
Collapse
|
129
|
Cho H, Park JH, Ahn EK, Oh JS. Kobophenol A Isolated from Roots of Caragana sinica (Buc'hoz) Rehder Exhibits Anti-inflammatory Activity by Regulating NF-κB Nuclear Translocation in J774A.1 Cells. Toxicol Rep 2018; 5:647-653. [PMID: 30023311 PMCID: PMC6046687 DOI: 10.1016/j.toxrep.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
Kobophenol A (KPA) is a biologically active natural compound isolated from the roots of Caragana sinica (Buc'hoz) Rehder (C. sinica). However, the anti-inflammatory effects of KPA have not been reported. This study aims to find out whether KPA isolated from roots of C. sinica can act as a potential substance on inflammation and analyze the molecular mechanism using the lipopolysaccharide (LPS)-stimulated J774 A.1 macrophage cell line. We showed that KPA treatment significantly suppressed the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner without cytotoxicity. In the KPA also inhibited pro-inflammatory cytokine gene expression and production, such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) in LPS-stimulated J774 A.1 cells. As continuing study on the mechanisms involved, we confirmed that these effects of KPA were related to the inhibition of nuclear factor-κB (NF-κB) pathway including the suppression of IκB kinase α/β (IKKα/β) phosphorylation and translocation of NF-κB into the nucleus. Taken together, the present study is the first to demonstrate that KPA isolated from C. sinica suppresses the expression of inflammatory mediators and cytokines by inhibiting NF-κB nuclear translocation in LPS-stimulated J774 A.1 macrophages. KPA may be a potential candidate for the treatment of inflammatory diseases in the future.
Collapse
Key Words
- C. sinica, Caragana sinica
- IKKα/β, IκB kinase α/β
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IκB, inhibitory κB
- KPA, Kobophenol A
- LPS, lipopolysaccharide
- MAPKs, Mitogen-activated protein kinases
- NF-κB, nuclear factor-κB
- NO, nitric oxide
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PGE2, Prostaglandin E2
- TNF-α, tumor necrosis factor-α
- iNOS, inducible nitric oxide synthase
- inducible nitric oxide synthase
- kobophenol A
- nitric oxide
- nuclear factor-κB
- pro-inflammatory cytokines
Collapse
Affiliation(s)
- Hana Cho
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
- Correspondining author at: Department of Pharmacy, College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
130
|
Schwarz DGG, Shoyama FM, Oliveira LL, Sreevatsan S, Moreira MAS. Rapid baso-apical translocation of Mycobacterium avium ssp. paratuberculosis in mammary epithelial cells in the presence of Escherichia coli. J Dairy Sci 2018; 101:6287-6295. [PMID: 29705415 DOI: 10.3168/jds.2017-13945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
Infection of mammary gland cells with bacterial pathogens begins with adhesion, invasion, and persistence within the cells or systemic distribution. Some bacteria, such as Escherichia coli, are known to causes bovine mastitis, resulting in acute proinflammatory responses in the mammary tissue. Mycobacterium avium ssp. paratuberculosis (MAP), the etiological agent of paratuberculosis, is able to spread to distant organs after crossing intestinal cells, reaching the mammary gland and potentially being released in milk, infecting calves during suckling. Its exit from systemic sites may be influenced by preexisting inflammation such as that caused by E. coli mastitis. Interactions between E. coli and MAP in mammary epithelial cells have not yet been described. In this study, we posited that E. coli-infected bovine mammary epithelial cells would facilitate baso-apical translocation of MAP in an ex vivo model. We showed that the presence of E. coli in a bovine mammary epithelial cell line (MAC-T) increased baso-apical translocation of MAP to the apical side of the cells. Levels were significantly higher 30 min post-infection and decreased at 120 min post-infection. Cells previously infected with E. coli and MAP or with E. coli alone showed a significant increase in IL1B mRNA expression at 120 min. We detected no significant expression of p38 mitogen-activated protein kinase (mapkp38) or IL10, regardless of treatment. Thereby, the presence of E. coli in MAC-T cells alters the translocation of MAP through epithelial cells, enabling its rapid translocation to the cellular surface. Expression of IL1B was shown to influence the apical-basal translocation of MAP at 120 min. Findings from the current study suggest that MAP translocation into milk is likely enhanced by inflammatory states such as those induced during E. coli mastitis. This is the first report demonstrating the effect of E. coli under MAP coinfection in bovine mammary epithelial cells under experimental conditions.
Collapse
Affiliation(s)
- D G G Schwarz
- Department of Veterinary, Universidade Federal de Viçosa (UFV), CEP 36570-900, Viçosa, Minas Gerais, Brazil
| | - F M Shoyama
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing 48824
| | - L L Oliveira
- Department of General Biology, Universidade Federal de Viçosa (UFV), CEP 36570-900, Viçosa, Minas Gerais, Brazil
| | - S Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing 48824
| | - M A S Moreira
- Department of Veterinary, Universidade Federal de Viçosa (UFV), CEP 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
131
|
Ceresa M, Olivares AL, Noailly J, González Ballester MA. Coupled Immunological and Biomechanical Model of Emphysema Progression. Front Physiol 2018; 9:388. [PMID: 29725304 PMCID: PMC5917021 DOI: 10.3389/fphys.2018.00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE) and Agent Based (AB) techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.
Collapse
Affiliation(s)
- Mario Ceresa
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andy L Olivares
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jérôme Noailly
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel A González Ballester
- BCN-Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
132
|
The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomater 2018; 71:37-48. [PMID: 29505890 DOI: 10.1016/j.actbio.2018.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. STATEMENT OF SIGNIFICANCE Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The impact of the FBR on encapsulated cells and their ability to synthesize tissue has not been well studied. This study utilizes thiol-ene click chemistry to create a biomimetic, enzymatically degradable hydrogel system with which to encapsulate MC3T3-E1 pre-osteoblasts. The osteogenic capabilities and differentiation of these cellswerestudied in co-culture with macrophages, known drivers of the FBR.This study demonstrates that macrophages reduce osteogenic capabilities of encapsulated cellsin vitroand suggestthat the FBR should be considered for in vivo tissue engineering.
Collapse
|
133
|
Erickson NA, Dietert K, Enders J, Glauben R, Nouailles G, Gruber AD, Mundhenk L. Soluble mucus component CLCA1 modulates expression of leukotactic cytokines and BPIFA1 in murine alveolar macrophages but not in bone marrow-derived macrophages. Histochem Cell Biol 2018; 149:619-633. [PMID: 29610986 PMCID: PMC5999134 DOI: 10.1007/s00418-018-1664-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 11/18/2022]
Abstract
The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.
Collapse
Affiliation(s)
- Nancy A Erickson
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jana Enders
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
| |
Collapse
|
134
|
Cumaoğlu A, Karatoprak GŞ, Yerer MB, Koşar M. Anti-inflammatory Effects of Pelargonium endlicherianum Fenzl. Extracts in Lipopolysaccharide-stimulated Macrophages. Turk J Pharm Sci 2018; 15:107-115. [PMID: 32454648 DOI: 10.4274/tjps.86580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Objectives This study was designed to investigate the anti-inflammatory effects of Pelargonium endlicherianum Fenzl. and Pelargonium quercetorum Agnew. root extracts compared with the effects of commercial Pelargonium sidoides root extract by production of pro-inflammatory substances and inflammatory signal transduction on LPS-stimulated macrophages. Materials and Methods To measure the effects of root extracts on pro-inflammatory mediators, we used the following methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (cell viability or cytotoxcicity), enzyme-linked immunosorbent assay (cytokine production, prostoglandin E2 production), reverse transcriptase-polymerase chain reaction (COX-2, iNOS mRNA), Western blotting analysis [MAPK activation and NF-κB (p65) traslocation] and the Griess reaction (NO production). Results Stimulation of the RAW 264.7 cells with LPS (0.5 µg/mL, 6 hrs treatment) caused an elevated production of pro-inflammatory cytokines (TNF-α and IL-6), increased mRNA expression of COX-2 and inducible NO synthase with release of PGE2 and NO, activated MAPK (phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, P38) signalling pathway, and nuclear translocation of NF-κB (p65), which were markedly inhibited by the pre-treatment with 11% ethanol and 70% methanol root extracts of P. endlicherianum without causing any cytotoxic effects. P. quercetorum root extract only decreased TNF-α production and P. sidoides root extract alleviated P38/MAPK activation and COX-2 mRNA expression with PGE2 production. Conclusion Our data indicate that especially 11% ethanol root extract of P. endlicherianum targets the inflammatory response of macrophages via inhibition of COX-2, IL-6, and TNF-α through inactivation of the NF-κB signalling pathway, supporting the pharmacologic basis of P. endlicherianum as a traditional herbal medicine for the treatment of inflammation and its associated disorders.
Collapse
Affiliation(s)
- Ahmet Cumaoğlu
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | | | - Mükerrem Betül Yerer
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Turkey
| | - Müberra Koşar
- Erciyes University, Faculty of Pharmacy, Department of Pharmacognosy, Kayseri, Turkey
| |
Collapse
|
135
|
Structural characterization of blackberry wine polysaccharides and immunomodulatory effects on LPS-activated RAW 264.7 macrophages. Food Chem 2018; 257:143-149. [PMID: 29622190 DOI: 10.1016/j.foodchem.2018.02.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023]
Abstract
Three polysaccharide fractions were isolated from blackberry wine. The crude extract BWPs was obtained with ethanol precipitation and freeze-thawing process, it was then submitted to Fehling treatment, giving soluble BWPFs and insoluble BWPFp fractions. These fractions were characterized by Gas Chromatography-Mass Spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR). Major polysaccharides were identified for each fraction: mannan, type II arabinogalactan and type I rhamnogalacturonan for BWPs, a mannan formed by a major chain of α-Manp(1 → 6)-linked units, O-2 substituted with α-d-Manp(1 → 2)-linked side chains for BWPFp and a AG II formed by a major chain of β-d-Galp(1 → 3)-linked, substituted at O-6 by side chains of the β-d-Galp(1 → 6)-linked, which then are substituted at O-3 by non-reducing units of α-l-Araf and a RG I, formed by [→4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1→]n for BWPFs. Anti-inflammatory effects of polysaccharide fractions were evaluated in RAW 264.7 cells. Fractions markedly reduced nitric oxide (NO) and pro-inflammatory cytokine production (TNF-α and IL-1β) in LPS-treated cells.
Collapse
|
136
|
Elgazar AA, Selim NM, Abdel-Hamid NM, El-Magd MA, El Hefnawy HM. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phytother Res 2018; 32:1273-1288. [PMID: 29468851 DOI: 10.1002/ptr.6056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
In an attempt to connect the legacy of centuries of invaluable knowledge from traditional medicine and the current understanding to the molecular mechanism of diseases, we took the advantage of the emergence of in silico screening as a promising tool for identification of potential leads from libraries of natural products. Traditional Chinese Medicine database was subjected to structure based virtual screening for identification of anti-inflammatory compounds using the 3D crystal structure of p38 alpha mitogen activated protein kinase. The molecular docking studies revealed the potential activity of several classes of compounds known to be the constituents of the rhizomes of Alpinia officinarum Hance (Lesser galangal). Five compounds, galangin, kaempferide, isorhamnetin, and two diarylheptanoids, were isolated from the rhizomes of the plant using vacuum liquid chromatography and flash chromatography techniques. The anti-inflammatory activity of these compounds was investigated on HepG2 cells stimulated by lipopolysaccharide. The latter induced the gene expression of proinflammatory cytokines; interleukin-1β, interleukin-6, tumor necrosis factor alpha. Addition of the 5 isolated compounds downregulated this increased gene expression in a dose dependent manner. Thus, these results indicate that the isolated compounds from A. officinarum could be used as a beneficial source for preventing and treating inflammatory diseases.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Nabil M Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
137
|
Le HTT, Cho YC, Cho S. Methanol extract of Guettarda speciosa Linn. inhibits the production of inflammatory mediators through the inactivation of Syk and JNK in macrophages. Int J Mol Med 2018; 41:1783-1791. [PMID: 29328440 DOI: 10.3892/ijmm.2018.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022] Open
Abstract
Guettarda speciosa Linn. (G. speciosa, Rubiaceae) has been used as a traditional medicinal plant in Asia for the treatment of various inflammatory conditions, including cough, fever and maternal postpartum infection. However, the mechanisms underlying the anti‑inflammatory action of G. speciosa extracts have remained elusive. In the present study, the anti‑inflammatory effects of the methanol extract of G. speciosa (MGS) were investigated in murine macrophages by measuring the production of inflammatory mediators and the underlying mechanisms of action by performing immunoblotting analysis of proteins that are potentially involved. MGS reduced nitric oxide (NO) production through regulation of the expression of inducible NO synthase (iNOS) in lipopolysaccharide‑activated RAW 264.7 cells; however, cyclooxygenase‑2, the enzyme responsible for prostaglandin E2 production, was not affected at the mRNA or protein level. MGS reduced interleukin‑6 (IL‑6) production, but had no effect on tumor necrosis factor (TNF)‑α production. In addition, MGS suppressed the transcription of IL‑6, but not that of IL‑1β and TNF‑α. The effect of MGS on proinflammatory mediators resulted from the inhibition of the activation of spleen tyrosine kinase and c‑Jun N‑terminal kinase. In conclusion, the present study suggested that MGS may be a potential candidate for development as a therapeutic for alleviating inflammation.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Young-Chang Cho
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular Pharmacological Cell Biology, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
138
|
Mitchell J, Kim SJ, Seelmann A, Veit B, Shepard B, Im E, Rhee SH. Src family kinase tyrosine phosphorylates Toll-like receptor 4 to dissociate MyD88 and Mal/Tirap, suppressing LPS-induced inflammatory responses. Biochem Pharmacol 2017; 147:119-127. [PMID: 29175418 DOI: 10.1016/j.bcp.2017.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) are a family of protein tyrosine kinases containing nine members: Src, Lyn, Fgr, Hck, Lck, Fyn, Blk, Yes, and Ylk. Although SFK activation is a major immediate signaling event in LPS/Toll-like receptor 4 (TLR4) signaling, its precise role has remained elusive due to various contradictory results obtained from a certain SFK member-deficient mice or cells. The observed inconsistencies may be due to the compensation or redundancy by other SFKs upon a SFK deficiency. The chemical rescuing approach was suggested to induce temporal and precise SFK activation in living cells, thereby limiting the chance of cellular adaption to a SFK-deficient condition. Using the rescuing approach, we demonstrate that restoring SFK activity not only induces tyrosine phosphorylation of TLR4, but also inhibits LPS-induced NFκB and JNK1/2 activation and consequently suppresses LPS-induced cytokine production. TLR4 normally recruits TIR domain-containing adaptors in response to LPS, however, temporally restored SFK activation disrupts the LPS-induced association of MyD88 and Mal/Tirap with TLR4. Additionally, using kinase-dead SFK-Lyn (Y397/508F) and constitutively active SFK-Lyn (Y508F), we found that the kinase-dead SFK inhibits TLR4 tyrosine phosphorylation with reduced binding affinity to TLR4, while the kinase-active SFK strongly binds to TLR4 and promotes TLR4 tyrosine phosphorylation, suggesting that SFK kinase activity is required for TLR4 tyrosine phosphorylation and TLR4-SFK interaction. Together, our results demonstrate that SFK activation induces TLR4 tyrosine phosphorylation, consequently dissociating MyD88 and Mal/Tirap from TLR4 and inhibiting LPS-induced inflammatory responses, suggesting a negative feedback loop regulated by SFK-induced tyrosine phosphorylation in TLR4.
Collapse
Affiliation(s)
- Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Alexandra Seelmann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brendan Veit
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brooke Shepard
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea.
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
139
|
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, Tang C, Murphy EA, Enos RT, Velazquez KT, McCellan J, Nagarkatti M, Nagarkatti P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7:15645. [PMID: 29142285 PMCID: PMC5688117 DOI: 10.1038/s41598-017-15154-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity is characterized by chronic low-grade, systemic inflammation, altered gut microbiota, and gut barrier disruption. Additionally, obesity is associated with increased activity of endocannabinoid system (eCB). However, the clear connection between gut microbiota and the eCB system in the regulation of energy homeostasis and adipose tissue inflammation and metabolism, remains to be established. We investigated the effect of treatment of mice with a cannabinoid receptor 1 (CB1) antagonist on Diet-Induced Obesity (DIO), specifically whether such a treatment that blocks endocannabinoid activity can induce changes in gut microbiota and anti-inflammatory state in adipose tissue. Blockade of CB1 attenuated DIO, inflammatory cytokines and trafficking of M1 macrophages into adipose tissue. Decreased inflammatory tone was associated with a lower intestinal permeability and decreased metabolic endotoxemia as evidenced by reduced plasma LPS level, and improved hyperglycemia and insulin resistance. 16S rRNA metagenomics sequencing revealed that CB1 blockade dramatically increased relative abundance of Akkermansia muciniphila and decreased Lanchnospiraceae and Erysipelotrichaceae in the gut. Together, the current study suggests that blocking of CB1 ameliorates Diet-Induced Obesity and metabolic disorder by modulating macrophage inflammatory mediators, and that this effect is associated with alterations in gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | | | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Jamie McCellan
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
140
|
Farag AK, Elkamhawy A, Londhe AM, Lee KT, Pae AN, Roh EJ. Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders. Eur J Med Chem 2017; 141:657-675. [PMID: 29107425 DOI: 10.1016/j.ejmech.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
Abstract
Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashwini M Londhe
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
141
|
Li M, Chen LX, Chen SR, Deng Y, Zhao J, Wang Y, Li SP. Non-starch polysaccharide from Chinese yam activated RAW 264.7 macrophages through the Toll-like receptor 4 (TLR4)-NF-κB signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
142
|
Woldetsadik AD, Sharma SK, Khapli S, Jagannathan R, Magzoub M. Hierarchically Porous Calcium Carbonate Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2457-2469. [PMID: 33445303 DOI: 10.1021/acsbiomaterials.7b00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchically porous CaCO3 scaffolds comprised of micro- (diameter = 2.0 ± 0.3 μm) and nano-sized (diameter = 50.4 ± 14.4 nm) pores were fabricated on silicon substrates using a supercritical CO2-based process. Differentiated human THP-1 monocytes exposed to the CaCO3 scaffolds produced negligible levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α), confirming the lack of immunogenicity of the scaffolds. Extracellular matrix (ECM) proteins, vitronectin and fibronectin, displayed enhanced adsorption to the scaffolds compared to the silicon controls. ECM protein-coated CaCO3 scaffolds promoted adhesion, growth, and proliferation of osteoblast MC3T3 cells. MC3T3 cells grown on the CaCO3 scaffolds produced substantially higher levels of transforming growth factor-beta and vascular endothelial growth factor A, which regulate osteoblast differentiation, and exhibited markedly increased alkaline phosphatase activity, a marker of early osteoblast differentiation, compared to controls. Moreover, the CaCO3 scaffolds stimulated matrix mineralization (calcium deposition), an end point of advanced osteoblast differentiation and an important biomarker for bone tissue formation. Taken together, these results demonstrate the significant potential of the hierarchically porous CaCO3 scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Abiy D Woldetsadik
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sudhir K Sharma
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sachin Khapli
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Nano and Bio Materials Laboratory, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
143
|
Lin IY, Pan MH, Lai CS, Lin TT, Chen CT, Chung TS, Chen CL, Lin CH, Chuang WC, Lee MC, Lin CC, Ma N. CCM111, the water extract of Antrodia cinnamomea, regulates immune-related activity through STAT3 and NF-κB pathways. Sci Rep 2017; 7:4862. [PMID: 28687744 PMCID: PMC5501807 DOI: 10.1038/s41598-017-05072-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Antrodia cinnamomea (AC) exhibits many bioactivities, including anti-inflammatory, anti-cancer, and hepatoprotection activities. Many researchers have studied the functions of the components or fractions of AC, but the functions of the original extractions of AC have not been studied. In addition, the detailed relationship between AC and immune-related signaling pathways is unclear. In this study, we screened the effects of CCM111, which is the extract of AC, on seven immune-related signaling pathways and further investigated whether CCM111 can influence inflammation. Interestingly, our results showed that CCM111 significantly inhibited the IL-6-stimulated STAT3 pathway and the LPS-stimulated NF-κB pathway in macrophages. CCM111 also decreased the phosphorylation of STAT3, Tyk2 and the nuclear translocation of p65. Moreover, CCM111 and F4, a fraction of CCM111, down-regulated nitric oxide (NO) production, the protein levels of iNOS and COX-2, and inflammatory cytokines in macrophage cells. Therefore, our study suggested that CCM111 has the potential to be developed as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- In-Yu Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Ting-Ting Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tao-Sheng Chung
- Division of Radiation Oncology, Landseed Hospital Taoyuan, Taoyuan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.,Division of Nephrology, Landseed Hospital Taoyuan, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | | | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City, Taiwan
| | - Ching-Che Lin
- Brion Research Institute of Taiwan, New Taipei City, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering; Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
144
|
Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. NANOMATERIALS 2017; 7:nano7070165. [PMID: 28671603 PMCID: PMC5535231 DOI: 10.3390/nano7070165] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
Interleukin-10 (IL-10) is a key anti-inflammatory and immunosuppressive cytokine and therefore represents a potential therapeutic agent especially in inflammatory diseases. However, despite its proven therapeutic efficacy, its short half-life and proteolytic degradation in vivo combined with its low storage stability have limited its therapeutic use. Strategies have been developed to overcome most of these shortcomings, including in particular bioconjugation with stabilizing agents such as polyethylene glycol (PEG) and poly (vinylpyrolidone) (PVP), but so far these have had limited success. In this paper, we present an alternative method consisting of bioconjugating IL-10 to PVP-coated silver nanoparticles (Ag-PVPs) in order to achieve its storage stability by preventing denaturation and to improve its anti-inflammatory efficacy. Silver nanoparticles capped with a carboxylated PVP were produced and further covalently conjugated with IL-10 protein by carbodiimide crosslinker chemistry. The IL-10 conjugated Ag-PVPs exhibited increased stability and anti-inflammatory effectiveness in vitro. This study therefore provides a novel approach to bioconjugating PVP-coated silver nanoparticles with therapeutic proteins, which could be useful in drug delivery and anti-inflammatory therapies.
Collapse
|
145
|
Liu S, Chen S, Li X, Wu S, Zhang Q, Jin Q, Hu L, Zhou R, Yu Z, Meng F, Wang S, Huang Y, Ye S, Shen L, Xia Z, Zou J, Feng XH, Xu P. Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses. Cell Host Microbe 2017; 21:754-768.e5. [PMID: 28618271 DOI: 10.1016/j.chom.2017.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022]
Abstract
Cytosolic nucleic acid sensing elicits interferon production for primary antiviral defense through cascades controlled by protein ubiquitination and Ser/Thr phosphorylation. Here we show that TBK1, a core kinase of antiviral pathways, is inhibited by tyrosine phosphorylation. The Src family kinases (SFKs) Lck, Hck, and Fgr directly phosphorylate TBK1 at Tyr354/394, to prevent TBK1 dimerization and activation. Accordingly, antiviral sensing and resistance were substantially enhanced in Lck/Hck/Fgr triple knockout cells and ectopic expression of Lck/Hck/Fgr dampened the antiviral defense in cells and zebrafish. Small-molecule inhibitors of SFKs, which are conventional anti-tumor therapeutics, enhanced antiviral responses and protected zebrafish and mice from viral attack. Viral infection induced the expression of Lck/Hck/Fgr through TBK1-mediated mobilization of IRF3, thus constituting a negative feedback loop. These findings unveil the negative regulation of TBK1 via tyrosine phosphorylation and the functional integration of SFKs into innate antiviral immunity.
Collapse
Affiliation(s)
- Shengduo Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shasha Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xinran Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shiying Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qiuheng Jin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ruyuan Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhengyang Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fansen Meng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Siwen Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yaowei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China; Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
146
|
Erndt-Marino JD, Jimenez-Vergara AC, Diaz-Rodriguez P, Kulwatno J, Diaz-Quiroz JF, Thibeault S, Hahn MS. In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment. J Biomed Mater Res B Appl Biomater 2017; 106:1258-1267. [PMID: 28580765 DOI: 10.1002/jbm.b.33936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/11/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
Scarring of the vocal fold lamina propria can lead to debilitating voice disorders that can significantly impair quality of life. The reduced pliability of the scar tissue-which diminishes proper vocal fold vibratory efficiency-results in part from abnormal extracellular matrix (ECM) deposition by vocal fold fibroblasts (VFF) that have taken on a fibrotic phenotype. To address this issue, bioactive materials containing cytokines and/or growth factors may provide a platform to transition fibrotic VFF within the scarred tissue toward an anti-fibrotic phenotype, thereby improving the quality of ECM within the scar tissue. However, for such an approach to be most effective, the acute host response resulting from biomaterial insertion/injection likely also needs to be considered. The goal of the present work was to evaluate the anti-fibrotic and anti-inflammatory capacity of an injectable hydrogel containing tethered basic fibroblast growth factor (bFGF) in the dual context of scar and biomaterial-induced acute inflammation. An in vitro co-culture system was utilized containing both activated, fibrotic VFF and activated, pro-inflammatory macrophages (MΦ) within a 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogel containing tethered bFGF. Following 72 h of culture, alterations in VFF and macrophage phenotype were evaluated relative to mono-culture and co-culture controls. In our co-culture system, bFGF reduced the production of fibrotic markers collagen type I, α smooth muscle actin, and biglycan by activated VFF and promoted wound-healing/anti-inflammatory marker expression in activated MΦ. Cumulatively, these data indicate that bFGF-containing hydrogels warrant further investigation for the treatment of vocal fold lamina propria scar. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1258-1267, 2018.
Collapse
Affiliation(s)
- Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan Thibeault
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
147
|
Suleria HAR, Addepalli R, Masci P, Gobe G, Osborne SA. In vitro anti-inflammatory activities of blacklip abalone (Haliotis rubra) in RAW 264.7 macrophages. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1310186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hafiz Ansar Rasul Suleria
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
- CSIRO, Agriculture and Food, St Lucia, Australia
| | | | - Paul Masci
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - Glenda Gobe
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | | |
Collapse
|
148
|
Han S, Chen Z, Han P, Hu Q, Xiao Y. Activation of Macrophages by Lipopolysaccharide for Assessing the Immunomodulatory Property of Biomaterials<sup/>. Tissue Eng Part A 2017; 23:1100-1109. [PMID: 28346799 DOI: 10.1089/ten.tea.2016.0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The design paradigm of biomaterials has been changed to ones with favorable immunomodulatory effects, indicating the importance of accurately evaluating the immunomodulatory properties of biomaterials. Among all the immune cells macrophages receive most attention, due to their plasticity and multiple roles in the materials and host interactions, and thereby become model immune cells for the evaluation of immunomodulatory properties of biomaterials in many studies. Lipopolysaccharides (LPS), a polysaccharide in the outer membrane of Gram-negative bacteria, elicit strong immune responses, which was often applied to activate macrophages, resulting in a proinflammatory M1 phenotype, and the release of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα), interleukin (IL)-1, and IL-6. However, there is no consensus on how to apply macrophages and LPS to detect the immunomodulatory properties of biomaterials. The lack of scientific consideration of this issue has led to some inaccurate and insufficient conclusions on the immunomodulatory properties of biomaterials, and inconsistences between different research groups. In this study, we carried out a systemic study to investigate the stimulatory effects of LPS with different times, doses, and conditions on the activation of macrophages. An experimental pathway was proposed accordingly for the activation of macrophages using LPS for assessing the immunomodulatory property of biomaterials.
Collapse
Affiliation(s)
- Shengwei Han
- 1 Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China .,3 Institute of Health and Biomedical Innovation, the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Zetao Chen
- 2 Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China .,3 Institute of Health and Biomedical Innovation, the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Pingping Han
- 3 Institute of Health and Biomedical Innovation, the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Qingang Hu
- 1 Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yin Xiao
- 3 Institute of Health and Biomedical Innovation, the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
149
|
Li XY, Yang X, Zhao QD, Han ZP, Liang L, Pan XR, Zhu JN, Li R, Wu MC, Wei LX. Lipopolysaccharide promotes tumorigenicity of hepatic progenitor cells by promoting proliferation and blocking normal differentiation. Cancer Lett 2017; 386:35-46. [DOI: 10.1016/j.canlet.2016.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
|
150
|
Sakeer K, Scorza T, Romero H, Ispas-Szabo P, Mateescu MA. Starch materials as biocompatible supports and procedure for fast separation of macrophages. Carbohydr Polym 2017; 163:108-117. [PMID: 28267487 DOI: 10.1016/j.carbpol.2017.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/25/2023]
Abstract
Different starch derivatives were evaluated as supports for attachment and recovery of macrophages (RAW 264.7 line). Gelatinized starch (G-St), acetate starch (Ac-St), carboxymethyl starch and aminoethyl starch were synthesized and characterized by FTIR, 1H NMR, SEM and static water contact angle. These polymers are filmogenic and may coat well the holder devices used for macrophage adhesion. They also present a susceptibility to mild hydrolysis with alpha-amylase, liberating the adhered macrophages. Cell counts, percentage of dead cells and level of tumor necrosis factor (TNF-α) were used to evaluate the possible interaction between macrophages and starch films. The high percentage of cell adhesion (90-95% on G-St and on Ac-St) associated with enzymatic detachment of macrophages from film-coated inserts, resulted in higher viabilities compared with those obtained with cells detached by current methods scrapping or vortex. This novel method allows a fast macrophage separation, with excellent yields and high viability of recovered cells.
Collapse
Affiliation(s)
- Khalil Sakeer
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Hugo Romero
- Department of Biological Sciences and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Pompilia Ispas-Szabo
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|