101
|
Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response. Mucosal Immunol 2017; 10:901-911. [PMID: 27924821 DOI: 10.1038/mi.2016.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/09/2016] [Indexed: 02/04/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine involved in T helper 2 type immune responses. The primary target of TSLP is myeloid dendritic cells (DCs), however, little is known about the mechanism by which TSLP elicits respiratory IgA immune responses upon mucosal immunization. Here, we found that the levels of TSLP and TSLPR were upregulated in the mucosal DCs of mice nasally immunized with pneumococcal surface protein A (PspA) plus cholera toxin (CT) compared with those immunized with PspA alone. PspA-specific IgA responses, but not IgG Ab responses were significantly reduced in both serum and mucosal secretions of TSLPR knockout mice compared with wild-type mice after nasal immunization with PspA plus CT. Furthermore, CD11c+ mucosal DCs isolated from TSLPR knockout mice nasally immunized with PspA plus CT were less activated and exhibited markedly reduced expression of IgA-enhancing cytokines (e.g., APRIL, BAFF, and IL-6) compared with those from equivalently immunized wild-type mice. Finally, exogenous TSLP promoted production of IgAs in an in vitro DC-B cell co-culture system as exhibited by enhanced IL-6 production. These results suggest that TSLP-TSLPR signaling is pivotal in the induction of nasal respiratory immunity against pathogenic pneumococcal infection.
Collapse
|
102
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
103
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
104
|
Hu Y, Dong H, Zou M, Huang C, Luo L, Yu C, Chen J, Xie Z, Zhao H, Le Y, Zou F, Liu L, Cai S. TSLP signaling blocking alleviates E-cadherin dysfunction of airway epithelium in a HDM-induced asthma model. Cell Immunol 2017; 315:56-63. [PMID: 28400057 DOI: 10.1016/j.cellimm.2017.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 01/03/2023]
Abstract
Recent studies have indicated that Thymic stromal lymphopoietin (TSLP) plays an important role in the prevention and treatment of asthma. However the role of TSLP in dysfunction of airway epithelial adherens junctions E-cadherin in house dust mite (HDM)-induced asthma has not been addressed. We hypothesized that TSLP contributed to HDM-induced E-cadherin dysfunction in asthmatic BALB/c mice and 16HBE cells. In vivo, a HDM-induced asthma mouse model was set up for 8weeks. Mice inhaled an anti-TSLP monoclonal antibody (mAb) before HDM. The mice treated with the anti-TSLP mAb ameliorated airway inflammation, the decreasing and aberrant distribution of E-cadherin and β-catenin as well as phosphorylation(p)-AKT induced by HDM. In vitro, HDM increased the expression of TSLP and E-cadherin dysfunction by PI3K/Akt signaling pathway. The exposure of 16HBE to TSLP resulted in redistribution of E-cadherin. These results indicate that TSLP may be an important contributor in E-cadherin dysfunction of HDM-induced asthma. TSLP signaling blocking shows a protective effect in mice and that the PI3K/Akt pathway may play a role in this process.
Collapse
Affiliation(s)
- Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengchen Zou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chaowen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - JiaLong Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhefan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqing Le
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
105
|
Shi Z, Jiang W, Wang M, Wang X, Li X, Chen X, Qiao L. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem 2017; 430:161-169. [DOI: 10.1007/s11010-017-2963-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
|
106
|
Lee JU, Chang HS, Lee HJ, Jung CA, Bae DJ, Song HJ, Park JS, Uh ST, Kim YH, Seo KH, Park CS. Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis. BMC Pulm Med 2017; 17:39. [PMID: 28202030 PMCID: PMC5312598 DOI: 10.1186/s12890-017-0380-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Innate T helper type 2 (Th2) immune responses mediated by interleukin (IL)-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been shown to play an important role in pulmonary fibrosis of animal models; however, their clinical implications remain poorly understood. METHODS TSLP, IL-25, and IL-33 concentrations were measured in bronchoalveolar lavage fluids obtained from normal controls (NCs; n = 40) and from patients with idiopathic pulmonary fibrosis (IPF; n = 100), non-specific interstitial pneumonia (NSIP; n = 22), hypersensitivity pneumonitis (HP; n = 20), and sarcoidosis (n = 19). RESULTS The TSLP and IL-33 levels were significantly higher in patients with IPF relative to the NCs (p = 0.01 and p = 0.0001, respectively), NSIP (p = 4.95E - 7 and p = 0.0002, respectively), HP (p = 0.00003 and p = 0.000005, respectively), and sarcoidosis groups (p = 0.003 and p = 0.0001, respectively). However, the IL-25 levels were not significantly different between NC and IPF group (p = 0.432). Receiver operating characteristic curves of the TSLP and IL-33 levels revealed clear differences between the IPF and NC groups (AUC = 0.655 and 0.706, respectively), as well as between the IPF and the other lung disease groups (AUC = 0.786 and 0.781, respectively). Cut-off values of 3.52 pg/μg TSLP and 3.77 pg/μg IL-33 were shown to differentiate between the IPF and NC groups with 99.2 and 94.3% accuracy. Cut-off values of 4.66 pg/μg TSLP and 2.52 pg/μg IL-33 possessed 99.4 and 93.2% accuracy for differentiating among the IPF and other interstitial lung disease groups. CONCLUSIONS Innate immune responses may be associated with the development of IPF. Furthermore, the IL-33 and TSLP levels in BAL fluids may be useful for differentiating IPF from other chronic interstitial lung diseases.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea.,Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyeon Ju Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Chang An Jung
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Da Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hyun Ji Song
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Jong Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Soo-Taek Uh
- Division of Respiratory and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Young Hoon Kim
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Chunan Hospital, Cheonan, Korea
| | - Ki-Hyun Seo
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Chunan Hospital, Cheonan, Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea. .,Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea. .,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Kyeonggi-Do, 420-767, Korea.
| |
Collapse
|
107
|
Dong H, Hu Y, Liu L, Zou M, Huang C, Luo L, Yu C, Wan X, Zhao H, Chen J, Xie Z, Le Y, Zou F, Cai S. Distinct roles of short and long thymic stromal lymphopoietin isoforms in house dust mite-induced asthmatic airway epithelial barrier disruption. Sci Rep 2016; 6:39559. [PMID: 27996052 PMCID: PMC5171874 DOI: 10.1038/srep39559] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Thymic stromal lymphopoietin (TSLP) may have dual immunoregulatory roles. In inflammatory disorders of the bowel, the long isoform of TSLP (lfTSLP) promotes inflammation while the short isoform (sfTSLP) inhibits inflammation. We hypothesize that lfTSLP contributes to house dust mite (HDM)-induced airway epithelial barrier dysfunction and that synthetic sfTSLP can prevent these effects. In vitro, airway epithelial barrier function was assessed by monitoring transepithelial electrical resistance, fluorescent-dextran permeability, and distribution of E-cadherin and β-catenin. In vivo, BALB/c mice were exposed to HDM by nasal inhalation for 5 consecutive days per week to establish an asthma model. sfTSLP and 1α,25-Dihydroxyvitamin D3 (1,25D3) were administered 1 h before HDM exposure. After 8 weeks, animal lung function tests and pathological staining were performed to evaluate asthma progression. We found that HDM and lfTSLP impaired barrier function. Treatment with sfTSLP and 1,25D3 prevented HDM-induced airway epithelial barrier disruption. Moreover, sfTSLP and 1,25D3 treatment ameliorated HDM-induced asthma in mice. Our data emphasize the importance of the different expression patterns and biological properties of sfTSLP and lfTSLP. Moreover, our results indicate that sfTSLP and 1,25D3 may serve as novel therapeutic agents for individualized treatment of asthma.
Collapse
Affiliation(s)
- Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengchen Zou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaowen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changhui Yu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - JiaLong Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhefan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanqing Le
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
108
|
Th2 Cells and Th17 Cells in the Development of Endometriosis – Possible Roles of Interleukin-4 and Interleukin-17A. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2016. [DOI: 10.5301/je.5000257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endometriosis is recognized as an inflammatory disease in which inflammatory cytokines, such as interleukin (IL)-1β and TNFα, play important roles. Immunological factors are also suggested to be involved in the pathogenesis of endometriosis. This review provides comprehensive knowledge about helper T cell (Th cell) and its specific cytokines in endometriosis. A series of our studies demonstrated the presence of Th2 cells and Th17 cells in endometriotic tissues and revealed multiple effects of IL-4 and IL-17A, cytokines secreted from respective Th cells. IL-1β induces secretion of thymic stromal lymphopoietin (TSLP), a regulator for differentiation of inflammatory Th2 cells, in endometriotic stromal cells (ESCs). IL-4 stimulates proliferation of ESCs and production of 3β-hydroxysteroid dehydrogenase Type 2, an enzyme in an estrogen production pathway, in ESCs. IL-17A stimulates IL-8 and Gro-α secretion from ESCs and proliferation of ESCs. IL-17A-induced Gro-α promotes neutrophil migration, which may contribute to the presence of neutrophils in endometriotic tissues. IL-17A also increases secretion of CCL20, a chemokine for Th17 cells, from ESCs, which seems to induce migration of Th17 cells to the endometriotic tissues and enhance the effects of IL-17A further. TNFα in combination with IL-17A synergistically enhances secretion of IL-8 and CCL-20, suggesting cooperation of inflammation and Th17 immune response. These findings suggest that IL-4 and IL-17A promote the development of endometriosis through induction of cell proliferation, inflammation, and estrogen production. It is thus also suggested that IL-4 and IL-17A would be a target of treatment of the disease.
Collapse
|
109
|
West EE, Spolski R, Kazemian M, Yu ZX, Kemper C, Leonard WJ. A TSLP-complement axis mediates neutrophil killing of methicillin-resistant Staphylococcus aureus. Sci Immunol 2016; 1:eaaf8471. [PMID: 28783679 PMCID: PMC8530006 DOI: 10.1126/sciimmunol.aaf8471] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/03/2016] [Indexed: 09/29/2023]
Abstract
Community-acquired Staphylococcus aureus infections often present as serious skin infections in otherwise healthy individuals and have become a worldwide epidemic problem fueled by the emergence of strains with antibiotic resistance, such as methicillin-resistant S. aureus (MRSA). The cytokine thymic stromal lymphopoietin (TSLP) is highly expressed in the skin and in other barrier surfaces and plays a deleterious role by promoting T helper cell type 2 (TH2) responses during allergic diseases; however, its role in host defense against bacterial infections has not been well elucidated. We describe a previously unrecognized non-TH2 role for TSLP in enhancing neutrophil killing of MRSA during an in vivo skin infection. Specifically, we demonstrate that TSLP acts directly on both mouse and human neutrophils to augment control of MRSA. Additionally, we show that TSLP also enhances killing of Streptococcus pyogenes, another clinically important cause of human skin infections. Unexpectedly, TSLP mechanistically mediates its antibacterial effect by directly engaging the complement C5 system to modulate production of reactive oxygen species by neutrophils. Thus, TSLP increases MRSA killing in a neutrophil- and complement-dependent manner, revealing a key connection between TSLP and the innate complement system, with potentially important therapeutic implications for control of MRSA infection.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Majid Kazemian
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Zu Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Claudia Kemper
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
- Division of Transplant Immunology and Mucosal Biology, King's College London, Great Maze Pond, London SE1 9RT, U.K
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
110
|
Abstract
The interaction between the airway epithelium and the inhaled environment is crucial to understanding the pathobiology of asthma. Several studies have identified an important role of airway epithelial-derived cytokines, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) in asthma pathogenesis. These cytokines have been described as epithelial-derived alarmins that activate and potentiate the innate and humoral arms of the immune system in the presence of actual or perceived damage. Each of the three epithelial-derived alarmins has been implicated in the pathobiology of inhaled allergen-induced airway responses. The best evidence to date exists for TSLP, in that a human monoclonal antibody, which binds TSLP and prevents its engagement with its receptor, resolves airway inflammation in patients with allergic asthma and attenuates allergen-induced airway responses. Better understanding the roles that the epithelial-derived alarmins play and how they influence airway immune response may allow the development of novel therapeutics for asthma treatment.
Collapse
Affiliation(s)
- Patrick D Mitchell
- Firestone Institute of Respiratory Health and the Department of Medicine, Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Firestone Institute of Respiratory Health and the Department of Medicine, Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
111
|
Lin TH, Cheng CC, Su HH, Huang NC, Chen JJ, Kang HY, Chang TH. Lipopolysaccharide Attenuates Induction of Proallergic Cytokines, Thymic Stromal Lymphopoietin, and Interleukin 33 in Respiratory Epithelial Cells Stimulated with PolyI:C and Human Parechovirus. Front Immunol 2016; 7:440. [PMID: 27826297 PMCID: PMC5078322 DOI: 10.3389/fimmu.2016.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies based on the "hygiene hypothesis" declare that the level of childhood exposure to environmental microbial products is inversely related to the incidence of allergic diseases in later life. Multiple types of immune cell-mediated immune regulation networks support the hygiene hypothesis. Epithelial cells are the first line of response to microbial products in the environment and bridge the innate and adaptive immune systems; however, their role in the hygiene hypothesis is unknown. To demonstrate the hygiene hypothesis in airway epithelial cells, we examined the effect of lipopolysaccharide (LPS; toll-like receptor 4 ligand) on the expression of the proallergic cytokines thymic stromal lymphopoietin (TSLP) and interleukin 33 (IL33) in H292 cells (pulmonary mucoepidermoid carcinoma cells). Stimulation with the TLR ligand polyI:C and human parechovirus type 1 (HPeV1) but not LPS-induced TSLP and IL33 through interferon regulatory factor 3 (IRF3) and NF-κB activity, which was further validated by using inhibitors (dexamethasone and Bay 11-7082) and short hairpin RNA-mediated gene knockdown. Importantly, polyI:C and HPeV1-stimulated TSLP and IL33 induction was reduced by LPS treatment by attenuating TANK-binding kinase 1, IRF3, and NF-κB activation. Interestingly, the basal mRNA levels of TLR signaling proteins were downregulated with long-term LPS treatment of H292 cells, which suggests that such long-term exposure modulates the expression of innate immunity signaling molecules in airway epithelial cells to mitigate the allergic response. In contrast to the effects of LPS treatment, the alarmin high-mobility group protein B1 acts in synergy with polyI:C to promote TSLP and IL33 expression. Our data support part of the hygiene hypothesis in airway epithelia cells in vitro. In addition to therapeutic targeting of TSLP and IL33, local application of non-pathogenic LPS may be a rational strategy to prevent allergies.
Collapse
Affiliation(s)
- Tsang-Hsiung Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University , Kaohsiung , Taiwan
| | - Chih-Chi Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan
| | - Hsing-Hao Su
- Department of Otorhinolaryngology - Head and Neck Surgery, Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan
| | - Nan-Chieh Huang
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital , Kaohsiung , Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, Tajen University , Pingtung , Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| |
Collapse
|
112
|
Nakanishi W, Hiraishi Y, Yamaguchi S, Takamori A, Morita H, Matsumoto K, Saito H, Sudo K, Yamasoba T, Nakae S. TSLP receptor is not essential for house dust mite-induced allergic rhinitis in mice. Biochem Biophys Rep 2016; 7:119-123. [PMID: 28955898 PMCID: PMC5613305 DOI: 10.1016/j.bbrep.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 01/31/2023] Open
Abstract
TSLP induces Th2 cytokine production by Th2 cells and various other types of cells, thereby contributing to Th2-type immune responses and development of allergic disorders. We found that house dust mite (HDM) extract induced TSLP production by nasal epithelial cells, suggesting that TSLP may be involved in development of HDM-induced allergic rhinitis (AR). To investigate that possibility in greater detail, wild-type and TSLP receptor-deficient (TSLPR-/-) mice on the C57BL/6J background were repeatedly treated intranasally with HDM extract. The frequency of sneezing, numbers of eosinophils and goblet cells, thickness of submucosal layers, serum levels of total IgE and HDM-specific IgG1, and levels of IL-4, IL-5 and IL-13 in the culture supernatants of HDM-stimulated LN cells were comparable in the two mouse strains. Those findings indicate that, in mice, TSLPR is not crucial for development of HDM-induced AR.
Collapse
Affiliation(s)
- Wakako Nakanishi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Hiraishi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Takamori
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
113
|
Huang FJ, Ma YL, Tang RY, Gong WC, Li J, Chen CX, Yin L, Chen XP. Interleukin-4- and NACHT, LRR and PYD domains-containing protein 3-independent mechanisms of alum enhanced T helper type 2 responses on basophils. Immunology 2016; 149:238-51. [PMID: 27315109 DOI: 10.1111/imm.12636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Aluminium hydroxide (alum), the most widely used adjuvant in human and animal vaccines, has long been known to promote T helper type 2 (Th2) responses and Th2-associated humoral responses, but the mechanisms have remained poorly understood. In this study, we explored whether alum is able to directly modulate antigen-presenting cells to enhance their potency for Th2 polarization. We found that alum treatment of dendritic cells failed to show any Th2-promoting activities. In contrast, alum was able to enhance the capacity of basophils to induce Th2 cells. When basophils from interleukin-4 (IL-4) knockout mice were examined, the intrinsic Th2-promoting activities by basophils were largely abrogated, but the alum-enhanced Th2-promoting activities on basophils were still detectable. More importantly, Th2-promoting adjuvant activities by alum found in IL-4 knockout mice were also largely reduced when basophils were depleted by antibody administration. Therefore, basophils can mediate Th2-promoting activities by alum both in vitro and in vivo through IL-4-independent mechanisms. Further studies revealed that secreted soluble molecules from alum-treated basophils were able to confer the Th2-promoting activities, and neutralization of thymic stromal lymphopoietin or IL-25 attenuated the IL-4-independent development of Th2 cells elicited by alum-treated basophils. Finally, alum was able to activate NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in murine basophils in the same way as alum in professional antigen-presenting cells, but NLRP3 was not required for Th2-promoting activities on basophils by alum in vitro. These results demonstrated that alum can enhance the capacities of basophils to polarize Th2 cells via IL-4- and NLRP3-independent pathways.
Collapse
Affiliation(s)
- Feng-Juan Huang
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Yi-Lei Ma
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Ruo-Yu Tang
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Wen-Ci Gong
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Chun-Xia Chen
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Lan Yin
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| | - Xiao-Ping Chen
- Department of Immunology and Pathogen Biology, TongJi University School of Medicine, Shanghai, China
| |
Collapse
|
114
|
Hsieh PF, Liu SF, Hung TJ, Hung CY, Liu GZ, Chuang LY, Chen MF, Wang JL, Shi MD, Hsu CH, Shiue YL, Yang YL. Treatment with cytokine thymic stromal lymphopoietin short hairpin RNA substantially reduces TGF-β1-induced interstitial cellular fibrosis. Exp Cell Res 2016; 347:153-160. [PMID: 27492484 DOI: 10.1016/j.yexcr.2016.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/26/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) has previously been linked to allergic inflammatory diseases, and tissue fibrosis and organ dysfunction may also arise from such inflammation. It remains unclear, however, whether TSLP plays any role in the occurrence of renal fibrosis, so this study investigated that possibility. An in vitro fibrosis model was established by treating normal rat kidney fibroblast (NRK-49F) cells with transforming growth factor-β1 (TGF-β1), after which the levels of various fibrogenic markers (e.g., fibronectin) and downstream fibrogenic signal proteins (e.g., smad 7) were investigated. Also, TSLP shRNA was used to silence the effects of TSLP, while an ELISA was conducted to evaluate the fibronectin secretions. The level of fibronectin in the NRK-49F cells was dose- and time-dependently increased by the administration of exogenous TSLP (P<0.05). TSLP also significantly increased the level of fibrosis signaling, in addition to inducing a marked decrease in the down-regulation of Smad7. Interestingly, the application of TSLP shRNA caused a stark reversal of the TGF-β1-induced cellular fibrosis while simultaneously leading to the suppression of fibronectin and fibrogenic signal proteins. Taken together, these observations provide insights into how extracellular matrices develop and could thus lead to potential therapeutic interventions for the suppression of renal fibrosis.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Graduate Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa Medical University, Tainan, Taiwan
| | - Shu-Fen Liu
- Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Jen Hung
- Graduate Institute of Biomedical Science, Chung Hwa Medical University, Tainan, Taiwan
| | - Chien-Ya Hung
- Department of Food nutrition, Chung Hwa Medical University, Tainan, Taiwan
| | - Guo-Zheng Liu
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa Medical University, Tainan, Taiwan
| | - Lea-Yea Chuang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Fen Chen
- Department of Acupressure Technology, Chung Hwa Medical University, Tainan, Taiwan
| | - Jue-Long Wang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Taiwan
| | - Ming-Der Shi
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa Medical University, Tainan, Taiwan; Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Chen Hung Hsu
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Graduate Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Yu-Lin Yang
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa Medical University, Tainan, Taiwan.
| |
Collapse
|
115
|
You H, Li R, Wei C, Chen S, Mao L, Zhang Z, Yang X. Thymic Stromal Lymphopoietin Neutralization Inhibits the Immune Adjuvant Effect of Di-(2-Ethylhexyl) Phthalate in Balb/c Mouse Asthma Model. PLoS One 2016; 11:e0159479. [PMID: 27467143 PMCID: PMC4965047 DOI: 10.1371/journal.pone.0159479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a commonly used plasticizer, has an adjuvant effect in combination with ovalbumin (OVA). The adjuvant effect of DEHP has already been verified in our previous studies. In this study, to further investigate whether thymic stromal lymphopoietin (TSLP) was involved in the DEHP-adjuvant effect, DEHP was administered through a daily gavage exposure route. Mice were sensitized with ovalbumin (OVA) to trigger allergic responses, and an anti-TSLP monoclonal antibody was used to neutralize the effect of TSLP. Biomarkers including cytokines in bronchoalveolar lavage fluid (BALF), serum total IgE and TSLP content in the lung were detected. In addition, airway hyperreactivity and lung sections were examined. Collectively, these data indicated a salient Th2 response which was characterized by the upregulation of Th2-type cytokines, such as interleukin 4 (IL-4), IL-5 and IL-13. Moreover, the eosinophil number in BALF and the eosinophil cationic protein (ECP) in the lung were seen to have increased significantly. However, neutralization of TSLP with an anti-TSLP mAb reversed the adjuvant effect of DEHP on airway inflammation, structural alterations in the airway wall and increased airway hyperresponsiveness (AHR) to methacholine induced by the OVA allergen, suggesting that TSLP was an effective target site for suppressing the adjuvant effect of DEHP co-exposure.
Collapse
Affiliation(s)
- Huihui You
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rui Li
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chenxi Wei
- Key Laboratory of Ecological Safety Monitoring and Evaluation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaohui Chen
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lin Mao
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenye Zhang
- University Hospital, Central China Normal University, Wuhan, China
| | - Xu Yang
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
116
|
Svirshchevskaya E, Fattakhova G, Khlgatian S, Chudakov D, Kashirina E, Ryazantsev D, Kotsareva O, Zavriev S. Direct versus sequential immunoglobulin switch in allergy and antiviral responses. Clin Immunol 2016; 170:31-8. [PMID: 27471213 DOI: 10.1016/j.clim.2016.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/03/2023]
Abstract
Allergy is characterized by IgE production to innocuous antigens. The question whether the switch to IgE synthesis occurs via direct or sequential pathways is still unresolved. The aim of this work was to analyze the distribution of immunoglobulins (Ig) to house dust mite D. farinae and A. alternata fungus in allergic children with primarily established diagnosis and compare it to Epstein-Barr antiviral (EBV) response in the same patients. In allergy patients the only significant difference was found in allergen specific IgE, likely mediated by a direct isotype switch, while antiviral response was dominated by EBV specific IgG and low level of concordant IgA and IgG4 production consistent with a minor sequential Ig switches. Taken collectively, we concluded that sequential isotype switch is likely to be a much rarer event than a direct one.
Collapse
Affiliation(s)
- E Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - G Fattakhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - S Khlgatian
- Mechnikov's Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Maliy Kazenny pereulok, 5A, 105064 Moscow, Russian Federation.
| | - D Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - E Kashirina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - D Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - O Kotsareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| | - S Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russian Federation.
| |
Collapse
|
117
|
Chu M, Chu IMT, Yung ECM, Lam CWK, Leung TF, Wong GWK, Wong CK. Aberrant Expression of Novel Cytokine IL-38 and Regulatory T Lymphocytes in Childhood Asthma. Molecules 2016; 21:E933. [PMID: 27438823 PMCID: PMC6274345 DOI: 10.3390/molecules21070933] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
We investigated the expression of novel anti-inflammatory interleukin (IL)-38 and regulatory T (Treg) lymphocytes in childhood asthma patients. The protein and mRNA expression level of IL-38, periostin, peripheral CD4⁺CD25⁺CD134⁺ T lymphocytes as well as CD4⁺CD25(high)FoxP3⁺ and CD4⁺CD25(high)CD127(-) Treg lymphocytes from 40 asthmatic patients and 20 normal control (NC) subjects were studied using ELISA, qPCR and flow cytometry. Serum and supernatant cytokines/chemokines were determined by multiplex assay. Serum IL-38, IL-5, IL-17, IL-6, interferon-γ, periostin, IL-1β and IL-13 concentrations were significantly higher in asthmatic patients with or without steroid treatment than those in controls (all p < 0.05). The percentages of both CD4⁺CD25(high)FoxP3⁺ and CD4⁺CD25(high)CD127(-) Treg lymphocytes were markedly decreased in asthmatic patients with and without steroid treatment than those in controls (all p < 0.05). The elevated IL-38 concentration negatively correlated with the percentage of Treg lymphocytes in asthmatic patients with high level (>40 ng/mL) of periostin (p < 0.05). Although the comparable mRNA levels of IL-38 and its receptor IL-36R were found between patients and controls, the mRNA level of IL-38 positively correlated with IL-36R and negatively correlated with IL-10 in all asthmatic patients (both p < 0.05). The percentage of CD4⁺CD25⁺CD134⁺ activated T lymphocytes was also significantly higher in asthmatic patients with steroid treatment than those in controls (p < 0.05). This cross-sectional study demonstrated that the overexpression of circulating IL-38 may play a role in the immunopathogenesis in asthma.
Collapse
Affiliation(s)
- Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, 518057 Shenzhen, China.
| | - Ida M T Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, 518057 Shenzhen, China.
| | - Edmund C M Yung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
| | - Christopher W K Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Ting F Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
| | - Gary W K Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
| | - Chun K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, 518057 Shenzhen, China.
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Eosinophilic Esophagitis (EoE) is an emerging chronic atopic disease. Recent advances in understanding its genetic and molecular biology pathogenesis may lead to a better management of the disease RECENT FINDINGS EoE is an atopic disease. Most of the patients affected by EoE have other atopic diseases such as allergic rhinitis, asthma, IgE-mediated food allergies and/or atopic dermatitis. The local inflammation is a T helper type 2 (Th2) flogosis, which most likely is driven by a mixed IgE and n-IgE-mediated reaction to food and/or environmental allergens. Epidemiological studies show that EoE is an atopic disease with a strong genetic component. Genetic studies have shown that EoE is associated with single nucleotide polymorphism on genes, which are released by the epithelium and important in atopic inflammation such as thymic stromal lymphopoietin located (TSLP) close to the Th2 cytokine cluster [interleukin (IL)-4, IL-5, IL-13] on chromosome 5q22, Calpain 14, EMSY, and Eotaxin3. When the EoE diagnosis is made, it is imperative to control the local eosinophilic inflammation not only to give symptomatic relief to the patient, but also to prevent complications such as esophageal stricture and food impaction. SUMMARY EoE is treated like many other atopic diseases with a combination of topical steroids and/or food antigen avoidance. The new understanding of EoE may lead to more specific and definitive treatments of EoE.
Collapse
|
119
|
Sy CB, Siracusa MC. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation. Front Physiol 2016; 7:214. [PMID: 27378934 PMCID: PMC4906008 DOI: 10.3389/fphys.2016.00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023] Open
Abstract
Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin.
Collapse
Affiliation(s)
- Chandler B Sy
- Department of Medicine, Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey Newark, NJ, USA
| | - Mark C Siracusa
- Department of Medicine, Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey Newark, NJ, USA
| |
Collapse
|
120
|
Lin SC, Huang JJ, Wang JY, Chuang HC, Chiang BL, Ye YL. Upregulated thymic stromal lymphopoietin receptor expression in children with asthma. Eur J Clin Invest 2016; 46:511-9. [PMID: 26999524 DOI: 10.1111/eci.12623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in patients with asthma. However, the role of thymic stromal lymphopoietin receptor (TSLPR) and correlation with IL-7Rα and clinical severity in asthmatic or nonasthmatic children remain unclear. We investigated TSLPR and IL-7Rα mRΝΑ levels in asthma and nonasthma and assessed TSLPR expression in children who were sensitive to mites. MATERIALS AND METHODS We enrolled asthmatic and nonasthmatic children. To minimize the influence of allergy, we also divided participants into following 4 groups: nonallergic and nonasthmatic group (NN) (healthy children), allergic but nonasthmatic group (AN), nonallergic but asthmatic group (NA) and allergic asthmatic group (AA). We drew blood samples to check total IgE, allergen-specific IgE and TSLP and measured the expression of the TSLPR and IL-7Rα genes using reverse-transcription polymerase chain reaction (RT-PCR) and real-time PCR. Asthma symptom score was also recorded. RESULTS Thymic stromal lymphopoietin and TSLPR levels were found to be significantly higher in asthmatic than in nonasthmatic children. The levels of TSLP were found to be significantly different between AA and NN groups (P < 0·05). TSLPR expression in NA and AA groups was found to be significantly higher than in NN group (P < 0·05). TSLPR did not differ significantly between NA and AA groups. The TSLPR expression correlated strongly with IL-7Rα and weakly with mite-specific IgE. Clinical asthmatic severity of children was found to exert no influence on TSLPR level. CONCLUSION Thymic stromal lymphopoietin receptor might be a significant disease biomarker for asthma. The levels of TSLPR were found to be higher in asthmatic patients than in healthy children, but were found to be not different between allergic and nonallergic asthmatic patients.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Jhang Huang
- Division of Medical Research, Fooyin University Hospital, Pingtung, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, National Cheng Kung University Medical College, Tainan, Taiwan.,Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|
121
|
Verma AK, Sharma A, Kumar S, Gupta RK, Kumar D, Gupta K, Giridhar B, Das M, Dwivedi PD. Purification, characterization and allergenicity assessment of 26 kDa protein, a major allergen from Cicer arietinum. Mol Immunol 2016; 74:113-24. [DOI: 10.1016/j.molimm.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 12/24/2022]
|
122
|
Krovi SH, Gapin L. It is time to beelieve the CD1a hype! Eur J Immunol 2016; 46:56-9. [PMID: 26617406 DOI: 10.1002/eji.201546157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 11/07/2022]
Abstract
Conventional T cells have historically been linked to exacerbating allergy. By efficiently generating primarily TH 2 cells, allergens skew the immune response to produce IL-4, IL-13, and IgE. Previously, CD1a-responsive T cells were shown to functionally respond to bee and wasp venom allergens. In this issue of the European Journal of Immunology, Subramaniam et al. [Eur. J. Immunol. 2016. 46: 242-252] show that more functionally active CD1a-restricted cells are present in bee venom-allergic patients than in healthy patients. Additionally, the authors show that these cells are not as frequently found in individuals receiving venom immunotherapy. Consequently, this study implicates CD1a-reactive cells as the primary responders to venom allergy, which considerably regulate the downstream immune response.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical, Campus, Aurora, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical, Campus, Aurora, CO, USA
| |
Collapse
|
123
|
Chen YL, Chiang BL. Targeting TSLP With shRNA Alleviates Airway Inflammation and Decreases Epithelial CCL17 in a Murine Model of Asthma. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e316. [PMID: 27138176 PMCID: PMC5014514 DOI: 10.1038/mtna.2016.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/19/2016] [Indexed: 11/09/2022]
Abstract
Airway epithelium defends the invasion from microorganisms and regulates immune responses in allergic asthma. Thymic stromal lymphopoietin (TSLP) from inflamed epithelium promotes maturation of dendritic cells (DCs) to prime Th2 responses via CCL17, which induces chemotaxis of CD4+ T cells to mediate inflammation. However, few studies have investigated the regulation of epithelial CCL17. In this study, we used shRNA against TSLP to clarify the role of TSLP in the airway inflammation and whether TSLP affects the airway inflammation via epithelial CCL17. Specific shTSLP was delivered by lentivirus and selected by the knockdown efficiency. Allergic mice were intratracheally pretreated with the lentivirus and followed by intranasal ovalbumin (OVA) challenges. The sera antibody levels, airway inflammation, airway hyper-responsiveness (AHR), cytokine levels in bronchoalveolar lavage fluids, and CCL17 expressions in lungs were determined. In vivo, TSLP attenuation reduced the AHR, decreased the airway inflammation, inhibited the maturations of DCs, and suppressed the migration of T cells. Furthermore, the expression of CCL17 was particularly decreased in bronchial epithelium. In vitro, CCL17 induction was regulated by TSLP. In conclusion, TSLP might coordinate airway inflammation partially via CCL17-mediated responses and this study provides the vital utility of TSLP to develop the therapeutic approach in allergic airway inflammation.
Collapse
Affiliation(s)
- Yi-Lien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
124
|
Kim DW, Eun KM, Jin HR, Cho SH, Kim DK. Prolonged allergen exposure is associated with increased thymic stromal lymphopoietin expression and Th2-skewing in mouse models of chronic rhinosinusitis. Laryngoscope 2016; 126:E265-72. [PMID: 27107152 DOI: 10.1002/lary.26004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/11/2016] [Accepted: 03/09/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Chronic rhinosinusitis (CRS) is characterized by a dysfunctional host-environment interaction at the nasal mucosa. Contributions of host susceptibility factors such as atopy and aspirin sensitivity to CRS pathophysiology are well established. However, clinical studies on the effects of environmental factors are limited. This study investigates the histological and immunological effects of allergen exposure duration in animal models. STUDY DESIGN Animal study. METHODS A murine model for CRS with nasal polypoid lesions was induced by instilling ovalbumin/staphylococcal enterotoxin B (SEB) into murine nasal cavities for 12 (short term) or 24 weeks (long term). Histopathological changes were observed. Interleukin (IL)-4, IL-17A, IL-10, and interferon (INF)-γ levels from nasal lavage fluid were measured using enzyme-linked immunosorbent assay. Gene expressions of IL-25, thymic stromal lymphopoietin (TSLP), IL-4, IL-5, INF-γ, C-C motif chemokine ligand (CCL)-11, CCL-24, C-X-C motif chemokine ligand (CXCL)-1, CXCL-2, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, matrix metallopeptidase (MMP)-7, and tissue inhibitor of metalloproteinase (TIMP)-3 were analyzed from the nasal mucosa. RESULTS Long-term CRS models exhibited increased polypoid lesions, edematous mucosal thickness, and eosinophil infiltration compared with short-term models and showed a higher IL-10 level but lower IFN-γ and IL-17A protein levels. Moreover, CCL-24 and MMP-7 gene expressions increased whereas TIMP-3 expression decreased in long-term models compared to controls and short-term models. IL-25 and TSLP expressions were upregulated at mRNA and protein levels in short-term and long-term CRS models, respectively. Furthermore, TSLP mRNA expression was positively associated with IL-5 (r = 0.8754) and inversely correlated to IFN-γ (r = -0.7212) in CRS models. CONCLUSIONS Prolonged allergen exposure in ovalbumin/SEB-induced CRS models maintains Th2 inflammation and reduces Th1 inflammation, which was associated with upregulation of TSLP. LEVEL OF EVIDENCE NA Laryngoscope, 126:E265-E272, 2016.
Collapse
Affiliation(s)
- Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hong Ryul Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, U.S.A
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital and Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
125
|
Pei H, Linden J. Adenosine influences myeloid cells to inhibit aeroallergen sensitization. Am J Physiol Lung Cell Mol Physiol 2016; 310:L985-92. [PMID: 27016586 DOI: 10.1152/ajplung.00330.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
Agonists of adenosine A2A receptors (A2ARs) suppress the activation of most immune cells and reduce acute inflammatory responses. Asthma is characterized by sensitization in response to initial allergen exposure and by airway hyperreactivity in response to allergen rechallenge. We sought to determine if A2AR activation with CGS-21680 (CGS) is more effective when CGS is administered during sensitization or rechallenge. C57BL/6 wild-type mice and Adora2a(f/f)LysMCre(+/-) mice, which lack A2ARs on myeloid cells, were sensitized with intranasal ovalbumin (OVA) and LPS. Airway sensitization was characterized by a rapid increase in numbers of IL-6(+) and IL-12(+) macrophages and dendritic cells in lungs. A2AR activation with CGS (0.1 μg·kg(-1)·min(-1) sc) only during sensitization reduced numbers of IL-6(+) and IL-12(+) myeloid cells in the lungs and reversed the effects of OVA rechallenge to increase airway hyperresponsiveness to methacholine. CGS treatment during sensitization also reduced the expansion of lung T helper (Th1 and Th17) cells and increased expansion of regulatory T cells in response to OVA rechallenge. Most of the effects of CGS administered during sensitization were eliminated by myeloid-selective A2AR deletion. Administration of CGS only during OVA rechallenge failed to reduce airway hyperresponsiveness. We conclude that myeloid cells are key targets of adenosine during sensitization and indirectly modify T cell polarization. The results suggest that a clinically useful strategy might be to use A2AR agonists to inhibit sensitization to new aeroallergens. We speculate that adenosine production by macrophages engulfing bacteria contributes to the curious suppression of sensitization in response to early-life infections.
Collapse
Affiliation(s)
- Hong Pei
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
126
|
Chandramouleeswaran PM, Shen D, Lee AJ, Benitez A, Dods K, Gambanga F, Wilkins BJ, Merves J, Noah Y, Toltzis S, Yearley JH, Spergel JM, Nakagawa H, Malefyt RD, Muir AB, Wang ML. Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE). PLoS One 2016; 11:e0150968. [PMID: 26992000 PMCID: PMC4798725 DOI: 10.1371/journal.pone.0150968] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 12/30/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic Th2 and food antigen-mediated disease characterized by esophageal eosinophilic infiltration. Thymic stromal lymphopoetin (TSLP), an epithelial derived cytokine which bridges innate and Th2-type adaptive immune responses in other allergic conditions, is overexpressed in esophageal biopsies of EoE subjects. However, the triggers of TSLP expression in the esophageal epithelium are unknown. The objective of the current study was to characterize TSLP expression in human esophageal epithelium in EoE in vivo and to determine the role of food antigens upon epithelial TSLP expression in vitro. Using immunohistochemistry (IHC), we localized TSLP in esophageal biopsies of active EoE (≥15 eos/hpf), inactive EoE (<15 eos/hpf) and non-EoE control subjects, and found that TSLP expression was restricted to the differentiated suprabasal layer of the epithelium in actively inflamed EoE biopsies. Consistent with these results in vivo, inducible TSLP protein secretion was higher in CaCl2 differentiated telomerase-immortalized esophageal epithelial cells (EPC2-hTERT) compared to undifferentiated cells of the basal phenotype, following stimulation with the TLR3 ligand poly(I:C). To determine whether food antigens could directly induce epithelial TSLP secretion, differentiated and undifferentiated primary esophageal epithelial cells from EoE and non-EoE subjects were challenged with food antigens clinically relevant to EoE: Chicken egg ovalbumin (OVA), wheat, and milk proteins beta-lactoglobulin (blg) and beta-casein. Food antigens failed to induce TSLP secretion by undifferentiated cells; in contrast, only OVA induced TSLP secretion in differentiated epithelial cells from both EoE and control cell lines, an effect abolished by budesonide and NF-κb inhibition. Together, our study shows that specific food antigens can trigger innate immune mediated esophageal TSLP secretion, suggesting that esophageal epithelial cells at the barrier surface may play a significant role in the pathogenesis of EoE by regulating TSLP expression.
Collapse
Affiliation(s)
- Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Dawen Shen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Anna J. Lee
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Alain Benitez
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Fiona Gambanga
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Jamie Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Yuliana Noah
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Sarit Toltzis
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Jennifer H. Yearley
- Department of Immunology, Merck Research Labs, Palo Alto, California 94304, United States of America
| | - Jonathan M. Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Rene deWaal Malefyt
- Department of Immunology, Merck Research Labs, Palo Alto, California 94304, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- * E-mail: (MLW); (ABM)
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- * E-mail: (MLW); (ABM)
| |
Collapse
|
127
|
Na H, Cho M, Chung Y. Regulation of Th2 Cell Immunity by Dendritic Cells. Immune Netw 2016; 16:1-12. [PMID: 26937227 PMCID: PMC4770095 DOI: 10.4110/in.2016.16.1.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023] Open
Abstract
Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells.
Collapse
Affiliation(s)
- Hyeongjin Na
- Laboratory of Immune Regulation, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Minkyoung Cho
- Laboratory of Immune Regulation, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
128
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
129
|
Frossard CP, Zimmerli SC, Rincon Garriz JM, Eigenmann PA. Food allergy in mice is modulated through the thymic stromal lymphopoietin pathway. Clin Transl Allergy 2016; 6:2. [PMID: 26793299 PMCID: PMC4719751 DOI: 10.1186/s13601-016-0090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is involved in the pathogenesis of allergic reactions in the skin and the lung. Nevertheless, data on the role of TSLP in food allergy are scarce. We explored the role of TSLP in a mouse model with oral sensitization and oral challenge eliciting food allergy. Methods TSLP receptor (TSLPR)−/− mice and wild type mice were orally sensitized to β-lactoglobulin in presence of cholera toxin (CT) or CT alone. The elicited immune response was characterized in vitro and the mice were subsequently challenged with the antigen. Lymphocytes from various locations in the gut were activated either by the antigen or by CT and assayed for cytokine secretion. Results Here we report that TSLPR−/− are less prone to generate food-induced reactions in conjunction with a decreased antigen-specific IgG1, but not IgE response. In addition, mesenteric lymphnode lymphocytes of TSLPR−/− mice were secreting lower quantities of IL-4, IL-5 and IL-10 after in vivo Ag activation, whereas higher numbers of IL-17 secreting cells were observed. Similarly, activation by the Th2-type adjuvant cholera toxin resulted in an increased frequency of IL-12 and IL-17 secreting lamina propria and mesenteric lymphocytes, together with increased production of IL-12 by activated dendritic cells in TSLPR−/− mice. Conclusions TSLP can be considered as an essential, but not exclusive, mediator for elicitation of food allergy in mice, as well as a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Christophe P Frossard
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - Simone C Zimmerli
- Allergy Unit, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland ; EMD Serono, Billerica, MA USA
| | - José M Rincon Garriz
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland ; Fasteris SA, Plan-les-Ouates, Switzerland
| | - Philippe A Eigenmann
- Inflammation and Allergy Research Group and Department of Pediatrics, University Hospitals of Geneva and University of Geneva, 6 rue Willy-Donzé, 1211 Geneva 14, Switzerland
| |
Collapse
|
130
|
TSLP Directly Interacts with Skin-Homing Th2 Cells Highly Expressing its Receptor to Enhance IL-4 Production in Atopic Dermatitis. J Invest Dermatol 2015; 135:3017-3024. [DOI: 10.1038/jid.2015.318] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 01/31/2023]
|
131
|
Knight JM, Mak G, Shaw J, Porter P, McDermott C, Roberts L, You R, Yuan X, Millien VO, Qian Y, Song LZ, Frazier V, Kim C, Kim JJ, Bond RA, Milner JD, Zhang Y, Mandal PK, Luong A, Kheradmand F, McMurray JS, Corry DB. Long-Acting Beta Agonists Enhance Allergic Airway Disease. PLoS One 2015; 10:e0142212. [PMID: 26605551 PMCID: PMC4659681 DOI: 10.1371/journal.pone.0142212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/adverse effects
- Albuterol/therapeutic use
- Animals
- Anti-Asthmatic Agents/adverse effects
- Arrestins/deficiency
- Arrestins/genetics
- Aspergillosis, Allergic Bronchopulmonary/drug therapy
- Aspergillosis, Allergic Bronchopulmonary/genetics
- Aspergillosis, Allergic Bronchopulmonary/metabolism
- Aspergillosis, Allergic Bronchopulmonary/pathology
- Aspergillus niger/physiology
- Asthma/chemically induced
- Asthma/drug therapy
- Asthma/genetics
- Asthma/metabolism
- Bronchoconstriction/drug effects
- Carbazoles/adverse effects
- Carvedilol
- Disease Models, Animal
- Female
- Formoterol Fumarate/adverse effects
- Gene Expression
- Humans
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Peptidomimetics/pharmacology
- Propanolamines/adverse effects
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- STAT6 Transcription Factor/agonists
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Salmeterol Xinafoate/adverse effects
- beta-Arrestins
Collapse
Affiliation(s)
- John M Knight
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Garbo Mak
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Shaw
- Department of Otorhinolaryngolgy - Head and Neck Surgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Porter
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine McDermott
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Luz Roberts
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ran You
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyi Yuan
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Valentine O Millien
- Department of Medicine and the Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yuping Qian
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li-Zhen Song
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vincent Frazier
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Choel Kim
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeong Joo Kim
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States of America
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuan Zhang
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pijus K Mandal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amber Luong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center and the Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Farrah Kheradmand
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David B Corry
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| |
Collapse
|
132
|
Lee H, Bae HC, Kim J, Jeong SH, Ryu WI, Son SW. Chloroform upregulates early growth response-1-dependent thymic stromal lymphopoietin expression via the JNK and ERK pathways in human keratinocytes. Int J Dermatol 2015; 54:e521-6. [DOI: 10.1111/ijd.12946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/24/2014] [Accepted: 12/06/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Hana Lee
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| | - Hyun Cheol Bae
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| | - Jinhee Kim
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| | - Sang Hoon Jeong
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| | - Woo-In Ryu
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| | - Sang Wook Son
- Laboratory of Cell Signaling and Nanomedicine; Department of Dermatology; Korea University College of Medicine; Seoul South Korea
- Division of Brain, Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul South Korea
| |
Collapse
|
133
|
Woodfolk JA, Commins SP, Schuyler AJ, Erwin EA, Platts-Mills TAE. Allergens, sources, particles, and molecules: Why do we make IgE responses? Allergol Int 2015; 64:295-303. [PMID: 26433525 PMCID: PMC5406225 DOI: 10.1016/j.alit.2015.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Allergens are foreign proteins or glycoproteins that are the target of IgE antibody responses in humans. The relationship between subsequent exposure and the allergic symptoms is often or usually obvious; however, there is increasing evidence that in asthma, atopic dermatitis and some forms of food allergy the induction of symptoms is delayed or chronic. The primary exposure to inhaled allergens is to the particles, which are capable of carrying allergens in the air. Thus, the response reflects not only the properties of the proteins, but also the biological properties of the other constituents of the particle. This is best understood in relation to the mite fecal particles in which the contents include many different immunologically active substances. Allergic disease first became a major problem over 100 years ago, and for many years sensitization to pollens was the dominant form of these diseases. The rise in pediatric asthma correlates best with the move of children indoors, which started in 1960 and was primarily driven by indoor entertainment for children. While the causes of the increase are not simple they include both a major increase in sensitization to indoor allergens and the complex consequences of inactivity. Most recently, there has also been an increase in food allergy. Understanding this has required a reappraisal of the importance of the skin as a route for sensitization. Overall, understanding allergic diseases requires knowing about the sources, the particles and the routes of exposure as well as the properties of the individual allergens.
Collapse
Affiliation(s)
- Judith A Woodfolk
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Scott P Commins
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Alexander J Schuyler
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth A Erwin
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Thomas A E Platts-Mills
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States.
| |
Collapse
|
134
|
Akasaki S, Matsushita K, Kato Y, Fukuoka A, Iwasaki N, Nakahira M, Fujieda S, Yasuda K, Yoshimoto T. Murine allergic rhinitis and nasal Th2 activation are mediated via TSLP- and IL-33-signaling pathways. Int Immunol 2015; 28:65-76. [PMID: 26428949 DOI: 10.1093/intimm/dxv055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) and IL-33 are epithelium-derived proallergic cytokines that contribute to allergic diseases. Although the involvement of TSLP in allergic rhinitis (AR) is suggested, the exact role of TSLP in AR is poorly understood. Furthermore, the relative contribution of TSLP and IL-33 in nasal allergic responses has not been described. In this study, we examined the roles of TSLP and IL-33 in AR by analyzing acute and chronic AR models. Acute AR mice were intraperitoneally immunized with ragweed, then intranasally challenged with ragweed pollen for four consecutive days. Chronic AR mice were nasally administrated ragweed pollen on consecutive days for 3 weeks. In both models, TSLP receptor (TSLPR)-deficient mice showed defective sneezing responses and reduced serum ragweed-specific IgE levels compared with wild-type (WT) mice. Analyses of bone-marrow chimeric mice demonstrated that hematopoietic cells were responsible for defective sneezing in TSLPR-deficient mice. In addition, FcεRI(+)-cell-specific TSLPR-deficient mice showed partial but significant reduction in sneezing responses. Of note, Th2 activation and nasal eosinophilia were comparable between WT and TSLPR-deficient mice. ST2- and IL-33-deficient mice showed defective Th2 activation and nasal eosinophilia to acute, but not chronic, ragweed exposure. TSLPR and ST2 double-deficient mice showed defective Th2 activation and nasal eosinophilia even after chronic ragweed exposure. These results demonstrate that TSLPR signaling is critical for the early phase response of AR by controlling the IgE-mast-cell/basophil pathway. The IL-33/ST2 pathway is central to nasal Th2 activation during acute allergen exposure, but both TSLPR and ST2 contribute to Th2 responses in chronically allergen-exposed mice.
Collapse
Affiliation(s)
- Shoko Akasaki
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazufumi Matsushita
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yukinori Kato
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Ayumi Fukuoka
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Naruhito Iwasaki
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga 520-2121, Japan
| | - Masakiyo Nakahira
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomohiro Yoshimoto
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
135
|
Harper RW, Zeki AA. Immunobiology of the critical asthma syndrome. Clin Rev Allergy Immunol 2015; 48:54-65. [PMID: 24399247 DOI: 10.1007/s12016-013-8407-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is now recognized that asthma incorporates a broad spectrum of syndromes with varying clinical manifestations. Future improvements in asthma treatment will require a clear characterization of these asthma phenotypes and the cellular mechanisms underlying these clinical manifestations. Herein, we will describe the current knowledge of asthma biology. This will include a review of the early pioneers in asthma and allergy, how this work led to our understanding of TH1 and TH2 cytokines, and the development of the "hygiene hypothesis." We will discuss the utility and limitations of the TH1-TH2 model of asthma in animal and human studies, and how this knowledge addresses controversies surrounding the hygiene hypothesis and other competing models. We will discuss novel therapies that have been developed based on mechanistic understanding of asthma pathobiology, including successes and shortcomings of these therapies. We will review the early work that led to the recognition of "asthma phenotypes." This will include the early discovery of various inflammatory subtypes in asthma and how these inflammatory subtypes correlate with response to therapy. Finally, we will describe recent discoveries in asthma biology that will include the role of the airway epithelium in asthma pathogenesis, novel cytokines important in asthma that may serve as novel therapeutic targets, and the identification of newly described innate immune cells and their role in asthma. Improved understanding of the complex biology underpinning the various asthma phenotypes is critical for our ability to optimize treatment for all patients that suffer from asthma and critical asthma syndromes.
Collapse
Affiliation(s)
- Richart W Harper
- Division of Pulmonary, Critical Care, Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA,
| | | |
Collapse
|
136
|
Scanlon ST, McKenzie ANJ. The messenger between worlds: the regulation of innate and adaptive type-2 immunity by innate lymphoid cells. Clin Exp Allergy 2015; 45:9-20. [PMID: 25423949 DOI: 10.1111/cea.12464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although type-2 immune responses evolved primarily to defend against extracellular helminths, in part through the co-opting of tissue repair and remodeling mechanisms, they are often inappropriately directed towards relatively innocuous allergens resulting in conditions including asthma, allergic rhinitis, food allergy, and atopic dermatitis. The recent discovery of group 2 innate lymphoid cells (ILC2) has increased our understanding of the initiation of these responses and the roles played by CD4(+) T helper (Th) 2 cells in their modulation. This review focuses on the important messenger role of ILC2 in translating epithelial-derived alarmins into downstream adaptive type-2 responses via dendritic cells and T cells, with special emphasis on their roles in allergic disease.
Collapse
Affiliation(s)
- S T Scanlon
- Protein & Nucleic Acid Chemistry (PNAC) Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
137
|
Pan G, Liang Y, Lu L, Chen X, Wang M, Wang L, Yan C, Zhang W. Blockage of thymic stromal lymphopoietin signaling improves acute lung injury in mice by regulating pulmonary dendritic cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10698-10706. [PMID: 26617780 PMCID: PMC4637595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the effects of blockage of thymic stromal lymphopoietin (TSLP) signaling by TSLP receptor (TSLPR)-immunoglobulin (Ig) on acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS C57BL/6 mice received TSLPR-Ig or controlled-Ig before being induced ALI. Lung wet/dry (W/D) weight ratio was recorded. Neutrophil number and albumin concentration of bronchoalveolar lavages fluids (BALF) were determined. Besides, bone marrow dendritic cells (BMDCs) were separated and cultured with medium, TSLP, TSLP plus TSLPR-Ig or TSLP plus controlled-Ig. Protein expression levels of TSLP in lung tissues, phosphorylation extracellular regulated protein kinases (pERK) 1/2, p38, and signal transducers and activators of transcription (STAT) 3 in BMDCs were analyzed using Western blotting. Expression of CD40, CD80 and CD86 on pulmonary DCs and BMDCs was determined using flow cytometry (FCM). RESULTS The W/D ratio, neutrophil number and albumin concentration were significantly decreased in the TSLPR-Ig group compared with the controlled-Ig and model group. Moreover, there was a noticeable decrease in CD40, CD80 or CD86 expression by TSLPR-Ig on both pulmonary DCs and BMDCs. The protein levels of TSLP, pERK1 and STAT3 were significantly decreased by TSLPR-Ig. However, no significant differences were found in p38 and pERK2. CONCLUSION These results suggest that TSLP may be involved in ALI, and blockage of TSLP signaling using TSLPR-Ig improves ALI at least in part by regulation of DCs functions. The underling downstream signaling mediated by TSLP might be associated with activating the ERK1 and STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guoquan Pan
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Lu Lu
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Xu Chen
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Min Wang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Linxia Wang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Chunxue Yan
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| | - Weixi Zhang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China
| |
Collapse
|
138
|
Marshall NB, Lukomska E, Long CM, Kashon ML, Sharpnack DD, Nayak AP, Anderson KL, Jean Meade B, Anderson SE. Triclosan Induces Thymic Stromal Lymphopoietin in Skin Promoting Th2 Allergic Responses. Toxicol Sci 2015; 147:127-39. [PMID: 26048654 PMCID: PMC4734116 DOI: 10.1093/toxsci/kfv113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triclosan is an antimicrobial chemical incorporated into many personal, medical and household products. Approximately, 75% of the U.S. population has detectable levels of triclosan in their urine, and although it is not typically considered a contact sensitizer, recent studies have begun to link triclosan exposure with augmented allergic disease. We examined the effects of dermal triclosan exposure on the skin and lymph nodes of mice and in a human skin model to identify mechanisms for augmenting allergic responses. Triclosan (0%-3%) was applied topically at 24-h intervals to the ear pinnae of OVA-sensitized BALB/c mice. Skin and draining lymph nodes were evaluated for cellular responses and cytokine expression over time. The effects of triclosan (0%-0.75%) on cytokine expression in a human skin tissue model were also examined. Exposure to triclosan increased the expression of TSLP, IL-1β, and TNF-α in the skin with concomitant decreases in IL-25, IL-33, and IL-1α. Similar changes in TSLP, IL1B, and IL33 expression occurred in human skin. Topical application of triclosan also increased draining lymph node cellularity consisting of activated CD86(+)GL-7(+) B cells, CD80(+)CD86(+) dendritic cells, GATA-3(+)OX-40(+)IL-4(+)IL-13(+) Th2 cells and IL-17 A(+) CD4 T cells. In vivo antibody blockade of TSLP reduced skin irritation, IL-1β expression, lymph node cellularity, and Th2 responses augmented by triclosan. Repeated dermal exposure to triclosan induces TSLP expression in skin tissue as a potential mechanism for augmenting allergic responses.
Collapse
Affiliation(s)
- Nikki B Marshall
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505;Biostatistics and Epidemiology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505 andVet Path Services, Inc., Mason 45040, Ohio
| | - Ewa Lukomska
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| | - Carrie M Long
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| | - Michael L Kashon
- Biostatistics and Epidemiology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505 and
| | | | - Ajay P Nayak
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| | - Katie L Anderson
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| | - B Jean Meade
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| | - Stacey E Anderson
- *Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505
| |
Collapse
|
139
|
Bertrand P, Lay MK, Piedimonte G, Brockmann PE, Palavecino CE, Hernández J, León MA, Kalergis AM, Bueno SM. Elevated IL-3 and IL-12p40 levels in the lower airway of infants with RSV-induced bronchiolitis correlate with recurrent wheezing. Cytokine 2015; 76:417-423. [PMID: 26299549 DOI: 10.1016/j.cyto.2015.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the first cause of hospitalization due to bronchiolitis in infants. RSV bronchiolitis has been linked to asthma and recurrent wheezing, however the mechanisms behind this association have not been elucidated. Here, we evaluated the cytokine and chemokine profiles in the airways in infants with RSV bronchiolitis. Nasopharyngeal Aspirates (NPA) and Bronchoalveolar Lavage Fluids (BALF) from infants hospitalized due to RSV bronchiolitis and healthy controls were analyzed for cytokine and chemokine production. We observed elevated levels of Th2 cytokines (IL-3, IL-4, IL-10 and IL-13), pro-inflammatory cytokines and chemokines (IL-1β, IL-6, TNF-β, MCP-1/CCL2, MIP-1α/CCL3 and IL-8/CXCL8) in BALF from infants with RSV bronchiolitis, as compared to controls. We found a direct correlation of IL-3 and IL-12p40 levels with the development of recurrent wheezing later in life. These results suggest that IL-3 and IL-12p40 could be considered as molecular predictors for recurrent wheezing due to RSV infection.
Collapse
Affiliation(s)
- Pablo Bertrand
- División de Pediatría, Unidad de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Giovanni Piedimonte
- The Cleveland Clinic Pediatric Institute and Children's Hospital, Cleveland, OH, United States
| | - Pablo E Brockmann
- División de Pediatría, Unidad de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian E Palavecino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jury Hernández
- División de Pediatría, Unidad de Enfermedades Respiratorias Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel A León
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
140
|
Chauhan A, Singh M, Agarwal A, Paul N. Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma 2015; 52:868-72. [PMID: 26287664 DOI: 10.3109/02770903.2015.1026441] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Newly discovered cytokines TSLP and IL33 are being studied as important indicators of Th2 inflammation and their effect on Treg cells is likely to modulate immune response. We attempted to study TSLP and IL-33 and then correlated with Tregs in order to find possible biomarker in these patients. METHODS Sixty-five children (37 with asthma only and 28 with asthma and rhinitis) aged 6.4 ± 3.2 years (patient group) and 15 healthy children aged 8.0 ± 2.6 years (control group) were recruited in this study. In vitro analysis of TSLP and IL-33 was done in serum samples of 65 newly diagnosed children for allergic asthma and 15 healthy children using the sandwich ELISA method. The expression of Treg cells (CD4 + CD25 + FOXP3+) was analyzed by flow cytometry. RESULTS The mean TSLP in the patient group (592 ± 68 pg/ml) was significantly higher than controls (215 ± 45 pg/ml) (p < 0.05). Alternatively, the expression of FOXP3 + T reg cells was significantly lower in the patient group (52 ± 36) compared with the controls (95.9 ± 3.6) (p = 0.003). IL-33 was also significantly higher (4044 ± 413 pg/ml) in the patient group compared with the controls (3282 ± 331.5 pg/ml) (p = 0.0001). The expression of Treg cells was negatively correlated with the TSLP (r = -0.23, p = 0.07). Asthma control test (ACT) was also negatively correlated with TSLP in the patient group (r = -0.14, p > 0.05). CONCLUSION Children with asthma show elevated serum levels of TSLP, which correlated negatively with asthma control test and Treg cells. TSLP may be used as a biomarker for inflammation in pediatric asthma patients.
Collapse
Affiliation(s)
- Anil Chauhan
- a Department of Pediatrics , Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Meenu Singh
- a Department of Pediatrics , Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Amit Agarwal
- a Department of Pediatrics , Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Nandini Paul
- a Department of Pediatrics , Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
141
|
Deciphering Asthma Biomarkers with Protein Profiling Technology. Int J Inflam 2015; 2015:630637. [PMID: 26346739 PMCID: PMC4543788 DOI: 10.1155/2015/630637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, resulting in bronchial hyperresponsiveness with every allergen exposure. It is now clear that asthma is not a single disease, but rather a multifaceted syndrome that results from a variety of biologic mechanisms. Asthma is further problematic given that the disease consists of many variants, each with its own etiologic and pathophysiologic factors, including different cellular responses and inflammatory phenotypes. These facets make the rapid and accurate diagnosis (not to mention treatments) of asthma extremely difficult. Protein biomarkers can serve as powerful detection tools in both clinical and basic research applications. Recent endeavors from biomedical researchers have developed technical platforms, such as cytokine antibody arrays, that have been employed and used to further the global analysis of asthma biomarker studies. In this review, we discuss potential asthma biomarkers involved in the pathophysiologic process and eventual pathogenesis of asthma, how these biomarkers are being utilized, and how further testing methods might help improve the diagnosis and treatment strain that current asthma patients suffer.
Collapse
|
142
|
Perez GF, Rodriguez-Martinez CE, Nino G. Rhinovirus-Induced Airway Disease: A Model to Understand the Antiviral and Th2 Epithelial Immune Dysregulation in Childhood Asthma. J Investig Med 2015; 63:792-5. [PMID: 26057561 PMCID: PMC4512841 DOI: 10.1097/jim.0000000000000209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhinovirus (RV) infections account for most asthma exacerbations among children and adults, yet the fundamental mechanism responsible for why asthmatics are more susceptible to RV than otherwise healthy individuals remains largely unknown. Nonetheless, the use of models to understand the mechanisms of RV-induced airway disease in asthma has dramatically expanded our knowledge about the cellular and molecular pathogenesis of the disease. For instance, ground-breaking studies have recently established that the susceptibility to RV in asthmatic subjects is associated with a dysfunctional airway epithelial inflammatory response generated after innate recognition of viral-related molecules, such as double-stranded RNA. This review summarizes the novel cardinal features of the asthmatic condition identified in the past few years through translational and experimental RV-based approaches. Specifically, we discuss the evidence demonstrating the presence of an abnormal innate antiviral immunity (airway epithelial secretion of types I and III interferons), exaggerated production of the master Th2 molecule thymic stromal lymphopoietin, and altered antimicrobial host defense in the airways of asthmatic individuals with acute RV infection.
Collapse
Affiliation(s)
- Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
- Departments of Pediatrics and Integrative Systems Biology, George Washington University, Washington, DC
- Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| | - Carlos E. Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
- Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
- Research Unit, Military Hospital of Colombia, Bogota, Colombia
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC
- Departments of Pediatrics and Integrative Systems Biology, George Washington University, Washington, DC
- Center for Genetic Research Medicine, Children’s National Medical Center, Washington, DC
| |
Collapse
|
143
|
Morita H, Arae K, Unno H, Toyama S, Motomura K, Matsuda A, Suto H, Okumura K, Sudo K, Takahashi T, Saito H, Matsumoto K, Nakae S. IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS One 2015; 10:e0134226. [PMID: 26230091 PMCID: PMC4521793 DOI: 10.1371/journal.pone.0134226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND IL-25, IL-33 and TSLP are produced predominantly by epithelial cells and are known to induce Th2-type cytokines. Th2-type cytokines are involved not only in host defense against nematodes, but also in the development of Th2-type allergic diseases. TSLP was reported to be crucial for development of allergic airway inflammation in mice after inhalation of allergens to which they had been sensitized epicutaneously (EC) beforehand. However, the roles of IL-25 and IL-33 in the setting remain unclear. METHODS Mice deficient in IL-25 and IL-33 were sensitized EC with ovalbumin (OVA) and then challenged intranasally with OVA. Airway inflammation, the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) and airway hyperresponsiveness (AHR) in the mice were determined, respectively, by histological analysis, with a hemocytometer, and by using plethysmograph chambers with a ventilator. Expression of mRNA in the skin and lungs was determined by quantitative PCR, while the BALF levels of myeloperoxidase (MPO) and eosinophil peroxidase (EPO) and the serum levels of IgE were determined by ELISA. RESULTS Normal OVA-specific Th2- and Th17-cell responses of lymph nodes and spleens were observed in IL-25-deficient (IL-25-/-) and IL-33-/- mice after EC sensitization with OVA. Nevertheless, the number of eosinophils, but not neutrophils, in the BALFs, and the levels of Th2 cytokines, but not Th17 cytokines, in the lungs were significantly decreased in the IL-25-/- and IL-33-/- mice pre-sensitized EC with OVA, followed by inhalation of OVA, whereas their levels of AHR and OVA-specific serum IgE were normal. CONCLUSIONS Both IL-25 and IL-33 are critical for induction of Th2-type cytokine-mediated allergic airway eosinophilia, but not Th17-type cytokine-mediated airway neutrophilia, at the local sites of lungs in the challenge phase of mice sensitized EC with OVA. They do not affect OVA-specific T-cell induction in the sensitization phase.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160–8582, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, 192–8508, Japan
| | - Hirotoshi Unno
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105–8461, Japan
| | - Sumika Toyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo 160–8402, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama 332–0012, Japan
- * E-mail:
| |
Collapse
|
144
|
Hillen MR, Radstake TRDJ, Hack CE, van Roon JAG. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease: Fig. 1. Rheumatology (Oxford) 2015; 54:1771-9. [DOI: 10.1093/rheumatology/kev241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/14/2022] Open
|
145
|
Cianferoni A, Spergel J. The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Rev Clin Immunol 2015; 10:1463-74. [PMID: 25340427 DOI: 10.1586/1744666x.2014.967684] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine similar to IL- 7, whose gene is located on chromosome 5q22.1 and it exerts its biological function through the TSLP-Receptor (TSLP-R). TSLP is expressed primarily by epithelial cells at barrier surfaces such as the skin, gut and lung in response to danger signals. Since it was cloned in 1994, there has been accumulating evidence that TSLP is crucial for the maturation of antigen presenting cells and hematopoietic cells. TSLP genetic variants and its dysregulated expression have been linked to atopic diseases such as atopic dermatitis, asthma, allergic rhinitis and eosinophilic esophagitis.
Collapse
Affiliation(s)
- Antonella Cianferoni
- The Children's Hospital of Philadelphia - Allergy, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
146
|
Hillen MR, Hartgring SAY, Willis CR, Radstake TRDJ, Hack CE, Lafeber FPJG, van Roon JAG. The Additive Inflammatory In Vivo and In Vitro Effects of IL-7 and TSLP in Arthritis Underscore the Therapeutic Rationale for Dual Blockade. PLoS One 2015; 10:e0130830. [PMID: 26110994 PMCID: PMC4482403 DOI: 10.1371/journal.pone.0130830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/26/2015] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION The cytokines interleukin (IL)-7 and thymic stromal lymphopoietin (TSLP) signal through the IL-7R subunit and play proinflammatory roles in experimental arthritis and rheumatoid arthritis (RA). We evaluated the effect of inhibition of IL-7R- and TSLPR-signalling as well as simultaneous inhibition of IL-7R- and TSLPR-signalling in murine experimental arthritis. In addition, the effects of IL-7 and TSLP in human RA dendritic cell (DC)/T-cell co-cultures were studied. METHODS Arthritis was induced with proteoglycan in wildtype mice (WT) and in mice deficient for the TSLP receptor subunit (TSLPR-/-). Both mice genotypes were treated with anti-IL-7R or phosphate buffered saline. Arthritis severity was assessed and local and circulating cytokines were measured. Autologous CD1c-positive DCs and CD4 T-cells were isolated from peripheral blood of RA patients and were co-cultured in the presence of IL-7, TSLP or both and proliferation and cytokine production were assessed. RESULTS Arthritis severity and immunopathology were decreased in WT mice treated with anti-IL-7R, in TSLPR-/- mice, and the most robustly in TSLPR-/- mice treated with anti-IL-7R. This was associated with strongly decreased levels of IL-17, IL-6 and CD40L. In human DC/T-cell co-cultures, TSLP and IL-7 additively increased T-cell proliferation and production of Th17-associated cytokines, chemokines and tissue destruction factors. CONCLUSION TSLP and IL-7 have an additive effect on the production of Th17-cytokines in a human in vitro model, and enhance arthritis in mice linked with enhanced inflammation and immunopathology. As both cytokines signal via the IL-7R, these data urge for IL-7R-targeting to prevent the activity of both cytokines in RA.
Collapse
Affiliation(s)
- Maarten R. Hillen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarita A. Y. Hartgring
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cynthia R. Willis
- Inflammation Lab, Amgen Inc., Seattle, Washington, United States of America
| | - Timothy R. D. J. Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis E. Hack
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris P. J. G. Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joel A. G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
147
|
Mehta AK, Duan W, Doerner AM, Traves SL, Broide DH, Proud D, Zuraw BL, Croft M. Rhinovirus infection interferes with induction of tolerance to aeroantigens through OX40 ligand, thymic stromal lymphopoietin, and IL-33. J Allergy Clin Immunol 2015; 137:278-288.e6. [PMID: 26100084 DOI: 10.1016/j.jaci.2015.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rhinovirus infection at an early age has been associated with development of asthma, but how rhinovirus influences the immune response is not clear. OBJECTIVE Tolerance to inhaled antigen is mediated through induction of regulatory T (Treg) cells, and we examined whether rhinovirus infection of the respiratory tract can block airway tolerance by modulating Treg cells. METHODS The immune response to intranasal ovalbumin in mice was assessed with concomitant infection with RV1B, and the factors induced in vivo were compared with those made by human lung epithelial cells infected in vitro with RV16. RESULTS RV1B infection of mice abrogated tolerance induced by inhalation of soluble ovalbumin, suppressing the normal generation of forkhead box protein 3-positive Treg cells while promoting TH2 cells. Furthermore, RV1B infection led to susceptibility to asthmatic lung disease when mice subsequently re-encountered aeroantigen. RV1B promoted early in vivo expression of the TNF family protein OX40 ligand on lung dendritic cells that was dependent on the innate cytokine thymic stromal lymphopoietin (TSLP) and also induced another innate cytokine, IL-33. Inhibiting each of these pathways allowed the natural development of Treg cells while minimizing TH2 differentiation and restored tolerance in the face of RV1B infection. In accordance, RV16 infection of human lung epithelial cells upregulated TSLP and IL-33 expression. CONCLUSIONS These results suggest that infection of the respiratory epithelium with rhinovirus can antagonize tolerance to inhaled antigen through combined induction of TSLP, IL-33, and OX40 ligand and that this can lead to susceptibility to asthmatic lung inflammation.
Collapse
Affiliation(s)
- Amit K Mehta
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Wei Duan
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Astrid M Doerner
- Veterans Medical Research Foundation, University of California San Diego, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Suzanne L Traves
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - David Proud
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Bruce L Zuraw
- Veterans Medical Research Foundation, University of California San Diego, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, Calif.
| |
Collapse
|
148
|
Ying G, Zhang Y, Tang G, Chen S. Functions of thymic stromal lymphopoietin in non-allergic diseases. Cell Immunol 2015; 295:144-9. [DOI: 10.1016/j.cellimm.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022]
|
149
|
Eckhardt J, Döbbeler M, König C, Kuczera K, Kuhnt C, Ostalecki C, Zinser E, Mak TW, Steinkasserer A, Lechmann M. Thymic stromal lymphopoietin deficiency attenuates experimental autoimmune encephalomyelitis. Clin Exp Immunol 2015; 181:51-64. [PMID: 25753260 DOI: 10.1111/cei.12621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
In the present study we examined the role of thymic stromal lymphopoietin (TSLP) in experimental autoimmune encephalomyelitis (EAE). Here, we report that TSLP knock-out (KO) mice display a delayed onset of disease and an attenuated form of EAE. This delayed onset was accompanied by a reduced number of encephalitogenic T helper type 1 (Th1) cells in the central nervous system (CNS) of TSLP KO mice. In addition, CD4(+) and CD8(+) T cells from CNS of TSLP KO mice show a reduced activation status in comparison to wild-type mice. It is noteworthy that we could also show that lymph node cells from TSLP KO mice expanded less efficiently and that interleukin (IL)-6-, interferon (IFN)-γ and tumour necrosis factor (TNF)-α levels were reduced. Furthermore, CD3(+) T cells isolated in the preclinical phase from myelin oligodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-immunized TSLP KO mice showed a reduced response after secondary exposure to MOG(35-55), indicating that differentiation of naive T cells into MOG(35-55)-specific effector and memory T cells was impaired in KO mice. The addition of recombinant TSLP enhanced T cell proliferation during MOG(35-55) restimulation, showing that T cells also respond directly to TSLP. In summary, these data demonstrate that expression of, and immune activation by, TSLP contributes significantly to the immunopathology of EAE.
Collapse
Affiliation(s)
- J Eckhardt
- Department of Immune Modulation at the Department of Dermatology
| | - M Döbbeler
- Department of Immune Modulation at the Department of Dermatology
| | - C König
- Department of Immune Modulation at the Department of Dermatology
| | - K Kuczera
- Department of Immune Modulation at the Department of Dermatology
| | - C Kuhnt
- Department of Immune Modulation at the Department of Dermatology
| | - C Ostalecki
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - E Zinser
- Department of Immune Modulation at the Department of Dermatology
| | - T W Mak
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - A Steinkasserer
- Department of Immune Modulation at the Department of Dermatology
| | - M Lechmann
- Department of Immune Modulation at the Department of Dermatology
| |
Collapse
|
150
|
Chiu CJ, Ling TY, Chiang BL. Lung-derived SSEA-1(+) stem/progenitor cells inhibit allergic airway inflammation in mice. Allergy 2015; 70:374-83. [PMID: 25564944 DOI: 10.1111/all.12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is characterized by chronic airway inflammation and airway hyperresponsiveness (AHR). Little is known about the role of pulmonary stem/progenitor cells (PSCs) in allergic airway inflammation. METHODS To identify and investigate the role of PSCs in the bronchial epithelium of neonatal mice, we developed an enzyme-based digestion method to obtain single-cell suspension from lung tissues. Characterization of PSCs was performed using flow cytometry, real-time PCR, immunofluorescence staining, confocal microscopy, and scanning electron microscopy. The effects of SSEA-1(+) (stage-specific embryonic antigen-1) PSCs was studied in an in vivo model of ovalbumin-induced allergic inflammation and an in vitro model of cell-based regulation using flow cytometry, real-time PCR, and immune-blotting. RESULTS Single-cell suspensions derived from neonatal lung tissue included populations that expressed either SSEA-1(+) or Sca-1(+) (stem cell antigen-1). The SSEA-1(+) PSCs were highly prevalent in neonatal mice, and they were rare in adult mice. Enriched neonatal SSEA-1(+) PSCs had the ability of self-renewal and differentiated into pneumocytes and tracheal epithelial cells. SSEA-1(+) PSCs reduced AHR and airway damage in asthmatic mice by decreasing eosinophil infiltration, inhibiting chemokines/cytokines production, and preserving the level of CCSP. CONCLUSIONS Here, we demonstrated that neonatal SSEA-1(+) PSCs play an immunomodulatory role in the progression of asthma by reducing lung damage and inhibiting inflammatory responses. Further understanding the molecular mechanisms of neonatal SSEA-1(+) PSCs might shed light on exploring the novel therapeutic approaches for allergic airway inflammation.
Collapse
Affiliation(s)
- C.-J. Chiu
- Graduate Institute of Immunology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - T.-Y. Ling
- Department of Pharmacology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - B.-L. Chiang
- Graduate Institute of Immunology; College of Medicine; National Taiwan University; Taipei Taiwan
- Graduate Institute of Clinical Medicine; College of Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|