101
|
Anderson RCO, Andrade DV. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol Evol 2017; 7:9066-9075. [PMID: 29152198 PMCID: PMC5677477 DOI: 10.1002/ece3.3219] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
Due to their highly permeable skin and ectothermy, terrestrial amphibians are challenged by compromises between water balance and body temperature regulation. The way in which such compromises are accommodated, under a range of temperatures and dehydration levels, impacts importantly the behavior and ecology of amphibians. Thus, using the terrestrial toad Rhinella schneideri as a model organism, the goals of this study were twofold. First, we determined how the thermal sensitivity of a centrally relevant trait-locomotion-was affected by dehydration. Secondly, we examined the effects of the same levels of dehydration on thermal preference and thermal tolerance. As dehydration becomes more severe, the optimal temperature for locomotor performance was lowered and performance breadth narrower. Similarly, dehydration was accompanied by a decrease in the thermal tolerance range. Such a decrease was caused by both an increase in the critical minimal temperature and a decrease in the thermal maximal temperature, with the latter changing more markedly. In general, our results show that the negative effects of dehydration on behavioral performance and thermal tolerance are, at least partially, counteracted by concurrent adjustments in thermal preference. We discuss some of the potential implications of this observation for the conservation of anuran amphibians.
Collapse
Affiliation(s)
- Rodolfo C O Anderson
- Departamento de ZoologiaInstituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brasil
| | - Denis V Andrade
- Departamento de ZoologiaInstituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brasil
| |
Collapse
|
102
|
Bürger R, Lynch M. EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE-GENETIC ANALYSIS. Evolution 2017; 49:151-163. [PMID: 28593664 DOI: 10.1111/j.1558-5646.1995.tb05967.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1993] [Accepted: 12/01/1993] [Indexed: 11/29/2022]
Abstract
Because of the ubiquity of genetic variation for quantitative traits, virtually all populations have some capacity to respond evolutionarily to selective challenges. However, natural selection imposes demographic costs on a population, and if these costs are sufficiently large, the likelihood of extinction will be high. We consider how the mean time to extinction depends on selective pressures (rate and stochasticity of environmental change, and strength of selection), population parameters (carrying capacity, and reproductive capacity), and genetics (rate of polygenic mutation). We assume that in a randomly mating, finite population subject to density-dependent population growth, individual fitness is determined by a single quantitative-genetic character under Gaussian stabilizing selection with the optimum phenotype exhibiting directional change, or random fluctuations, or both. The quantitative trait is determined by a finite number of freely recombining, mutationally equivalent, additive loci. The dynamics of evolution and extinction are investigated, assuming that the population is initially under mutation-selection-drift balance. Under this model, in a directionally changing environment, the mean phenotype lags behind the optimum, but on the average evolves parallel to it. The magnitude of the lag determines the vulnerability to extinction. In finite populations, stochastic variation in the genetic variance can be quite pronounced, and bottlenecks in the genetic variance temporarily can impair the population's adaptive capacity enough to cause extinction when it would otherwise be unlikely in an effectively infinite population. We find that maximum sustainable rates of evolution or, equivalently, critical rates of environmental change, may be considerably less than 10% of a phenotypic standard deviation per generation.
Collapse
Affiliation(s)
- Reinhard Bürger
- Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090, Wien, Austria
| | - Michael Lynch
- Department of Biology, University of Oregon, Eugene, Oregon, 97403
| |
Collapse
|
103
|
Crill WD, Huey RB, Gilchrist GW. WITHIN‐ AND BETWEEN‐GENERATION EFFECTS OF TEMPERATURE ON THE MORPHOLOGY AND PHYSIOLOGY OF
DROSOPHILA MELANOGASTER. Evolution 2017; 50:1205-1218. [DOI: 10.1111/j.1558-5646.1996.tb02361.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1995] [Accepted: 06/16/1995] [Indexed: 11/30/2022]
Affiliation(s)
- Wayne D. Crill
- Department of Zoology University of Washington Box 351800 Seattle Washington 98195‐1800
| | - Raymond B. Huey
- Department of Zoology University of Washington Box 351800 Seattle Washington 98195‐1800
| | - George W. Gilchrist
- Department of Zoology University of Washington Box 351800 Seattle Washington 98195‐1800
| |
Collapse
|
104
|
Bauwens D, Garland T, Castilla AM, Van Damme R. EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION. Evolution 2017; 49:848-863. [DOI: 10.1111/j.1558-5646.1995.tb02321.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1993] [Accepted: 05/10/1994] [Indexed: 11/27/2022]
Affiliation(s)
- Dirk Bauwens
- Institute of Nature Conservation; Kiewitdreef 5 B-3500 Hasselt Belgium
| | - Theodore Garland
- Department of Zoology; University of Wisconsin; Madison Wisconsin 53706
| | - Aurora M. Castilla
- Department of Biology; University of Antwerp (UIA); B-2610 Wilrijk Belgium
| | - Raoul Van Damme
- Department of Biology; University of Antwerp (UIA); B-2610 Wilrijk Belgium
| |
Collapse
|
105
|
Autumn K, Jindrich D, DeNardo D, Mueller R. LOCOMOTOR PERFORMANCE AT LOW TEMPERATURE AND THE EVOLUTION OF NOCTURNALITY IN GECKOS. Evolution 2017; 53:580-599. [DOI: 10.1111/j.1558-5646.1999.tb03793.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 12/14/1998] [Indexed: 11/30/2022]
Affiliation(s)
- Kellar Autumn
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building; University of California; Berkeley California 94720-3160
- Department of Integrative Biology, 3101 Valley Life Sciences Building; University of California; Berkeley California 94720-3160
| | - Devin Jindrich
- Department of Integrative Biology, 3101 Valley Life Sciences Building; University of California; Berkeley California 94720-3160
| | - Dale DeNardo
- Department of Integrative Biology, 3101 Valley Life Sciences Building; University of California; Berkeley California 94720-3160
| | - Rachel Mueller
- Department of Integrative Biology, 3101 Valley Life Sciences Building; University of California; Berkeley California 94720-3160
| |
Collapse
|
106
|
Cavicchi S, Guerra D, Torre VL, Huey RB. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY. Evolution 2017; 49:676-684. [PMID: 28565130 DOI: 10.1111/j.1558-5646.1995.tb02304.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1993] [Accepted: 08/15/1994] [Indexed: 11/30/2022]
Abstract
We investigated the heat tolerance of adults of three replicated lines of Drosophila melanogaster that have been evolving independently by laboratory natural selection for 15 yr at "nonextreme" temperatures (18°C, 25°C, or 28°C). These lines are known to have diverged in body size and in the thermal dependence of several life-history traits. Here we show that they differ also in tolerance of extreme high temperature as well as in induced thermotolerance ("heat hardening"). For example, the 28°C flies had the highest probability of surviving a heat shock, whereas the 18°C flies generally had the lowest probability. A short heat pretreatment increased the heat tolerance of the 18°C and 25°C lines, and the threshold temperature necessary to induce thermotolerance was lower for the 18°C line than for the 25°C line. However, neither heat pretreatment nor acclimation to different temperatures influenced heat tolerance of the 28°C line, suggesting the loss of capacity for induced thermotolerance and for acclimation. Thus, patterns of tolerance of extreme heat, of acclimation, and of induced thermotolerance have evolved as correlated responses to natural selection at nonextreme temperatures. A genetic analysis of heat tolerance of a representative replicate population each from the 18°C and 28°C lines indicates that chromosomes 1, 2, and 3 have significant effects on heat tolerance. However, the cytoplasm has little influence, contrary to findings in an earlier study of other stocks that had been evolving for 7 yr at 14°C versus 25°C. Because genes for heat stress proteins (hsps) are concentrated on chromosome 3, the potential role of hsps in the heat tolerance and of induced thermotolerance in these naturally selected lines is currently unclear. In any case, species of Drosophila possess considerable genetic variation in thermal sensitivity and thus have the potential to evolve rapidly in response to climate change; but predicting that response may be difficult.
Collapse
Affiliation(s)
- Sandro Cavicchi
- Department of Evolutionary and Experimental Biology, University of Bologna, via Belmeloro 8, 40126, Bologna, Italy
| | - Daniela Guerra
- Department of Evolutionary and Experimental Biology, University of Bologna, via Belmeloro 8, 40126, Bologna, Italy
| | - Vittoria La Torre
- Department of Evolutionary and Experimental Biology, University of Bologna, via Belmeloro 8, 40126, Bologna, Italy
| | - Raymond B Huey
- Department of Zoology, Box 351800, University of Washington, Seattle, Washington, 98195-1800
| |
Collapse
|
107
|
Hangartner S, Dworkin I, DeNieu M, Hoffmann AA. Does increased heat resistance result in higher susceptibility to predation? A test using Drosophila melanogaster selection and hardening. J Evol Biol 2017; 30:1153-1164. [PMID: 28386918 DOI: 10.1111/jeb.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
Heat resistance of ectotherms can be increased both by plasticity and evolution, but these effects may have trade-offs resulting from biotic interactions. Here, we test for predation costs in Drosophila melanogaster populations with altered heat resistance produced by adult hardening and directional selection for increased heat resistance. In addition, we also tested for genetic trade-offs by testing heat resistance in lines that have evolved under increased predation risk. We show that while 35/37 °C hardening increases heat resistance as expected, it does not increase predation risk from jumping spiders or mantids; in fact, there was an indication that survival may have increased under predation following a triple 37 °C compared to a single 35 °C hardening treatment. Flies that survived a 39 °C selection cycle showed lower survival under predation, suggesting a predation cost of exposure to a more severe heat stress. There was, however, no correlated response to selection because survival did not differ between control and selected lines after selection was relaxed for one or two generations. In addition, lines selected for increased predation risk did not differ in heat resistance. Our findings suggest independent evolutionary responses to predation and heat as measured in laboratory assays, and no costs of heat hardening on susceptibility to predation.
Collapse
Affiliation(s)
- S Hangartner
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| | - I Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - M DeNieu
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - A A Hoffmann
- School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| |
Collapse
|
108
|
Haupt TM, Sinclair BJ, Chown SL. Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:108-116. [PMID: 28034677 DOI: 10.1016/j.jinsphys.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Physiological ecologists have long assumed that thermoregulatory behaviour will evolve to optimise physiological performance. The coadaptation hypothesis predicts that an animal's preferred body temperature will correspond to the temperature at which its performance is optimal. Here we use a strong inference approach to examine the relationship between thermal preference and locomotor performance in the caterpillars of a wingless sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae). The coadaptation hypothesis and its alternatives (suboptimal is optimal, thermodynamic effect, trait variation) are tested. Compared to the optimal movement temperature (22.5°C for field-fresh caterpillars and 25, 20, 22.5, 25 and 20°C following seven day acclimations to 0, 5, 10, 15 and 5-15°C respectively), caterpillar thermal preference was significantly lower (9.2°C for field-fresh individuals and 9.4, 8.8, 8.1, 5.2 and 4.6°C following acclimation to 0, 5, 10, 15 and 5-15°C, respectively). Together with the low degree of asymmetry observed in the performance curves, and the finding that acclimation to high temperatures did not result in maximal performance, all, but one of the above hypotheses (i.e. 'trait variation') was rejected. The thermal preference of P. marioni caterpillars more closely resembles temperatures at which survival is high (5-10°C), or where feeding is optimal (10°C), than where locomotion speed is maximal, suggesting that thermal preference may be optimised for overall fitness rather than for a given trait.
Collapse
Affiliation(s)
- Tanya M Haupt
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
109
|
Camacho A, Rusch TW. Methods and pitfalls of measuring thermal preference and tolerance in lizards. J Therm Biol 2017; 68:63-72. [PMID: 28689723 DOI: 10.1016/j.jtherbio.2017.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 11/28/2022]
Abstract
Understanding methodological and biological sources of bias during the measurement of thermal parameters is essential for the advancement of thermal biology. For more than a century, studies on lizards have deepened our understanding of thermal ecophysiology, employing multiple methods to measure thermal preferences and tolerances. We reviewed 129 articles concerned with measuring preferred body temperature (PBT), voluntary thermal tolerance, and critical temperatures of lizards to offer: a) an overview of the methods used to measure and report these parameters, b) a summary of the methodological and biological factors affecting thermal preference and tolerance, c) recommendations to avoid identified pitfalls, and d) directions for continued progress in our application and understanding of these thermal parameters. We emphasize the need for more methodological and comparative studies. Lastly, we urge researchers to provide more detailed methodological descriptions and suggest ways to make their raw data more informative to increase the utility of thermal biology studies.
Collapse
Affiliation(s)
- Agustín Camacho
- Laboratório de Herpetologia, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | - Travis W Rusch
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
110
|
Ober GT, Thornber C, Grear J, Kolbe JJ. Ecological differences influence the thermal sensitivity of swimming performance in two co-occurring mysid shrimp species with climate change implications. J Therm Biol 2017; 64:26-34. [PMID: 28166942 PMCID: PMC11163446 DOI: 10.1016/j.jtherbio.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 11/30/2022]
Abstract
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4°C between their CTmax and the 100-year projection for mean summer water temperatures of 28°C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.
Collapse
Affiliation(s)
- Gordon T Ober
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | - Carol Thornber
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jason Grear
- U.S. Environmental Protection Agency, Atlantic Ecology Division, Narragansett, RI 02882, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
111
|
Clay TA, Gifford ME. Population level differences in thermal sensitivity of energy assimilation in terrestrial salamanders. J Therm Biol 2017; 64:1-6. [DOI: 10.1016/j.jtherbio.2016.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
112
|
Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming? GLOBAL CHANGE BIOLOGY 2017; 23:566-577. [PMID: 27593976 DOI: 10.1111/gcb.13488] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.
Collapse
Affiliation(s)
- Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
113
|
Tseng M, O'Connor MI. Predators modify the evolutionary response of prey to temperature change. Biol Lett 2017; 11:20150798. [PMID: 26673935 DOI: 10.1098/rsbl.2015.0798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As climate regimes shift in many ecosystems worldwide, evolution may be a critical process allowing persistence in rapidly changing environments. Organisms regularly interact with other species, yet whether climate-mediated evolution can occur in the context of species interactions is not well understood. We tested whether a species interaction could modify evolutionary responses to temperature. We demonstrate that predation pressure by Dipteran larvae (Chaoborus americanus) modified the evolutionary response of a freshwater crustacean (Daphnia pulex) to its thermal environment over approximately seven generations in laboratory conditions. Daphnia kept at 21°C evolved higher population growth rates than those kept at 18°C, but only in those populations that were also reared with predators. Furthermore, predator-mediated selection resulted in the evolution of elevated Daphnia thermal plasticity. This laboratory natural selection experiment demonstrates that biotic interactions can modify evolutionary adaptation to temperature. Understanding the interplay between multiple selective forces can improve predictions of ecological and evolutionary responses of organisms to rapid environmental change.
Collapse
Affiliation(s)
- M Tseng
- Department of Zoology and Biodiversity Research Centre, 4200-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - M I O'Connor
- Department of Zoology and Biodiversity Research Centre, 4200-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
114
|
Colley M, Lougheed SC, Otterbein K, Litzgus JD. Mitigation reduces road mortality of a threatened rattlesnake. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Reducing road mortality is essential to reptile conservation in regions with dense road networks. The Georgian Bay, Ontario population of the eastern massasauga rattlesnake (Sistrurus catenatus) is designated as Threatened, in part because of high road mortality. In Killbear Provincial Park, four ecopassages and barrier fencing were constructed along three busy park roads to reduce road mortality of massasaugas. Aim Although mitigation of road mortality has been widely recommended and in some instances implemented for reptiles, effectiveness of mitigation efforts is often inadequately evaluated. The goals of our study were to use long-term data to quantify the effectiveness of ecopassages and barrier fencing in reducing massasauga fatalities on roads, and to evaluate the potential of these structures to serve as movement corridors for individual snakes. Methods We used five approaches to assess the overall efficacy of mitigation efforts: (1) comparison of pre- and post-mitigation road mortality; (2) camera traps in ecopassages to document massasauga and predator presence; (3) automated tag readers in ecopassage entrances to detect PIT-tagged individuals; (4) an experiment to assess massasauga willingness to enter and travel through ecopassages; and (5) measurement of temperature fluctuations in ecopassages to assess thermal suitability for massasaugas. Key results We found a significant decrease in road mortality of massasaugas on stretches of park roads associated with ecopassages and barrier fencing post construction. Automated tag readers and cameras detected the presence of massasaugas and other animals within the ecopassages, and experimental data showed that massasaugas willingly entered, and in some cases crossed through, ecopassages. Conclusion Our evaluation of mitigation structures determined that they successfully reduce road mortality and provide potential movement corridors between bisected habitats, provided that intense maintenance of the fencing is conducted yearly. We also demonstrated the need to utilise a combination of multiple post-monitoring methods to effectively evaluate mitigation structures. Implications This study provides a template for construction of similar mitigation in other key locations where reptile road mortality occurs.
Collapse
|
115
|
MacLean HJ, Kingsolver JG, Buckley LB. Historical changes in thermoregulatory traits of alpine butterflies reveal complex ecological and evolutionary responses to recent climate change. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0028-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
116
|
Turingan R, Sloan T. Thermal Resilience of Feeding Kinematics May Contribute to the Spread of Invasive Fishes in Light of Climate Change. BIOLOGY 2016; 5:biology5040046. [PMID: 27897997 PMCID: PMC5192426 DOI: 10.3390/biology5040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022]
Abstract
As a consequence of global warming, tropical invasive species are expected to expand their range pole-ward, extending their negative impacts to previously undisturbed, high-latitude ecosystems. Investigating the physiological responses of invasive species to environmental temperature is important because the coupled effects of climate change and species invasion on ecosystems could be more alarming than the effects of each phenomenon independently. Especially in poikilotherms, the rate of motion in muscle-driven biomechanical systems is expected to double for every 10 °C increase in temperature. In this study, we address the question, “How does temperature affect the speed of jaw-movement during prey-capture in invasive fishes?” Kinematic analysis of invasive-fish prey-capture behavior revealed that (1) movement velocities of key components of the feeding mechanism did not double as water temperature increased from 20 °C to 30 °C; and (2) thermal sensitivity (Q10 values) for gape, hyoid, lower-jaw rotation, and cranial rotation velocities at 20 °C and 30 °C ranged from 0.56 to 1.44 in all three species. With the exception of lower-jaw rotation, Q10 values were significantly less than the expected Q10 = 2.0, indicating that feeding kinematics remains consistent despite the change in environmental temperature. It is conceivable that the ability to maintain peak performance at different temperatures helps facilitate the spread of invasive fishes globally.
Collapse
Affiliation(s)
- Ralph Turingan
- Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
| | - Tyler Sloan
- Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
| |
Collapse
|
117
|
Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. CONSERVATION PHYSIOLOGY 2016; 4:cow053. [PMID: 27933165 PMCID: PMC5142048 DOI: 10.1093/conphys/cow053] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 05/26/2023]
Abstract
Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.
Collapse
Affiliation(s)
- Jessica L Allen
- Centre for Invasion Biology, Department of Botany and Zoology,
Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC 3800,
Australia
| | | | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology,
Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
118
|
Diamond SE. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann N Y Acad Sci 2016; 1389:5-19. [PMID: 27706832 DOI: 10.1111/nyas.13223] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
119
|
Johansson MP, Quintela M, Laurila A. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate. J Evol Biol 2016; 29:1701-12. [DOI: 10.1111/jeb.12902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
Affiliation(s)
- M. P. Johansson
- Animal Ecology/Department of Ecology and Genetics; Uppsala University; Uppsala Sweden
| | - M. Quintela
- Animal Ecology/Department of Ecology and Genetics; Uppsala University; Uppsala Sweden
- Grupo de investigación BIOCOST; University of A Coruña; A Coruña Spain
| | - A. Laurila
- Animal Ecology/Department of Ecology and Genetics; Uppsala University; Uppsala Sweden
| |
Collapse
|
120
|
Dillon ME, Woods HA, Wang G, Fey SB, Vasseur DA, Telemeco RS, Marshall K, Pincebourde S. Life in the Frequency Domain: the Biological Impacts of Changes in Climate Variability at Multiple Time Scales. Integr Comp Biol 2016; 56:14-30. [PMID: 27252201 DOI: 10.1093/icb/icw024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the last few decades, biologists have made substantial progress in understanding relationships between changing climates and organism performance. Much of this work has focused on temperature because it is the best kept of climatic records, in many locations it is predicted to keep rising into the future, and it has profound effects on the physiology, performance, and ecology of organisms, especially ectothermic organisms which make up the vast majority of life on Earth. Nevertheless, much of the existing literature on temperature-organism interactions relies on mean temperatures. In reality, most organisms do not directly experience mean temperatures; rather, they experience variation in temperature over many time scales, from seconds to years. We propose to shift the focus more directly on patterns of temperature variation, rather than on means per se, and present a framework both for analyzing temporal patterns of temperature variation and for incorporating those patterns into predictions about organismal biology. In particular, we advocate using the Fourier transform to decompose temperature time series into their component sinusoids, thus allowing transformations between the time and frequency domains. This approach provides (1) standardized ways of visualizing the contributions that different frequencies make to total temporal variation; (2) the ability to assess how patterns of temperature variation have changed over the past half century and may change into the future; and (3) clear approaches to manipulating temporal time series to ask "what if" questions about the potential effects of future climates. We first summarize global patterns of change in temperature variation over the past 40 years; we find meaningful changes in variation at the half day to yearly times scales. We then demonstrate the utility of the Fourier framework by exploring how power added to different frequencies alters the overall incidence of long-term waves of high and low temperatures, and find that power added to the lowest frequencies greatly increases the probability of long-term heat and cold waves. Finally, we review what is known about the time scales over which organismal thermal performance curves change in response to variation in the thermal environment. We conclude that integrating information characterizing both the frequency spectra of temperature time series and the time scales of resulting physiological change offers a powerful new avenue for relating climate, and climate change, to the future performance of ectothermic organisms.
Collapse
Affiliation(s)
- Michael E Dillon
- *Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Samuel B Fey
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - David A Vasseur
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Rory S Telemeco
- Department of Biology, V6T 1Z4 University of Washington, Seattle, WA, USA
| | - Katie Marshall
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 7261), Université François Rabelais, Faculté des Sciences et Techniques, Tours 37200, France
| |
Collapse
|
121
|
Cavieres G, Bogdanovich JM, Bozinovic F. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures. J Evol Biol 2016; 29:1462-8. [DOI: 10.1111/jeb.12886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 02/03/2023]
Affiliation(s)
- G. Cavieres
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES); Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - J. M. Bogdanovich
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES); Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - F. Bozinovic
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES); Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
122
|
Winchell KM, Reynolds RG, Prado-Irwin SR, Puente-Rolón AR, Revell LJ. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 2016; 70:1009-22. [PMID: 27074746 DOI: 10.1111/evo.12925] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. Finally, our morphological data showed that lizards in urban areas have longer limbs relative to their body size, as well as more subdigital scales called lamellae, when compared to lizards from nearby forested habitats. This shift in phenotype is exactly in the direction predicted based on habitat differences between our urban and natural study sites, combined with our results on how substrates are being used by lizards in these areas. Findings from a common-garden rearing experiment using individuals from one of our three pairs of populations provide evidence that trait differences between urban and natural sites may be genetically based. Taken together, our data suggest that anoles in urban areas are under significant differential natural selection and may be evolutionarily adapting to their human-modified environments.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125.
| | - R Graham Reynolds
- Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, 28804
| | - Sofia R Prado-Irwin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138
| | - Alberto R Puente-Rolón
- Departamento de Ciencias y Tecnología, Universidad Interamericana de Puerto Rico, Recinto Arecibo, Arecibo, Puerto Rico, 00614
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125
| |
Collapse
|
123
|
Gilbert AL, Miles DB. Food, temperature and endurance: effects of food deprivation on the thermal sensitivity of physiological performance. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anthony L. Gilbert
- Department of Biological Sciences Ohio University Athens OH USA
- Ohio Center for Ecological and Evolutionary Studies Athens OH USA
| | - Donald B. Miles
- Department of Biological Sciences Ohio University Athens OH USA
- Ohio Center for Ecological and Evolutionary Studies Athens OH USA
| |
Collapse
|
124
|
Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies. Sci Rep 2016; 6:24306. [PMID: 27080927 PMCID: PMC4832212 DOI: 10.1038/srep24306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Thermal response and tolerance to ambient temperature play important roles in determining the geographic distribution and seasonal abundance of insects. We examined the survival and performance, as well as expression of three heat shock protein related genes, of two species of invasive whiteflies, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), of the Bemisia tabaci species complex following exposure to a range of low and high temperatures. Our data demonstrated that the MED species was more tolerant to high temperatures than the MEAM1 species, especially in the adult stage, and this difference in thermal responses may be related to the heat shock protein related genes hsp90 and hsp70. These findings may assist in understanding and predicting the distribution and abundance of the two invasive whiteflies in the field.
Collapse
|
125
|
Kaspari M, Clay NA, Lucas J, Revzen S, Kay A, Yanoviak SP. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants. Ecology 2016; 97:1038-47. [DOI: 10.1890/15-1225.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Michael Kaspari
- Graduate Program in Ecology and Evolution Department of Biology University of Oklahoma Norman OK 73019 USA
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Natalie A. Clay
- Graduate Program in Ecology and Evolution Department of Biology University of Oklahoma Norman OK 73019 USA
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Jane Lucas
- Graduate Program in Ecology and Evolution Department of Biology University of Oklahoma Norman OK 73019 USA
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Shai Revzen
- Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 USA
| | - Adam Kay
- Department of Biology University of St. Thomas St. Paul MN 55105 USA
| | | |
Collapse
|
126
|
Cros S, Cerdá X, Retana J. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1997.11682405] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
127
|
Kingsolver JG, Buckley LB. Climate variability slows evolutionary responses of Colias butterflies to recent climate change. Proc Biol Sci 2016; 282:rspb.2014.2470. [PMID: 25631995 DOI: 10.1098/rspb.2014.2470] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
128
|
Klokočovnik V, Hauptman G, Devetak D. Effect of substrate temperature on behavioural plasticity in antlion larvae. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Temperature is of crucial importance, affecting all aspects of insect life such as survival, development and daily activity patterns, and consequently behaviour. In the present study we evaluated the effect of temperature on the behavioural plasticity of antlion larvae, the sit-and-wait predators, which are considerably more dependent on local habitat conditions. We provided ethological descriptions of pit construction and feeding behaviour. An increase in temperature led to greater activity and consequently to greater frequency of sand tossing during pit construction. Larvae constructed bigger pits at higher temperatures, but required less time than at lower temperatures, when the resulting pits were the smallest. At low temperature, larvae required more time for feeding, and behaviour followed a core pattern with little variety, in comparison to behaviour at high temperatures. Two behavioural patterns occurred only at the highest temperature: ‘relocation’ and ‘submergence’, presumably in response to high temperatures.
Collapse
Affiliation(s)
- Vesna Klokočovnik
- Department of Biology and Institute of Biology, Ecology and Nature Conservation, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, 2000 Maribor, Slovenia
| | | | - Dušan Devetak
- Department of Biology and Institute of Biology, Ecology and Nature Conservation, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
129
|
Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J Comp Physiol B 2015; 186:243-53. [DOI: 10.1007/s00360-015-0952-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/11/2015] [Accepted: 11/28/2015] [Indexed: 11/26/2022]
|
130
|
Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Faria GS, Seabra SG, Santos M, Simões P, Matos M. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Evolution 2015; 70:195-206. [PMID: 26626438 DOI: 10.1111/evo.12828] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real-time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.
Collapse
Affiliation(s)
- Inês Fragata
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Miguel Lopes-Cunha
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Bárbaro
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bárbara Kellen
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Lima
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Gonçalo S Faria
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Sofia G Seabra
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pedro Simões
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Matos
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
131
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
132
|
Arnan X, Blüthgen N, Molowny-Horas R, Retana J. Thermal Characterization of European Ant Communities Along Thermal Gradients and Its Implications for Community Resilience to Temperature Variability. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
133
|
Harvey DS, Weatherhead PJ. Habitat selection as the mechanism for thermoregulation in a northern population of massasauga rattlesnakes (Sistrurus catenatus). ECOSCIENCE 2015. [DOI: 10.2980/17-4-3363] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
134
|
Mellard JP, de Mazancourt C, Loreau M. Evolutionary responses to environmental change: trophic interactions affect adaptation and persistence. Proc Biol Sci 2015; 282:rspb.2014.1351. [PMID: 25788599 DOI: 10.1098/rspb.2014.1351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant-herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.
Collapse
Affiliation(s)
- Jarad P Mellard
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Experimentale du CNRS, Moulis 09200, France
| | - Claire de Mazancourt
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Experimentale du CNRS, Moulis 09200, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Experimentale du CNRS, Moulis 09200, France
| |
Collapse
|
135
|
Castañeda LE, Rezende EL, Santos M. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Evolution 2015; 69:2721-34. [PMID: 26292981 DOI: 10.1111/evo.12757] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 01/17/2023]
Abstract
Susceptibility to global warming relies on how thermal tolerances respond to increasing temperatures through plasticity or evolution. Climatic adaptation can be assessed by examining the geographic variation in thermal-related traits. We studied latitudinal patterns in heat tolerance in Drosophila subobscura reared at two temperatures. We used four static stressful temperatures to estimate the thermal death time (TDT) curves, and two ramping assays with fast and slow heating rates. Thermal death time curves allow estimation of the critical thermal maximum (CT(max)), by extrapolating to the temperature that would knock down the flies almost "instantaneously," and the thermal sensitivity to increasing stressful temperatures. We found a positive latitudinal cline for CT(max), but no clinal pattern for knockdown temperatures estimated from the ramping assays. Although high-latitude populations were more tolerant to an acute heat stress, they were also more sensitive to prolonged exposure to less stressful temperatures, supporting a trade-off between acute and chronic heat tolerances. Conversely, developmental plasticity did not affect CT(max) but increased the tolerance to chronic heat exposition. The patterns observed from the TDT curves help to understand why the relationship between heat tolerance and latitude depends on the methodology used and, therefore, these curves provide a more complete and reliable measurement of heat tolerance.
Collapse
Affiliation(s)
- Luis E Castañeda
- Instituto de Ecología y Biodiversidad (IEB-Chile), Casilla 653, Santiago, Chile. .,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, PO 5090000, Valdivia, Chile.
| | - Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, United Kingdom
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
136
|
Tomlinson S, Dixon KW, Didham RK, Bradshaw SD. Physiological plasticity of metabolic rates in the invasive honey bee and an endemic Australian bee species. J Comp Physiol B 2015; 185:835-44. [DOI: 10.1007/s00360-015-0930-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 11/30/2022]
|
137
|
Hangartner S, Hoffmann AA. Evolutionary potential of multiple measures of upper thermal tolerance in
D
rosophila melanogaster. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Hangartner
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
- School of Biological Sciences Monash University, Clayton Campus Building 18Vic.3800 Australia
| | - Ary A. Hoffmann
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
| |
Collapse
|
138
|
Clemente CJ, Wilson RS. Balancing Biomechanical Constraints: Optimal Escape Speeds When There Is a Trade-off between Speed and Maneuverability. Integr Comp Biol 2015; 55:1142-54. [PMID: 26337058 DOI: 10.1093/icb/icv103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability for prey to escape a pursuing predator is dependent both on the prey's speed away from the threat and on their ability to rapidly change directions, or maneuverability. Given that the biomechanical trade-off between speed and maneuverability limits the simultaneous maximization of both performance traits, animals should not select their fastest possible speeds when running away from a pursuing predator but rather a speed that maximizes the probability of successful escape. We explored how variation in the relationship between speed and maneuverability-or the shape of the trade-off-affects the optimal choice of speed for escaping predators. We used tablet-based games that simulated interactions between predators and prey (human subjects acting as predators attempting to capture "prey" moving across a screen). By defining a specific relationship between speed and maneuverability, we could test the survival of each of the possible behavioral choices available to this phenotype, i.e., the best combination of speed and maneuverability for prey fitness, based on their ability to escape. We found that the shape of the trade-off function affected the prey's optimal speed for success in escaping, the prey's maximum performance in escaping, and the breadth of speeds over which the prey's performance was high. The optimal speed for escape varied only when the trade-off between speed and maneuverability was non-linear. Phenotypes possessing trade-off functions for which maneuverability was only compromised at high speeds exhibited lower optimal speeds. Phenotypes that exhibited greater increases in maneuverability for any decrease in speed were more likely to have broader ranges of performance, meaning that individuals could attain their maximum performance across a broader range of speeds. We also found that there was a differential response of the subject's learning to these different components of locomotion. With increased experience through repeated trials, subjects were able to successfully catch faster and faster dots. However, no improvement was observed in the subject's ability to capture more maneuverable prey. Our work highlights the costs of high-speed movement on other traits, including maneuverability, which make the use of an animal's fastest speeds unlikely, even when attempting to escape predators. By investigating the shape of the trade-off functions between speed and maneuverability and the way the environment and morphology mediates this trade-off, we can begin to understand why animals choose to move at the speeds they do when they are running away from predators or attempting to capture prey.
Collapse
Affiliation(s)
- C J Clemente
- *School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, 4556, QLD, Australia;
| | - R S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, 4102, QLD, Australia
| |
Collapse
|
139
|
Reiskind MH, Janairo MS. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:789-796. [PMID: 26336228 DOI: 10.1093/jme/tjv088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/08/2015] [Indexed: 06/05/2023]
Abstract
The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models.
Collapse
Affiliation(s)
- Michael H Reiskind
- Department of Entomology, North Carolina State University, Raleigh, NC 27695.
| | - M Shawn Janairo
- Department of Entomology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
140
|
Hendry AP. Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. J Hered 2015; 107:25-41. [PMID: 26297912 DOI: 10.1093/jhered/esv060] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/16/2015] [Indexed: 11/13/2022] Open
Abstract
Ecology and evolution have long been recognized as reciprocally influencing each other, with recent research emphasizing how such interactions can occur even on very short (contemporary) time scales. Given that these interactions are mediated by organismal phenotypes, they can be variously shaped by genetic variation, phenotypic plasticity, or both. I here address 8 key questions relevant to the role of plasticity in eco-evolutionary dynamics. Focusing on empirical evidence, especially from natural populations, I offer the following conclusions. 1) Plasticity is--not surprisingly--sometimes adaptive, sometimes maladaptive, and sometimes neutral. 2) Plasticity has costs and limits but these constraints are highly variable, often weak, and hard to detect. 3) Variable environments favor the evolution of increased trait plasticity, which can then buffer fitness/performance (i.e., tolerance). 4) Plasticity sometimes aids colonization of new environments (Baldwin Effect) and responses to in situ environmental change. However, plastic responses are not always necessary or sufficient in these contexts. 5) Plasticity will sometimes promote and sometimes constrain genetic evolution. 6) Plasticity will sometimes help and sometimes hinder ecological speciation but, at present, empirical tests are limited. 7) Plasticity can show considerable evolutionary change in contemporary time, although the rates of this reaction norm evolution are highly variable among taxa and traits. 8) Plasticity appears to have considerable influences on ecological dynamics at the community and ecosystem levels, although many more studies are needed. In summary, plasticity needs to be an integral part of any conceptual framework and empirical investigation of eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Andrew P Hendry
- From the Redpath Museum & Department of Biology, 859 Sherbrooke St. W., Montreal, Quebec H3A OC4, Canada.
| |
Collapse
|
141
|
Affiliation(s)
- Steven L. Chown
- School of Biological Sciences Monash University Melbourne Vic.3800 Australia
| | - Kevin J. Gaston
- Environment and Sustainability Institute University of Exeter Penryn Cornwall TR10 9FE UK
| |
Collapse
|
142
|
Hoverman JT, Relyea RA. Prey responses to fine-scale variation in predation risk from combined predators. OIKOS 2015. [DOI: 10.1111/oik.02435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason T. Hoverman
- Dept of Forestry and Natural Resources; Purdue Univ.; West Lafayette IN 47907 USA
| | - Rick A. Relyea
- Dept of Biological Sciences; Rensselaer Polytechnic Inst.; Troy NY 12190 USA
| |
Collapse
|
143
|
Pincebourde S, Casas J. Warming tolerance across insect ontogeny: influence of joint shifts in microclimates and thermal limits. Ecology 2015; 96:986-97. [DOI: 10.1890/14-0744.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
144
|
Ketola T, Saarinen K. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures. J Evol Biol 2015; 28:800-6. [PMID: 25704064 DOI: 10.1111/jeb.12606] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/10/2023]
Abstract
The ability to predict the consequences of fluctuating environments on species distribution and extinction often relies on determining the tolerances of species or genotypes in different constant environments (i.e. determining tolerance curves). However, very little is known about the suitability of measurements made in constant environments to predict the level of adaptation to rapidly fluctuating environments. To explore this question, we used bacterial clones adapted to constant or fluctuating temperatures and found that measurements across a range of constant temperatures did not indicate any adaptation to fluctuating temperatures. However, adaptation to fluctuating temperatures was only apparent if growth was measured during thermal fluctuation. Thus, tolerance curves based on measurements in constant environments can be misleading in predicting the ability to tolerate fast environmental fluctuations. Such complications could lead to false estimates of the genetic merits of genotypes and extinction risks of species due to climate change-induced thermal fluctuations.
Collapse
Affiliation(s)
- T Ketola
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyvaskyla, Jyvaskyla, Finland
| | | |
Collapse
|
145
|
Kent M, Ojanguren AF. The effect of water temperature on routine swimming behaviour of new born guppies (Poecilia reticulata). Biol Open 2015; 4:547-52. [PMID: 25750437 PMCID: PMC4400596 DOI: 10.1242/bio.20149829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022] Open
Abstract
Guppies have successfully established populations in places with thermal regimes very different from the Tropical conditions in their native range. This indicates a remarkable capacity for thermal adaptation. Given their vulnerability to predation as juveniles, acute changes in temperature, which can alter predator-prey relationships, can impact juvenile survival and have amplified consequences at the population level. To understand how temperature may impact juvenile survival and gain insight into their success as an invasive species, we researched the effect of acute temperature changes on the routine swimming behaviour of juvenile guppies. Using a novel 3-dimensional tracking technique, we calculated 4 routine swimming parameters, speed, depth, and variation in speed or depth, at 6 different test temperatures (17, 20, 23, 26, 29, or 32°C). These temperatures cover their natural thermal range and also extended past it in order to include upper and lower thermal limits. Using model selection, we found that body length and temperature had a significant positive relationship with speed. Variation in speed decreased with rising temperatures and fish swam slightly closer to the bottom at higher temperatures. All juveniles increased variation in depth at higher temperatures, though larger individuals maintained slightly more consistent depths. Our results indicate that guppies have a large thermal range and show substantial plasticity in routine swimming behaviours, which may account for their success as an invasive species.
Collapse
Affiliation(s)
- Maud Kent
- Centre for Biological Diversity, Scottish Oceans Institute, University of St Andrews, KY16 8LB, Scotland, UK
| | - Alfredo F Ojanguren
- Centre for Biological Diversity, Scottish Oceans Institute, University of St Andrews, KY16 8LB, Scotland, UK
| |
Collapse
|
146
|
Kristensen TN, Overgaard J, Lassen J, Hoffmann AA, Sgrò C. Low evolutionary potential for egg-to-adult viability inDrosophila melanogasterat high temperatures. Evolution 2015; 69:803-14. [DOI: 10.1111/evo.12617] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/09/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Torsten N. Kristensen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science; Aalborg University; Fredrik Bajers Vej 7H DK-9220 Aalborg East Denmark
| | - Johannes Overgaard
- Department of Bioscience; Aarhus University; C.F. Møllers Allé 3, Building 1131 DK-8000 Aarhus C Denmark
| | - Jan Lassen
- Department of Molecular Biology and Genetics; Aarhus University; Blichers Allé 20 DK-8830 Tjele Denmark
| | - Ary A. Hoffmann
- Department of Zoology; Bio21 Institute, The University of Melbourne; 30 Flemington Road Parkville Victoria 3052 Australia
- Department of Genetics; Bio21 Institute, The University of Melbourne; 30 Flemington Road Parkville Victoria 3052 Australia
| | - Carla Sgrò
- School of Biological Sciences; Monash University; Melbourne Victoria 3800 Australia
| |
Collapse
|
147
|
Buckley LB, Ehrenberger JC, Angilletta MJ. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12406] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
148
|
Hillaert J, Boeye J, Stoks R, Bonte D. The evolution of thermal performance can constrain dispersal during range shifting. JOURNAL OF BIOLOGICAL DYNAMICS 2015; 9:317-335. [PMID: 26406927 DOI: 10.1080/17513758.2015.1078503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organisms can cope with changing temperature under climate change by either adapting to the temperature at which they perform best and/or by dispersing to more benign locations. The evolution of a new thermal niche during range shifting is, however, expected to be strongly constrained by genetic load because spatial sorting is known to induce fast evolution of dispersal. To broaden our understanding of this interaction, we studied the joint evolution of dispersal and thermal performance curves (TPCs) of a population during range shifting by applying an individual-based spatially explicit model. Always, TPCs adapted to the local thermal conditions. Remarkably, this adaptation coincided with an evolution of dispersal at the shifting range front being equally high or lower than at the trailing edge. This optimal strategy reduces genetic load and highlights that evolutionary dynamics during range shifting change when crucial traits such as dispersal and thermal performance jointly evolve.
Collapse
Affiliation(s)
- J Hillaert
- a Department Biology , Ghent University , Terrestrial Ecology Unit, K.L. Ledeganckstraat 35, B-9000 Ghent , Belgium
| | - J Boeye
- a Department Biology , Ghent University , Terrestrial Ecology Unit, K.L. Ledeganckstraat 35, B-9000 Ghent , Belgium
| | - R Stoks
- b Laboratory of Aquatic Ecology, Evolution and Conservation , KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven , Belgium
| | - D Bonte
- a Department Biology , Ghent University , Terrestrial Ecology Unit, K.L. Ledeganckstraat 35, B-9000 Ghent , Belgium
| |
Collapse
|
149
|
Yan Y, Xie X. Metabolic compensations in mitochondria isolated from the heart, liver, kidney, brain and white muscle in the southern catfish (Silurus meridionalis) by seasonal acclimation. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:64-71. [PMID: 25498350 DOI: 10.1016/j.cbpa.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
In order to examine the effects of seasonal acclimation on mitochondrial metabolic functions and test tissue-specific pattern of the metabolic compensation within individuals of the southern catfish (Silurus meridionalis Chen), rates of mitochondrial respiration and activities of cytochrome c oxidase (COX) in the heart, liver, kidney, brain and white muscle of this fish in the summer-acclimatized group (153.20±1.66 g) and winter-acclimatized group (177.71±3.04 g) were measured at seven assay temperatures (7.5, 12.5, 17.5, 22.5, 27.5, 32.5 and 37.5°C), respectively. The results show that compensatory adjustments in state III respiratory rate and COX activity occur significantly in the heart, kidney and liver, but do not in the brain and white muscle, which suggest that the metabolic compensation of this fish in response to seasonal acclimation exhibits a tissue-specific pattern. The cold acclimation increases mitochondrial oxidative capacities in the heart, kidney and liver concomitantly with reducing their upper thermal limits of mitochondrial functions at acute warming and the thermal tolerance shifts in the same tissue-specific pattern as the metabolic compensation. When combining the effects of seasonal acclimation on mitochondrial oxidative capacity and organ mass, the metabolic compensation demonstrates an organ-specific pattern with four categories: over-compensation in the heart, complete compensation in the kidney, partial compensation in the liver and no compensation in the brain. The organ-specific pattern of metabolic compensation might be a trade-off strategy of the performance adjustments in the seasonal acclimation for this fish to maximize its fitness.
Collapse
Affiliation(s)
- Yulian Yan
- Institute of Hydrobiology and Water Environment, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaojun Xie
- Institute of Hydrobiology and Water Environment, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
150
|
Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria. J Therm Biol 2014; 46:1-9. [DOI: 10.1016/j.jtherbio.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|