101
|
Bloom JD, Nayak JS, Baltimore D. A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One 2011; 6:e22201. [PMID: 21799795 PMCID: PMC3140507 DOI: 10.1371/journal.pone.0022201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022] Open
Abstract
The His274→Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Viral/genetics
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- HEK293 Cells
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Oseltamivir/pharmacology
- Pandemics
- Protein Conformation
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jagannath S. Nayak
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
102
|
Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011; 52:70-8. [PMID: 21684202 DOI: 10.1016/j.jcv.2011.05.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
The emergence of oseltamivir resistance in seasonal and pandemic influenza A/H1N1 has created challenges for diagnosis and clinical management. This review discusses how clinical virology laboratories have handled diagnosis of oseltamivir-resistant H1N1 and what we have learned from clinical studies and case series. Immunocompetent patients infected with oseltamivir-resistant H1N1 have similar outcomes as patients infected with oseltamivir-susceptible H1N1. However, immunocompromised patients infected with oseltamivir-resistant H1N1 experience potentially more risks of complication and transmissibility with few therapeutic options.
Collapse
Affiliation(s)
- Christian Renaud
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
103
|
Comparative pathology in ferrets infected with H1N1 influenza A viruses isolated from different hosts. J Virol 2011; 85:7572-81. [PMID: 21593156 DOI: 10.1128/jvi.00512-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Virus replication and pulmonary disease pathogenesis in ferrets following intranasal infection with a pandemic influenza virus strain (A/California/4/09 [CA09]), a human seasonal influenza H1N1 virus isolate (A/New Caledonia/20/99 [Ncal99]), a classical swine influenza H1N1 virus isolate (A/Swine/Iowa/15/30 [Sw30]), or an avian H1N1 virus isolate (A/Mallard/MN/A108-2355/08 [Mal08]) were compared. Nasal wash virus titers were similar for Ncal99 and Sw30, with peak virus titers of 10(5.1) 50% tissue culture infectious doses (TCID(50))/ml and 10(5.5) TCID(50)/ml occurring at day 3 postinfection (p.i.), respectively. The mean peak titer for CA09 also occurred at day 3 p.i. but was higher (10(7) TCID(50)/ml). In contrast, the peak virus titers (10(3.6) to 10(4.3) TCID(50)/ml) for Mal08 were delayed, occurring between days 5 and 7 p.i. Disease pathogenesis was characterized by microscopic lesions in the nasal turbinates and lungs of all ferrets; however, Sw30 infection was associated with severe bronchointerstitial pneumonia. The results demonstrate that although CA09 is highly transmissible in the human population and replicates well in the ferret model, it causes modest disease compared to other H1N1 viruses, particularly Sw30 infection.
Collapse
|
104
|
Autonomic nervous dysfunction in hamsters infected with West Nile virus. PLoS One 2011; 6:e19575. [PMID: 21573009 PMCID: PMC3090402 DOI: 10.1371/journal.pone.0019575] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 04/06/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical studies and case reports clearly document that West Nile virus (WNV) can cause respiratory and gastrointestinal (GI) complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs) of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV), a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperplarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) as a marker for cells in the sinoatrial (SA) and atrioventricular (AV) nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease.
Collapse
|
105
|
Jones JC, Settles EW, Brandt CR, Schultz-Cherry S. Identification of the minimal active sequence of an anti-influenza virus peptide. Antimicrob Agents Chemother 2011; 55:1810-3. [PMID: 21220525 PMCID: PMC3067171 DOI: 10.1128/aac.01428-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/04/2010] [Accepted: 01/05/2011] [Indexed: 11/20/2022] Open
Abstract
The antiviral peptide, entry blocker (EB), inhibits influenza virus replication by preventing attachment to cells. Here, we identified the minimal and optimal EB sequence that retained antiviral activity with a 50% inhibitory concentration (IC(50)) and 50% effective concentration (EC(50)) similar to those of the full-length EB peptide and several truncated variants that possessed up to 10-fold lower IC(50)s. These data have implications for improving the antiviral efficacy of EB-derived peptides while decreasing production costs and easing synthesis.
Collapse
Affiliation(s)
- Jeremy C. Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Departments of Medical Microbiology and Immunology, Ophthalmology and Visual Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706
| | - Erik W. Settles
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Departments of Medical Microbiology and Immunology, Ophthalmology and Visual Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706
| | - Curtis R. Brandt
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Departments of Medical Microbiology and Immunology, Ophthalmology and Visual Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Departments of Medical Microbiology and Immunology, Ophthalmology and Visual Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706
| |
Collapse
|
106
|
Lloyd LE, Jonczyk M, Jervis CM, Flack DJ, Lyall J, Foote A, Mumford JA, Brown IH, Wood JL, Elton DM. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs. Influenza Other Respir Viruses 2011; 5:357-64. [PMID: 21668691 PMCID: PMC4942048 DOI: 10.1111/j.1750-2659.2011.00233.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Please cite this paper as: Lloyd et al. (2011) Experimental transmission of avian‐like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs. Influenza and Other Respiratory Viruses 5(5), 357–364. Background Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. Objectives To investigate the transmission of a recent ‘avian‐like’ swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Methods Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co‐housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co‐housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Results and conclusions Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection.
Collapse
Affiliation(s)
- Lucy E Lloyd
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Holder BP, Simon P, Liao LE, Abed Y, Bouhy X, Beauchemin CAA, Boivin G. Assessing the in vitro fitness of an oseltamivir-resistant seasonal A/H1N1 influenza strain using a mathematical model. PLoS One 2011; 6:e14767. [PMID: 21455300 PMCID: PMC3063785 DOI: 10.1371/journal.pone.0014767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 02/15/2011] [Indexed: 01/09/2023] Open
Abstract
In 2007, the A/Brisbane/59/2007 (H1N1) seasonal influenza virus strain acquired the oseltamivir-resistance mutation H275Y in its neuraminidase (NA) gene. Although previous studies had demonstrated that this mutation impaired the replication capacity of the influenza virus in vitro and in vivo, the A/Brisbane/59/2007 H275Y oseltamivir-resistant mutant completely out-competed the wild-type (WT) strain and was, in the 2008–2009 influenza season, the primary A/H1N1 circulating strain. Using a combination of plaque and viral yield assays, and a simple mathematical model, approximate values were extracted for two basic viral kinetics parameters of the in vitro infection. In the ST6GalI-MDCK cell line, the latent infection period (i.e., the time for a newly infected cell to start releasing virions) was found to be 1–3 h for the WT strain and more than 7 h for the H275Y mutant. The infecting time (i.e., the time for a single infectious cell to cause the infection of another one) was between 30 and 80 min for the WT, and less than 5 min for the H275Y mutant. Single-cycle viral yield experiments have provided qualitative confirmation of these findings. These results, though preliminary, suggest that the increased fitness success of the A/Brisbane/59/2007 H275Y mutant may be due to increased infectivity compensating for an impaired or delayed viral release, and are consistent with recent evidence for the mechanistic origins of fitness reduction and recovery in NA expression. The method applied here can reconcile seemingly contradictory results from the plaque and yield assays as two complementary views of replication kinetics, with both required to fully capture a strain's fitness.
Collapse
Affiliation(s)
| | - Philippe Simon
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | - Laura E. Liao
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Yacine Abed
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | - Xavier Bouhy
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | | | - Guy Boivin
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
- * E-mail: (CAAB); (GB)
| |
Collapse
|
108
|
Combinatorial effect of two framework mutations (E119V and I222L) in the neuraminidase active site of H3N2 influenza virus on resistance to oseltamivir. Antimicrob Agents Chemother 2011; 55:2942-52. [PMID: 21422222 DOI: 10.1128/aac.01699-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NIs) are the first line of defense against influenza virus. Reverse genetics experiments allow the study of resistance mechanisms by anticipating the impacts of mutations to the virus. To look at the possibility of an increased effect on the resistance phenotype of a combination of framework mutations, known to confer resistance to oseltamivir or zanamivir, with limited effect on virus fitness, we constructed 4 viruses by reverse genetics in the A/Moscow/10/99 H3N2 background containing double mutations in their neuraminidase genes: E119D+I222L, E119V+I222L, D198N+I222L, and H274Y+I222L (N2 numbering). Among the viruses produced, the E119D+I222L mutant virus was not able to grow without bacterial NA complementation and the D198N+I222L mutant and H274Y+I222L mutant were not stable after passages in MDCK cells. The E119V+I222L mutant was stable after five passages in MDCK cells. This E119V-and-I222L combination had a combinatorial effect on oseltamivir resistance. The total NA activity of the E119V+I222L mutant was low (5% compared to that of the wild-type virus). This drop in NA activity resulted from a decreased NA quantity in the virion in comparison to that of the wild-type virus (1.4% of that of the wild type). In MDCK-SIAT1 cells, the E119V+I222L mutant virus did not present a replicative advantage over the wild-type virus, even in the presence of oseltamivir. Double mutations combining two framework mutations in the NA gene still have to be monitored, as they could induce a high level of resistance to NIs, without impairing the NA affinity. Our study allows a better understanding of the diversity of the mechanisms of resistance to NIs.
Collapse
|
109
|
|
110
|
Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One 2010; 5:e14320. [PMID: 21179403 PMCID: PMC3001860 DOI: 10.1371/journal.pone.0014320] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/18/2010] [Indexed: 01/05/2023] Open
Abstract
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.
Collapse
|
111
|
Ottmann M, Duchamp MB, Casalegno JS, Frobert E, Moulès V, Ferraris O, Valette M, Escuret V, Lina B. Novel influenza A(H1N1) 2009 in vitro reassortant viruses with oseltamivir resistance. Antivir Ther 2010; 15:721-6. [PMID: 20710053 DOI: 10.3851/imp1576] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND With the recent emergence of the novel A(H1N1) virus in 2009, the efficacy of available drugs, such as neuraminidase (NA) inhibitors, is of great concern for good patient care. Influenza viruses are known to be able to acquire resistance. In 2007, A(H1N1) viruses related to A/Brisbane/59/2007 (H1N1) (A[H1N1] Brisbane-like virus), which are naturally resistant to oseltamivir, emerged. Resistance to oseltamivir can be acquired either by spontaneous mutation in the NA (H275Y in N1), or by reassortment with a mutated NA. It is therefore crucial to determine the risk of pandemic A(H1N1) 2009 virus acquiring resistance against oseltamivir by reassortment. METHODS We estimated the capacity of reassortment between the A(H1N1) 2009 virus and an oseltamivir-resistant A(H1N1) Brisbane-like virus by in vitro coinfections of influenza-permissive cells. The screening and the analysis of reassortant viruses was performed by specific reverse transcriptase PCRs and by sequencing. RESULTS Out of 50 analysed reassortant viruses, two harboured the haemagglutinin (HA) segment from the pandemic A(H1N1) 2009 virus and the mutated NA originated from the A(H1N1) Brisbane-like virus. The replicating capacities of these viruses were measured, showing no difference as compared to the two parental strains, suggesting that acquisition of the mutated NA segment did not impair viral fitness in vitro. CONCLUSIONS Our results suggest that the novel A(H1N1) 2009 virus can acquire by in vitro genetic reassortment the H275Y mutated NA segment conferring resistance to oseltamivir.
Collapse
|
112
|
Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 2010; 12:e39. [PMID: 21144091 DOI: 10.1017/s1462399410001705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Efficient human-to-human transmission is a necessary property for the generation of a pandemic influenza virus. To date, only influenza A viruses within the H1-H3 subtypes have achieved this capacity. However, sporadic cases of severe disease in individuals following infection with avian influenza A viruses over the past decade, and the emergence of a pandemic H1N1 swine-origin virus in 2009, underscore the need to better understand how influenza viruses acquire the ability to transmit efficiently. In this review, we discuss the biological constraints and molecular features known to affect virus transmissibility to and among humans. Factors influencing the behaviour of aerosols in the environment are described, and the mammalian models used to study virus transmission are presented. Recent progress in understanding the molecular determinants that confer efficient transmission has identified crucial roles for the haemagglutinin and polymerase proteins; nevertheless, influenza virus transmission remains a polygenic trait that is not completely understood. The clinical implications of this research, including methods currently under investigation to mitigate influenza virus human-to-human transmission, are discussed. A better understanding of the viral determinants necessary for efficient transmission will allow us to identify avian influenza viruses with pandemic potential.
Collapse
|
113
|
The I222V neuraminidase mutation has a compensatory role in replication of an oseltamivir-resistant influenza virus A/H3N2 E119V mutant. J Clin Microbiol 2010; 49:715-7. [PMID: 21106781 DOI: 10.1128/jcm.01732-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oseltamivir-resistant A/H3N2 influenza isolates with or without the E119V and I222V neuraminidase (NA) mutations were recovered from an immunocompromised patient. Based on plaque size, yield assays, and NA activity, the impaired viral fitness of the E119V mutant was partially restored by the I222V NA mutation.
Collapse
|
114
|
Shim E, Chapman GB, Galvani AP. Decision making with regard to antiviral intervention during an influenza pandemic. Med Decis Making 2010; 30:E64-81. [PMID: 20634545 DOI: 10.1177/0272989x10374112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antiviral coverage is defined by the proportion of the population that takes antiviral prophylaxis or treatment. High coverage of an antiviral drug has epidemiological and evolutionary repercussions. Antivirals select for drug resistance within the population, and individuals may experience adverse effects. To determine optimal antiviral coverage in the context of an influenza outbreak, we compared 2 perspectives: 1) the individual level (the Nash perspective), and 2) the population level (utilitarian perspective). METHODS We developed an epidemiological game-theoretic model of an influenza pandemic. The data sources were published literature and a national survey. The target population was the US population. The time horizon was 6 months. The perspective was individuals and the population overall. The interventions were antiviral prophylaxis and treatment. The outcome measures were the optimal coverage of antivirals in an influenza pandemic. RESULTS At current antiviral pricing, the optimal Nash strategy is 0% coverage for prophylaxis and 30% coverage for treatment, whereas the optimal utilitarian strategy is 19% coverage for prophylaxis and 100% coverage for treatment. Subsidizing prophylaxis by $440 and treatment by $85 would bring the Nash and utilitarian strategies into alignment. For both prophylaxis and treatment, the optimal antiviral coverage decreases as pricing of antivirals increases. Our study does not incorporate the possibility of an effective vaccine and lacks probabilistic sensitivity analysis. Our survey also does not completely represent the US population. Because our model assumes a homogeneous population and homogeneous antiviral pricing, it does not incorporate heterogeneity of preference. CONCLUSIONS The optimal antiviral coverage from the population perspective and individual perspectives differs widely for both prophylaxis and treatment strategies. Optimal population and individual strategies for prophylaxis and treatment might be aligned through subsidization.
Collapse
Affiliation(s)
- Eunha Shim
- Department of Epidemiology & Public Health, Yale School of Public Health, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
115
|
Casalegno JS, Bouscambert-Duchamp M, Caro V, Schuffenecker I, Sabatier M, Traversier A, Valette M, Lina B, Ferraris O, Escuret V. Oseltamivir-resistant influenza A(H1N1) viruses in south of France, 2007/2009. Antiviral Res 2010; 87:242-8. [PMID: 20665943 DOI: 10.1016/j.antiviral.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Influenza A(H1N1) viruses resistant to oseltamivir carboxylate (OC) emerged in 2007/2008 in the absence of antiviral pressure. These OC-resistant A(H1N1) viruses had a better fitness than the sensitive ones as they were 100% prevalent in 2008/2009. To better understand the role of the neuraminidase (NA) affinity in the emergence of these OC-resistant A(H1N1) viruses we compared the NA properties among A(H1N1) clinical isolates in south of France between 2005 and 2009 and reference strains from 1977 to 2007, using NA inhibition assays, kinetic analyses of NA activities, and sequence analysis of viral NA and hemagglutinin (HA). In 2007/2008, among 374 A(H1N1) isolates tested, 38% were resistant to OC with a mean IC50 of 564+/-357 nM. The mean Km of OC-sensitive isolates (H275) was significantly lower (22.6+/- 4.7 microM) than the Km of previous reference strains (44.9+/- 5 microM) and the mean Km of the OC-resistant isolates (Y275) (37.2 +/- 7.7 microM). The combination of different amino acid mutations in N1 particularly the D344N could explain the higher NA affinity of A/Brisbane/59/2007 related variants compared to the previous A(H1N1) strains and the H275Y mutation allowed to retrieve Km values near 40 microM.
Collapse
Affiliation(s)
- Jean-Sébastien Casalegno
- Hospices Civils de Lyon, National Influenza Centre (South of France), Laboratory of Virology - Bât A3, 59 Boulevard Pinel, F-69677 Bron Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Lednicky JA, Hamilton SB, Tuttle RS, Sosna WA, Daniels DE, Swayne DE. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1). Virol J 2010; 7:231. [PMID: 20843329 PMCID: PMC2949836 DOI: 10.1186/1743-422x-7-231] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/15/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. RESULTS Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 10¹, 10², 10³, or 10⁴ infectious virus particles per ferret. CONCLUSIONS Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.
Collapse
Affiliation(s)
- John A Lednicky
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
- Present address: College of Public Health and Health Professions, University of Florida, Box 100188, 101 S. Newell Dr (HPNP bldg), Suite 2150A Gainesville Florida 32610, USA
| | - Sara B Hamilton
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - Richard S Tuttle
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
- 6006 West 78th Terrace, Prairie Village, Kansas 66208, USA
| | - William A Sosna
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - Deirdre E Daniels
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - David E Swayne
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia 30605, USA
| |
Collapse
|
117
|
Weight AK, Haldar J, Alvarez de Cienfuegos L, Gubareva LV, Tumpey TM, Chen J, Klibanov AM. Attaching zanamivir to a polymer markedly enhances its activity against drug-resistant strains of influenza a virus. J Pharm Sci 2010; 100:831-5. [PMID: 20740680 DOI: 10.1002/jps.22338] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/06/2010] [Accepted: 08/04/2010] [Indexed: 11/06/2022]
Abstract
Effects of the commercial drug zanamivir (Relenza) covalently attached to poly-l-glutamine on the infectivity of influenza A viruses are examined using the plaque reduction assay and binding affinity to viral neuraminidase (NA). These multivalent drug conjugates exhibit (i) up to a 20,000-fold improvement in anti-influenza potency compared with the zanamivir parent against human and avian viral strains, including both wild-type and drug-resistant mutants, and (ii) superior neuraminidase (NA) inhibition constants, especially for the mutants. These findings provide a basis for exploring polymer-attached inhibitors as more efficacious therapeutics, particularly against drug-resistant influenza strains.
Collapse
Affiliation(s)
- Alisha K Weight
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Govorkova EA, Ilyushina NA, Marathe BM, McClaren JL, Webster RG. Competitive fitness of oseltamivir-sensitive and -resistant highly pathogenic H5N1 influenza viruses in a ferret model. J Virol 2010; 84:8042-50. [PMID: 20519385 PMCID: PMC2916532 DOI: 10.1128/jvi.00689-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/24/2010] [Indexed: 11/20/2022] Open
Abstract
The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.
Collapse
Affiliation(s)
- Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Natalia A. Ilyushina
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Jennifer L. McClaren
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| |
Collapse
|
119
|
Duan S, Boltz DA, Seiler P, Li J, Bragstad K, Nielsen LP, Webby RJ, Webster RG, Govorkova EA. Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog 2010; 6:e1001022. [PMID: 20686654 PMCID: PMC2912389 DOI: 10.1371/journal.ppat.1001022] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/30/2010] [Indexed: 11/29/2022] Open
Abstract
The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007–2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic. Most of the currently circulating pandemic H1N1/2009 (“swine”) influenza viruses are susceptible to the anti-influenza drug oseltamivir. Many countries have stockpiled oseltamivir for pandemic preparedness, and to date only a small proportion of the H1N1/2009 viruses isolated have been oseltamivir-resistant. However, if these viruses can be readily transmitted, oseltamivir resistance may spread. We evaluated the transmissibility of a pair of pandemic H1N1/2009 influenza viruses in ferrets. One virus was oseltamivir-sensitive and the other carried the oseltamivir resistance-associated H275Y NA mutation. We also investigated the viruses' susceptibility to NA inhibitors (the drug class to which oseltamivir belongs), their NA enzyme kinetics, and their replication efficiency in cultured cells. Under identical conditions, the resistant H1N1/2009 virus was not transmitted by respiratory droplets but was efficiently transmitted by direct contact, while the sensitive H1N1/2009 virus was efficiently transmitted by both routes.
Collapse
Affiliation(s)
- Susu Duan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David A. Boltz
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Patrick Seiler
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jiang Li
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Karoline Bragstad
- National Influenza Laboratory, Department of Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Lars P. Nielsen
- National Influenza Laboratory, Department of Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Richard J. Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Elena A. Govorkova
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
120
|
Hamelin MÈ, Baz M, Abed Y, Couture C, Joubert P, Beaulieu É, Bellerose N, Plante M, Mallett C, Schumer G, Kobinger GP, Boivin G. Oseltamivir-resistant pandemic A/H1N1 virus is as virulent as its wild-type counterpart in mice and ferrets. PLoS Pathog 2010; 6:e1001015. [PMID: 20661429 PMCID: PMC2908621 DOI: 10.1371/journal.ppat.1001015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
The neuraminidase inhibitor oseltamivir is currently used for treatment of patients infected with the pandemic A/H1N1 (pH1N1) influenza virus, although drug-resistant mutants can emerge rapidly and possibly be transmitted. We describe the characteristics of a pair of oseltamivir-resistant and oseltamivir-susceptible pH1N1 clinical isolates that differed by a single change (H274Y) in the neuraminidase protein. Viral fitness of pH1N1 isolates was assessed in vitro by determining replication kinetics in MDCK α2,6 cells and in vivo by performing experimental infections of BALB/c mice and ferrets. Despite slightly reduced propagation of the mutant isolate in vitro during the first 24 h, the wild-type (WT) and mutant resistant viruses induced similar maximum weight loss in mice and ferrets with an identical pyrexic response in ferrets (AUC of 233.9 and 233.2, P = 0.5156). Similarly, comparable titers were obtained for the WT and the mutant strains on days 1, 3, 6 and 9 post-infection in mouse lungs and on days 1–7 in ferret nasal washes. A more important perivascular (day 6) and pleural (days 6 and 12) inflammation was noted in the lungs of mice infected with the H274Y mutant, which correlated with increased pulmonary levels of IL-6 and KC. Such increased levels of IL-6 were also observed in lymph nodes of ferrets infected with the mutant strain. Furthermore, the H274Y mutant strain was transmitted to ferrets. In conclusion, viral fitness of the H274Y pH1N1 isolate is not substantially altered and has the potential to induce severe disease and to disseminate. During the 2009 pandemic of the novel A/H1N1 (pH1N1) virus, the World Health Organization recommended oseltamivir as first-line agent for treatment of patients with severe infections leading to hospitalization and for those with underlying diseases predisposing to pulmonary complications. Oseltamivir-resistant isolates started to emerge at the end of June 2009 with now more than 100 strains reported worldwide including a few outbreaks where transmission of resistant viruses may have occurred. We characterized the fitness of a pair of oseltamivir-susceptible and oseltamivir-resistant strains emerging from the same familial cluster and that differed by only a single change (H274Y) in the neuraminidase protein. We found that the drug-resistant (mutant) virus was at least as virulent as the drug-susceptible (wild-type) virus in mice and ferrets. Based on these data, we believe that the H274Y pH1N1 mutant strain has the potential to disseminate in the population and to eventually replace the susceptible strain, a phenomenon that has been already observed with seasonal A/Brisbane/59/2007-like (H1N1) viruses.
Collapse
Affiliation(s)
- Marie-Ève Hamelin
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Mariana Baz
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Yacine Abed
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | | | | | | | | | - Gregg Schumer
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | | | - Guy Boivin
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
121
|
Assessing the viral fitness of oseltamivir-resistant influenza viruses in ferrets, using a competitive-mixtures model. J Virol 2010; 84:9427-38. [PMID: 20631138 DOI: 10.1128/jvi.00373-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine the relative fitness of oseltamivir-resistant strains compared to susceptible wild-type viruses, we combined mathematical modeling and statistical techniques with a novel in vivo "competitive-mixtures" experimental model. Ferrets were coinfected with either pure populations (100% susceptible wild-type or 100% oseltamivir-resistant mutant virus) or mixed populations of wild-type and oseltamivir-resistant influenza viruses (80%:20%, 50%:50%, and 20%:80%) at equivalent infectivity titers, and the changes in the relative proportions of those two viruses were monitored over the course of the infection during within-host and over host-to-host transmission events in a ferret contact model. Coinfection of ferrets with mixtures of an oseltamivir-resistant R292K mutant A(H3N2) virus and a R292 oseltamivir-susceptible wild-type virus demonstrated that the R292K mutant virus was rapidly outgrown by the R292 wild-type virus in artificially infected donor ferrets and did not transmit to any of the recipient ferrets. The competitive-mixtures model was also used to investigate the fitness of the seasonal A(H1N1) oseltamivir-resistant H274Y mutant and showed that within infected ferrets the H274Y mutant virus was marginally outgrown by the wild-type strain but demonstrated equivalent transmissibility between ferrets. This novel in vivo experimental method and accompanying mathematical analysis provide greater insight into the relative fitness, both within the host and between hosts, of two different influenza virus strains compared to more traditional methods that infect ferrets with only pure populations of viruses. Our statistical inferences are essential for the development of the next generation of mathematical models of the emergence and spread of oseltamivir-resistant influenza in human populations.
Collapse
|
122
|
Ujike M, Shimabukuro K, Mochizuki K, Obuchi M, Kageyama T, Shirakura M, Kishida N, Yamashita K, Horikawa H, Kato Y, Fujita N, Tashiro M, Odagiri T. Oseltamivir-resistant influenza viruses A (H1N1) during 2007-2009 influenza seasons, Japan. Emerg Infect Dis 2010; 16:926-35. [PMID: 20507742 PMCID: PMC3086245 DOI: 10.3201/eid1606.091623] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prevalence of these viruses increased during the 2008–09 season. To monitor oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y in neuraminidase (NA) in Japan during 2 influenza seasons, we analyzed 3,216 clinical samples by NA sequencing and/or NA inhibition assay. The total frequency of ORVs was 2.6% (45/1,734) during the 2007–08 season and 99.7% (1,477/1,482) during the 2008–09 season, indicating a marked increase in ORVs in Japan during 1 influenza season. The NA gene of ORVs in the 2007–08 season fell into 2 distinct lineages by D354G substitution, whereas that of ORVs in the 2008–09 season fell into 1 lineage. NA inhibition assay and M2 sequencing showed that almost all the ORVs were sensitive to zanamivir and amantadine. The hemagglutination inhibition test showed that ORVs were antigenetically similar to the 2008–09 vaccine strain A/Brisbane/59/2007. Our data indicate that the current vaccine or zanamivir and amantadine are effective against recent ORVs, but continuous surveillance remains necessary.
Collapse
Affiliation(s)
- Makoto Ujike
- National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
McBrayer A, Camp JV, Tapp R, Yamshchikov V, Grimes S, Noah DL, Jonsson CB, Bruder CE. Course of seasonal influenza A/Brisbane/59/07 H1N1 infection in the ferret. Virol J 2010; 7:149. [PMID: 20618974 PMCID: PMC2909963 DOI: 10.1186/1743-422x-7-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022] Open
Abstract
Every year, influenza viruses infect approximately 5-20% of the population in the United States leading to over 200,000 hospitalizations and 36,000 deaths from flu-related complications. In this study, we characterized the immune and pathological progression of a seasonal strain of H1N1 influenza virus, A/Brisbane/59/2007 in a ferret model. The immune response of the animals showed a dose-dependent increase with increased virus challenge, as indicated by the presence of virus specific IgG, IgM, and neutralizing antibodies. Animals infected with higher doses of virus also experienced increasing severity of clinical symptoms and fever at 2 days post-infection (DPI). Interestingly, weight loss was more pronounced in animals infected with lower doses of virus compared to those infected with a higher dose; these results were consistent with viral titers of swabs collected from the nares, but not the throat. Analyzed specimens included nasal and throat swabs from 1, 3, 5, and 7 DPI as well as tissue samples from caudal lung and nasal turbinates. Viral titers of the swab samples in all groups were higher on 1 and 3 DPI and returned to baseline levels by 7 DPI. Analysis of nasal turbinates indicated presence of virus at 3 DPI in all infected groups, whereas virus was only detected in the lungs of animals in the two highest dose groups. Histological analysis of the lungs showed a range of pathology, such as chronic inflammation and bronchial epithelial hypertrophy. The results provided here offer important endpoints for preclinical testing of the efficacy of new antiviral compounds and experimental vaccines.
Collapse
|
124
|
Tuttle RS, Sosna WA, Daniels DE, Hamilton SB, Lednicky JA. Design, assembly, and validation of a nose-only inhalation exposure system for studies of aerosolized viable influenza H5N1 virus in ferrets. Virol J 2010; 7:135. [PMID: 20573226 PMCID: PMC2917419 DOI: 10.1186/1743-422x-7-135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/23/2010] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The routes by which humans acquire influenza H5N1 infections have not been fully elucidated. Based on the known biology of influenza viruses, four modes of transmission are most likely in humans: aerosol transmission, ingestion of undercooked contaminated infected poultry, transmission by large droplets and self-inoculation of the nasal mucosa by contaminated hands. In preparation of a study to resolve whether H5N1 viruses are transmissible by aerosol in an animal model that is a surrogate for humans, an inhalation exposure system for studies of aerosolized H5N1 viruses in ferrets was designed, assembled, and validated. Particular attention was paid towards system safety, efficacy of dissemination, the viability of aerosolized virus, and sampling methodology. RESULTS An aerosol generation and delivery system, referred to as a Nose-Only Bioaerosol Exposure System (NBIES), was assembled and function tested. The NBIES passed all safety tests, met expected engineering parameters, required relatively small quantities of material to obtain the desired aerosol concentrations of influenza virus, and delivered doses with high-efficacy. Ferrets withstood a mock exposure trial without signs of stress. CONCLUSIONS The NBIES delivers doses of aerosolized influenza viruses with high efficacy, and uses less starting material than other similar designs. Influenza H5N1 and H3N2 viruses remain stable under the conditions used for aerosol generation and sample collection. The NBIES is qualified for studies of aerosolized H5N1 virus.
Collapse
Affiliation(s)
- Richard S Tuttle
- Aerosol Research and Engineering Laboratories, 13300 West 98th Street, Lenexa, Kansas, 66215, USA
| | - William A Sosna
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - Deirdre E Daniels
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - Sara B Hamilton
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| | - John A Lednicky
- Energy and Life Sciences Division, Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, USA
| |
Collapse
|
125
|
Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 2010; 328:1272-5. [PMID: 20522774 PMCID: PMC2913718 DOI: 10.1126/science.1187816] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The His274-->Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Drug Resistance, Viral/genetics
- Evolution, Molecular
- Genes, Viral
- Genetic Fitness
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/drug therapy
- Influenza, Human/virology
- Mutation
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Oseltamivir/pharmacology
- Phylogeny
- Selection, Genetic
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lizhi Ian Gong
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
126
|
Hurt AC, Holien JK, Parker MW, Barr IG. Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs 2010; 69:2523-31. [PMID: 19943705 DOI: 10.2165/11531450-000000000-00000] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Along with influenza vaccines, the world is currently almost completely dependent on two licensed drugs for the treatment or prevention of seasonal (influenza A and B viruses) and pandemic influenza (influenza A viruses). These drugs - oseltamivir (Tamiflu) and zanamivir (Relenza) - are classified as neuraminidase inhibitors (NAIs) because they act by inhibiting one of the key surface proteins of the influenza virus, the neuraminidase, which in turn reduces the ability of the virus to infect other respiratory cells. Our dependence on these drugs has arisen because of high levels of resistance with seasonal influenza viruses to the older class of anti-influenza drugs, the adamantanes (amantadine and rimantadine), combined with the lack of activity of these drugs against influenza B viruses. Recently, however, significant levels of oseltamivir-resistant influenza A(H1) seasonal influenza viruses have also been encountered, which has been associated with a single amino acid change in the viral neuraminidase (H274Y). Oseltamivir is the most widely used and stockpiled NAI and, while these A(H1) viruses are still sensitive to zanamivir, it highlights the ease with which the influenza virus can mutate and reassort to circumvent available drugs. Fortunately, the current pandemic A(H1N1) 2009 virus, which is circulating globally, remains largely sensitive to both NAIs, although a small number of oseltamivir-resistant viruses have been isolated from patients to date, again with the H274Y mutation. Clearly there is a need to use the NAI drugs prudently to ensure they remain an effective defence against future seasonal and pandemic influenza viruses, along with careful monitoring of levels of resistance in the circulating viruses combined with the further development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
127
|
Zheng Y, Yang Y, Zhao W, Wang H. Novel swine-origin influenza A (H1N1) virus-associated hemophagocytic syndrome--a first case report. Am J Trop Med Hyg 2010; 82:743-5. [PMID: 20348529 DOI: 10.4269/ajtmh.2010.09-0666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary or reactive hemophagocytic syndrome (HPS) is frequently related to viral infections. However, the novel swine-origin influenza A (H1N1) virus associated HPS has never been reported. On October 10, 2009, a 17-year-old female child with no past medical history, complaining of severe asthenia, pneumonia, myalgia, and high fever, was admitted to our department, and H1N1 DNA was detected. Five days after her hospitalization, all signs and symptoms aggravated into HPS. After treatment for H1N1 influenza, the patient had a recovery and clearance of H1N1 infection 10 days after hospitalization. Three weeks later, the patient was discharged without any complaints, indicating the etiological role of H1N1infection in HPS.
Collapse
Affiliation(s)
- Yishan Zheng
- Intensive Care Unit of Second Affiliated Hospital of Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
128
|
Dutkowski R. Oseltamivir in seasonal influenza: cumulative experience in low- and high-risk patients. J Antimicrob Chemother 2010; 65 Suppl 2:ii11-ii24. [PMID: 20215131 PMCID: PMC2835508 DOI: 10.1093/jac/dkq012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Seasonal influenza viruses cause annual disease epidemics that affect individuals at low and high risk for secondary illnesses. Influenza vaccines are widely used in high-risk patients to prevent infection, but the protection afforded varies by population; uptake is also limited in some groups. Antiviral drugs for influenza are now readily available. Oseltamivir is the most widely used antiviral for the treatment and prophylaxis of seasonal influenza, and its efficacy and safety are now well established in a variety of populations. In addition to decreasing the severity and duration of the symptoms of influenza, clinical and epidemiological studies demonstrate that oseltamivir significantly reduces the frequency of secondary illnesses and exacerbation of underlying conditions; survival is also significantly improved in seriously ill patients who are hospitalized with severe influenza. Resistant viruses are isolated with a low frequency during oseltamivir treatment (0.33% in adults and 4.0% in children among almost 2000 oseltamivir-treated patients enrolled onto Roche-sponsored clinical trials of oseltamivir treatment during the oseltamivir development programme). However, an oseltamivir-resistant influenza A (H1N1) virus emerged in Europe during the 2007-08 season and circulated in the southern and northern hemispheres in 2008-09. No link with oseltamivir usage could be detected, and the clinical impact of these viruses was limited. Oseltamivir-susceptible pandemic (H1N1) 2009 viruses now predominate in many countries. Oseltamivir is generally well tolerated, with a similar adverse event profile to placebo.
Collapse
Affiliation(s)
- Regina Dutkowski
- Clinical Development-Virology, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110-1199, USA.
| |
Collapse
|
129
|
Matsuzaki Y, Mizuta K, Aoki Y, Suto A, Abiko C, Sanjoh K, Sugawara K, Takashita E, Itagaki T, Katsushima Y, Ujike M, Obuchi M, Odagiri T, Tashiro M. A two-year survey of the oseltamivir-resistant influenza A(H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir and zanamivir. Virol J 2010; 7:53. [PMID: 20202225 PMCID: PMC2847566 DOI: 10.1186/1743-422x-7-53] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/05/2010] [Indexed: 12/18/2022] Open
Abstract
Background Oseltamivir is the preferred antiviral drug for influenza, but oseltamivir-resistant A(H1N1) viruses have circulated worldwide since the 2007-2008 influenza season. We aimed to determine the rate of oseltamivir resistance among A(H1N1) isolates from Yamagata, Japan, to compare the virological characteristics between isolates from the 2007-2008 and 2008-2009 seasons, and to evaluate the clinical effectiveness of oseltamivir. Results Oseltamivir resistance, determined by detecting the H275Y mutation in the neuraminidase (NA) gene, was observed in 2.5% (2 of 79) and 100% (77 of 77) of isolates from the 2007-2008 and 2008-2009 seasons, respectively. Antigenic analysis suggested that antigenically different variants of A(H1N1) viruses circulated in the 2008-2009 season. Growth testing demonstrated that the ability of the 2008-2009 isolates to replicate in MDCK cells was similar to those of the oseltamivir-susceptible isolates from the 2007-2008 season. A phylogenetic analysis revealed that two oseltamivir-resistant viruses isolated in the 2007-2008 season were closely related to other oseltamivir-susceptible viruses in Yamagata but were different from oseltamivir-resistant viruses isolated in Europe and North America in the 2007-2008 season. The oseltamivir-resistant viruses isolated in Japan in the 2008-2009 season were phylogenetically similar to oseltamivir-resistant isolates from Europe and North America during the 2007-2008 season. Furthermore, the median duration of fever after the start of oseltamivir treatment was significantly longer in oseltamivir-resistant cases (2 days; range 1-6 days) than in oseltamivir-susceptible cases (1.5 days: range 1-2 days) (P = 0.0356). Conclusion Oseltamivir-resistant A(H1N1) isolates from Yamagata in the 2007-2008 season might have acquired resistance through the use of oseltamivir, and the 2008-2009 oseltamivir-resistant isolates might have been introduced into Japan and circulated throughout the country. Influenza surveillance to monitor oseltamivir-resistance would aid clinicians in determining an effective antiviral treatment strategy.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Course of Clinical Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Detection of E119V and E119I mutations in influenza A (H3N2) viruses isolated from an immunocompromised patient: challenges in diagnosis of oseltamivir resistance. Antimicrob Agents Chemother 2010; 54:1834-41. [PMID: 20194700 DOI: 10.1128/aac.01608-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clinical use of the neuraminidase inhibitor (NAI) oseltamivir is associated with the emergence of drug resistance resulting from subtype-specific neuraminidase (NA) mutations. The influenza A/Texas/12/2007 (H3N2) virus isolated from an oseltamivir-treated immunocompromised patient exhibited reduced susceptibility to oseltamivir in the chemiluminescent neuraminidase inhibition (NI) assay (approximately 60-fold increase in its 50% inhibitory concentration [IC(50)] compared to that for a control virus). When further propagated in cell culture, the isolate maintained reduced susceptibility to oseltamivir in both chemiluminescent and fluorescent NI assays (approximately 50- and 350-fold increases in IC(50), respectively). Sequencing analysis of the isolate revealed a mix of nucleotides coding for amino acids at position 119 of the NA [E119(V/I)]. Plaque purification of the isolate yielded E119V and E119I variants, both exhibiting reduced susceptibility to oseltamivir. The E119I variant also showed decreased susceptibility to zanamivir and the investigational NAIs peramivir and A-315675. The emergence of E119V variants in oseltamivir-treated patients has been previously reported; however, the E119I mutation detected here is a novel one which reduces susceptibility to several NAIs. Both mutations were not detected in unpropagated original clinical specimens using either conventional sequencing or pyrosequencing, suggesting that these variants were present in very low proportions (<10%) in clinical specimens and gained dominance after virus propagation in MDCK cells. All virus isolates recovered from the patient were resistant to adamantanes. Our findings highlight the potential for emergence and persistence of multidrug-resistant influenza viruses in oseltamivir-treated immunocompromised subjects and also highlight challenges for drug resistance diagnosis due to the genetic instability of the virus population upon propagation in cell culture.
Collapse
|
131
|
Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses. J Clin Microbiol 2010; 48:1085-92. [PMID: 20129961 DOI: 10.1128/jcm.01532-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the population.
Collapse
|
132
|
Haldar J, Alvarez de Cienfuegos L, Tumpey TM, Gubareva LV, Chen J, Klibanov AM. Bifunctional polymeric inhibitors of human influenza A viruses. Pharm Res 2009; 27:259-63. [PMID: 20013036 DOI: 10.1007/s11095-009-0013-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE New antiviral agents were prepared by attaching derivatives of sialic acid (1) and of the drug zanamivir (2) to poly(isobutylene-alt-maleic anhydride) (poly-(1 + 2)) or by mixing poly-1 and poly-2, followed by assaying them against wild-type and drug-resistant influenza A Wuhan viruses. METHODS Individually or together, 1 and 2 were covalently bonded to the polymer. The antiviral potencies of the resultant poly-1, poly-2, poly-(1 + 2), and poly-1 + poly-2, as well as 1 and 2, were assessed using plaque reduction assay. RESULTS Attaching 1 to the polymer improved at best millimolar IC(50) values over three orders of magnitude. While 2 exhibited micromolar IC(50) values, poly-2 was >100-fold even more potent. The IC(50) of poly-(1 + 2) against the wild-type strain was >300-fold and approximately 17-fold better than of poly-1 and poly-2, respectively. In contrast, the potency of poly-(1 + 2) vs. poly-2 against the mutant strain merely doubled. The mixture of poly-1 + poly-2 inhibited both viral strains similarly to poly-2. CONCLUSIONS The bifunctional poly-(1 + 2) acts synergistically against the wild-type influenza virus, but not against its drug-resistant mutant, as compared to a physical mixture of the monofunctional poly-1 and poly-2.
Collapse
Affiliation(s)
- Jayanta Haldar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
133
|
Structural basis for oseltamivir resistance of influenza viruses. Vaccine 2009; 27:6317-23. [DOI: 10.1016/j.vaccine.2009.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/02/2009] [Indexed: 11/20/2022]
|
134
|
Ciblak MA, Hasoksuz M, Escuret V, Valette M, Gul F, Yilmaz H, Turan N, Bozkaya E, Badur S. Surveillance and oseltamivir resistance of human influenza a virus in Turkey during the 2007-2008 season. J Med Virol 2009; 81:1645-51. [PMID: 19626608 DOI: 10.1002/jmv.21546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monitoring the activity of influenza viruses is important for establishing the circulating types and for detection of the emergence of novel sub-types and antiviral resistant strains. This is the first report from Turkey on the surveillance and oseltamivir resistance of influenza viruses in 2007-2008. Five hundred twenty-four nasal swabs were tested from different geographical regions in Turkey during November 2007-April 2008. One hundred sixty-three (31%) samples were positive for influenza viruses of which 111 (68%) were influenza A, 52 (31%) influenza B using an immuno-capture ELISA. Forty isolates were selected at random from influenza A positive samples and grown in MDCK cell cultures. The supernatant of the cell cultures was used for RNA extraction followed by RT-PCR to detect the sub-types. Sub-typing revealed all samples as A/H1N1. The N1 gene segment of 30 A/H1N1 samples was sequenced in part, from the 201st to 365th residue, which included the critical region for oseltamivir resistance. Then resulting sequences were analyzed with oseltamivir sensitive and resistant strains obtained from National Center for Biotechnology Information (NCBI) GenBank by CLC Main Workbench Software. H275Y (H274Y according to N2 numbering) mutation, which is known to confer resistance to oseltamivir, was detected in 6 out of 30 (20%) H1N1 isolates from four cities (Istanbul, Bursa, Ankara, and Izmir). The D354G mutation was observed in all oseltamivir resistant H1N1 isolates but not in the oseltamivir sensitive isolates. Assay of neuraminidase activity revealed that these isolates were resistant to oseltamivir, but sensitive to zanamivir.
Collapse
Affiliation(s)
- Meral Akcay Ciblak
- Istanbul Faculty of Medicine, Department of Microbiology and Clinical Microbiology, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Eshaghi A, Blair J, Burton L, Lombos E, Choi K, De Lima C, Drews SJ. A paucity of co-infecting respiratory viral pathogens in nasopharyngeal specimens from patients infected with H274Y-positive influenza A (H1N1) strains. Int J Infect Dis 2009; 13:e319-20. [PMID: 19095481 PMCID: PMC7129537 DOI: 10.1016/j.ijid.2008.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/28/2008] [Indexed: 11/17/2022] Open
|
136
|
Handel A, Longini IM, Antia R. Intervention strategies for an influenza pandemic taking into account secondary bacterial infections. Epidemics 2009; 1:185-95. [PMID: 20161493 PMCID: PMC2796779 DOI: 10.1016/j.epidem.2009.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Influenza infections often predispose individuals to consecutive bacterial infections. Both during seasonal and pandemic influenza outbreaks, morbidity and mortality due to secondary bacterial infections can be substantial. With the help of a mathematical model, we investigate the potential impact of such bacterial infections during an influenza pandemic, and we analyze how antiviral and antibacterial treatment or prophylaxis affect morbidity and mortality. We consider different scenarios for the spread of bacteria, the emergence of antiviral resistance, and different levels of severity for influenza infections (1918-like and 2009-like). We find that while antibacterial intervention strategies are unlikely to play an important role in reducing the overall number of cases, such interventions can lead to a significant reduction in mortality and in the number of bacterial infections. Antibacterial interventions become even more important if one considers the--very likely--scenario that during a pandemic outbreak, influenza strains resistant to antivirals emerge. Overall, our study suggests that pandemic preparedness plans should consider intervention strategies based on antibacterial treatment or prophylaxis through drugs or vaccines as part of the overall control strategy. A major caveat for our results is the lack of data that would allow precise estimation of many of the model parameters. As our results show, this leads to very large uncertainty in model outcomes. As we discuss, precise assessment of the impact of antibacterial strategies during an influenza pandemic will require the collection of further data to better estimate key parameters, especially those related to the bacterial infections and the impact of antibacterial intervention strategies.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
137
|
Eshaghi A, Blair J, Burton L, Choi KW, De Lima C, McGeer AA, Low DE, Mazzulli T, Drews SJ. Infection with H274Y-positive influenza A (H1N1) is not associated with a change in nasopharyngeal Streptococcus pneumoniae colonization in patients. Int J Infect Dis 2009; 13:e321-2. [DOI: 10.1016/j.ijid.2008.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/10/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022] Open
|
138
|
MESH Headings
- Antiviral Agents/administration & dosage
- Antiviral Agents/therapeutic use
- Drug Resistance, Viral
- Europe
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza, Human/drug therapy
- Influenza, Human/virology
- Japan
- Mutation, Missense
- Neuraminidase/genetics
- United States
- Viral Proteins/genetics
Collapse
|
139
|
Duwe S, Heider A, Braun C, Schweiger B, Buchholz U. Person-to-person transmission of oseltamivir-resistant influenza A/H1N1 viruses in two households; Germany 2007/08. J Clin Virol 2009; 46:295-7. [PMID: 19699143 DOI: 10.1016/j.jcv.2009.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/24/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
140
|
Abstract
The neuraminidase inhibitors zanamivir and oseltamivir are marketed for the treatment and prophylaxis of influenza and have been stockpiled by many countries for use in a pandemic. Although recent surveillance has identified a striking increase in the frequency of oseltamivir-resistant seasonal influenza A (H1N1) viruses in Europe, the United States, Oceania, and South Africa, to date there have been no reports of significant zanamivir resistance among influenza A (H1N1) viruses or any other human influenza viruses. We investigated the frequency of oseltamivir and zanamivir resistance in circulating seasonal influenza A (H1N1) viruses in Australasia and Southeast Asia. Analysis of 391 influenza A (H1N1) viruses isolated between 2006 and early 2008 from Australasia and Southeast Asia revealed nine viruses (2.3%) that demonstrated markedly reduced zanamivir susceptibility and contained a previously undescribed Gln136Lys (Q136K) neuraminidase mutation. The mutation had no effect on oseltamivir susceptibility but caused approximately a 300-fold and a 70-fold reduction in zanamivir and peramivir susceptibility, respectively. The role of the Q136K mutation in conferring zanamivir resistance was confirmed using reverse genetics. Interestingly, the mutation was not detected in the primary clinical specimens from which these mutant isolates were grown, suggesting that the resistant viruses either occurred in very low proportions in the primary clinical specimens or arose during MDCK cell culture passage. Compared to susceptible influenza A (H1N1) viruses, the Q136K mutant strains displayed greater viral fitness than the wild-type virus in MDCK cells but equivalent infectivity and transmissibility in a ferret model.
Collapse
|
141
|
Meijer A, Lackenby A, Hungnes O, Lina B, van-der-Werf S, Schweiger B, Opp M, Paget J, van-de-Kassteele J, Hay A, Zambon M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 2009. [PMID: 19331731 PMCID: PMC2671453 DOI: 10.3201/eid1504.081280] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Europe, the 2007-08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity.
Collapse
Affiliation(s)
- Adam Meijer
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Meijer A, Lackenby A, Hungnes O, Lina B, van-der-Werf S, Schweiger B, Opp M, Paget J, van-de-Kassteele J, Hay A, Zambon M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 2009; 15:552-60. [PMID: 19331731 DOI: 10.3201/eid1504.181280] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Europe, the 2007-08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity.
Collapse
Affiliation(s)
- Adam Meijer
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Oxford JS. Antivirals for the treatment and prevention of epidemic and pandemic influenza. Influenza Other Respir Viruses 2009; 1:27-34. [PMID: 19453477 PMCID: PMC4634659 DOI: 10.1111/j.1750-2659.2006.00006.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Influenza is a highly contagious and debilitating disease that imposes an excess burden of complications and mortality. Antiviral therapy is the primary intervention for treatment and post‐exposure prophylaxis (PEP) of influenza. Amantadine and rimantadine are members of the M2 class of antiviral agents and are moderately effective in influenza management. However, their utility is compromised by high levels of resistance, tolerability concerns and a lack of efficacy against influenza B. An alternative class of agents, the neuraminidase inhibitors (NIs), represent the most advanced form of antiviral therapy available, and act by specifically inhibiting the neuraminidase enzymes that are present on all influenza subtypes. Two NIs, oseltamivir and zanamivir, are currently available for clinical use. Oseltamivir, the most widely used NI, is administered orally as a prodrug (oseltamivir carboxylate) and systemically distributed to all potential infection sites. Zanamivir, a second NI, is administered by inhalation via a disk inhaler and deposited primarily in the respiratory tract. When administered within 48 hours of symptom onset, both agents significantly reduce illness duration and symptom severity, and decrease the rate of influenza‐associated complications. With oseltamivir, greater benefits are detected with earlier treatment initiation (<12 hours). In PEP, both NIs effectively protect the close contacts of index cases from symptomatic influenza. Oseltamivir and zanamivir are generally well tolerated and associated with a low level of resistance. Emerging evidence supports the activity of both NIs against the H5N1avian influenza infection, which is a pandemic candidate. However, the WHO currently recommends the use of oseltamivir for the management of suspected cases, given the systemic nature of the H5N1 challenge. Ongoing studies are exploring the effectiveness of oseltamivir, zanamivir and other NIs for pandemic management.
Collapse
Affiliation(s)
- John S Oxford
- Institute of Cell and Molecular Sciences and Retroscreen Virology Ltd., St Bartholomew's and the Royal London Hospitals, Queen Mary School of Medicine and Dentistry, London, UK
| |
Collapse
|
144
|
Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J Virol 2009; 83:8131-40. [PMID: 19493997 DOI: 10.1128/jvi.00534-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated whether transmissible H5 subtype human-avian reassortant viruses could be generated in vivo. To this end, ferrets were coinfected with recent avian H5N1 (A/Thailand/16/04) and human H3N2 (A/Wyoming/3/03) viruses. Genotype analyses of plaque-purified viruses from nasal secretions of coinfected ferrets revealed that approximately 9% of recovered viruses contained genes from both progenitor viruses. H5 and H3 subtype viruses, including reassortants, were found in airways extending toward and in the upper respiratory tract of ferrets. However, only parental H5N1 genotype viruses were found in lung tissue. Approximately 34% of the recovered reassortant viruses possessed the H5 hemagglutinin (HA) gene, with five unique H5 subtypes recovered. These H5 reassortants were selected for further studies to examine their growth and transmissibility characteristics. Five H5 viruses with representative reassortant genotypes showed reduced titers in nasal secretions of infected ferrets compared to the parental H5N1 virus. No transmission by direct contact between infected and naïve ferrets was observed. These studies indicate that reassortment between H5N1 avian influenza and H3N2 human viruses occurred readily in vivo and furthermore that reassortment between these two viral subtypes is likely to occur in ferret upper airways. Given the relatively high incidence of reassortant viruses from tissues of the ferret upper airway, it is reasonable to conclude that continued exposure of humans and animals to H5N1 alongside seasonal influenza viruses increases the risk of generating H5 subtype reassortant viruses that may be shed from upper airway secretions.
Collapse
|
145
|
Affiliation(s)
- Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia 3050;
| |
Collapse
|
146
|
Genetic microheterogeneity of emerging H275Y influenza virus A (H1N1) in Toronto, Ontario, Canada from the 2007–2008 respiratory season. J Clin Virol 2009; 45:142-5. [DOI: 10.1016/j.jcv.2009.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/13/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
|
147
|
Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Med 2009; 6:e1000085. [PMID: 19440354 PMCID: PMC2680070 DOI: 10.1371/journal.pmed.1000085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 04/22/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains. METHODS AND FINDINGS We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage) of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available); and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug). We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR) and the resistant attack rate (RAR) unless the probability of emergence of resistance to the primary drug p(A) was so low (less than 1 in 10,000) that resistance was unlikely to be a problem or so high (more than 1 in 20) that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p(A) = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105 large cities to investigate the robustness of these resistance-limiting strategies at a global scale. We found that as long as populations that were the main source of resistant strains employed these strategies (SMC or ECC), then those same strategies were also effective for populations far from the source even when some intermediate populations failed to control resistance. In essence, through the existence of many wild-type epidemics, the interconnectedness of the global network dampened the international spread of resistant strains. CONCLUSIONS Our results indicate that the augmentation of existing stockpiles of a single anti-influenza drug with smaller stockpiles of a second drug could be an effective and inexpensive epidemiological hedge against antiviral resistance if either SMC or ECC were used. Choosing between these strategies will require additional empirical studies. Specifically, the choice will depend on the safety of combination therapy and the synergistic effect of one antiviral in suppressing the emergence of resistance to the other antiviral when both are taken in combination.
Collapse
Affiliation(s)
- Joseph T Wu
- Department of Community Medicine and School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
148
|
Hauge SH, Blix HS, Borgen K, Hungnes O, Dudman SG, Aavitsland P. Sales of oseltamivir in Norway prior to the emergence of oseltamivir resistant influenza A(H1N1) viruses in 2007-08. Virol J 2009; 6:54. [PMID: 19435505 PMCID: PMC2685787 DOI: 10.1186/1743-422x-6-54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/12/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND An unprecedented high proportion of oseltamivir resistant influenza A(H1N1) viruses emerged in the 2007-08 influenza season. In Norway, two thirds of all tested A(H1N1) viruses were resistant to the antiviral drug. In order to see if this emergence could be explained by a drug induced selection pressure, we analysed data on the sales of oseltamivir in Norway for the years 2002-07. METHODS We used data from two sources; the Norwegian Drug Wholesales Statistics Database and the Norwegian Prescription Database (NorPD), for the years 2002-2007. We calculated courses sold of oseltamivir (Tamiflu) per 1000 inhabitants per year. RESULTS Our data showed that, except for the years 2005 and 2006, sales of oseltamivir were low in Norway; courses sold per 1000 inhabitants varied between 0.17-1.64. The higher sales in 2005 and 2006 we believe were caused by private stockpiling in fear of a pandemic, and do not represent actual usage. CONCLUSION A drug induced selection pressure was probably not the cause of the emergence of oseltamivir resistant influenza A(H1N1) viruses in 2007-08 in Norway.
Collapse
Affiliation(s)
- Siri H Hauge
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
- Norwegian Field Epidemiology Training Programme (NorFETP), Oslo, Norway
| | - Hege S Blix
- Department of Pharmacoepidemiology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Katrine Borgen
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Olav Hungnes
- Department of Virology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Susanne G Dudman
- Department of Virology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Preben Aavitsland
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
149
|
Schirmer P, Holodniy M. Oseltamivir for treatment and prophylaxis of influenza infection. Expert Opin Drug Saf 2009; 8:357-71. [DOI: 10.1517/14740330902840519] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
150
|
Influenza antiviral resistance testing in new york and wisconsin, 2006 to 2008: methodology and surveillance data. J Clin Microbiol 2009; 47:1372-8. [PMID: 19321726 DOI: 10.1128/jcm.01993-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The need for effective influenza antiviral susceptibility surveillance methods has increased due to the emergence of near-universal adamantane resistance in influenza A/H3N2 viruses during the 2005-2006 season and the appearance of oseltamivir resistance in the influenza A/H1N1 virus subtype during the 2007-2008 season. The two classes of influenza antivirals, the neuraminidase inhibitors (NAIs) and the adamantanes, are well characterized, as are many mutations that can confer resistance to these drugs. Adamantane resistance is imparted mainly by a S31N mutation in the matrix gene, while NAI resistance can result from a number of mutations in the neuraminidase gene. During the 2007-2008 season, a neuraminidase mutation (H274Y) conferring resistance to the NAI oseltamivir emerged worldwide in the A/H1N1 virus subtype. Surveillance methodology and data from New York (NY) and Wisconsin (WI) for the 2006-2007 and 2007-2008 influenza seasons are presented. We used an existing pyrosequencing method (R. A. Bright et al., Lancet 366:1175-1181, 2005) and a modified version of this method for detection of adamantane resistance mutations. For NAI resistance mutation detection, we used a mutation-specific pyrosequencing technique and developed a neuraminidase gene dideoxy sequencing method. Adamantane resistance in the A/H3N2 virus samples was 100% for 2007-2008, similar to the 99.8% resistance nationwide as reported by the CDC. Adamantane resistance was found in only 1.2% of NY and WI A/H1N1 virus samples, compared to that found in 10.8% of samples tested nationwide as reported by the CDC. Influenza A/H1N1 virus H274Y mutants were found in 11.1% of NY samples for 2007-2008, a level comparable to the 10.9% nationwide level reported by the CDC; in contrast, mutants were found in 17.4% of WI samples. These results indicate the need for regional influenza antiviral surveillance.
Collapse
|