101
|
Patel SN, Thompson D, Roth N, Grodstein E. Cutaneous and renal aspergillosis resulting from orthotopic liver transplantation. BMJ Case Rep 2023; 16:e256974. [PMID: 37993141 PMCID: PMC10668145 DOI: 10.1136/bcr-2023-256974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Affiliation(s)
- Shreeja Nirav Patel
- Medical School, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Dane Thompson
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Nitzan Roth
- Department of Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Elliot Grodstein
- Department of Transplant Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
102
|
Cao Y, Liu M, Han M, Ji S. Multi-arm ε-polylysines exhibit broad-spectrum antifungal activities against Candida species. Biomater Sci 2023; 11:7588-7597. [PMID: 37823351 DOI: 10.1039/d3bm01233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Invasive fungal infections pose a crucial threat to public health and are an under-recognized component of antimicrobial resistance, which is an emerging crisis worldwide. Here we designed and synthesized a panel of multi-arm ε-polylysines (ε-mPLs, nR-Km) with a precise number of n = 3-6 arms of ε-oligo(L-lysine)s and a precise arm length of m = 3-7 ε-lysine residues. ε-mPLs have good biocompatibility and exhibited broad-spectrum antifungal activities towards Aspergillus, Mucorales and Candida species, and their antifungal activities increased with residue arm length. Among these ε-mPLs, 3R-K7 showed high antifungal activity against C. albicans with a MIC value of as low as 24 μg mL-1 (only 1/16th that of ε-PL) and also exhibited similar antifungal activity towards the clinically isolated multi-drug resistant (MDR) C. albicans strain. Furthermore, 3R-K7 could inhibit the formation of C. albicans biofilms and kill the cells within mature C. albicans biofilms. Mechanistic studies proved that 3R-K7 killed fungal cells by entering the cells to generate reactive oxygen species (ROS) and induce cell apoptosis. An in vivo study showed that 3R-K7 significantly increased the survival rate of mice in a systemic murine candidiasis model, demonstrating that ε-mPL has great potential as a new antifungal agent.
Collapse
Affiliation(s)
- Yuanqiao Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
103
|
Schürch S, Gindro K, Schnee S, Dubuis PH, Codina JM, Wilhelm M, Riat A, Lamoth F, Sanglard D. Occurrence of Aspergillus fumigatus azole resistance in soils from Switzerland. Med Mycol 2023; 61:myad110. [PMID: 37930839 PMCID: PMC10653585 DOI: 10.1093/mmy/myad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.
Collapse
Affiliation(s)
- Stéphanie Schürch
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Pierre-Henri Dubuis
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Josep Massana Codina
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Matthieu Wilhelm
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Arnaud Riat
- Service of Infectious Diseases and Service of Laboratory Medicine, Geneva University Hospitals and Geneva University, 1205 Geneva, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
104
|
Crone CG, Wulff SM, Ledergerber B, Helweg-Larsen J, Bredahl P, Arendrup MC, Perch M, Helleberg M. Invasive Aspergillosis among Lung Transplant Recipients during Time Periods with Universal and Targeted Antifungal Prophylaxis-A Nationwide Cohort Study. J Fungi (Basel) 2023; 9:1079. [PMID: 37998886 PMCID: PMC10672607 DOI: 10.3390/jof9111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The optimal prevention strategy for invasive aspergillosis (IA) in lung transplant recipients (LTXr) is unknown. In 2016, the Danish guidelines were changed from universal to targeted IA prophylaxis. Previously, we found higher rates of adverse events in the universal prophylaxis period. In a Danish nationwide study including LTXr, for 2010-2019, we compared IA rates in time periods with universal vs. targeted prophylaxis and during person-time with vs. person-time without antifungal prophylaxis. IA hazard rates were analyzed in multivariable Cox models with adjustment for time after LTX. Among 295 LTXr, antifungal prophylaxis was initiated in 183/193 and 6/102 during the universal and targeted period, respectively. During the universal period, 62% discontinued prophylaxis prematurely. The median time on prophylaxis was 37 days (IQR 11-84). IA was diagnosed in 27/193 (14%) vs. 15/102 (15%) LTXr in the universal vs. targeted period, with an adjusted hazard ratio (aHR) of 0.94 (95% CI 0.49-1.82). The aHR of IA during person-time with vs. person-time without antifungal prophylaxis was 0.36 (95% CI 0.12-1.02). No difference in IA was found during periods with universal vs. targeted prophylaxis. Prophylaxis was protective of IA when taken. Targeted prophylaxis may be preferred over universal due to comparable IA rates and lower rates of adverse events.
Collapse
Affiliation(s)
- Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Bruno Ledergerber
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Jannik Helweg-Larsen
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Pia Bredahl
- Department of Thoracic Anesthesia, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark;
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
- Department of Clinical Microbiology, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
105
|
Zachary J, Chen JM, Sharfuddin A, Yaqub M, Lutz A, Powelson J, Fridell JA, Barros N. Epidemiology and Risk Factors for Invasive Fungal Infections in Pancreas Transplant in the Absence of Postoperative Antifungal Prophylaxis. Open Forum Infect Dis 2023; 10:ofad478. [PMID: 37942464 PMCID: PMC10629350 DOI: 10.1093/ofid/ofad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
Background Invasive fungal infections (IFIs) remain a rare yet dreaded complication following pancreas transplantation. Current guidelines recommend antifungal prophylaxis in patients with 1 or more risk factors. At our center, single-dose antifungal prophylaxis is administered in the operating room but none subsequently, regardless of risk factors. Here we evaluate the 1-year incidence, outcome, and risk factors associated with IFI following pancreas transplantation. Methods A retrospective, single-center cohort study was conducted in patients who underwent pancreas transplantation between 1 January 2009 and 31 December 2019. Records were manually reviewed, and cases were adjudicated using consensus definitions. The 1-year cumulative incidence, mortality, and risk factors were analyzed by Kaplan-Meier method and differences between populations were assessed with Fisher test and Mann-Whitney U test. Results Three hundred sixty-nine recipients were included. Twelve IFIs were identified: candidiasis (8), aspergillosis (2), histoplasmosis (1), and cryptococcosis (1). Intra-abdominal infections were the most common presentation (5), followed by bloodstream infections (3), disseminated disease (2), pulmonary disease (1), and invasive fungal sinusitis (1). Median time to IFI was 64 days (interquartile range, 30-234 days). One-year cumulative incidence was 3.25% (95% confidence interval, 1.86%-5.65%). There were no significant differences between patients with or without IFI regarding type of transplant (P = .17), posttransplant dialysis (P = .3), rejection (P = .5), cytomegalovirus serostatus (P = .45), or reoperation (P = .19). For patients with IFI, the 1-year graft and patient survival rates were 58% versus 95% (P < .0001) and 75% versus 98.6% (P < .001), respectively. Conclusions Our study suggests that the use of a single-dose antifungal prophylaxis administered in the operating room but none subsequently does not result in an increased incidence of IFI following pancreas transplantation.
Collapse
Affiliation(s)
- Jessica Zachary
- Department of Pharmacy, Indiana University Health, Indianapolis, Indiana, USA
| | - Jeanne M Chen
- Department of Pharmacy, Indiana University Health, Indianapolis, Indiana, USA
| | - Asif Sharfuddin
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Muhammad Yaqub
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew Lutz
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John Powelson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathan A Fridell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
106
|
Gaffney S, Kelly DM, Rameli PM, Kelleher E, Martin-Loeches I. Invasive pulmonary aspergillosis in the intensive care unit: current challenges and best practices. APMIS 2023; 131:654-667. [PMID: 37022291 DOI: 10.1111/apm.13316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
The prevalence of invasive pulmonary aspergillosis (IPA) is growing in critically ill patients in the intensive care unit (ICU). It is increasingly recognized in immunocompetent hosts and immunocompromised ones. IPA frequently complicates both severe influenza and severe coronavirus disease 2019 (COVID-19) infection. It continues to represent both a diagnostic and therapeutic challenge and can be associated with significant morbidity and mortality. In this narrative review, we describe the epidemiology, risk factors and disease manifestations of IPA. We discuss the latest evidence and current published guidelines for the diagnosis and management of IPA in the context of the critically ill within the ICU. Finally, we review influenza-associated pulmonary aspergillosis (IAPA), COVID-19-associated pulmonary aspergillosis (CAPA) as well as ongoing and future areas of research.
Collapse
Affiliation(s)
- Sarah Gaffney
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Dearbhla M Kelly
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Puteri Maisarah Rameli
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
107
|
Betancur V, Zughul R, Ivanovic A, Madrazo BL, Castillo P, Casillas J, Alessandrino F. Ultrasound of pancreatic transplant complications: a primer for radiologists. Clin Radiol 2023; 78:861-871. [PMID: 37679209 DOI: 10.1016/j.crad.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/09/2023]
Abstract
Pancreatic transplantation is an established treatment for patients with type 1 diabetes patients and select type 2 diabetes patients, with excellent survival rates as graft health is evaluated through regular imaging and early detection of complications. Amongst the various imaging methods that may aid in diagnosis of pancreatic transplant complications, ultrasound is a widely available, quick, portable, and cost-effective technique, often used as the sole method to assess for pancreatic transplant complications. When assessing a patient with a pancreatic transplant, the radiologist should be methodical in assessing the vasculature, the pancreatic parenchyma, and the peripancreatic regions. Complications can be categorised based on time from transplant and type of complications, and include vascular, parenchymal, and enteric/anastomotic complications. Doppler has a major role in the diagnosis of vascular complications including arterial and venous thrombosis, arterial stenosis, pseudoaneurysms, and haematomas. Pancreatic complications include rejections and pancreatitis, and are often diagnosed through a combination of clinical, laboratory, and imaging findings, such as pancreatic heterogeneity or the presence of pancreatic pseudocysts. Enteric/anastomotic complications include leaks and bowel obstructions, and may require cross-sectional imaging in addition to ultrasound. This review covers the most common and high-impact vascular, parenchymal, and enteric/anastomotic complications that should be considered in every radiologist's search pattern when assessing a pancreatic graft, as well as their respective postoperative timeframes.
Collapse
Affiliation(s)
- V Betancur
- Leonard M. Miller School of Medicine, University of Miami, FL, USA
| | - R Zughul
- Department of Radiology, Jackson Memorial Hospital, Miami, FL, USA
| | - A Ivanovic
- Department of Diagnostic Imaging, Faculty of Medicine, Center for Radiology and MRI, Clinical Center of Serbia, Belgrade, Serbia
| | - B L Madrazo
- Division of Abdominal Imaging, Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - P Castillo
- Division of Abdominal Imaging, Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - J Casillas
- Division of Abdominal Imaging, Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - F Alessandrino
- Division of Abdominal Imaging, Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
108
|
Viswam V, Puducherry Ravichandran S, George P, Karuvat Narayanan SL. Submandibular gland abscess in a kidney transplant recipient: a diagnostic and therapeutic enigma. BMJ Case Rep 2023; 16:e254154. [PMID: 37907312 PMCID: PMC10619107 DOI: 10.1136/bcr-2022-254154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
A renal allograft transplant recipient presented to our emergency department with pus discharging right-sided cheek swelling. She had the same presentation 1 year after kidney transplant surgery. The abscess was incised and drained, and a sample was sent for culture and sensitivity. The culture initially grew Aspergillus fumigatus for which she was started on itraconazole. While the patient was on antifungal therapy, immunohistochemistry revealed diffuse large B-cell lymphoma to be the primary disease, and rituximab chemotherapy was initiated. The patient is being followed up and is currently in remission.We are reporting this rare case to raise awareness so that clinicians consider the possibility of post-transplant lymphoproliferative disorder when they see a similar presentation.
Collapse
Affiliation(s)
| | | | - Paul George
- Plastic, Reconstructive & Aesthetic surgery, Aster Medcity, Kochi, Kerala, India
| | | |
Collapse
|
109
|
Tarhini H, Waked R, Rahi M, Haddad N, Dorent R, Randoux C, Bunel V, Lariven S, Deconinck L, Rioux C, Yazdanpanah Y, Joly V, Ghosn J. Investigating infectious outcomes in adult patients undergoing solid organ transplantation: A retrospective single-center experience, Paris, France. PLoS One 2023; 18:e0291860. [PMID: 37797039 PMCID: PMC10553823 DOI: 10.1371/journal.pone.0291860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES This study described the demographic characteristics, clinical presentation, treatment, and outcomes of solid organ transplant recipients who were admitted to our center for infection. It also determined factors associated with a poor outcome, and compares early and late period infections. METHODS In this retrospective observational study, conducted at a tertiary care center in France between October 2017 and March 2019, infectious outcomes of patients with solid organ transplant where studied. RESULTS A total of 104 patients were included with 158 hospitalizations for infection. Among these 104 patients, 71 (68%) were men. The median age was 59 years old. The most common symptoms on admission were fever (66%) and chills (31%). Lower respiratory tract infections were the most common diagnosis (71/158 hospitalizations). Urinary tract infections were frequently seen in kidney transplant recipients (25/60 hospitalizations). One or more infectious agents were isolated for 113 hospitalizations (72%): 70 bacteria, 36 viruses and 10 fungi, with predominance of gram-negative bacilli (53 cases) of which 13 were multidrug-resistant. The most frequently used antibiotics were third generation cephalosporins (40 cases), followed by piperacillin-tazobactam (26 cases). We note that 25 infections (16%) occurred during the first 6 months (early post-transplant period). Patients admitted during the early post-transplant period were more often on immunosuppressive treatment with prednisone (25/25 VS 106/133) (p = 0.01), mycophenolic acid (22/25 VS 86/133) (p = 0.03), presented for an urinary tract infection (10/25 VS 25/133) (p = 0.04) or a bacterial infection (17/25 VS 53/133) (p = 0.01). Patients with later infection had more comorbidities (57/83 VS 9/21) (p = 0.03), cancer (19/83 VS 0/21) (p = 0.04) or were on treatment with everolimus (46/133 VS 0/25) (p = 0.001). During 31 hospitalizations (20%), patients presented with a serious infection requiring intensive care (n = 26; 16%) or leading to death (n = 7; 4%). Bacteremia, pulmonary and cardiac complications were the main risk factors associated with poor outcome. CONCLUSION Infections pose a significant challenge in the care of solid organ transplant patients, particularly those with comorbidities and intensive immunosuppression. This underscores the crucial importance of continuous surveillance and epidemiologic monitoring within this patient population.
Collapse
Affiliation(s)
- Hassan Tarhini
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Rami Waked
- Division of Infectious Diseases, Maine Medical Center, Portland, ME, United States of America
| | - Mayda Rahi
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Nihel Haddad
- Service d’Hygiène Hospitalière, Pole Santé Publique, CHU Grenoble, La Tronche, France
| | - Richard Dorent
- Service de Chirurgie Cardiaque, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Christine Randoux
- Service de Néphrologie, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Vincent Bunel
- Service de Pneumologie, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Sylvie Lariven
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Laurene Deconinck
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Christophe Rioux
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Yazdan Yazdanpanah
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
- Université Paris Cité, Infection Modélisation Antimicrobial Evolution (IAME), Inserm UMR1137, Paris, France
| | - Veronique Joly
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
| | - Jade Ghosn
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, France
- Université Paris Cité, Infection Modélisation Antimicrobial Evolution (IAME), Inserm UMR1137, Paris, France
| |
Collapse
|
110
|
Coussement J, Heath CH, Roberts MB, Lane RJ, Spelman T, Smibert OC, Longhitano A, Morrissey O, Nield B, Tripathy M, Davis JS, Kennedy KJ, Lynar SA, Crawford LC, Crawford SJ, Smith BJ, Gador-Whyte AP, Haywood R, Mahony AA, Howard JC, Walls GB, O'Kane GM, Broom MT, Keighley CL, Bupha-Intr O, Cooley L, O'Hern JA, Jackson JD, Morris AJ, Bartolo C, Tramontana AR, Grimwade KC, Au Yeung V, Chean R, Woolnough E, Teh BW, Chen SCA, Slavin MA. Current Epidemiology and Clinical Features of Cryptococcus Infection in Patients Without Human Immunodeficiency Virus: A Multicenter Study in 46 Hospitals in Australia and New Zealand. Clin Infect Dis 2023; 77:976-986. [PMID: 37235212 DOI: 10.1093/cid/ciad321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Patients without human immunodeficiency virus (HIV) are increasingly recognized as being at risk for cryptococcosis. Knowledge of characteristics of cryptococcosis in these patients remains incomplete. METHODS We conducted a retrospective study of cryptococcosis in 46 Australian and New Zealand hospitals to compare its frequency in patients with and without HIV and describe its characteristics in patients without HIV. Patients with cryptococcosis between January 2015 and December 2019 were included. RESULTS Of 475 patients with cryptococcosis, 90% were without HIV (426 of 475) with marked predominance in both Cryptococcus neoformans (88.7%) and Cryptococcus gattii cases (94.3%). Most patients without HIV (60.8%) had a known immunocompromising condition: cancer (n = 91), organ transplantation (n = 81), or other immunocompromising condition (n = 97). Cryptococcosis presented as incidental imaging findings in 16.4% of patients (70 of 426). The serum cryptococcal antigen test was positive in 85.1% of tested patients (319 of 375); high titers independently predicted risk of central nervous system involvement. Lumbar puncture was performed in 167 patients to screen for asymptomatic meningitis, with a positivity rate of 13.2% where meningitis could have been predicted by a high serum cryptococcal antigen titer and/or fungemia in 95% of evaluable cases. One-year all-cause mortality was 20.9% in patients without HIV and 21.7% in patients with HIV (P = .89). CONCLUSIONS Ninety percent of cryptococcosis cases occurred in patients without HIV (89% and 94% for C. neoformans and C. gattii, respectively). Emerging patient risk groups were evident. A high level of awareness is warranted to diagnose cryptococcosis in patients without HIV.
Collapse
Affiliation(s)
- Julien Coussement
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Washington, Australia
- Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Department of Infectious Diseases, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Matthew B Roberts
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Tim Spelman
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Burnet Institute, Melbourne, Victoria, Australia
- University of Melbourne Department of Surgery, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | | | | | - Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Blake Nield
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Monica Tripathy
- Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| | - Joshua S Davis
- John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Karina J Kennedy
- ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Sarah A Lynar
- Royal Darwin and Palmerston Hospitals, Darwin, Northern Territory, Australia
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Lucy C Crawford
- Royal Darwin and Palmerston Hospitals, Darwin, Northern Territory, Australia
| | | | | | | | - Rose Haywood
- Prince of Wales Hospital, Sydney, New South Wales, Australia
| | | | | | - Genevieve B Walls
- Middlemore Hospital, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Gabrielle M O'Kane
- Gosford Hospital, Gosford, New South Wales, Australia
- Wyong Hospital, Hamlyn Terrace, New South Wales, Australia
| | - Matthew T Broom
- North Shore Hospital, Auckland, New Zealand
- Waitakere Hospital, Auckland, New Zealand
| | | | | | | | - Jennifer A O'Hern
- Royal Darwin and Palmerston Hospitals, Darwin, Northern Territory, Australia
- Launceston General Hospital, Launceston, Tasmania, Australia
| | | | | | | | - Adrian R Tramontana
- Western Health, Footscray, Victoria, Australia
- Western Clinical School, Melbourne Medical School, University of Melbourne, St. Albans, Victoria, Australia
| | - Katherine C Grimwade
- Tauranga Hospital, Hauora a Toi Bay of Plenty, Tauranga, New Zealand
- Whakatane Hospital, Hauora a Toi Bay of Plenty, Whakatane, New Zealand
| | | | - Roy Chean
- Latrobe Regional Hospital, Traralgon, Victoria, Australia
| | - Emily Woolnough
- St. John of God Midland Public and Private Hospital, Midland, Western Australia, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon C A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
111
|
Gueneau R, Giret C, Lafont E, Buchler M, Longuet H, Machet MC, Ghazzar N, Lanternier F, Lortholary O. Aspergillus spp. renal arteritis after kidney transplantation: A reappraisal. Transpl Infect Dis 2023; 25:e14108. [PMID: 37504382 DOI: 10.1111/tid.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 07/29/2023]
Abstract
BACKGROUND Aspergillus spp. is an uncommon and life-threatening cause of transplantrenal artery pseudoaneurysm after kidney transplantation. CASE We report the case of a 62-year-old woman who underwent kidney transplantation 10 months before and presented a 7-cm asymptomatic transplant renal artery pseudoaneurysm. Transplanted kidney and pseudoaneurysm were surgically removed in emergency. Renal graft, urine, and pseudoaneurysm cultures grew Aspergillus flavus. She recovered after 12 months of antifungal therapy. LITERATURE REVIEW To date 14 cases of Aspergillus spp. renal arteritis after kidney transplantation have been published, including 50% Aspergillus flavus arteritis. Vast majority were diagnosed within 90 days after transplantation (73%). Despite allograft nephrectomy and antifungal therapy, mortality rate was high (33%).
Collapse
Affiliation(s)
- Romain Gueneau
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Giret
- Service de néphrologie, Hypertension, Dialyses, Transplantation, Centre, Hospitalier Régional Universitaire, Tours, France
| | - Emmanuel Lafont
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Matthieu Buchler
- Service de néphrologie, Hypertension, Dialyses, Transplantation, Centre, Hospitalier Régional Universitaire, Tours, France
| | - Hélène Longuet
- Service de néphrologie, Hypertension, Dialyses, Transplantation, Centre, Hospitalier Régional Universitaire, Tours, France
| | | | - Nadia Ghazzar
- Service de Médecine Nucléaire, Hôpital Européen Georges Pompidou, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
- CNRS, Molecular Mycology Unit UMR 2000, Institut Pasteur, Paris, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
- CNRS, Molecular Mycology Unit UMR 2000, Institut Pasteur, Paris, France
| |
Collapse
|
112
|
Boyer J, Feys S, Zsifkovits I, Hoenigl M, Egger M. Treatment of Invasive Aspergillosis: How It's Going, Where It's Heading. Mycopathologia 2023; 188:667-681. [PMID: 37100963 PMCID: PMC10132806 DOI: 10.1007/s11046-023-00727-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Despite improvements in treatment and diagnostics over the last two decades, invasive aspergillosis (IA) remains a devastating fungal disease. The number of immunocompromised patients and hence vulnerable hosts increases, which is paralleled by the emergence of a rise in IA cases. Increased frequencies of azole-resistant strains are reported from six continents, presenting a new challenge for the therapeutic management. Treatment options for IA currently consist of three classes of antifungals (azoles, polyenes, echinocandins) with distinctive advantages and shortcomings. Especially in settings of difficult to treat IA, comprising drug tolerance/resistance, limiting drug-drug interactions, and/or severe underlying organ dysfunction, novel approaches are urgently needed. Promising new drugs for the treatment of IA are in late-stage clinical development, including olorofim (a dihydroorotate dehydrogenase inhibitor), fosmanogepix (a Gwt1 enzyme inhibitor), ibrexafungerp (a triterpenoid), opelconazole (an azole optimized for inhalation) and rezafungin (an echinocandin with long half-life time). Further, new insights in the pathophysiology of IA yielding immunotherapy as a potential add-on therapy. Current investigations show encouraging results, so far mostly in preclinical settings. In this review we discuss current treatment strategies, give an outlook on possible new pharmaceutical therapeutic options, and, lastly, provide an overview of the ongoing research in immunotherapy for IA.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
| | - Isabella Zsifkovits
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
113
|
Zhang X, Tang X, Yi X, Lei Y, Lu S, Li T, Yue R, Pan L, Feng G, Huang X, Wang Y, Cheng D. Etiologic characteristics revealed by mNGS-mediated ultra-early and early microbiological identification in airway secretions from lung transplant recipients. Front Immunol 2023; 14:1271919. [PMID: 37809079 PMCID: PMC10551139 DOI: 10.3389/fimmu.2023.1271919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Post-operative etiological studies are critical for infection prevention in lung transplant recipients within the first year. In this study, mNGS combined with microbial culture was applied to reveal the etiological characteristics within one week (ultra-early) and one month (early) in lung transplant recipients, and the epidemiology of infection occurred within one month. Methods In 38 lung transplant recipients, deep airway secretions were collected through bronchofiberscope within two hours after the operation and were subjected to microbial identification by mNGS and microbial culture. The etiologic characteristics of lung transplant recipients were explored. Within one month, the infection status of recipients was monitored. The microbial species detected by mNGS were compared with the etiological agents causing infection within one month. Results The detection rate of mNGS in the 38 airway secretions specimens was significantly higher than that of the microbial culture (P<0.0001). MNGS identified 143 kinds of pathogenic microorganisms; bacterial pathogens account for more than half (72.73%), with gram-positive and -negative bacteria occupying large proportions. Fungi such as Candida are also frequently detected. 5 (50%) microbial species identified by microbial culture had multiple drug resistance (MDR). Within one month, 26 (68.42%) recipients got infected (with a median time of 9 days), among which 10 (38.46%) cases were infected within one week. In the infected recipients, causative agents were detected in advance by mNGS in 9 (34.62%) cases, and most of them (6, 66.67%) were infected within one week (ultra-early). In the infection that occurred after one week, the consistency between mNGS results and the etiological agents was decreased. Conclusion Based on the mNGS-reported pathogens in airway secretions samples collected within two hours, the initial empirical anti-infection regimes covering the bacteria and fungi are reasonable. The existence of bacteria with MDR forecasts the high risk of infection within 48 hours after transplant, reminding us of the necessity to adjust the antimicrobial strategy. The predictive role of mNGS performed within two hours in etiological agents is time-limited, suggesting continuous pathogenic identification is needed after lung transplant.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuemei Tang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoli Yi
- Medical Department, Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yu Lei
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianlong Li
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
114
|
Farahani A, Ghiasvand F, Davoudi S, Ahmadinejad Z. Invasive aspergillosis in liver transplant recipients, an infectious complication with low incidence but significant mortality. World J Transplant 2023; 13:264-275. [PMID: 37746042 PMCID: PMC10514749 DOI: 10.5500/wjt.v13.i5.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Infections, including invasive fungal infections (IFIs), are among the leading causes of mortality in liver transplant recipients during the first year post-transplantation. AIM To investigate the epidemiology, clinical manifestations, risk factors, treatment outcomes, and mortality rate of post-liver transplantation invasive aspergillosis (IA). METHODS In this case-control study, 22 patients with IA were identified by reviewing the archived and electronic medical records of 850 patients who received liver transplants at the Imam Khomeini Hospital complex in Tehran, Iran, between 2014 and 2019. The control group comprised 38 patients without IA infection matched for age and sex. The information obtained included the baseline characteristics of liver transplant patients, operative reports, post-transplantation characteristics of both groups and information about the fungal infection of the patient group. RESULTS The prevalence rate of IA among liver transplant recipients at Imam Khomeini Hospital was 2.7%. The risk factors of IA among studied patients included high serum creatinine levels before and post-transplant, renal replacement therapy, antithymocyte globulin induction therapy, post-transplant bile leakage, post-transplant hepatic artery thrombosis, repeated surgery within 30 d after the transplant, bacterial pneumonia before the aspergillosis diagnosis, receiving systemic antibiotics before the aspergillus infection, cytomegalovirus infection, and duration of post-transplant hospitalization in the intensive care unit. The most prevalent form of infection was invasive pulmonary aspergillosis, and the most common chest computed tomography scan findings were nodules, pleural effusion, and the halo sign. In the case group, prophylactic antifungal therapy was administered more frequently than in the control group. The antifungal therapy response rate at 12 wk was 63.7%. The 3- and 12- mo mortality rates of the patients with IA were 36.4% and 45.4%, respectively (compared with the mortality rate of the control group in 12 mo, which was zero). CONCLUSION In this study, the prevalence of IA among liver transplant recipients was relatively low. However, it was one of the leading causes of mortality following liver transplantation. Targeted antifungal therapy may be a factor in the low incidence of infections at our facility. Identifying the risk factors of IFIs, maintaining an elevated level of clinical suspicion, and initiating early antifungal treatment may significantly improve the prognosis and reduce the mortality rate of liver transplant recipients.
Collapse
Affiliation(s)
- Azam Farahani
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Fereshteh Ghiasvand
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Setareh Davoudi
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Zahra Ahmadinejad
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| |
Collapse
|
115
|
Stuckey PV, Santiago-Tirado FH. Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens? Infect Immun 2023; 91:e0043422. [PMID: 37506189 PMCID: PMC10501222 DOI: 10.1128/iai.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Fungal infections represent a major, albeit neglected, public health threat with serious medical and economic burdens globally. With unacceptably high mortality rates, invasive fungal pathogens are responsible for millions of deaths each year, with a steadily increasing incidence primarily in immunocompromised individuals. The poor therapeutic options and rise of antifungal drug resistance pose further challenges in controlling these infections. These fungal pathogens have adapted to survive within mammalian hosts and can establish intracellular niches to promote survival within host immune cells. To do that, they have developed diverse methods to circumvent the innate immune system attack. This includes strategies such as altering their morphology, counteracting macrophage antimicrobial action, and metabolic adaptation. This is reminiscent of how bacterial pathogens have adapted to survive within host cells and cause disease. However, relative to the great deal of information available concerning intracellular bacterial pathogenesis, less is known about the mechanisms fungal pathogens employ. Therefore, here we review our current knowledge and recent advances in our understanding of how fungi can evade and persist within host immune cells. This review will focus on the major fungal pathogens, including Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus, among others. As we discover and understand the strategies used by these fungi, similarities with their bacterial counterparts are becoming apparent, hence we can use the abundant information from bacteria to guide our studies in fungi. By understanding these strategies, new lines of research will open that can improve the treatments of these devastating fungal diseases.
Collapse
Affiliation(s)
- Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
116
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
117
|
Barros N, Rosenblatt RE, Phipps MM, Fomin V, Mansour MK. Invasive fungal infections in liver diseases. Hepatol Commun 2023; 7:e0216. [PMID: 37639701 PMCID: PMC10462082 DOI: 10.1097/hc9.0000000000000216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Patients with liver diseases, including decompensated cirrhosis, alcohol-associated hepatitis, and liver transplant recipients are at increased risk of acquiring invasive fungal infections (IFIs). These infections carry high morbidity and mortality. Multiple factors, including host immune dysfunction, barrier failures, malnutrition, and microbiome alterations, increase the risk of developing IFI. Candida remains the most common fungal pathogen causing IFI. However, other pathogens, including Aspergillus, Cryptococcus, Pneumocystis, and endemic mycoses, are being increasingly recognized. The diagnosis of IFIs can be ascertained by the direct observation or isolation of the pathogen (culture, histopathology, and cytopathology) or by detecting antigens, antibodies, or nucleic acid. Here, we provide an update on the epidemiology, pathogenesis, diagnosis, and management of IFI in patients with liver disease and liver transplantation.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Russell E. Rosenblatt
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Meaghan M. Phipps
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vladislav Fomin
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
118
|
Rosenblatt R, Kodiyanplakkal RP. CAQ Corner: Infections in liver transplant recipients. Liver Transpl 2023; 29:998-1005. [PMID: 36745977 DOI: 10.1097/lvt.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/08/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Russell Rosenblatt
- Weill Cornell Medicine, Division of Gastroenterology and Hepatology, New York, New York, USA
| | | |
Collapse
|
119
|
Eichenberger EM, Satola S, Neujahr D, Fowler VG, Gupta D, Ford M, Pouch SM. Candidemia in thoracic solid organ transplant recipients: Characteristics and outcomes relative to matched uninfected and bacteremic thoracic organ transplant recipients. Clin Transplant 2023; 37:e15038. [PMID: 37229554 PMCID: PMC10527283 DOI: 10.1111/ctr.15038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Little is understood about the risk factors and outcomes from candidemia in thoracic solid organ transplant recipients. METHODS This is a single-center retrospective cohort study of patients undergoing heart or lung transplant between January 1, 2013 and December 31, 2022. We performed two comparisons among heart and lung transplant recipients: (1) recipients with candidemia versus matched, uninfected recipients, and (2) recipients with candidemia versus recipients with bacteremia. RESULTS During the study 384 heart and 194 lung transplants were performed. Twenty-one (5.5%) heart and six (3.1%) lung recipients developed candidemia. Heart recipients with candidemia were more likely to have had delayed chest closure (38.1% vs. 0%, p < .0001), temporary mechanical circulatory support (57.1% vs. 11.9%, p = .0003), and repeat surgical chest exploration 76.2% vs. 16.7%, p < .0001) than uninfected controls. Heart and lung recipients who developed candidemia were more likely to have been on renal replacement therapy prior to infection relative to uninfected controls (57.1% vs. 11.9%, p = .0003 and 66.7% vs. 0%, p = .0041, respectively). Heart recipients with candidemia had significantly lower post-transplant survival and lower post-infection survival relative to matched uninfected controls and heart recipients with bacteremia, respectively (p < .0001 and p = .0002, respectively). CONCLUSIONS Candidemia following heart and lung transplantation is associated with significant morbidity and mortality. Further research is needed to understand if heart recipients with delayed chest closure, temporary mechanical circulatory support, renal replacement therapy, and repeat surgical chest exploration may benefit from targeted antifungal prophylaxis.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Sarah Satola
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - David Neujahr
- Division of Transplant Pulmonology, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Divya Gupta
- Division of Transplant Cardiology, Department of Medicine, Emory School of Medicine, Atlanta GA
| | - Mandy Ford
- Division of Transplant Surgery, Department of Surgery, Emory School of Medicine, Atlanta GA
| | - Stephanie M Pouch
- Division of Infectious Diseases, Department of Medicine, Emory School of Medicine, Atlanta, GA
| |
Collapse
|
120
|
Bharati J, Anandh U, Kotton CN, Mueller T, Shingada AK, Ramachandran R. Diagnosis, Prevention, and Treatment of Infections in Kidney Transplantation. Semin Nephrol 2023; 43:151486. [PMID: 38378396 DOI: 10.1016/j.semnephrol.2023.151486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Kidney transplant often is complicated by infections in the recipient from therapy-related and patient-related risk factors. Infections in kidney transplant recipients are associated with increased morbidity, mortality, and allograft dysfunction. There is a predictable timeline after kidney transplant regarding the types of pathogens causing infections, reflecting the net state of immunosuppression. In the early post-transplant period, bacterial infections comprise two thirds of all infections, followed by viral and fungal infections. Infections occurring early after kidney transplantation are generally the result of postoperative complications. In most cases, opportunistic infections occur within 6 months after kidney transplantation. They may be caused by a new infection, a donor-derived infection, or reactivation of a latent infection. Community-acquired pneumonia, upper respiratory tract infections, urinary tract infections, and gastrointestinal infections are the most common infections in the late period after transplantation when the net immunosuppression is minimal. It is crucial to seek information on the time after transplant, reflecting the net state of immunosuppression, previous history of exposure/infections, geography, and seasonal outbreaks. It is imperative that we develop regionally specific guidelines on screening, prevention, and management of infections after kidney transplantation.
Collapse
Affiliation(s)
- Joyita Bharati
- Section of Nephrology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA.
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Delhi National Capital Region, India
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Mueller
- Renal Transplant Program, University Hospital of Zurich, Zurich, Switzerland
| | | | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
121
|
Dvořáčková E, Šíma M, Zajacová A, Vyskočilová K, Kotowski T, Dunovská K, Klapková E, Havlín J, Lischke R, Slanař O. Dosing Optimization of Posaconazole in Lung-Transplant Recipients Based on Population Pharmacokinetic Model. Antibiotics (Basel) 2023; 12:1399. [PMID: 37760696 PMCID: PMC10525625 DOI: 10.3390/antibiotics12091399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Although posaconazole tablets show relatively low variability in pharmacokinetics (PK), the proportion of patients achieving the PK/PD target at the approved uniform dose for both prophylaxis and therapy is not satisfactory. The aim of this study was to develop a posaconazole population PK model in lung-transplant recipients and to propose a covariate-based dosing optimization for both prophylaxis and therapy. In this prospective study, 80 posaconazole concentrations obtained from 32 lung-transplant patients during therapeutic drug monitoring were analyzed using nonlinear mixed-effects modelling, and a Monte Carlo simulation was used to describe the theoretical distribution of posaconazole PK profiles at various dosing regimens. A one-compartment model with both linear absorption and elimination best fit the concentration-time data. The population apparent volume of distribution was 386.4 L, while an apparent clearance of 8.8 L/h decreased by 0.009 L/h with each year of the patient's age. Based on the covariate model, a dosing regimen of 200 mg/day for prophylaxis in patients ˃60 years, 300 mg/day for prophylaxis in patients ˂60 years and for therapy in patients ˃60 years, and 400 mg/day for therapy in patients ˂60 years has been proposed. At this dosing regimen, the PK/PD target for prophylaxis and therapy is reached in 95% and 90% of population, respectively, representing significantly improved outcomes in comparison with the uniform dose.
Collapse
Affiliation(s)
- Eliška Dvořáčková
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (E.D.); (O.S.)
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (E.D.); (O.S.)
| | - Andrea Zajacová
- Prague Lung Transplant Program, Department of Pneumology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (A.Z.); (K.V.); (T.K.)
| | - Kristýna Vyskočilová
- Prague Lung Transplant Program, Department of Pneumology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (A.Z.); (K.V.); (T.K.)
| | - Tereza Kotowski
- Prague Lung Transplant Program, Department of Pneumology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (A.Z.); (K.V.); (T.K.)
| | - Kateřina Dunovská
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (K.D.); (E.K.)
| | - Eva Klapková
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (K.D.); (E.K.)
| | - Jan Havlín
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (J.H.); (R.L.)
| | - Robert Lischke
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague, Czech Republic; (J.H.); (R.L.)
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (E.D.); (O.S.)
| |
Collapse
|
122
|
Qasem A, Rabbani SA, AlKhiami S. Cryptococcemia in pancreas-kidney transplant patient. Med Mycol Case Rep 2023; 41:41-43. [PMID: 37706044 PMCID: PMC10495381 DOI: 10.1016/j.mmcr.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Solid organ transplant recipients have a higher risk of developing invasive fungal infections (IFIs) due to immunosuppressive therapy. Cryptococcosis is the third most commonly occurring invasive fungal infection in solid organ transplant (SOT) recipients. Cryptococcemia is associated with high mortality rate. We present a case of cryptococcemia in a 31-year-old female with a pancreas-kidney transplant who was admitted to hospital for the management of a suspected Hemodialysis catheter-related bloodstream infection (CRBSI).
Collapse
Affiliation(s)
- Anass Qasem
- Consultant Internal Medicine and Nephrology, Department of Nephrology, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Safaa AlKhiami
- Consultant Infectious Diseases, Department of Internal Medicine, Ibrahim Bin Hamad Obaidallah Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
123
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
124
|
Chen S, Yu G, Chen M, You Y, Gu L, Wang Q, Wang H, Lai G, Yu Z, Wen W. Comparison of different therapeutic approaches for pulmonary cryptococcosis in kidney transplant recipients: a 15-year retrospective analysis. Front Med (Lausanne) 2023; 10:1107330. [PMID: 37484845 PMCID: PMC10361058 DOI: 10.3389/fmed.2023.1107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Organ transplant recipients are at increased risk of developing pulmonary cryptococcosis (PC) due to weakened cell-mediated immunity caused by immunosuppressors. However, the nonspecific symptoms associated with PC can often lead to misdiagnosis and inappropriate treatment. Methods We conducted a retrospective analysis of data from 23 kidney transplant recipients with PC between April 2006 to January 2021. Results The median time from transplantation to the diagnosis of pathology-proven PC 4.09 years. Seventeen patients presented respiratory symptoms, including sputum-producing cough and dyspnea. Additionally, three patients also developed central nervous system (CNS) infections. Chest CT scans frequently revealed nodule-shaped lesions, which can mimic lung carcinoma. Serological tests did not demonstrate any specific changes. Nine patients received surgical resection as treatment. Fourteen patients were treated with antifungal medication only. No recurrence was observed in all 23 patients. Conclusion Our study suggests that fever and sputum-producing cough are common symptoms of PC, and cryptococcal meningitis should not be excluded if corresponding symptoms occur. Fluconazole is a common and effective antifungal agent. Surgical resection should be considered for patients who do not respond well to antifungal therapy. Clinicians should be aware of these findings when evaluating transplant recipients with respiratory symptoms.
Collapse
Affiliation(s)
- Shuyang Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoqing Yu
- Department of Nephrology, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Meiyan Chen
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Yanjing You
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Lei Gu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- The Third Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Guoxiang Lai
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Zongyang Yu
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| | - Wen Wen
- Department of Respiratory and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, Fuzhou, China
| |
Collapse
|
125
|
Ghadimi F, Rodrigues CF, Mohammadi SR, Roudbary M, Dos Santos AL, Aslani P, Nikoomanesh F. Oral candidiasis in patients with kidney transplantation in Iran: prevalence and antifungal susceptibility pattern. Future Microbiol 2023; 18:715-722. [PMID: 37665236 DOI: 10.2217/fmb-2022-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Aim: This study aimed to identify Candida species recovered from the oral cavity of patients with kidney transplantation. Materials & methods: Two swabs were taken from the oral cavities of 40 patients before and after transplantation, cultured on Sabouraud dextrose agar, and yeasts identified. Antifungal drug susceptibility testing was performed with fluconazole and itraconazole. Results: Candida glabrata was the most frequently isolated species in patients, followed by Candida albicans and Rhodotorula. C. glabrata isolates from patients before transplantation were resistant to fluconazole, whereas C. albicans was fluconazole-resistant both before and after transplantation. Conclusion: The importance of non-albicans Candida species in the oral cavity of patients sheds light on performing antifungal tests for achieving the best outcome to prevent therapeutic failure.
Collapse
Affiliation(s)
- Fardad Ghadimi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115111, Iran
| | - Célia F Rodrigues
- TOXRUN - Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, 4585-116 Gandra PRD, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Shahla Roudbar Mohammadi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115111, Iran
| | - Maryam Roudbary
- Department of Parasitology & Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW2145, Australia
| | - André Ls Dos Santos
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, 21941901, Brazil
| | - Peyman Aslani
- Department of Parasitology & Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, 1411718541, Iran
| | - Fatemeh Nikoomanesh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| |
Collapse
|
126
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
127
|
Breitkopf R, Treml B, Bukumiric Z, Innerhofer N, Fodor M, Rajsic S. Invasive Fungal Infections: The Early Killer after Liver Transplantation. J Fungi (Basel) 2023; 9:655. [PMID: 37367592 DOI: 10.3390/jof9060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Liver transplantation is a standard of care and a life-saving procedure for end-stage liver diseases and certain malignancies. The evidence on predictors and risk factors for poor outcomes is lacking. Therefore, we aimed to identify potential risk factors for mortality and to report on overall 90-day mortality after orthotopic liver transplantation (OLT), especially focusing on the role of fungal infections. METHODS We retrospectively reviewed medical charts of all patients undergoing OLT at a tertiary university center in Europe. RESULTS From 299 patients, 214 adult patients who received a first-time OLT were included. The OLT indication was mainly due to tumors (42%, 89/214) and cirrhosis (32%, 68/214), including acute liver failure in 4.7% (10/214) of patients. In total, 8% (17/214) of patients died within the first three months, with a median time to death of 15 (1-80) days. Despite a targeted antimycotic prophylaxis using echinocandins, invasive fungal infections occurred in 12% (26/214) of the patients. In the multivariate analysis, patients with invasive fungal infections had an almost five times higher chance of death (HR 4.6, 95% CI 1.1-18.8; p = 0.032). CONCLUSIONS Short-term mortality after OLT is mainly determined by infectious and procedural complications. Fungal breakthrough infections are becoming a growing concern. Procedural, host, and fungal factors can contribute to a failure of prophylaxis. Finally, invasive fungal infections may be a potentially modifiable risk factor, but the ideal perioperative antimycotic prophylaxis has yet to be determined.
Collapse
Affiliation(s)
- Robert Breitkopf
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Bukumiric
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nicole Innerhofer
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Margot Fodor
- Department of Visceral, Transplantation and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sasa Rajsic
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
128
|
Ribeiro HAL, Scindia Y, Mehrad B, Laubenbacher R. COVID-19-associated pulmonary aspergillosis in immunocompetent patients: a virtual patient cohort study. J Math Biol 2023; 87:6. [PMID: 37306747 DOI: 10.1007/s00285-023-01940-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
The opportunistic fungus Aspergillus fumigatus infects the lungs of immunocompromised hosts, including patients undergoing chemotherapy or organ transplantation. More recently however, immunocompetent patients with severe SARS-CoV2 have been reported to be affected by COVID-19 Associated Pulmonary Aspergillosis (CAPA), in the absence of the conventional risk factors for invasive aspergillosis. This paper explores the hypothesis that contributing causes are the destruction of the lung epithelium permitting colonization by opportunistic pathogens. At the same time, the exhaustion of the immune system, characterized by cytokine storms, apoptosis, and depletion of leukocytes may hinder the response to A. fumigatus infection. The combination of these factors may explain the onset of invasive aspergillosis in immunocompetent patients. We used a previously published computational model of the innate immune response to infection with Aspergillus fumigatus. Variation of model parameters was used to create a virtual patient population. A simulation study of this virtual patient population to test potential causes for co-infection in immunocompetent patients. The two most important factors determining the likelihood of CAPA were the inherent virulence of the fungus and the effectiveness of the neutrophil population, as measured by granule half-life and ability to kill fungal cells. Varying these parameters across the virtual patient population generated a realistic distribution of CAPA phenotypes observed in the literature. Computational models are an effective tool for hypothesis generation. Varying model parameters can be used to create a virtual patient population for identifying candidate mechanisms for phenomena observed in actual patient populations.
Collapse
Affiliation(s)
- Henrique A L Ribeiro
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Yogesh Scindia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Reinhard Laubenbacher
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA.
| |
Collapse
|
129
|
La Hoz RM. Minimizing the Risk of Donor-Derived Events and Maximizing Organ Utilization Through Education and Policy Development. Infect Dis Clin North Am 2023:S0891-5520(23)00044-2. [PMID: 37302913 DOI: 10.1016/j.idc.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we review the current knowledge of donor-derived disease and current US Organ Procurement and Transplantation Network policies to minimize the risk. During the process, we also consider actions to further mitigate the risk of donor-derived disease. The overarching goal is to provide an infectious disease perspective on the complex decision of organ acceptance for transplant programs and candidates.
Collapse
Affiliation(s)
- Ricardo M La Hoz
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9913, USA.
| |
Collapse
|
130
|
Baugh SDP, Chaly A, Weaver DG, Whitman DB, Pelletier JC, Bian H, Freeman KB, Reitz AB, Scott RW. Amide- and bis-amide-linked highly potent and broadly active antifungal agents for the treatment of invasive fungal infections- towards the discovery of pre-clinical development candidate FC12406. Med Chem Res 2023:1-17. [PMID: 37362318 PMCID: PMC10227796 DOI: 10.1007/s00044-023-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023]
Abstract
Most fungal infections are common, localized to skin or mucosal surfaces and can be treated effectively with topical antifungal agents. However, while invasive fungal infections (IFIs) are uncommon, they are very difficult to control medically, and are associated with high mortality rates. We have previously described highly potent bis-guanidine-containing heteroaryl-linked antifungal agents, and were interested in expanding the range of agents to novel series so as to reduce the degree of aromaticity (with a view to making the compounds more drug-like), and provide broadly active high potency derivatives. We have investigated the replacement of the central aryl ring from our original series by both amide and a bis-amide moieties, and have found particular structure-activity relationships (SAR) for both series', resulting in highly active antifungal agents against both mold and yeast pathogens. In particular, we describe the in vitro antifungal activity, absorption, distribution, metabolism and elimination (ADME) properties, and off-target properties of FC12406 (34), which was selected as a pre-clinical development candidate.
Collapse
Affiliation(s)
- Simon D. P. Baugh
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Anna Chaly
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Damian G. Weaver
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - David B. Whitman
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Jeffrey C. Pelletier
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Haiyan Bian
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Katie B. Freeman
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Allen B. Reitz
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Richard W. Scott
- Fox Chase Therapeutics Discovery, Inc., 3805 Old Easton Road, Doylestown, PA 18902 USA
| |
Collapse
|
131
|
Kakoschke TK, Kleinemeier C, Knösel T, Kakoschke SC, Ebel F. The Novel Monoclonal IgG 1-Antibody AB90-E8 as a Diagnostic Tool to Rapidly Distinguish Aspergillus fumigatus from Other Human Pathogenic Aspergillus Species. J Fungi (Basel) 2023; 9:622. [PMID: 37367559 DOI: 10.3390/jof9060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
In most cases, invasive aspergillosis (IA) is caused by A. fumigatus, though infections with other Aspergillus spp. with lower susceptibilities to amphotericin B (AmB) gain ground. A. terreus, for instance, is the second leading cause of IA in humans and of serious concern because of its high propensity to disseminate and its in vitro and in vivo resistance to AmB. An early differentiation between A. fumigatus and non-A. fumigatus infections could swiftly recognize a potentially ineffective treatment with AmB and lead to the lifesaving change to a more appropriate drug regime in high-risk patients. In this study, we present the characteristics of the monoclonal IgG1-antibody AB90-E8 that specifically recognizes a surface antigen of A. fumigatus and the closely related, but not human pathogenic A. fischeri. We show immunostainings on fresh frozen sections as well as on incipient mycelium picked from agar plates with tweezers or by using the expeditious tape mount technique. All three methods have a time advantage over the common procedures currently used in the routine diagnosis of IA and outline the potential of AB90-E8 as a rapid diagnostic tool.
Collapse
Affiliation(s)
- Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sara Carina Kakoschke
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81337 Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| |
Collapse
|
132
|
Reddy L, Thompson GR, Koff A, Cohen SH. Entrapment Syndrome in a Kidney Transplant Recipient with Cryptococcal Meningitis. Pathogens 2023; 12:pathogens12050711. [PMID: 37242381 DOI: 10.3390/pathogens12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Cryptococcus neoformans primarily affects immunocompromised individuals and the central nervous system (CNS) is the most common site of dissemination. Entrapped temporal horn syndrome (ETH) remains a rare CNS manifestation and has not previously been described in solid organ transplant recipients. Here, we present a case of ETH in a 55-year-old woman with history of renal transplant and prior treated Cryptococcal meningitis.
Collapse
Affiliation(s)
- Laya Reddy
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
| | - Alan Koff
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Stuart H Cohen
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
133
|
Lamoth F. Novel Approaches in the Management of Mucormycosis. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360854 PMCID: PMC10165581 DOI: 10.1007/s12281-023-00463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review Invasive mucormycosis (IM), caused by fungi of the order Mucorales, is one of the deadliest fungal infection among hematologic cancer patients. Its incidence is also increasingly reported in immunocompetent individuals, notably with the COVID-19 pandemic. Therefore, there is an urgent need for novel diagnostic and therapeutic approaches of IM. This review discusses the current advances in this field. Recent Findings Early diagnosis of IM is crucial and can be improved by Mucorales-specific PCR and development of lateral-flow immunoassays for specific antigen detection. The spore coat proteins (CotH) are essential for virulence of the Mucorales and may represent a target for novel antifungal therapies. Adjuvant therapies boosting the immune response, such as interferon-γ, anti-PDR1 or fungal-specific chimeric antigen receptor (CAR) T-cells, are also considered. Summary The most promising perspectives for improved management of IM consist of a multilayered approach targeting both the pathogen and the host immune system.
Collapse
Affiliation(s)
- Frederic Lamoth
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
134
|
Tsotsolis S, Kotoulas SC, Lavrentieva A. Invasive Pulmonary Aspergillosis in Coronavirus Disease 2019 Patients Lights and Shadows in the Current Landscape. Adv Respir Med 2023; 91:185-202. [PMID: 37218799 DOI: 10.3390/arm91030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.
Collapse
Affiliation(s)
- Stavros Tsotsolis
- Medical School, Aristotle University of Thessaloniki, Leoforos Agiou Dimitriou, 54124 Thessaloniki, Greece
| | | | - Athina Lavrentieva
- 1st ICU, General Hospital of Thessaloniki "Georgios Papanikolaou", Leoforos Papanikolaou, 57010 Thessaloniki, Greece
| |
Collapse
|
135
|
Senoner T, Breitkopf R, Treml B, Rajsic S. Invasive Fungal Infections after Liver Transplantation. J Clin Med 2023; 12:jcm12093238. [PMID: 37176678 PMCID: PMC10179452 DOI: 10.3390/jcm12093238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Invasive fungal infections represent a major challenge in patients who underwent organ transplantation. Overall, the most common fungal infections in these patients are candidiasis, followed by aspergillosis and cryptococcosis, except in lung transplant recipients, where aspergillosis is most common. Several risk factors have been identified, which increase the likelihood of an invasive fungal infection developing after transplantation. Liver transplant recipients constitute a high-risk category for invasive candidiasis and aspergillosis, and therefore targeted prophylaxis is favored in this patient population. Furthermore, a timely implemented therapy is crucial for achieving optimal outcomes in transplanted patients. In this article, we describe the epidemiology, risk factors, prophylaxis, and treatment strategies of the most common fungal infections in organ transplantation, with a focus on liver transplantation.
Collapse
Affiliation(s)
- Thomas Senoner
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Robert Breitkopf
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sasa Rajsic
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
136
|
Kim EY, Yong SH, Sung MD, Woo AL, Park YM, Kim HE, Jung SJ, Kim SY, Lee JG, Kim YS, Paik HC, Park MS. Aspergillus Galactomannan Titer as a Diagnostic Marker of Invasive Pulmonary Aspergillosis in Lung Transplant Recipients: A Single-Center Retrospective Cohort Study. J Fungi (Basel) 2023; 9:jof9050527. [PMID: 37233238 DOI: 10.3390/jof9050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) can occur in immunocompromised patients, and an early detection and intensive treatment are crucial. We sought to determine the potential of Aspergillus galactomannan antigen titer (AGT) in serum and bronchoalveolar lavage fluid (BALF) and serum titers of beta-D-glucan (BDG) to predict IPA in lung transplantation recipients, as opposed to pneumonia unrelated to IPA. We retrospectively reviewed the medical records of 192 lung transplant recipients. Overall, 26 recipients had been diagnosed with proven IPA, 40 recipients with probable IPA, and 75 recipients with pneumonia unrelated to IPA. We analyzed AGT levels in IPA and non-IPA pneumonia patients and used ROC curves to determine the diagnostic cutoff value. The Serum AGT cutoff value was 0.560 (index level), with a sensitivity of 50%, specificity of 91%, and AUC of 0.724, and the BALF AGT cutoff value was 0.600, with a sensitivity of 85%, specificity of 85%, and AUC of 0.895. Revised EORTC suggests a diagnostic cutoff value of 1.0 in both serum and BALF AGT when IPA is highly suspicious. In our group, serum AGT of 1.0 showed a sensitivity of 27% and a specificity of 97%, and BALF AGT of 1.0 showed a sensitivity of 60% and a specificity of 95%. The result suggested that a lower cutoff could be beneficial in the lung transplant group. In multivariable analysis, serum and BALF AGT, with a minimal correlation between the two, showed a correlation with a history of diabetes mellitus.
Collapse
Affiliation(s)
- Eun-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seung-Hyun Yong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min-Dong Sung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - A-La Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Mok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ha-Eun Kim
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Su-Jin Jung
- Division of Infectious Disease, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Song-Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyo-Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moo-Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
137
|
Stemler J, Többen C, Lass-Flörl C, Steinmann J, Ackermann K, Rath PM, Simon M, Cornely OA, Koehler P. Diagnosis and Treatment of Invasive Aspergillosis Caused by Non- fumigatus Aspergillus spp. J Fungi (Basel) 2023; 9:500. [PMID: 37108955 PMCID: PMC10141595 DOI: 10.3390/jof9040500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
With increasing frequency, clinical and laboratory-based mycologists are consulted on invasive fungal diseases caused by rare fungal species. This review aims to give an overview of the management of invasive aspergillosis (IA) caused by non-fumigatus Aspergillus spp.-namely A. flavus, A. terreus, A. niger and A. nidulans-including diagnostic and therapeutic differences and similarities to A. fumigatus. A. flavus is the second most common Aspergillus spp. isolated in patients with IA and the predominant species in subtropical regions. Treatment is complicated by its intrinsic resistance against amphotericin B (AmB) and high minimum inhibitory concentrations (MIC) for voriconazole. A. nidulans has been frequently isolated in patients with long-term immunosuppression, mostly in patients with primary immunodeficiencies such as chronic granulomatous disease. It has been reported to disseminate more often than other Aspergillus spp. Innate resistance against AmB has been suggested but not yet proven, while MICs seem to be elevated. A. niger is more frequently reported in less severe infections such as otomycosis. Triazoles exhibit varying MICs and are therefore not strictly recommended as first-line treatment for IA caused by A. niger, while patient outcome seems to be more favorable when compared to IA due to other Aspergillus species. A. terreus-related infections have been reported increasingly as the cause of acute and chronic aspergillosis. A recent prospective international multicenter surveillance study showed Spain, Austria, and Israel to be the countries with the highest density of A. terreus species complex isolates collected. This species complex seems to cause dissemination more often and is intrinsically resistant to AmB. Non-fumigatus aspergillosis is difficult to manage due to complex patient histories, varying infection sites and potential intrinsic resistances to antifungals. Future investigational efforts should aim at amplifying the knowledge on specific diagnostic measures and their on-site availability, as well as defining optimal treatment strategies and outcomes of non-fumigatus aspergillosis.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Christina Többen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, European Diamond Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jörg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Katharina Ackermann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Oliver Andreas Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
138
|
Zimmet AN, Cullen GD, Mische L, Deftos M, Bogler Y, Nguyen NL, Ray M. Disseminated cryptococcosis with gastrointestinal involvement and false-negative cryptococcal antigen testing due to postzone phenomenon: a case report and review of the literature. BMC Infect Dis 2023; 23:217. [PMID: 37024821 PMCID: PMC10080792 DOI: 10.1186/s12879-023-08141-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Cryptococcosis is an increasingly common infection given the growing immunocompromised population worldwide. Cryptococcal antigen (CrAg) testing demonstrates excellent sensitivity and specificity and is the mainstay of diagnosis. However, there may be rare instances in which false-negative CrAg results can delay diagnosis and early treatment, which are critical to ensure positive outcomes. CASE PRESENTATION A 31-year-old man living with HIV/AIDS who was not taking antiretroviral therapy was hospitalized with fever, diarrhea, and headaches. CD4 count on presentation was 71 cells/uL, and HIV viral load was 3,194,949 copies/mL. Serum CrAg testing was initially negative, however CSF CrAg performed several days later was positive at 1:40 and blood and CSF cultures grew Cryptococcus neoformans. Colonoscopy revealed mucosal papules throughout the sigmoid colon, and tissue biopsy showed yeast within the lamina propria consistent with GI cryptococcosis. Given the high burden of disease, the original serum CrAg specimen was serially diluted and subsequently found to be positive at 1:2,560, confirming the postzone phenomenon. CONCLUSION Cryptococcosis has a wide array of presentations including intraluminal GI disease, as seen in this patient. While serum CrAg testing displays excellent test characteristics, it is important for clinicians to be aware of the rare instances in which false-negative results may occur in the presence of excess antigen, as in this case.
Collapse
Affiliation(s)
- Alex N Zimmet
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Grace D Cullen
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Leah Mische
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Deftos
- Department of Pathology, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Yael Bogler
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Nang L Nguyen
- Clinical Microbiology, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Manoj Ray
- Division of Infectious Diseases, Kaiser Permanente Medical Group, Redwood City, CA, USA
| |
Collapse
|
139
|
Cebisli E, Ulgen-Tekerek N, Dursun O, Koker A, Kisaoglu A, Artan R, Soyucen E, Elpek GO. Intestinal Mucormycosis in a Child With Maple Syrup Urine Disease After Orthotopic Liver Transplant. EXP CLIN TRANSPLANT 2023; 21:375-379. [PMID: 36259617 DOI: 10.6002/ect.2021.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mucormycosis can result in serious morbidity and mortality, especially in transplant recipients. In this case report, we present a 3-year-old female patient with maple syrup urine disease who developed mucormycosis infection after deceased donor split liver transplant. Progressive segmental necrosis of the small intestines and new ischemic areas were observed after repeated abdominal surgeries. Microscopic examination of biopsy material revealed mucormycosis. Early recognition is crucial for treatment, and patients with clinical suspicion can be treated empirically with antifungal medicine. However, diagnostic tests with accurate and fast results are needed and more effective therapeutic methods should be developed for better outcomes.
Collapse
Affiliation(s)
- Erdem Cebisli
- From the Department of Pediatrics, Division of Pediatric Critical Care, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Bosetti D, Neofytos D. Invasive Aspergillosis and the Impact of Azole-resistance. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360857 PMCID: PMC10024029 DOI: 10.1007/s12281-023-00459-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review IA (invasive aspergillosis) caused by azole-resistant strains has been associated with higher clinical burden and mortality rates. We review the current epidemiology, diagnostic, and therapeutic strategies of this clinical entity, with a special focus on patients with hematologic malignancies. Recent Findings There is an increase of azole resistance in Aspergillus spp. worldwide, probably due to environmental pressure and the increase of long-term azole prophylaxis and treatment in immunocompromised patients (e.g., in hematopoietic stem cell transplant recipients). The therapeutic approaches are challenging, due to multidrug-resistant strains, drug interactions, side effects, and patient-related conditions. Summary Rapid recognition of resistant Aspergillus spp. strains is fundamental to initiate an appropriate antifungal regimen, above all for allogeneic hematopoietic cell transplantation recipients. Clearly, more studies are needed in order to better understand the resistance mechanisms and optimize the diagnostic methods to identify Aspergillus spp. resistance to the existing antifungal agents/classes. More data on the susceptibility profile of Aspergillus spp. against the new classes of antifungal agents may allow for better treatment options and improved clinical outcomes in the coming years. In the meantime, continuous surveillance studies to monitor the prevalence of environmental and patient prevalence of azole resistance among Aspergillus spp. is absolutely crucial.
Collapse
Affiliation(s)
- Davide Bosetti
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| |
Collapse
|
141
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
142
|
Mansour MK, King JD, Chen ST, Fishman JA, Nazarian RM. Case 7-2023: A 70-Year-Old Man with Covid-19, Respiratory Failure, and Rashes. N Engl J Med 2023; 388:926-937. [PMID: 36884326 PMCID: PMC10029363 DOI: 10.1056/nejmcpc2211369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Michael K Mansour
- From the Departments of Medicine (M.K.M., S.T.C., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Massachusetts General Hospital, and the Departments of Medicine (M.K.M., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Harvard Medical School - both in Boston
| | - Joseph D King
- From the Departments of Medicine (M.K.M., S.T.C., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Massachusetts General Hospital, and the Departments of Medicine (M.K.M., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Harvard Medical School - both in Boston
| | - Steven T Chen
- From the Departments of Medicine (M.K.M., S.T.C., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Massachusetts General Hospital, and the Departments of Medicine (M.K.M., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Harvard Medical School - both in Boston
| | - Jay A Fishman
- From the Departments of Medicine (M.K.M., S.T.C., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Massachusetts General Hospital, and the Departments of Medicine (M.K.M., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Harvard Medical School - both in Boston
| | - Rosalynn M Nazarian
- From the Departments of Medicine (M.K.M., S.T.C., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Massachusetts General Hospital, and the Departments of Medicine (M.K.M., J.A.F.), Radiology (J.D.K.), Dermatology (S.T.C.), and Pathology (R.M.N.), Harvard Medical School - both in Boston
| |
Collapse
|
143
|
Wiederhold NP, Patterson HP, Sanders CJ, Cañete-Gibas C. Dihydroorotate dehydrogenase inhibitor olorofim has potent in vitro activity against Microascus/Scopulariopsis, Rasamsonia, Penicillium and Talaromyces species. Mycoses 2023; 66:242-248. [PMID: 36435987 DOI: 10.1111/myc.13548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Treatment options against infections caused by rare but emerging moulds may be limited by their reduced susceptibility or resistance to clinically available antifungals. The investigational antifungal olorofim, which targets the biosynthesis of pyrimidines within fungi, has activity against different species of filamentous fungi, including Aspergillus and Scedosporium/Lomentospora prolificans isolates that are resistant to available antifungals. OBJECTIVE We evaluated the in vitro activity of olorofim against 160 isolates within the genera Microascus/Scopulariopsis, Penicillium, Talaromyces and the Rasamsonia argillacea species complex. METHODS One hundred sixty clinical isolates that had previously been identified to the species level by DNA sequence analysis were included. Antifungal susceptibility testing was performed by CLSI M38 broth microdilution for olorofim, amphotericin B, caspofungin, posaconazole and voriconazole. RESULTS Olorofim demonstrated in vitro activity against each of the genera tested. Overall, olorofim MICs ranged from ≤0.008 to 0.5 mg/L against all isolates tested, with MIC90 and modal MIC values ranging from ≤0.008 to 0.25 mg/L and ≤0.008 to 0.03 mg/L, respectively. This activity was also maintained against individual isolates that had reduced susceptibility to or in vitro resistance against amphotericin B, posaconazole and/or voriconazole. CONCLUSIONS The investigational agent olorofim demonstrated good in vitro activity against clinical isolates of emerging mould pathogens, including those with reduced susceptibility or resistance to clinically available antifungals. Further studies are warranted to determine how well this in vitro activity translates into in vivo efficacy against infections caused by these fungi.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hoja P Patterson
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Carmita J Sanders
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Connie Cañete-Gibas
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
144
|
Fernández-Ruiz M, Bodro M, Gutiérrez Martín I, Rodriguez-Álvarez R, Ruiz-Ruigómez M, Sabé N, López-Viñau T, Valerio M, Illaro A, Fortún J, Salto-Alejandre S, Cordero E, Fariñas MDC, Muñoz P, Vidal E, Carratalà J, Goikoetxea J, Ramos-Martínez A, Moreno A, Aguado JM. Isavuconazole for the Treatment of Invasive Mold Disease in Solid Organ Transplant Recipients: A Multicenter Study on Efficacy and Safety in Real-life Clinical Practice. Transplantation 2023; 107:762-773. [PMID: 36367924 DOI: 10.1097/tp.0000000000004312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Isavuconazole has theoretical advantages over other mold-active triazoles for the treatment of invasive aspergillosis and mucormycosis after solid organ transplantation (SOT). The available clinical experience, nevertheless, is scarce. METHODS We performed a retrospective study including all adult SOT recipients with proven or probable invasive mold disease (IMD) that received isavuconazole for ≥24 h as first-line or salvage therapy at 10 Spanish centers between September 2017 and November 2021. The primary efficacy outcome was clinical response (complete or partial resolution of attributable symptoms and findings) by weeks 6 and 12. Safety outcomes included the rates of treatment-emergent adverse events and premature isavuconazole discontinuation. RESULTS We included 81 SOT recipients that received isavuconazole for a median of 58.0 days because of invasive aspergillosis (n = 71) or mucormycosis (n = 10). Isavuconazole was used as first-line (72.8%) or salvage therapy due because of previous treatment-emergent toxicity (11.1%) or refractory IMD (7.4%). Combination therapy was common (37.0%), mainly with an echinocandin or liposomal amphotericin B. Clinical response by weeks 6 and 12 was achieved in 53.1% and 54.3% of patients, respectively, and was more likely when isavuconazole was administered as first-line single-agent therapy. At least 1 treatment-emergent adverse event occurred in 17.3% of patients, and 6.2% required premature discontinuation. Daily tacrolimus dose was reduced in two-thirds of patients by a median of 50.0%, although tacrolimus levels remained stable throughout the first month of therapy. CONCLUSIONS Isavuconazole is a safe therapeutic option for IMD in SOT recipients, with efficacy comparable to other patient groups.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Isabel Gutiérrez Martín
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | | | - María Ruiz-Ruigómez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Núria Sabé
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa López-Viñau
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Maricela Valerio
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Aitziber Illaro
- Department of Pharmacy, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Sonsoles Salto-Alejandre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - María Del Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
- Department of Medicine, School of Medicine, Universidad de Cantabria, Santander, Spain
| | - Patricia Muñoz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Department of Medicine, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Josune Goikoetxea
- Unit of Infectious Diseases, Hospital Universitario de Cruces, Baracaldo, Spain
| | - Antonio Ramos-Martínez
- Unit of Infectious Diseases, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
145
|
Vahedi-Shahandashti R, Hahn L, Houbraken J, Lass-Flörl C. Aspergillus Section Terrei and Antifungals: From Broth to Agar-Based Susceptibility Testing Methods. J Fungi (Basel) 2023; 9:jof9030306. [PMID: 36983474 PMCID: PMC10056208 DOI: 10.3390/jof9030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Providing timely antifungal treatment to patients suffering from life-threatening invasive fungal infections (IFIs) is essential. Due to the changing epidemiology and the emergence of antifungal resistance in Aspergillus, the most commonly responsible mold of IFIs, antifungal susceptibility testing (AFST) has become increasingly important to guide clinical decisions. This study assessed the essential agreement (EA) between broth microdilution methods (the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST)) and the Etest of amphotericin B (AmB), liposomal amphotericin B (L-AmB), and isavuconazole (ISA) against 112 Aspergillus section Terrei. An EA within ±2 dilutions of ≥90% between the two methods was considered acceptable. Excellent EA was found between EUCAST and CLSI of AmB and ISA (98.2% and 95.5%, respectively). The correlation of Etest results and EUCAST/CLSI was not acceptable (<90%) for any tested antifungal; however, Etest and CLSI for AmB (79.6%) and ISA (77.6%) showed a higher EA than Etest and EUCAST for AmB (49.5%) and ISA (46.4%). It was concluded that the Etest method requires its own clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs), and interpreting Etest results using EUCAST and CLSI-adapted CBPs and ECVs could result in misinterpretation as Etest shows lower minimum inhibitory concentrations (MICs).
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Hahn
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
146
|
Incidence of Invasive Fungal Infections in Liver Transplant Recipients under Targeted Echinocandin Prophylaxis. J Clin Med 2023; 12:jcm12041520. [PMID: 36836055 PMCID: PMC9960065 DOI: 10.3390/jcm12041520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Invasive fungal infections (IFIs) are one of the most important infectious complications after liver transplantation, determining morbidity and mortality. Antimycotic prophylaxis may impede IFI, but a consensus on indication, agent, or duration is still missing. Therefore, this study aimed to investigate the incidence of IFIs under targeted echinocandin antimycotic prophylaxis in adult high-risk liver transplant recipients. We retrospectively reviewed all patients undergoing a deceased donor liver transplantation at the Medical University of Innsbruck in the period from 2017 to 2020. Of 299 patients, 224 met the inclusion criteria. We defined patients as being at high risk for IFI if they had two or more prespecified risk factors and these patients received prophylaxis. In total, 85% (190/224) of the patients were correctly classified according to the developed algorithm, being able to predict an IFI with a sensitivity of 89%. Although 83% (90/109) so defined high-risk recipients received echinocandin prophylaxis, 21% (23/109) still developed an IFI. The multivariate analysis identified the age of the recipient (hazard ratio-HR = 0.97, p = 0.027), split liver transplantation (HR = 5.18, p = 0.014), massive intraoperative blood transfusion (HR = 24.08, p = 0.004), donor-derived infection (HR = 9.70, p < 0.001), and relaparotomy (HR = 4.62, p = 0.003) as variables with increased hazard ratios for an IFI within 90 days. The fungal colonization at baseline, high-urgency transplantation, posttransplant dialysis, bile leak, and early transplantation showed significance only in a univariate model. Notably, 57% (12/21) of the invasive Candida infections were caused by a non-albicans species, entailing a markedly reduced one-year survival. The attributable 90-day mortality rate of an IFI after a liver transplant was 53% (9/17). None of the patients with invasive aspergillosis survived. Despite targeted echinocandin prophylaxis, there is still a notable risk for IFI. Consequently, the prophylactic use of echinocandins must be critically questioned regarding the high rate of breakthrough infections, the increased occurrence of fluconazole-resistant pathogens, and the higher mortality rate in non-albicans Candida species. Adherence to the internal prophylaxis algorithms is of immense importance, bearing in mind the high IFI rates in case algorithms are not followed.
Collapse
|
147
|
Pulmonary Histoplasmosis: A Clinical Update. J Fungi (Basel) 2023; 9:jof9020236. [PMID: 36836350 PMCID: PMC9964986 DOI: 10.3390/jof9020236] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. The areas of highest endemicity lie within the Mississippi and Ohio River Valleys of North America and parts of Central and South America. The most common clinical presentations include pulmonary histoplasmosis, which can resemble community-acquired pneumonia, tuberculosis, sarcoidosis, or malignancy; however, certain patients can develop mediastinal involvement or progression to disseminated disease. Understanding the epidemiology, pathology, clinical presentation, and diagnostic testing performance is pivotal for a successful diagnosis. While most immunocompetent patients with mild acute or subacute pulmonary histoplasmosis should receive therapy, all immunocompromised patients and those with chronic pulmonary disease or progressive disseminated disease should also receive therapy. Liposomal amphotericin B is the agent of choice for severe or disseminated disease, and itraconazole is recommended in milder cases or as "step-down" therapy after initial improvement with amphotericin B. In this review, we discuss the current epidemiology, pathology, diagnosis, clinical presentations, and management of pulmonary histoplasmosis.
Collapse
|
148
|
Villalobos APC, Foroutan F, Davoudi S, Kothari S, Martinu T, Singer LG, Keshavjee S, Husain S. Statin Use May Be Associated With a Lower Risk of Invasive Aspergillosis in Lung Transplant Recipients. Clin Infect Dis 2023; 76:e1379-e1384. [PMID: 35900334 DOI: 10.1093/cid/ciac551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Statins are competitive inhibitors of 3-hydroxy-3methylglutaryl coenzyme A reductase (HMG-CoA reductase) that catalyses HMG-CoA conversion to mevalonate, a process involved in synthesizing cholesterol in humans and ergosterol in fungi. The effect of statin use on the risk of development of invasive aspergillosis (IA) in lung transplant recipients (LTRs) is not well documented. METHODS This retrospective study included LTRs from 2010 to 2017 who were followed for one-year post-transplant. Proven or probable IA was diagnosed as per ISHLT criteria. We performed a multivariable Cox proportional hazards model of the association between IA and statin use (minimum of 2 weeks duration prior to IA), adjusting for other known IA risk factors. RESULTS We identified 785 LTRs, 44% female, mean age 53 years old, the most common underlying disease being pulmonary fibrosis (23.8%). In total, 451 LTRs (57%) received statins post-transplant, atorvastatin was the most commonly used statin (68%). The mean duration of statins post-transplant was 347 days (interquartile range [IQR]: 305 to 346). And 55 (7%) LTRs developed IA in the first-year post-transplant. Out of these 55 LTRs, 9 (16.3%) had received statin before developing IA. In multivariable analysis, statin use was independently associated with a lower risk of IA (P = .002, SHR 0.30, 95% confidence interval [CI] 95% .14-.64). Statin use was also associated with a lower incidence of post-transplant Aspergillus colonization, 114 (34%) in the no statin group vs 123 (27%) in the statin group (P = .038). CONCLUSIONS The use of statin for a minimum of two weeks during the first-year post-transplant was associated with a 70% risk reduction of IA in LTRs.
Collapse
Affiliation(s)
- Armelle Pérez-Cortés Villalobos
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farid Foroutan
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Setareh Davoudi
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
149
|
Murthy SE, Wey EQ. Antimicrobial stewardship in solid organ transplant-Opportunities in the National Health Service. Transpl Infect Dis 2023; 25:e13961. [PMID: 36760017 DOI: 10.1111/tid.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Antimicrobial stewardship (AMS) is an intervention, which ensures the appropriateness of antimicrobial use to avoid in part the rising problem of antimicrobial resistance and negative effects of inappropriate antimicrobial use. In the solid organ transplant (SOT) population, which is prone to a particularly high risk of infection resulting from immunosuppression and anatomical issues with each type of SOT, the need for good stewardship has never been more important. This article looks at current AMS practice in SOT units in the United Kingdom and how things could be improved in the future. METHODS The current practice of AMS alongside national antimicrobial resistance rates were reviewed using national mandatory reporting data. The background to the current practice and policies in place in the National Health Service (NHS) were also reviewed and possibilities for future approaches explored. RESULTS AMS is a requirement within all NHS hospitals in the United Kingdom as per government policy. Mandatory reporting of specific bloodstream infections (BSIs) and antimicrobial consumption alongside financial incentives has been the approach nationwide. Gram-negative resistance rates in BSIs have been increasing prior to the COVID-19 pandemic. Little SOT-specific data on antimicrobial resistance exists, and the general approach to AMS in SOT units has generally modeled the national approach. CONCLUSION Although there is a good, standardized approach to AMS in the NHS, there is a need for SOT-specific AMS approaches to be developed in the United Kingdom. More data is required on antimicrobial resistance rates, and studies are needed to investigate optimal antimicrobial prophylaxis regimens for each solid organ group. Tools to aid AMS efforts and novel treatment options for complex multiresistant infection must also be explored amongst transplant centers.
Collapse
Affiliation(s)
- Saraswathi E Murthy
- Department of Infection, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Emmanuel Q Wey
- Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, London, UK.,Department of Infection, Royal Free London NHS Trust London, London, UK
| |
Collapse
|
150
|
Khojasteh S, Abastabar M, Haghani I, Valadan R, Ghazanfari S, Abbasi K, Ahangarkani F, Zarrinfar H, Khodavaisy S, Badali H. Five-year surveillance study of clinical and environmental Triazole-Resistant Aspergillus fumigatus isolates in Iran. Mycoses 2023; 66:98-105. [PMID: 36196507 DOI: 10.1111/myc.13535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Invasive aspergillosis is one of the most common fungal infections and azole resistance in Aspergillus fumigatus (ARAf) is a growing medical concern in high-risk patients. To our knowledge, there is no comprehensive epidemiological surveillance study on the prevalence and incidence of ARAf isolates available in Iran. OBJECTIVES The study aimed to report a five-year survey of triazole phenotypes and genotype patterns concerning the resistance in clinical and environmental A. fumigatus in Iran. METHODS During the study time frame (2016-2021), a total of 1208 clinical and environmental Aspergillus species were collected. Isolates were examined and characterised by in vitro antifungal susceptibility testing (CLSI M38 broth microdilution) and cyp51A sequencing. RESULTS In total, 485 Aspergillus section Fumigati strains were recovered (clinical, n = 23; 4.74% and environment, n = 462; 95.26%). Of which A. fumigatus isolates were the most prevalent species (n = 483; 99.59%). Amphotericin B and the echinocandins demonstrated good in vitro activity against the majority of isolates in comparison to triazole. Overall, 16.15% (n = 78) of isolates were phenotypically resistant to at least one of the azoles. However, 9.73% of A. fumigatus isolates for voriconazole were classified as resistant, 89.03% were susceptible, and 1.24% were intermediate. While, for itraconazole and posaconazole, using the epidemiological cut-off value 16.15% and 6.83% of isolates were non-wild types, respectively. Remarkably, in 21.79% (n = 17) phenotypically resistant isolates, no mutations were detected within the cyp51A gene. CONCLUSION Although the incidence of ARAf varies from country to country, in Iran the rate has ranged from 3.3% to 18%, significantly increasing from 2013 to 2021. Strikingly, a quarter of the phenotypically resistant isolates harboured no mutations in the cyp51A gene. It seems that other mechanisms of resistance are importantly increasing. To fill a gap in our understanding of the mechanism for azole resistance in the non-cyp51A strains, we highly recommend further and more extensive monitoring of the soil with or without exposure to fungicides in agricultural and hospital areas.
Collapse
Affiliation(s)
- Shaghayegh Khojasteh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Ghazanfari
- Department of Medical Mycology and Parasitology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Kiana Abbasi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Fatemeh Ahangarkani
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Zarrinfar
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|