101
|
Yamamoto K, Ando J. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases. Am J Physiol Heart Circ Physiol 2015; 309:H1178-85. [PMID: 26297225 DOI: 10.1152/ajpheart.00241.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; and
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
102
|
Zhang RN, Zheng B, Li LM, Zhang J, Zhang XH, Wen JK. Tongxinluo inhibits vascular inflammation and neointimal hyperplasia through blockade of the positive feedback loop between miR-155 and TNF-α. Am J Physiol Heart Circ Physiol 2015; 307:H552-62. [PMID: 24951754 DOI: 10.1152/ajpheart.00936.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tongxinluo (TXL), a traditional Chinese medicine, has multiple vasoprotective effects, including anti-inflammation. MicroRNA-155 (miR-155) is involved in vascular inflammation and atherosclerosis. However, a direct relationship between TXL and miR-155 in the development of vascular inflammation and remodeling had not yet been shown. The objective of the present study was to investigate whether TXL exerts an inhibitory effect on the vascular inflammatory response and neointimal hyperplasia by regulating miR-155 expression. Using the carotid artery ligation model in mice, we have shown that TXL dose dependently inhibited neointimal formation and reduced the vascular inflammatory response by inhibiting inflammatory cytokine production and macrophage infiltration. miR-155 was induced by carotid artery ligation, and neointimal hyperplasia was strongly reduced in miR-155(−/−) mice. In contrast, miR-155 overexpression partly reversed the inhibitory effect of TXL on neointimal hyperplasia. In bone marrow-derived macrophages, miR-155 and TNF-α formed a positive feedback loop to promote the inflammatory response, which could be blocked by TXL. Furthermore, TXL increased Akt1 protein expression and phosphorylation in TNF-α-stimulated marrow-derived macrophages, and knockdown of Akt1 abrogated the TXL-induced suppression of miR-155. In conclusion, TXL inhibits the vascular inflammatory response and neointimal hyperplasia induced by carotid artery ligation in mice. Suppression of miR-155 expression mediated by Akt1 and blockade of the feedback loop between miR-155 and TNF-α are important pathways whereby TXL exerts its vasoprotective effects.
Collapse
|
103
|
Uryash A, Bassuk J, Kurlansky P, Altamirano F, Lopez JR, Adams JA. Antioxidant Properties of Whole Body Periodic Acceleration (pGz). PLoS One 2015; 10:e0131392. [PMID: 26133377 PMCID: PMC4489838 DOI: 10.1371/journal.pone.0131392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Jorge Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Paul Kurlansky
- Department of Surgery, Columbia University, New York, New York, United States of America
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|
104
|
Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ, Finol EA. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 120:88-101. [PMID: 25975872 PMCID: PMC4441565 DOI: 10.1016/j.cmpb.2015.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Computational fluid dynamics (CFD) modeling of the pulmonary vasculature has the potential to reveal continuum metrics associated with the hemodynamic stress acting on the vascular endothelium. It is widely accepted that the endothelium responds to flow-induced stress by releasing vasoactive substances that can dilate and constrict blood vessels locally. The objectives of this study are to examine the extent of patient specificity required to obtain a significant association of CFD output metrics and clinical measures in models of the pulmonary arterial circulation, and to evaluate the potential correlation of wall shear stress (WSS) with established metrics indicative of right ventricular (RV) afterload in pulmonary hypertension (PH). Right Heart Catheterization (RHC) hemodynamic data and contrast-enhanced computed tomography (CT) imaging were retrospectively acquired for 10 PH patients and processed to simulate blood flow in the pulmonary arteries. While conducting CFD modeling of the reconstructed patient-specific vasculatures, we experimented with three different outflow boundary conditions to investigate the potential for using computationally derived spatially averaged wall shear stress (SAWSS) as a metric of RV afterload. SAWSS was correlated with both pulmonary vascular resistance (PVR) (R(2)=0.77, P<0.05) and arterial compliance (C) (R(2)=0.63, P<0.05), but the extent of the correlation was affected by the degree of patient specificity incorporated in the fluid flow boundary conditions. We found that decreasing the distal PVR alters the flow distribution and changes the local velocity profile in the distal vessels, thereby increasing the local WSS. Nevertheless, implementing generic outflow boundary conditions still resulted in statistically significant SAWSS correlations with respect to both metrics of RV afterload, suggesting that the CFD model could be executed without the need for complex outflow boundary conditions that require invasively obtained patient-specific data. A preliminary study investigating the relationship between outlet diameter and flow distribution in the pulmonary tree offers a potential computationally inexpensive alternative to pressure based outflow boundary conditions.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- Department of Bioengineering, UC Denver - Anschutz Medical Campus, Children's Hospital Colorado, 13123 E. 16th Ave B100, Aurora, CO 80045, United States.
| | - Lourdes Rios
- The University of Texas at San Antonio, Department of Biomedical Engineering, San Antonio, TX 78249, United States; The University of Texas at San Antonio, Department of Biological Sciences, San Antonio, TX 78249, United States.
| | - Triston Smith
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Theodore Schroeder
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Jeffrey Mueller
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Srinivas Murali
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - David Lasorda
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Anthony Zikos
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Jennifer Spotti
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - John J Reilly
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA 15261, United States.
| | - Ender A Finol
- The University of Texas at San Antonio, Department of Biomedical Engineering, San Antonio, TX 78249, United States.
| |
Collapse
|
105
|
Sung LC, Chao HH, Chen CH, Tsai JC, Liu JC, Hong HJ, Cheng TH, Chen JJ. Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol 2015; 42:632-9. [DOI: 10.1111/1440-1681.12412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/08/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Chin Sung
- Division of Cardiology; Department of Internal Medicine; Shuang Ho Hospital; Taipei Medical University; New Taipei City Taiwan
| | - Hung-Hsing Chao
- Shin Kong Wu Ho-Su Memorial Hospital; Taipei Medical University; Taipei Taiwan
- Department of Surgery; School of Medicine; Taipei Medical University; Taipei Taiwan
| | - Cheng-Hsien Chen
- Department of Internal Medicine; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Jen-Chen Tsai
- Department of Internal Medicine; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Ju-Chi Liu
- Division of Cardiology; Department of Internal Medicine; Shuang Ho Hospital; Taipei Medical University; New Taipei City Taiwan
| | - Hong-Jye Hong
- School of Chinese Medicine; China Medical University; Taichung Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry; School of Medicine; China Medical University; Taichung Taiwan
| | - Jin-Jer Chen
- Graduate Institute of Clinical Medicine; College of Medicine; China Medical University; Taichung Taiwan
- Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| |
Collapse
|
106
|
Kim JS, Kim B, Lee H, Thakkar S, Babbitt DM, Eguchi S, Brown MD, Park JY. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309:H425-33. [PMID: 26024684 DOI: 10.1152/ajpheart.00438.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/26/2015] [Indexed: 01/21/2023]
Abstract
The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania
| | - Boa Kim
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania; Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Hojun Lee
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania
| | - Sunny Thakkar
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania
| | - Dianne M Babbitt
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Michael D Brown
- Department of Kinesiology and Nutrition and Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Joon-Young Park
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania; Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
107
|
Kheyfets V, Thirugnanasambandam M, Rios L, Evans D, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Spotti J, Finol E. The role of wall shear stress in the assessment of right ventricle hydraulic workload. Pulm Circ 2015; 5:90-100. [PMID: 25992274 DOI: 10.1086/679703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/22/2014] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease affecting approximately 15-50 people per million, with a higher incidence in women. PH mortality is mostly attributed to right ventricle (RV) failure, which results from RV hypotrophy due to an overburdened hydraulic workload. The objective of this study is to correlate wall shear stress (WSS) with hemodynamic metrics that are generally accepted as clinical indicators of RV workload and are well correlated with disease outcome. Retrospective right heart catheterization data for 20 PH patients were analyzed to derive pulmonary vascular resistance (PVR), arterial compliance (C), and an index of wave reflections (Γ). Patient-specific contrast-enhanced computed tomography chest images were used to reconstruct the individual pulmonary arterial trees up to the seventh generation. Computational fluid dynamics analyses simulating blood flow at peak systole were conducted for each vascular model to calculate WSS distributions on the endothelial surface of the pulmonary arteries. WSS was found to be decreased proportionally with elevated PVR and reduced C. Spatially averaged WSS (SAWSS) was positively correlated with PVR (R (2) = 0.66), C (R (2) = 0.73), and Γ (R (2) = 0.5) and also showed promising preliminary correlations with RV geometric characteristics. Evaluating WSS at random cross sections in the proximal vasculature (main, right, and left pulmonary arteries), the type of data that can be acquired from phase-contrast magnetic resonance imaging, did not reveal the same correlations. In conclusion, we found that WSS has the potential to be a viable and clinically useful noninvasive metric of PH disease progression and RV health. Future work should be focused on evaluating whether SAWSS has prognostic value in the management of PH and whether it can be used as a rapid reactivity assessment tool, which would aid in selection of appropriate therapies.
Collapse
Affiliation(s)
- Vitaly Kheyfets
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| | | | - Lourdes Rios
- Department of Biological Sciences, University of Texas, San Antonio, Texas, USA
| | - Daniel Evans
- Department of Mechanical Engineering, University of Texas, San Antonio, Texas, USA
| | - Triston Smith
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Theodore Schroeder
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Mueller
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Srinivas Murali
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - David Lasorda
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jennifer Spotti
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ender Finol
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
108
|
Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion. PLoS One 2015; 10:e0126440. [PMID: 25946314 PMCID: PMC4422584 DOI: 10.1371/journal.pone.0126440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/01/2015] [Indexed: 01/16/2023] Open
Abstract
A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.
Collapse
|
109
|
Jia L, Wang L, Wei F, Yu H, Dong H, Wang B, Lu Z, Sun G, Chen H, Meng J, Li B, Zhang R, Bi X, Wang Z, Pang H, Jiang A. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae. Nephrology (Carlton) 2015; 20:335-42. [PMID: 25581663 DOI: 10.1111/nep.12394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Lan Jia
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Lihua Wang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Fang Wei
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Haibo Yu
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Hongye Dong
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Bo Wang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Zhi Lu
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Haiyan Chen
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Jia Meng
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Bo Li
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Ruining Zhang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Xueqing Bi
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Zhe Wang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Haiyan Pang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| | - Aili Jiang
- Department of Kidney Disease and Blood Purification; Institute of Urology & Key Laboratory of Tianjin; The Second Hospital of Tianjin Medical University; Tianjin China
| |
Collapse
|
110
|
Kirabo A, Harrison DG. Hypertension as a Risk Factor for Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
111
|
Sobolewski P, El Fray M. Cardiac catheterization: consequences for the endothelium and potential for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:458-73. [PMID: 25429858 DOI: 10.1002/wnan.1316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/15/2014] [Accepted: 10/11/2014] [Indexed: 12/19/2022]
Abstract
Cardiac catheterization results in interactions between the catheter and surfaces and the artery lumen, which is lined by the endothelium. These interactions can range from minor rubbing to severe mechanical injury. Further, in the case of radial access, even atraumatic interactions have consequences ranging from clinical complications, such as radial spasm and radial occlusion, to lasting endothelial cell dysfunction. These consequences may be underappreciated; however, endothelial cells play a central role in maintaining vascular homeostasis via nitric oxide production. Existing treatment paradigms do not address endothelial dysfunction or damage and, thus, novel therapeutic approaches are needed. Nanomedicine, in particular, offers great potential in the form of targeted drug delivery, via functionalized coatings or nanocarriers, aimed at increased nitric oxide bioavailability or reduced inflammation.
Collapse
Affiliation(s)
- Peter Sobolewski
- Division of Biomaterials and Microbiological Technologies, West Pomeranian University of Technology, Szczecin, Poland
| | | |
Collapse
|
112
|
Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei. PLoS One 2014; 9:e108346. [PMID: 25265386 PMCID: PMC4180949 DOI: 10.1371/journal.pone.0108346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oxidative stress occurs with disturbed blood flow, inflammation and cardiovascular disease (CVD), yet free-radical scavenging antioxidants have shown limited benefit in human CVD. Thioredoxin-1 (Trx1) is a thiol antioxidant protecting against non-radical oxidants by controlling protein thiol/disulfide status; Trx1 translocates from cytoplasm to cell nuclei due to stress signaling, facilitates DNA binding of transcription factors, e.g., NF-κB, and potentiates inflammatory signaling. Whether increased nuclear Trx1 contributes to proatherogenic signaling is unknown. METHODOLOGY/PRINCIPAL FINDINGS In vitro and in vivo atherogenic models were used to test for nuclear translocation of Trx1 and associated proinflammatory signaling. Disturbed flow by oscillatory shear stress stimulated Trx1 nuclear translocation in endothelial cells. Elevation of nuclear Trx1 in endothelial cells and transgenic (Tg) mice potentiated disturbed flow-stimulated proinflammatory signaling including NF-κB activation and increased expression of cell adhesion molecules and cytokines. Tg mice with increased nuclear Trx1 had increased carotid wall thickening due to disturbed flow but no significant differences in serum lipids or weight gain compared to wild type mice. Redox proteomics data of carotid arteries showed that disturbed flow stimulated protein thiol oxidation, and oxidation was higher in Tg mice than wild type mice. CONCLUSIONS/SIGNIFICANCE Translocation of Trx1 from cytoplasm to cell nuclei plays an important role in disturbed flow-stimulated proatherogenesis with greater cytoplasmic protein oxidation and an enhanced nuclear transcription factor activity. The results suggest that pharmacologic interventions to inhibit nuclear translocation of Trx1 may provide a new approach to prevent inflammatory diseases or progression.
Collapse
|
113
|
Martin FA, McLoughlin A, Rochfort KD, Davenport C, Murphy RP, Cummins PM. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain. PLoS One 2014; 9:e108254. [PMID: 25238231 PMCID: PMC4169621 DOI: 10.1371/journal.pone.0108254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023] Open
Abstract
Background and Objectives Thrombomodulin (TM), an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (and particularly cyclic strain) intrinsic to endothelial-mediated vascular homeostasis. Methods This study employed human aortic endothelial cells (HAECs) to investigate the effects of equibiaxial cyclic strain (7.5%, 60 cycles/min, 24 hrs), and to a lesser extent, laminar shear stress (10 dynes/cm2, 24 hrs), on TM expression and release. Time-, dose- and frequency-dependency studies were performed. Results Our initial studies demonstrated that cyclic strain strongly downregulated TM expression in a p38- and receptor tyrosine kinase-dependent manner. This was in contrast to the upregulatory effect of shear stress. Moreover, both forces significantly upregulated TM release over a 48 hr period. With continuing focus on the cyclic strain-induced TM release, we noted both dose (0–7.5%) and frequency (0.5–2.0 Hz) dependency, with no attenuation of strain-induced TM release observed following inhibition of MAP kinases (p38, ERK-1/2), receptor tyrosine kinase, or eNOS. The concerted impact of cyclic strain and inflammatory mediators on TM release from HAECs was also investigated. In this respect, both TNFα (100 ng/ml) and ox-LDL (10–50 µg/ml) appeared to potentiate strain-induced TM release. Finally, inhibition of neither MMPs (GM6001) nor rhomboids (3,4-dichloroisocoumarin) had any effect on strain-induced TM release. However, significantly elevated levels (2.1 fold) of TM were observed in isolated microparticle fractions following 7.5% strain for 24 hrs. Conclusions A preliminary in vitro investigation into the effects of cyclic strain on TM in HAECs is presented. Physiologic cyclic strain was observed to downregulate TM expression, whilst upregulating in a time-, dose- and frequency-dependent manner the release of TM.
Collapse
Affiliation(s)
- Fiona A. Martin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Alisha McLoughlin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Colin Davenport
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Ronan P. Murphy
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip M. Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
114
|
Pan Q, Wang R, Reglin B, Cai G, Yan J, Pries AR, Ning G. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. J Biomech Eng 2014; 136:011009. [PMID: 24190506 DOI: 10.1115/1.4025879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Indexed: 11/08/2022]
Abstract
Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.
Collapse
|
115
|
Mahto SK, Charwat V, Ertl P, Rothen-Rutishauser B, Rhee SW, Sznitman J. Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology 2014; 9:381-95. [DOI: 10.3109/17435390.2014.940402] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanjeev Kumar Mahto
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,
| | - Verena Charwat
- BioSensor Technologies, Austrian Institute of Technology (AIT), Vienna, Austria,
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria,
| | - Peter Ertl
- BioSensor Technologies, Austrian Institute of Technology (AIT), Vienna, Austria,
| | | | - Seog Woo Rhee
- Department of Chemistry, College of Natural Sciences, Kongju National University, Kongju, South Korea
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,
| |
Collapse
|
116
|
Firasat S, Hecker M, Binder L, Asif AR. Advances in endothelial shear stress proteomics. Expert Rev Proteomics 2014; 11:611-9. [DOI: 10.1586/14789450.2014.933673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
117
|
Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34:2206-16. [PMID: 25012134 DOI: 10.1161/atvbaha.114.303425] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed flow, in part, due to alterations in gene expression. MicroRNAs (miRNAs) are small, noncoding genes that post-transcriptionally regulate gene expression by targeting messenger RNA transcripts. Emerging evidence indicates that alteration of flow conditions regulate expression of miRNAs in endothelial cells both in vitro and in vivo. These flow-sensitive miRNAs, known as mechano-miRs, regulate endothelial gene expression and can regulate endothelial dysfunction and atherosclerosis. MiRNAs such as, miR-10a, miR-19a, miR-23b, miR-17-92, miR-21, miR-663, miR-92a, miR-143/145, miR-101, miR-126, miR-712, miR-205, and miR-155, have been identified as mechano-miRs. Many of these miRNAs were initially identified as flow sensitive in vitro and were later found to play a critical role in endothelial function and atherosclerosis in vivo through either gain-of-function or loss-of-function approaches. The key signaling pathways that are targeted by these mechano-miRs include the endothelial cell cycle, inflammation, apoptosis, and nitric oxide signaling. Furthermore, we have recently shown that the miR-712/205 family, which is upregulated by disturbed flow, contributes to endothelial inflammation and vascular hyperpermeability by targeting tissue inhibitor of metalloproteinase-3, which regulates metalloproteinases and a disintegrin and metalloproteinases. The mechano-miRs that are implicated in atherosclerosis are termed as mechanosensitive athero-miRs and are potential therapeutic targets to prevent or treat atherosclerosis. This review summarizes the current knowledge of mechanosensitive athero-miRs and their role in vascular biology and atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Chan Woo Kim
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Rachel D Simmons
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA.
| |
Collapse
|
118
|
Nicolson GL. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1451-66. [DOI: 10.1016/j.bbamem.2013.10.019] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
|
119
|
Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 2014; 40:53-93. [DOI: 10.1016/j.preteyeres.2014.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
120
|
Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17:499-509. [PMID: 24668225 DOI: 10.1007/s10456-014-9428-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
Abstract
Intussusceptive angiogenesis is a dynamic intravascular process capable of dramatically modifying the structure of the microcirculation. The distinctive structural feature of intussusceptive angiogenesis is the intussusceptive pillar--a cylindrical microstructure that spans the lumen of small vessels and capillaries. The extension of the intussusceptive pillar appears to be a mechanism for pruning redundant or inefficient vessels, modifying the branch angle of bifurcating vessels and duplicating existing vessels. Despite the biological importance and therapeutic potential, intussusceptive angiogenesis remains a mystery, in part, because it is an intravascular process that is unseen by conventional light microscopy. Here, we review several fundamental questions in the context of our current understanding of both intussusceptive and sprouting angiogenesis. (1) What are the physiologic signals that trigger pillar formation? (2) What endothelial and blood flow conditions specify pillar location? (3) How do pillars respond to the mechanical influence of blood flow? (4) What biological influences contribute to pillar extension? The answers to these questions are likely to provide important insights into the structure and function of microvascular networks.
Collapse
|
121
|
MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20:368-76. [PMID: 24584117 DOI: 10.1038/nm.3487] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, a hyperlipidemia-induced chronic inflammatory process of the arterial wall, develops preferentially at sites where disturbed laminar flow compromises endothelial cell (EC) function. Here we show that endothelial miR-126-5p maintains a proliferative reserve in ECs through suppression of the Notch1 inhibitor delta-like 1 homolog (Dlk1) and thereby prevents atherosclerotic lesion formation. Endothelial recovery after denudation was impaired in Mir126(-/-) mice because lack of miR-126-5p, but not miR-126-3p, reduced EC proliferation by derepressing Dlk1. At nonpredilection sites, high miR-126-5p levels in endothelial cells confer a proliferative reserve that compensates for the antiproliferative effects of hyperlipidemia, such that atherosclerosis was exacerbated in Mir126(-/-) mice. In contrast, downregulation of miR-126-5p by disturbed flow abrogated EC proliferation at predilection sites in response to hyperlipidemic stress through upregulation of Dlk1 expression. Administration of miR-126-5p rescued EC proliferation at predilection sites and limited atherosclerosis, introducing a potential therapeutic approach.
Collapse
|
122
|
|
123
|
Mai J, Hu Q, Xie Y, Su S, Qiu Q, Yuan W, Yang Y, Song E, Chen Y, Wang J. Dyssynchronous Pacing Triggers Endothelial-Mesenchymal Transition Through Heterogeneity of Mechanical Stretch in a Canine Model. Circ J 2014; 79:201-9. [DOI: 10.1253/circj.cj-14-0721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- JingTing Mai
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - QingSong Hu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - Yong Xie
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - ShiCheng Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - Qiong Qiu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - WoLiang Yuan
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - Ying Yang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - ErWei Song
- Breast Tumor Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - YangXin Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| | - JingFeng Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University
| |
Collapse
|
124
|
Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat Commun 2013; 4:1978. [PMID: 23748970 PMCID: PMC3709480 DOI: 10.1038/ncomms2978] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 01/05/2023] Open
Abstract
Heartbeat is required for normal development of the heart, and perturbation of intracardiac flow leads to morphological defects resembling congenital heart diseases. These observations implicate intracardiac haemodynamics in cardiogenesis, but the signalling cascades connecting physical forces, gene expression and morphogenesis are largely unknown. Here we use a zebrafish model to show that the microRNA, miR-21, is crucial for regulation of heart valve formation. Expression of miR-21 is rapidly switched on and off by blood flow. Vasoconstriction and increasing shear stress induce ectopic expression of miR-21 in the head vasculature and heart. Flow-dependent expression of mir-21 governs valvulogenesis by regulating the expression of the same targets as mouse/human miR-21 (sprouty, pdcd4, ptenb) and induces cell proliferation in the valve-forming endocardium at constrictions in the heart tube where shear stress is highest. We conclude that miR-21 is a central component of a flow-controlled mechanotransduction system in a physicogenetic regulatory loop.
Collapse
|
125
|
Yu PK, Tan PE, Cringle SJ, McAllister IL, Yu DY. Phenotypic heterogeneity in the endothelium of the human vortex vein system. Exp Eye Res 2013; 115:144-52. [DOI: 10.1016/j.exer.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
126
|
Regional heterogeneity of endothelial cells in the porcine vortex vein system. Microvasc Res 2013; 89:70-9. [DOI: 10.1016/j.mvr.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022]
|
127
|
Martin FA, Murphy RP, Cummins PM. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 2013; 304:H1585-97. [PMID: 23604713 PMCID: PMC7212260 DOI: 10.1152/ajpheart.00096.2013] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thrombomodulin (TM) is a 557-amino acid protein with a broad cell and tissue distribution consistent with its wide-ranging physiological roles. When expressed on the lumenal surface of vascular endothelial cells in both large vessels and capillaries, its primary function is to mediate endothelial thromboresistance. The complete integral membrane-bound protein form displays five distinct functional domains, although shorter soluble (functional) variants comprising the extracellular domains have also been reported in fluids such as serum and urine. TM-mediated binding of thrombin is known to enhance the specificity of the latter serine protease toward both protein C and thrombin activatable fibrinolysis inhibitor (TAFI), increasing their proteolytic activation rate by almost three orders of magnitude with concomitant anticoagulant, antifibrinolytic, and anti-inflammatory benefits to the vascular wall. Recent years have seen an abundance of research into the cellular mechanisms governing endothelial TM production, processing, and regulation (including flow-mediated mechanoregulation)--from transcriptional and posttranscriptional (miRNA) regulation of TM gene expression, to posttranslational processing and release of the expressed protein--facilitating greater exploitation of its therapeutic potential. The goal of the present paper is to comprehensively review the endothelial/TM system from these regulatory perspectives and draw some fresh conclusions. This paper will conclude with a timely examination of the current status of TM's growing therapeutic appeal, from novel strategies to improve the clinical efficacy of recombinant TM analogs for resolution of vascular disorders such as disseminated intravascular coagulation (DIC), to an examination of the complex pleiotropic relationship between statin treatment and TM expression.
Collapse
Affiliation(s)
- Fiona A Martin
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
128
|
Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover. Proc Natl Acad Sci U S A 2013; 110:E2352-61. [PMID: 23754369 DOI: 10.1073/pnas.1221637110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch.
Collapse
|
129
|
Kheyfets VO, O'Dell W, Smith T, Reilly JJ, Finol EA. Considerations for numerical modeling of the pulmonary circulation--a review with a focus on pulmonary hypertension. J Biomech Eng 2013; 135:61011-15. [PMID: 23699723 PMCID: PMC3705788 DOI: 10.1115/1.4024141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Both in academic research and in clinical settings, virtual simulation of the cardiovascular system can be used to rapidly assess complex multivariable interactions between blood vessels, blood flow, and the heart. Moreover, metrics that can only be predicted with computational simulations (e.g., mechanical wall stress, oscillatory shear index, etc.) can be used to assess disease progression, for presurgical planning, and for interventional outcomes. Because the pulmonary vasculature is susceptible to a wide range of pathologies that directly impact and are affected by the hemodynamics (e.g., pulmonary hypertension), the ability to develop numerical models of pulmonary blood flow can be invaluable to the clinical scientist. Pulmonary hypertension is a devastating disease that can directly benefit from computational hemodynamics when used for diagnosis and basic research. In the present work, we provide a clinical overview of pulmonary hypertension with a focus on the hemodynamics, current treatments, and their limitations. Even with a rich history in computational modeling of the human circulation, hemodynamics in the pulmonary vasculature remains largely unexplored. Thus, we review the tasks involved in developing a computational model of pulmonary blood flow, namely vasculature reconstruction, meshing, and boundary conditions. We also address how inconsistencies between models can result in drastically different flow solutions and suggest avenues for future research opportunities. In its current state, the interpretation of this modeling technology can be subjective in a research environment and impractical for clinical practice. Therefore, considerations must be taken into account to make modeling reliable and reproducible in a laboratory setting and amenable to the vascular clinic. Finally, we discuss relevant existing models and how they have been used to gain insight into cardiopulmonary physiology and pathology.
Collapse
Affiliation(s)
- V. O. Kheyfets
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249
| | - W. O'Dell
- Department of Radiation Oncology,University of Florida,Shands Cancer Center,P.O. Box 100385,2033 Mowry Road,Gainesville, FL 32610
| | - T. Smith
- Western Allegheny Health System,Allegheny General Hospital,Gerald McGinnis Cardiovascular Institute,320 East North Avenue,Pittsburgh, PA 15212
| | - J. J. Reilly
- Department of Medicine,The University of Pittsburgh,1218 Scaife Hall,3550 Terrace Street,Pittsburgh, PA 15261
| | - E. A. Finol
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249e-mail:
| |
Collapse
|
130
|
Neth P, Nazari-Jahantigh M, Schober A, Weber C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013; 99:294-303. [DOI: 10.1093/cvr/cvt096] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
131
|
Van der Heiden K, Gijsen FJH, Narracott A, Hsiao S, Halliday I, Gunn J, Wentzel JJ, Evans PC. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 2013; 99:269-75. [PMID: 23592806 DOI: 10.1093/cvr/cvt090] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stent deployment following balloon angioplasty is used routinely to treat coronary artery disease. These interventions cause damage and loss of endothelial cells (EC), and thus promote in-stent thrombosis and restenosis. Injured arteries are repaired (intrinsically) by locally derived EC and by circulating endothelial progenitor cells which migrate and proliferate to re-populate denuded regions. However, re-endothelialization is not always complete and often dysfunctional. Moreover, the molecular and biomechanical mechanisms that control EC repair and function in stented segments are poorly understood. Here, we propose that stents modify endothelial repair processes, in part, by altering fluid shear stress, a mechanical force that influences EC migration and proliferation. A more detailed understanding of the biomechanical processes that control endothelial healing would provide a platform for the development of novel therapeutic approaches to minimize damage and promote vascular repair in stented arteries.
Collapse
Affiliation(s)
- Kim Van der Heiden
- Biomedical Engineering, Department Cardiology, ErasmusMC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Elongated cell morphology and uniaxial mechanical stretch contribute to physical attributes of niche environment for MSC tenogenic differentiation. Cell Biol Int 2013; 37:755-60. [DOI: 10.1002/cbin.10094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 11/07/2022]
|
133
|
Abstract
Haemodynamic factors influence all forms of vascular growth (vasculogenesis, angiogenesis, arteriogenesis). Because of its prominent role in atherosclerosis, shear stress has gained particular attention, but other factors such as circumferential stretch are equally important to maintain the integrity and to (re)model the vascular network. While these haemodynamic forces are crucial determinants of the appearance and the structure of the vasculature, they are in turn subjected to structural changes in the blood vessels, such as an increased arterial stiffness in chronic arterial hypertension and ageing. This results in an interplay between the various forces (biomechanical forces) and the involved vascular elements. Although many molecular mediators of biomechanical forces still need to be identified, there is plenty of evidence for the causal role of these forces in vascular growth processes, which will be summarized in this review. In addition, we will discuss the effects of concomitant diseases and disorders on these processes by altering either the biomechanics or their transduction into biological signals. Particularly endothelial dysfunction, diabetes, hypercholesterolaemia, and age affect mechanosensing and -transduction of flow signals, thereby underpinning their influence on cardiovascular health. Finally, current approaches to modify biomechanical forces to therapeutically modulate vascular growth in humans will be described.
Collapse
Affiliation(s)
- Imo E Hoefer
- Laboratory of Experimental Cardiology, University Medical Center, G02.523, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| | | | | |
Collapse
|
134
|
Gonzalez J, Essig M, Klein J, Caubet C, Dissard R, Bascands JL, Schanstra JP, Buffin-Meyer B. [Renal urinary shear stress: a novel actor in nephropathies]. Med Sci (Paris) 2013; 29:279-85. [PMID: 23544382 DOI: 10.1051/medsci/2013293014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The role of fluid shear stress is well established in vascular pathophysiology. However, urinary shear stress now also appears as a key mechanism in the regulation of renal function. In addition, there is a growing body of evidence showing that modified urinary shear stress is involved in the development of nephropathies. Therefore we review here the state-of-the-art on the pathophysiological roles of urinary shear stress.
Collapse
|
135
|
Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of microRNAs. Am J Physiol Heart Circ Physiol 2013; 304:H1050-9. [PMID: 23396454 DOI: 10.1152/ajpheart.00267.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A number of cardiovascular diseases, such as restenosis, aneurysm, and atherosclerosis, lead to vascular remodeling associated with complex adaptive reactions of different cell populations. These reactions include growth of smooth muscle cells, proliferation of endothelial cells, and the inflammatory response of macrophages. MicroRNAs (miRNAs), a class of short RNAs, play key roles in various biological processes and in the development of human disease by post-transcriptional regulation of gene expression. Here, we review the molecular mechanisms of a subset of miRNAs involved in vascular remodeling, including miR-143/145, miR-221/222, miR-126, miR-21, and miR-155. Some of these miRNAs, such as miR-143/145 and miR-126, have been shown to be protective during vascular remodeling, whereas others, such as miR-21, may promote the cellular response that leads to neointima formation. The increasing knowledge regarding the roles of miRNAs in vascular remodeling opens novel avenues for the treatment of various cardiovascular diseases. However, more in vivo studies on the functional roles of these miRNAs are required in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | |
Collapse
|
136
|
Gokina NI, Bonev AD, Gokin AP, Goloman G. Role of impaired endothelial cell Ca(2+) signaling in uteroplacental vascular dysfunction during diabetic rat pregnancy. Am J Physiol Heart Circ Physiol 2013; 304:H935-45. [PMID: 23376827 DOI: 10.1152/ajpheart.00513.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus in pregnancy is associated with impaired endothelium-mediated dilatation of maternal arteries, although the underlying cellular mechanisms remain unknown. In this study, we hypothesized that diabetes during rat gestation attenuates agonist-induced uterine vasodilation through reduced endothelial cell (EC) Ca(2+) elevations and impaired smooth muscle cell (SMC) hyperpolarization and SMC intracellular Ca(2+) concentration ([Ca(2+)]i) responses. Diabetes was induced by an injection of streptozotocin to second-day pregnant rats and confirmed by the development of maternal hyperglycemia. Control rats were injected with a citrate buffer. Fura-2-based measurements of SMC [Ca(2+)]i or microelectrode recordings of SMC membrane potential were performed concurrently with dilator responses to ACh in uteroplacental arteries from control and diabetic pregnant rats. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations in pressurized vessels and small EC sheets were studied as well. Diabetes reduced ACh-induced vasodilation due to a markedly impaired EDHF-mediated response. Diminished vasodilation to ACh was associated with attenuated SMC hyperpolarization and [Ca(2+)]i responses. Basal levels of EC [Ca(2+)]i and ACh-induced EC [Ca(2+)]i elevations were significantly reduced by diabetes. In conclusion, these data demonstrate that reduced endothelium-mediated hyperpolarization contributes to attenuated uteroplacental vasodilation and SMC [Ca(2+)]i responses to ACh in diabetic pregnancy. Impaired endothelial Ca(2+) signaling is in part responsible for endothelial dysfunction in the uterine resistance vasculature of diabetic rats. Pharmacological improvement of EC Ca(2+) handling may provide an important strategy for the restoration of endothelial function and enhancement of maternal blood flow in human pregnancies complicated by diabetes.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology, and Reproductive Sciences, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
137
|
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 2013; 42:8339-59. [DOI: 10.1039/c3cs60145e] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
138
|
Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis 2012; 16:1-14. [PMID: 23010872 DOI: 10.1007/s10456-012-9307-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/15/2012] [Indexed: 12/21/2022]
Abstract
One of the main limitation in obtaining thick, 3-dimensional viable engineered constructs is the inability to provide a sufficient and functional blood vessel system essential for the in vitro survival and the in vivo integration of the construct. Different strategies have been proposed to simulate the ingrowth of new blood vessels into engineered tissue, such as the use of growth factors, fabrication scaffold technologies, in vivo prevascularization and cell-based strategies, and it has been demonstrated that endothelial cells play a central role in the neovascularization process and in the control of blood vessel function. In particular, different "environmental" settings (origin, presence of supporting cells, biomaterial surface, presence of hemodynamic forces) strongly influence endothelial cell function, angiogenic potential and the in vivo formation of durable vessels. This review provides an overview of the different techniques developed so far for the vascularization of tissue-engineered constructs (with their advantages and pitfalls), focusing the attention on the recent development in the cell-based vascularization strategy and the in vivo applications.
Collapse
Affiliation(s)
- Silvia Baiguera
- BIOAIRLab, European Center for Thoracic Surgery, University Hospital Careggi, Florence, Italy.
| | | |
Collapse
|
139
|
Seiler C, Davuluri G, Abrams J, Byfield FJ, Janmey PA, Pack M. Smooth muscle tension induces invasive remodeling of the zebrafish intestine. PLoS Biol 2012; 10:e1001386. [PMID: 22973180 PMCID: PMC3433428 DOI: 10.1371/journal.pbio.1001386] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022] Open
Abstract
The signals that initiate cell invasion are not well understood, but there is increasing evidence that extracellular physical signals play an important role. Here we show that epithelial cell invasion in the intestine of zebrafish meltdown (mlt) mutants arises in response to unregulated contractile tone in the surrounding smooth muscle cell layer. Physical signaling in mlt drives formation of membrane protrusions within the epithelium that resemble invadopodia, matrix-degrading protrusions present in invasive cancer cells. Knockdown of Tks5, a Src substrate that is required for invadopodia formation in mammalian cells blocked formation of the protrusions and rescued invasion in mlt. Activation of Src-signaling induced invadopodia-like protrusions in wild type epithelial cells, however the cells did not migrate into the tissue stroma, thus indicating that the protrusions were required but not sufficient for invasion in this in vivo model. Transcriptional profiling experiments showed that genes responsive to reactive oxygen species (ROS) were upregulated in mlt larvae. ROS generators induced invadopodia-like protrusions and invasion in heterozygous mlt larvae but had no effect in wild type larvae. Co-activation of oncogenic Ras and Wnt signaling enhanced the responsiveness of mlt heterozygotes to the ROS generators. These findings present the first direct evidence that invadopodia play a role in tissue cell invasion in vivo. In addition, they identify an inducible physical signaling pathway sensitive to redox and oncogenic signaling that can drive this process.
Collapse
Affiliation(s)
- Christoph Seiler
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gangarao Davuluri
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fitzroy J. Byfield
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul A. Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Pack
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
140
|
Gaynes B, Teng PY, Wanek J, Shahidi M. Feasibility of conjunctival hemodynamic measurements in rabbits: reproducibility, validity, and response to acute hypotension. Microcirculation 2012; 19:521-9. [PMID: 22486988 PMCID: PMC3648337 DOI: 10.1111/j.1549-8719.2012.00182.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the feasibility of conjunctival hemodynamic measurements based on assessment of reproducibility, validity, and response to acute hypotension. METHODS Image sequences of the conjunctival microvasculature of rabbits were captured using a slit lamp biomicroscope under a steady-state condition, after topical administration of phenylephrine, and after intravenous administration of esmolol. Venous hemodynamic parameters (diameter, blood velocity, blood flow, and wall shear stress) were derived. RESULTS Conjunctival venous diameters ranged from 9 to 34 μm and blood velocities ranged from 0.08 to 0.95 mm/s. Coefficients of variation of venous diameter and blood velocity measurements were, on average, 6% and 14%, respectively. Automated and manual measurements of venous diameter and velocity were highly correlated (R = 0.97; p < 0.001; n = 16). With phenylephrine administration, diameter and velocity were reduced by 21% and 69%, respectively. Following esmolol administration, blood pressure was reduced with a concomitant decrease in velocity, followed by recovery to baseline. Venous blood velocity, flow, and WSS were correlated with blood pressure (R ≥ 0.52; p ≤ 0.01). CONCLUSIONS The feasibility of quantifying alterations in microvascular hemodynamics in the bulbar conjunctiva was established. The method is of potential value in evaluating microcirculatory hemodynamics related to cardiovascular function.
Collapse
Affiliation(s)
- Bruce Gaynes
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | |
Collapse
|
141
|
Cui X, Zhang X, Guan X, Li H, Li X, Lu H, Cheng M. Shear stress augments the endothelial cell differentiation marker expression in late EPCs by upregulating integrins. Biochem Biophys Res Commun 2012; 425:419-25. [PMID: 22846566 DOI: 10.1016/j.bbrc.2012.07.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022]
Abstract
Vascular endothelial cell injury has been implicated in the onset of atherosclerosis. A number of previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the detailed events that contribute to the shear stress-induced EPC differentiation, in particular the mechanisms of mechanotransduction, remain to be identified. The present study was undertaken to further confirm the effects of shear stress on the late EPC differentiation, and to investigate the role of integrins in this procedure. Shear stress was observed to increase the expression of endothelial cell differentiation markers, such as vWF and CD31, in late EPCs isolated from rat bone marrow. Shear stress moreover enhanced the mRNA expression of integrin subunits β(1) and β(3) in a time-dependent manner, and also upregulated specific integrins in late EPCs plated on substrates containing various extracellular matrix (ECM) proteins. In addition, the shear stress-induced vWF and CD31 expression were found to be related to the levels of integrin β(1) and β(3), and were inhibited in late EPCs treated with RGD peptide (Gly-Arg-Gly-Asp-Asn-Pro, GRGDNP) that blocks the binding of integrins to the extracellular matrix. Additionally, this increase was also attenuated by both anti-β(1) integrin and anti-β(3) integrin antibodies. The integrin subunits β(1) and β(3) thus play important roles in regulating the shear stress-induced endothelial cell differentiation marker expression in late EPCs. This may provide novel insights into the mechanisms of mechanotransduction in shear stress-mediated late EPC differentiation.
Collapse
Affiliation(s)
- Xiaodong Cui
- Medicine Research Center, Weifang Medical College, Weifang, Shandong 261053, PR China
| | | | | | | | | | | | | |
Collapse
|
142
|
Samuel SP, Jain N, O'Dowd F, Paul T, Kashanin D, Gerard VA, Gun'ko YK, Prina-Mello A, Volkov Y. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int J Nanomedicine 2012; 7:2943-56. [PMID: 22745555 PMCID: PMC3384367 DOI: 10.2147/ijn.s30624] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelium is a potential target for therapeutic intervention in diverse pathological processes, including inflammation, atherosclerosis, and thrombosis. By virtue of their intravascular topography, endothelial cells are exposed to dynamically changing mechanical forces that are generated by blood flow. In the present study, we investigated the interactions of negatively charged 2.7 nm and 4.7 nm CdTe quantum dots and 50 nm silica particles with cultured endothelial cells under regulated shear stress (SS) conditions. Cultured cells within the engineered microfluidic channels were exposed to nanoparticles under static condition or under low, medium, and high SS rates (0.05, 0.1, and 0.5 Pa, respectively). Vascular inflammation and associated endothelial damage were simulated by treatment with tumor necrosis factor-α (TNF-α) or by compromising the cell membrane with the use of low Triton X-100 concentration. Our results demonstrate that SS is critical for nanoparticle uptake by endothelial cells. Maximal uptake was registered at the SS rate of 0.05 Pa. By contrast, endothelial exposure to mild detergents or TNF-α treatment had no significant effect on nanoparticle uptake. Atomic force microscopy demonstrated the increased formation of actin-based cytoskeletal structures, including stress fibers and membrane ruffles, which have been associated with nanoparticle endocytosis. In conclusion, the combinatorial effects of SS rates, vascular endothelial conditions, and nanoparticle physical and chemical properties must be taken into account for the successful design of nanoparticle-drug conjugates intended for parenteral delivery.
Collapse
Affiliation(s)
- Stephen Paul Samuel
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Milner JS, Grol MW, Beaucage KL, Dixon SJ, Holdsworth DW. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain. J Funct Biomater 2012; 3:209-24. [PMID: 24956525 PMCID: PMC4031015 DOI: 10.3390/jfb3010209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 12/20/2022] Open
Abstract
Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.
Collapse
Affiliation(s)
- Jaques S Milner
- Imaging Research Laboratory, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5K8, Canada.
| | - Matthew W Grol
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Kim L Beaucage
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Holdsworth
- Imaging Research Laboratory, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5K8, Canada.
| |
Collapse
|
144
|
Goral VN, Yuen PK. Microfluidic platforms for hepatocyte cell culture: new technologies and applications. Ann Biomed Eng 2011; 40:1244-54. [PMID: 22042626 DOI: 10.1007/s10439-011-0453-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/20/2011] [Indexed: 01/26/2023]
Abstract
In this article, we summarize the key elements of microfluidic platforms for mimicking in vivo hepatocyte cell culture and the major recent advances in this area. Specifically, we will give brief background and rationale for key design requirements for mimicking in vivo hepatocyte cell culture, and then summarize findings, applications, and limitations from microfluidic platforms that addressed these design requirements. Although no ideal microfluidic platform has so far been developed for fully mimicking in vivo hepatocyte cell culture, some approaches and designs have demonstrated great potential in this area.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Science and Technology, Corning Incorporated, Corning, NY 14831-0001, USA
| | | |
Collapse
|
145
|
Abstract
Shear stress plays a critical role in the regulation of vascular biology and diseases, such as atherosclerosis, via modulation of signal transduction and redox balance. Atherosclerosis preferentially occurs in a site-specific manner linked to disturbed flow. In this Forum on Vascular Shear Stress, emerging role of redox-dependent molecular mechanisms by which shear stress regulates pro- and antiatherogenic responses in endothelial cells both in vitro and in vivo are reviewed in depth by experts. This Forum also provides comprehensive reviews regarding experimental apparatus and in vivo, ex vivo, and in vitro systems used for shear stress studies.
Collapse
Affiliation(s)
- Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
- Department of Bioinspired Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
146
|
Hebbel RP. Reconstructing sickle cell disease: a data-based analysis of the "hyperhemolysis paradigm" for pulmonary hypertension from the perspective of evidence-based medicine. Am J Hematol 2011; 86:123-54. [PMID: 21264896 DOI: 10.1002/ajh.21952] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "hyperhemolytic paradigm" (HHP) posits that hemolysis in sickle disease sequentially and causally establishes increased cell-free plasma Hb, consumption of NO, a state of NO biodeficiency, endothelial dysfunction, and a high prevalence of pulmonary hypertension. The basic science underpinning this concept has added an important facet to the complexity of vascular pathobiology in sickle disease, and clinical research has identified worrisome clinical issues. However, this critique identifies and explains a number of significant concerns about the various HHP component tenets. In addressing these issues, this report presents: a very brief history of the HHP, an integrated synthesis of mechanisms underlying sickle hemolysis, a review of the evidentiary value of hemolysis biomarkers, an examination of evidence bearing on existence of a hyperhemolytic subgroup, and a series of questions that should naturally be applied to the HHP if it is examined using critical thinking skills, the fundamental basis of evidence-based medicine. The veracity of different HHP tenets is found to vary from true, to weakly supported, to demonstrably false. The thesis is developed that the HHP has misidentified the mechanism and clinical significance of its findings. The extant research questions identified by these analyses are delineated, and a conservative, evidence-based approach is suggested for application in clinical medicine.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Department of Medicine, Division of Hematology‐Oncology‐Transplantation, Vascular Biology Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|