101
|
Tian Y, Zonca MR, Imbrogno J, Unser AM, Sfakis L, Temple S, Belfort G, Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater Sci Eng 2017; 3:890-902. [PMID: 33429561 DOI: 10.1021/acsbiomaterials.6b00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell attachment is essential for the growth and polarization of retinal pigment epithelial (RPE) cells. Currently, surface coatings derived from biological proteins are used as the gold standard for cell culture. However, downstream processing and purification of these biological products can be cumbersome and expensive. In this study, we constructed a library of chemically modified nanofibers to mimic the Bruch's membrane of the retinal pigment epithelium. Using atmospheric-pressure plasma-induced graft polymerization with a high-throughput screening platform to modify the nanofibers, we identified three polyethylene glycol (PEG)-grafted nanofiber surfaces (PEG methyl ether methacrylate, n = 4, 8, and 45) from a library of 62 different surfaces as favorable for RPE cell attachment, proliferation, and maturation in vitro with cobblestone morphology. Compared with the biologically derived culture matrices such as vitronectin-based peptide Synthemax, our newly discovered synthetic PEG surfaces exhibit similar growth and polarization of retinal pigment epithelial (RPE) cells. However, they are chemically defined, are easy to synthesize on a large scale, are cost-effective, are stable with long-term storage capability, and provide a more physiologically accurate environment for RPE cell culture. To our knowledge, no one has reported that PEG derivatives directly support attachment and growth of RPE cells with cobblestone morphology. This study offers a unique PEG-modified 3D cell culture system that supports RPE proliferation, differentiation, and maturation with cobblestone morphology, providing a new avenue for RPE cell culture, disease modeling, and cell replacement therapy.
Collapse
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Michael R Zonca
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Lauren Sfakis
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Sally Temple
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, United States
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
102
|
Nazemroaya F, Soheili ZS, Samiei S, Deezagi A, Ahmadieh H, Davari M, Heidari R, Bagheri A, Darvishalipour-Astaneh S. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA. J Cell Biochem 2017; 118:3080-3089. [PMID: 28370284 DOI: 10.1002/jcb.26014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Retinal pigment epithelium (RPE) cells represent a great potential to rescue degenerated cells of the damaged retina. Activation of the virtually plastic properties of RPE cells may aid in recovery of retinal degenerative disorders without the need for entire RPE sheet transplantation. Poly (2-hydroxyethyl methacrylate)(PolyHEMA) is one of the most important hydrogels in the biomaterials world. This hydrophobic polymer does not normally support attachment of mammalian cells. In the current study we investigated the effect of PolyHEMA as a cell culture substrate on the growth, differentiation, and plasticity of hRPE cells. hRPE cells were isolated from neonatal human globes and cultured on PolyHEMA and polystyrene substrates (as controls) in 24-well culture plates. DMEM/F12 was supplemented with 10% fetal bovine serum (FBS) and/or 30% human amniotic fluid (HAF) for cultured cells on polystyrene and PolyHEMA coated vessels. Morphology, rate of cell proliferation and cell death, MTT assay, immunocytochemistry and Real-Time RT-PCR were performed to investigate the effects of PolyHEMA on the growth and differentiation of cultured hRPE cells. Proliferation rate of the cells that had been cultured on PolyHEMA was reduced; PolyHEMA did not induce cell death in the hRPE cultures. hRPE cells cultured on PolyHEMA formed many giant spheroid colonies. The giant colonies were re-cultured and the presence of retinal progenitor markers and markers of hRPE cells were detected in cell cultures on PolyHEMA. PolyHEMA seems to be promising for both maintenance and de-differentiation of hRPE cells and expansion of the retinal progenitor cells from the cultures that are originated from hRPE cells. J. Cell. Biochem. 118: 3080-3089, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fatemeh Nazemroaya
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Shahram Samiei
- Blood Transfusion Research Centre High Institute for Research and Education in Transfusion, Medicine, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Davari
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Razeih Heidari
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abouzar Bagheri
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | |
Collapse
|
103
|
Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS One 2017; 12:e0173575. [PMID: 28282420 PMCID: PMC5345835 DOI: 10.1371/journal.pone.0173575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70–85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.
Collapse
|
104
|
Mora C, Serzanti M, Consiglio A, Memo M, Dell'Era P. Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol 2017; 33:351-360. [PMID: 28176010 DOI: 10.1007/s10565-017-9384-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
Collapse
Affiliation(s)
- Cristina Mora
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Marialaura Serzanti
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Antonella Consiglio
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Maurizio Memo
- Pharmacology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
105
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
106
|
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs. Sci Rep 2016; 6:37637. [PMID: 27917881 PMCID: PMC5137163 DOI: 10.1038/srep37637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.
Collapse
|
107
|
Sachdeva MM, Eliott D. Stem Cell-Based Therapy for Diseases of the Retinal Pigment Epithelium: From Bench to Bedside. Semin Ophthalmol 2016; 31:25-9. [PMID: 26959126 DOI: 10.3109/08820538.2015.1115253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Age-related macular degeneration (AMD) represents a leading cause of blindness in the elderly, and Stargardt's macular dystrophy (SMD) is the most common form of juvenile-onset macular degeneration. Dry AMD and SMD share an underlying pathophysiology, namely dysfunction and ultimately loss of the retinal pigment epithelium (RPE), suggesting that RPE transplantation may offer a potential treatment strategy for both patient populations. Stem cells have emerged as a promising source of replacement RPE. During the past 15 years, extraordinary strides have been made in the identification, characterization, and differentiation of stem cells. Recently, this large body of basic science and preclinical research has been translated to patient care with the publication of results from Phase 1/2 trials demonstrating safety of transplantation of human embryonic stem cell (hESC)-derived RPE into patients with AMD and SMD. While significant challenges remain before dry AMD and SMD become treatable diseases, the goal has become more tangible.
Collapse
Affiliation(s)
- Mira M Sachdeva
- a Harvard Medical School, Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Dean Eliott
- a Harvard Medical School, Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| |
Collapse
|
108
|
Ilic D. Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April 2016– 31 May 2016. Regen Med 2016. [DOI: 10.2217/rme-2016-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Science & Medicine, King's College London, UK
| |
Collapse
|
109
|
Choudhary P, Booth H, Gutteridge A, Surmacz B, Louca I, Steer J, Kerby J, Whiting PJ. Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med 2016; 6:490-501. [PMID: 28191760 PMCID: PMC5442825 DOI: 10.5966/sctm.2016-0088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age‐related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno‐free media and matrices. The method utilizes sequential inhibition and activation of the Activin and bone morphogenetic protein signaling pathways and can be applied to both human embryonic stem cells and induced pluripotent stem cells as the starting population. In addition, we use whole genome transcript analysis to characterize cells at different stages of differentiation that provides further understanding of the developmental dynamics and fate specification of RPE. We show that with the described method, RPE develop through stages consistent with their formation during embryonic development. This characterization— together with the absence of steps involving embryoid bodies, three‐dimensional culture, or manual dissections, which are common features of other protocols—makes this process very attractive for use in research as well as for clinical applications. Stem Cells Translational Medicine2017;6:490–501
Collapse
Affiliation(s)
- Parul Choudhary
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Heather Booth
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Alex Gutteridge
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Beata Surmacz
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Irene Louca
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Juliette Steer
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Julie Kerby
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| | - Paul John Whiting
- Pfizer Neuroscience and Pain Research Unit, Great Abington, Cambridge, United Kingdom
| |
Collapse
|
110
|
Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field. Stem Cells Int 2016; 2016:2361763. [PMID: 27594887 PMCID: PMC4995319 DOI: 10.1155/2016/2361763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue.
Collapse
|
111
|
Pluripotent Stem Cell-Based Therapies in Combination with Substrate for the Treatment of Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2016; 32:261-71. [DOI: 10.1089/jop.2015.0153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
112
|
Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO, Gamm DM, Clegg DO. Induced Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium: A Comparative Study Between Cell Lines and Differentiation Methods. J Ocul Pharmacol Ther 2016; 32:317-30. [PMID: 27182743 DOI: 10.1089/jop.2016.0022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The application of induced pluripotent stem cell-derived retinal pigmented epithelium (iPSC-RPE) in patients with retinal degenerative disease is making headway toward the clinic, with clinical trials already underway. Multiple groups have developed methods for RPE differentiation from pluripotent cells, but previous studies have shown variability in iPSC propensity to differentiate into RPE. METHODS This study provides a comparison between 2 different methods for RPE differentiation: (1) a commonly used spontaneous continuously adherent culture (SCAC) protocol and (2) a more rapid, directed differentiation using growth factors. Integration-free iPSC lines were differentiated to RPE, which were characterized with respect to global gene expression, expression of RPE markers, and cellular function. RESULTS We found that all 5 iPSC lines (iPSC-1, iPSC-2, iPSC-3, iPSC-4, and iPSC-12) generated RPE using the directed differentiation protocol; however, 2 of the 5 iPSC lines (iPSC-4 and iPSC-12) did not yield RPE using the SCAC method. Both methods can yield bona fide RPE that expresses signature RPE genes and carry out RPE functions, and are similar, but not identical to fetal RPE. No differences between methods were detected in transcript levels, protein localization, or functional analyses between iPSC-1-RPE, iPSC-2-RPE, and iPSC-3-RPE. Directed iPSC-3-RPE showed enhanced transcript levels of RPE65 compared to directed iPSC-2-RPE and increased BEST1 expression and pigment epithelium-derived factor (PEDF) secretion compared to directed iPSC-1-RPE. In addition, SCAC iPSC-3-RPE secreted more PEDF than SCAC iPSC-1-RPE. CONCLUSIONS The directed protocol is a more reliable method for differentiating RPE from various pluripotent sources and some iPSC lines are more amenable to RPE differentiation.
Collapse
Affiliation(s)
- Lyndsay L Leach
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California.,3 Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | - Roxanne H Croze
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California.,3 Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | - Qirui Hu
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Vignesh P Nadar
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,4 California State University , Channel Islands, Camarillo, California
| | - Tracy N Clevenger
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California.,3 Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | - Britney O Pennington
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California
| | - David M Gamm
- 5 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,6 McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin.,7 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Dennis O Clegg
- 1 Center for Stem Cell Biology and Engineering, University of California , Santa Barbara, California.,2 Neuroscience Research Institute, University of California , Santa Barbara, California.,3 Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| |
Collapse
|
113
|
Song MJ, Bharti K. Looking into the future: Using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res 2016; 1638:2-14. [PMID: 26706569 PMCID: PMC4837038 DOI: 10.1016/j.brainres.2015.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023]
Abstract
Retinal degenerative diseases are the leading cause of irreversible vision loss in developed countries. In many cases the diseases originate in the homeostatic unit in the back of the eye that contains the retina, retinal pigment epithelium (RPE) and the choriocapillaris. RPE is a central and a critical component of this homeostatic unit, maintaining photoreceptor function and survival on the apical side and choriocapillaris health on the basal side. In diseases like age-related macular degeneration (AMD), it is thought that RPE dysfunctions cause disease-initiating events and as the RPE degenerates photoreceptors begin to die and patients start loosing vision. Patient-specific induced pluripotent stem (iPS) cell-derived RPE provides direct access to a patient's genetics and allow the possibility of identifying the initiating events of RPE-associated degenerative diseases. Furthermore, iPS cell-derived RPE cells are being tested as a potential cell replacement in disease stages with RPE atrophy. In this article we summarize the recent progress in the field of iPS cell-derived RPE "disease modeling" and cell therapies and also discuss the possibilities of developing a model of the entire homeostatic unit to aid in studying disease processes in the future. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Min Jae Song
- Unit on Ocular and Stem Cell Translational Research National Eye Institute, 10 Center Drive, Room 10B10, Bethesda, MD 20892, United States
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research National Eye Institute, 10 Center Drive, Room 10B10, Bethesda, MD 20892, United States.
| |
Collapse
|
114
|
Choudhary P, Gutteridge A, Impey E, Storer RI, Owen RM, Whiting PJ, Bictash M, Benn CL. Targeting the cAMP and Transforming Growth Factor-β Pathway Increases Proliferation to Promote Re-Epithelialization of Human Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med 2016; 5:925-37. [PMID: 27112176 DOI: 10.5966/sctm.2015-0247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Retinal pigment epithelium (RPE) cell integrity is critical to the maintenance of retinal function. Many retinopathies such as age-related macular degeneration (AMD) are caused by the degeneration or malfunction of the RPE cell layer. Replacement of diseased RPE with healthy, stem cell-derived RPE is a potential therapeutic strategy for treating AMD. Human embryonic stem cells (hESCs) differentiated into RPE progeny have the potential to provide an unlimited supply of cells for transplantation, but challenges around scalability and efficiency of the differentiation process still remain. Using hESC-derived RPE as a cellular model, we sought to understand mechanisms that could be modulated to increase RPE yield after differentiation. We show that RPE epithelialization is a density-dependent process, and cells seeded at low density fail to epithelialize. We demonstrate that activation of the cAMP pathway increases proliferation of dissociated RPE in culture, in part through inhibition of transforming growth factor-β (TGF-β) signaling. This results in enhanced uptake of epithelial identity, even in cultures seeded at low density. In line with these findings, targeted manipulation of the TGF-β pathway with small molecules produces an increase in efficiency of RPE re-epithelialization. Taken together, these data highlight mechanisms that promote epithelial fate acquisition in stem cell-derived RPE. Modulation of these pathways has the potential to favorably impact scalability and clinical translation of hESC-derived RPE as a cell therapy. SIGNIFICANCE Stem cell-derived retinal pigment epithelium (RPE) is currently being evaluated as a cell-replacement therapy for macular degeneration. This work shows that the process of generating RPE in vitro is regulated by the cAMP and transforming growth factor-β signaling pathway. Modulation of these pathways by small molecules, as identified by phenotypic screening, leads to an increased efficiency of generating RPE cells with a higher yield. This can have a potential impact on manufacturing transplantation-ready cells at large scale and is advantageous for clinical studies using this approach in the future.
Collapse
Affiliation(s)
- Parul Choudhary
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Alex Gutteridge
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Emma Impey
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - R Ian Storer
- Pfizer Worldwide Medicinal Chemistry, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Robert M Owen
- Pfizer Worldwide Medicinal Chemistry, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Paul J Whiting
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Magda Bictash
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| | - Caroline L Benn
- Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, United Kingdom
| |
Collapse
|
115
|
West MD, Binette F, Larocca D, Chapman KB, Irving C, Sternberg H. The germline/soma dichotomy: implications for aging and degenerative disease. Regen Med 2016; 11:331-4. [DOI: 10.2217/rme-2015-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human somatic cells are mortal due in large part to telomere shortening associated with cell division. Limited proliferative capacity may, in turn, limit response to injury and may play an important role in the etiology of age-related pathology. Pluripotent stem cells cultured in vitro appear to maintain long telomere length through relatively high levels of telomerase activity. We propose that the induced reversal of cell aging by transcriptional reprogramming, or alternatively, human embryonic stem cells engineered to escape immune surveillance, are effective platforms for the industrial-scale manufacture of young cells for the treatment of age-related pathologies. Such cell-based regenerative therapies will require newer manufacturing and delivery technologies to insure highly pure, identified and potent pluripotency-based therapeutic formulations.
Collapse
Affiliation(s)
- Michael D West
- BioTime, Inc., 1010 Atlantic Ave., Alameda, CA 94501, USA
| | | | | | | | | | - Hal Sternberg
- BioTime, Inc., 1010 Atlantic Ave., Alameda, CA 94501, USA
| |
Collapse
|
116
|
Eidet JR, Reppe S, Pasovic L, Olstad OK, Lyberg T, Khan AZ, Fostad IG, Chen DF, Utheim TP. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway. Sci Rep 2016; 6:22671. [PMID: 26940175 PMCID: PMC4778122 DOI: 10.1038/srep22671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.
Collapse
Affiliation(s)
- J R Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - T Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - I G Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - D F Chen
- Schepens Eye Research Institute, Harvard Medical School/Massachusetts Eye and Ear, Boston, MA
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
117
|
Forest DL, Johnson LV, Clegg DO. Cellular models and therapies for age-related macular degeneration. Dis Model Mech 2016; 8:421-7. [PMID: 26035859 PMCID: PMC4415892 DOI: 10.1242/dmm.017236] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE) cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD). A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease. Summary: Here, we discuss the emerging cell-culture models and potential stem-cell-based therapies for AMD, a blinding disorder that affects millions of people worldwide.
Collapse
Affiliation(s)
- David L Forest
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Lincoln V Johnson
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Dennis O Clegg
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
118
|
Parker J, Mitrousis N, Shoichet MS. Hydrogel for Simultaneous Tunable Growth Factor Delivery and Enhanced Viability of Encapsulated Cells in Vitro. Biomacromolecules 2016; 17:476-84. [DOI: 10.1021/acs.biomac.5b01366] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- James Parker
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Nikolaos Mitrousis
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Molly S. Shoichet
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
119
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
120
|
Induced Pluripotent Stem Cells and Outer Retinal Disease. Stem Cells Int 2016; 2016:2850873. [PMID: 26880948 PMCID: PMC4736410 DOI: 10.1155/2016/2850873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
The retina, which is composed of multiple layers of differing cell types, has been considered the first choice for gene therapy, disease modeling, and stem cell-derived retinal cell transplant therapy. Because of its special characteristics, the retina, located in the posterior part of the eye, can be well observed directly after gene therapy or transplantation. The blood-retinal barrier is part of a specialized ocular microenvironment that is immune privileged. This protects transplanted cells and tissue. Having two eyes makes perfect natural control possible after a single eye receives gene or stem cell therapy. For this reason, research about exploring retinal diseases' underlying molecular mechanisms and potential therapeutic approach using stem cell technique has been developing rapidly. This review is to present an up-to-date summary of the iPSC's sources, variations, differentiation methods, and the wide-ranging application of iPSCs-RPCS or iPSCs-RPE on retinal disease modeling, diagnostics, and therapeutics.
Collapse
|
121
|
iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study. Stem Cells Int 2016; 2016:8470263. [PMID: 26880994 PMCID: PMC4736415 DOI: 10.1155/2016/8470263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023] Open
Abstract
Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE) cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD), a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE) viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes.
Collapse
|
122
|
Thies RS, Murry CE. The advancement of human pluripotent stem cell-derived therapies into the clinic. Development 2016; 142:3077-84. [PMID: 26395136 DOI: 10.1242/dev.126482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs.
Collapse
Affiliation(s)
- R Scott Thies
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Department of Bioengineering, University of Washington, Seattle, WA 98195, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
123
|
Lad EM, Cousins SW, Proia AD. Identity of pigmented subretinal cells in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2016; 254:1239-41. [PMID: 26728757 DOI: 10.1007/s00417-015-3249-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, DUMC 3802, Durham, NC, 27710, USA.
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, DUMC 3802, Durham, NC, 27710, USA
| | - Alan D Proia
- Department of Ophthalmology, Duke University Medical Center, DUMC 3802, Durham, NC, 27710, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
124
|
Wang Q, Stern JH, Temple S. Regenerative Medicine: Solution in Sight. RETINAL DEGENERATIVE DISEASES 2016; 854:543-8. [DOI: 10.1007/978-3-319-17121-0_72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
125
|
Plaza Reyes A, Petrus-Reurer S, Antonsson L, Stenfelt S, Bartuma H, Panula S, Mader T, Douagi I, André H, Hovatta O, Lanner F, Kvanta A. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem Cell Reports 2015; 6:9-17. [PMID: 26724907 PMCID: PMC4720022 DOI: 10.1016/j.stemcr.2015.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells could replace lost tissue in geographic atrophy (GA) but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model. Xeno-free and defined differentiation of hES-RPE cells using recombinant laminin-521 Functional monolayer integration of hES-RPE cells in a novel large-eyed disease model Rescue of photoreceptors from induced degeneration by transplanted hES-RPE cells
Collapse
Affiliation(s)
- Alvaro Plaza Reyes
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Sandra Petrus-Reurer
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden; Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Liselotte Antonsson
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Sonya Stenfelt
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Hammurabi Bartuma
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Sarita Panula
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Theresa Mader
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Iyadh Douagi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14157 Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| | - Outi Hovatta
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden; Cell Therapy Department, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden.
| | - Anders Kvanta
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden
| |
Collapse
|
126
|
Gong J, Fields MA, Moreira EF, Bowrey HE, Gooz M, Ablonczy Z, Del Priore LV. Differentiation of Human Protein-Induced Pluripotent Stem Cells toward a Retinal Pigment Epithelial Cell Fate. PLoS One 2015; 10:e0143272. [PMID: 26606685 PMCID: PMC4659559 DOI: 10.1371/journal.pone.0143272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Compared with many induced pluripotent stem cell (iPSC) lines generated using retrovirus and other non-integrating methods, the utilization of human protein-induced iPSC (piPSC) lines may provide a safer alternative for the generation of retinal pigment epithelial (RPE) cells for transplantation in retinal degenerative diseases. Here we assess the ability of piPSCs to differentiate into RPE cells, and to perform native RPE cell behavior. piPSCs were seeded in 6-well low-attachment plates to allow embryoid body formation, and then analyzed for pluripotent stem cell markers NANOG, SSEA4 and TRA-1-60 by immunofluorescence. Following colony formation, piPSCs were assessed for confirmation of RPE cell differentiation by staining for zonula occludens (ZO-1), bestrophin, microphthalmia-associated transcription factor (MITF) and retinal pigment epithelium specific protein-65 (RPE65). To evaluate piPSC-RPE cell phagocytic ability, adult bovine photoreceptor rod outer segments (ROS) were fed to piPSC-RPE cells, which were analyzed by fluorescent microscopy and flow cytometry. Undifferentiated piPSCs expressed all pluripotent markers assessed and formed embryoid body aggregates after 7 days. Differentiated piPSC-RPE cells expressed ZO-1, bestrophin, MITF and RPE65, typical RPE cell markers. Flow cytometry revealed robust ingestion of fluorescently-labeled ROS by piPSC-RPE cells, which was over four-times greater than that of undifferentiated piPSCs and comparable to that of an immortalized RPE cell line. Phagocytosis activity by piPSC-RPE cells was significantly reduced after the addition of anti-integrin αVβ5. In conclusion, piPSCs can be differentiated toward an RPE cell fate, expressing RPE cell markers and resembling native RPE cells in behavior. These results demonstrate that piPSCs can be differentiated into RPE-like cells using a method that has an increased safety profile, a critical consideration for the development of better treatments for retinal degenerative diseases such as age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Jie Gong
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Mark A. Fields
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Ernesto F. Moreira
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Hannah E. Bowrey
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Zsolt Ablonczy
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
| | - Lucian V. Del Priore
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
127
|
Usui Y, Westenskow PD, Murinello S, Dorrell MI, Scheppke L, Bucher F, Sakimoto S, Paris LP, Aguilar E, Friedlander M. Angiogenesis and Eye Disease. Annu Rev Vis Sci 2015; 1:155-184. [DOI: 10.1146/annurev-vision-082114-035439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Peter D. Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
| | - Salome Murinello
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Michael I. Dorrell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
- Department of Biology, Point Loma Nazarene University, San Diego, California 92106
| | - Lea Scheppke
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Felicitas Bucher
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Susumu Sakimoto
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Liliana P. Paris
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; , , , , , , , , ,
- The Lowy Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
128
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
129
|
Gamal W, Borooah S, Smith S, Underwood I, Srsen V, Chandran S, Bagnaninchi PO, Dhillon B. Real-time quantitative monitoring of hiPSC-based model of macular degeneration on Electric Cell-substrate Impedance Sensing microelectrodes. Biosens Bioelectron 2015; 71:445-455. [PMID: 25950942 PMCID: PMC4456427 DOI: 10.1016/j.bios.2015.04.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/29/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Humanized disease models are required to develop new therapies for currently incurable forms of AMD. In this work, a tissue-on-a-chip approach was developed through combining human induced pluripotent stem cells, Electric Cell-substrate Impedance Sensing (ECIS) and reproducible electrical wounding assays to model and quantitatively study AMD. Retinal Pigment Epithelium (RPE) cells generated from a patient with an inherited macular degeneration and from an unaffected sibling were used to test the model platform on which a reproducible electrical wounding assay was conducted to model RPE damage. First, a robust and reproducible real-time quantitative monitoring over a 25-day period demonstrated the establishment and maturation of RPE layers on the microelectrode arrays. A spatially controlled RPE layer damage that mimicked cell loss in AMD disease was then initiated. Post recovery, significant differences (P < 0.01) in migration rates were found between case (8.6 ± 0.46 μm/h) and control cell lines (10.69 ± 0.21 μm/h). Quantitative data analysis suggested this was achieved due to lower cell-substrate adhesion in the control cell line. The ECIS cell-substrate adhesion parameter (α) was found to be 7.8 ± 0.28 Ω(1/2)cm for the case cell line and 6.5 ± 0.15 Ω(1/2)cm for the control. These findings were confirmed using cell adhesion biochemical assays. The developed disease model-on-a-chip is a powerful platform for translational studies with considerable potential to investigate novel therapies by enabling real-time, quantitative and reproducible patient-specific RPE cell repair studies.
Collapse
Affiliation(s)
- W Gamal
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - S Borooah
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom; Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; Euan MacDonald Centre for MND Research, The University of Edinburgh, EH16 4SB, United Kingdom; Centre for Neuroregeneration, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom
| | - S Smith
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - I Underwood
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, EH9 3JF, United Kingdom
| | - V Srsen
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - S Chandran
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom; Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; Euan MacDonald Centre for MND Research, The University of Edinburgh, EH16 4SB, United Kingdom; Centre for Neuroregeneration, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom.
| | - B Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom; School of Clinical Sciences, The University of Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
130
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
131
|
Harkness L, Twine NA, Abu Dawud R, Jafari A, Aldahmash A, Wilkins MR, Adjaye J, Kassem M. Molecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells. Bone Rep 2015; 3:32-39. [PMID: 28377964 PMCID: PMC5365211 DOI: 10.1016/j.bonr.2015.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/30/2015] [Accepted: 07/14/2015] [Indexed: 01/22/2023] Open
Abstract
Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal) that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT). Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥ 2-fold change (FC) in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial–mesenchymal transition (EMT) were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols. hESC-derived MSC-like cells were compared to immortalised BM-MSC. Comparison was performed using microarrays on non-induced and OB induced cells. Analysis demonstrated close hierarchical relationships and molecular phenotypes. 90.7% of genes were similarly expressed in non-induced cells. 73% of OB induced genes for both cell lines correlated with GO ontology analysis.
Collapse
Affiliation(s)
- Linda Harkness
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Natalie A Twine
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense, Denmark; NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - Raed Abu Dawud
- Molecular Embryology and Aging group, Max-Planck Institute for Molecular Genetics (Department of Vertebrate Genomics), Berlin, Germany; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Abbas Jafari
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense, Denmark; Danish Stem Cell Centre (DanStem), Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Abdullah Aldahmash
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marc R Wilkins
- NSW Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia
| | - James Adjaye
- Molecular Embryology and Aging group, Max-Planck Institute for Molecular Genetics (Department of Vertebrate Genomics), Berlin, Germany; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Danish Stem Cell Centre (DanStem), Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
132
|
Moro LN, Hiriart MI, Buemo C, Jarazo J, Sestelo A, Veraguas D, Rodriguez-Alvarez L, Salamone DF. Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction 2015; 150:1-10. [DOI: 10.1530/rep-15-0048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/27/2015] [Indexed: 11/08/2022]
Abstract
The aim of this study was to evaluate the capacity of domestic cat (Dc,Felis silvestris) oocytes to reprogram the nucleus of cheetah (Ch,Acinonyx jubatus) cells by interspecies SCNT (iSCNT), by using embryo aggregation. Dc oocytes werein vitromatured and subjected to zona pellucida free (ZP-free) SCNT or iSCNT, depending on whether the nucleus donor cell was of Dc or Ch respectively. ZP-free reconstructed embryos were then cultured in microwells individually (Dc1X and Ch1X groups) or in couples (Dc2X and Ch2X groups). Embryo aggregation improvedin vitrodevelopment obtaining 27.4, 47.7, 16.7 and 28.3% of blastocyst rates in the Dc1X, Dc2X, Ch1X and Ch2X groups, respectively (P<0.05). Moreover, aggregation improved the morphological quality of blastocysts from the Dc2X over the Dc1X group. Gene expression analysis revealed that Ch1X and Ch2X blastocysts had significantly lower relative expression of OCT4, CDX2 and NANOG than the Dc1X, Dc2X and IVF control groups. The OCT4, NANOG, SOX2 and CDX2 genes were overexpressed in Dc1X blastocysts, but the relative expression of these four genes decreased in the Dc2X, reaching similar relative levels to those of Dc IVF blastocysts. In conclusion, Ch blastocysts were produced using Dc oocytes, but with lower relative expression of pluripotent and trophoblastic genes, indicating that nuclear reprogramming could be still incomplete. Despite this, embryo aggregation improved the development of Ch and Dc embryos, and normalized Dc gene expression, which suggests that this strategy could improve full-term developmental efficiency of cat and feline iSCNT embryos.
Collapse
|
133
|
Sorkio A, Porter PJ, Juuti-Uusitalo K, Meenan BJ, Skottman H, Burke GA. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Tissue Eng Part A 2015; 21:2301-14. [PMID: 25946229 DOI: 10.1089/ten.tea.2014.0640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.
Collapse
Affiliation(s)
- Anni Sorkio
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - Patrick J Porter
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | | | - Brian J Meenan
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | - Heli Skottman
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - George A Burke
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| |
Collapse
|
134
|
Choudhary P, Dodsworth BT, Sidders B, Gutteridge A, Michaelides C, Duckworth JK, Whiting PJ, Benn CL. A FOXM1 Dependent Mesenchymal-Epithelial Transition in Retinal Pigment Epithelium Cells. PLoS One 2015; 10:e0130379. [PMID: 26121260 PMCID: PMC4488273 DOI: 10.1371/journal.pone.0130379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
The integrity of the epithelium is maintained by a complex but regulated interplay of processes that allow conversion of a proliferative state into a stably differentiated state. In this study, using human embryonic stem cell (hESC) derived Retinal Pigment Epithelium (RPE) cells as a model; we have investigated the molecular mechanisms that affect attainment of the epithelial phenotype. We demonstrate that RPE undergo a Mesenchymal–Epithelial Transition in culture before acquiring an epithelial phenotype in a FOXM1 dependent manner. We show that FOXM1 directly regulates proliferation of RPE through transcriptional control of cell cycle associated genes. Additionally, FOXM1 modulates expression of the signaling ligands BMP7 and Wnt5B which act reciprocally to enable epithelialization. This data uncovers a novel effect of FOXM1 dependent activities in contributing towards epithelial fate acquisition and furthers our understanding of the molecular regulators of a cell type that is currently being evaluated as a cell therapy.
Collapse
Affiliation(s)
- Parul Choudhary
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
- * E-mail: (PC); (CLB)
| | | | - Ben Sidders
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Alex Gutteridge
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Christos Michaelides
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Joshua Kane Duckworth
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Paul John Whiting
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Caroline Louise Benn
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
- * E-mail: (PC); (CLB)
| |
Collapse
|
135
|
Zhang JX, Wang NL, Lu QJ. Development of gene and stem cell therapy for ocular neurodegeneration. Int J Ophthalmol 2015; 8:622-30. [PMID: 26086019 DOI: 10.3980/j.issn.2222-3959.2015.03.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.
Collapse
Affiliation(s)
- Jing-Xue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ning-Li Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qing-Jun Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
136
|
Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue. CURRENT STEM CELL REPORTS 2015; 1:79-91. [PMID: 26146605 DOI: 10.1007/s40778-015-0014-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinal pigment epithelium (RPE) is a polarized monolayer tissue that functions to support the health and integrity of retinal photoreceptors (PRs). RPE atrophy has been linked to pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in elderly in the USA. RPE atrophy in AMD leads to the PR cell death and vision loss. It is thought that replacing diseased RPE with healthy RPE tissue can prevent PR cell death. Retinal surgical innovations have provided proof-of-principle data that autologous RPE tissue can replace diseased macular RPE and provide visual rescue in AMD patients. Current efforts are focused on developing an in vitro tissue using natural and synthetic scaffolds to generate a polarized functional RPE monolayer. In the future, these tissue-engineering approaches combined with pluripotent stem cell technology will lead to the development of personalized and "off-the-shelf" cell therapies for AMD patients. This review summarizes the historical development and ongoing efforts in surgical and in vitro tissue engineering techniques to develop a three-dimensional therapeutic native RPE tissue substitute.
Collapse
|
137
|
Yvon C, Ramsden CM, Lane A, Powner MB, da Cruz L, Coffey PJ, Carr AJF. Using Stem Cells to Model Diseases of the Outer Retina. Comput Struct Biotechnol J 2015; 13:382-9. [PMID: 26106463 PMCID: PMC4477013 DOI: 10.1016/j.csbj.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022] Open
Abstract
Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).
Collapse
Affiliation(s)
- Camille Yvon
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Conor M. Ramsden
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Amelia Lane
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Michael B. Powner
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Lyndon da Cruz
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Peter J. Coffey
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Center for Stem Cell Biology and Engineering, NRI, UC, Santa Barbara, USA
| | - Amanda-Jayne F. Carr
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
138
|
Leach LL, Clegg DO. Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease. Stem Cells 2015; 33:2363-73. [DOI: 10.1002/stem.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Lyndsay L. Leach
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular; Cellular and Developmental Biology, University of California; Santa Barbara California USA
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular; Cellular and Developmental Biology, University of California; Santa Barbara California USA
| |
Collapse
|
139
|
|
140
|
Yanai A, Laver CRJ, Gregory-Evans CY, Liu RR, Gregory-Evans K. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system. Tissue Eng Part A 2015; 21:1763-71. [PMID: 25693608 DOI: 10.1089/ten.tea.2014.0669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.
Collapse
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R J Laver
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ran R Liu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
141
|
Westenskow P, Sedillo Z, Barnett A, Friedlander M. Efficient derivation of retinal pigment epithelium cells from stem cells. J Vis Exp 2015:52214. [PMID: 25867641 PMCID: PMC4401231 DOI: 10.3791/52214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
No cure has been discovered for age-related macular degeneration (AMD), the leading cause of vision loss in people over the age of 55. AMD is complex multifactorial disease with an unknown etiology, although it is largely thought to occur due to death or dysfunction of the retinal pigment epithelium (RPE), a monolayer of cells that underlies the retina and provides critical support for photoreceptors. RPE cell replacement strategies may hold great promise for providing therapeutic relief for a large subset of AMD patients, and RPE cells that strongly resemble primary human cells (hRPE) have been generated in multiple independent labs, including our own. In addition, the uses for iPS-RPE are not limited to cell-based therapies, but also have been used to model RPE diseases. These types of studies may not only elucidate the molecular bases of the diseases, but also serve as invaluable tools for developing and testing novel drugs. We present here an optimized protocol for directed differentiation of RPE from stem cells. Adding nicotinamide and either Activin A or IDE-1, a small molecule that mimics its effects, at specific time points, greatly enhances the yield of RPE cells. Using this technique we can derive large numbers of low passage RPE in as early as three months.
Collapse
Affiliation(s)
- Peter Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute; Lowy Medical Research Institute;
| | - Zack Sedillo
- Department of Cell and Molecular Biology, The Scripps Research Institute; Lowy Medical Research Institute
| | | | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute; Lowy Medical Research Institute;
| |
Collapse
|
142
|
Olmos LC, Nazari H, Rodger DC, Humayun MS. Stem Cell Therapy for the Treatment of Dry Age-Related Macular Degeneration. CURRENT OPHTHALMOLOGY REPORTS 2015. [DOI: 10.1007/s40135-014-0058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
143
|
Mathivanan I, Trepp C, Brunold C, Baerlocher G, Enzmann V. Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp Cell Res 2015; 333:11-20. [PMID: 25724900 DOI: 10.1016/j.yexcr.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Collapse
Affiliation(s)
- Isai Mathivanan
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland
| | - Carolyn Trepp
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland
| | - Claudio Brunold
- Dept. of Hematology, Inselspital, University of Bern, Bern, Switzerland
| | - Gabriela Baerlocher
- Dept. of Clinical Research, University of Bern, Bern, Switzerland; Dept. of Hematology, Inselspital, University of Bern, Bern, Switzerland
| | - Volker Enzmann
- Dept. of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland; Dept. of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
144
|
Chapter 4 - Restoring Vision to the Blind: Stem Cells and Transplantation. Transl Vis Sci Technol 2015; 3:6. [PMID: 25653890 DOI: 10.1167/tvst.3.7.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
|
145
|
Lu B, Lin Y, Tsai Y, Girman S, Adamus G, Jones MK, Shelley B, Svendsen CN, Wang S. A Subsequent Human Neural Progenitor Transplant into the Degenerate Retina Does Not Compromise Initial Graft Survival or Therapeutic Efficacy. Transl Vis Sci Technol 2015; 4:7. [PMID: 25694843 PMCID: PMC4324446 DOI: 10.1167/tvst.4.1.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Stem and progenitor cell transplantation provides a promising clinical application for treating degenerative retinal diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Our previous studies have shown that a single subretinal injection of human cortical-derived neural progenitor cells (hNPCctx) into cyclosporine-treated Royal College of Surgeons (RCS) rats preserved both photoreceptors and visual function. However, it is still unknown whether nonautologous progenitor cell readministration for sustained vision is efficacious and safe in terms of the initial graft initiating an immune response to a subsequent graft. METHODS A cell suspension containing 3×104 hNPCctx into one eye of cyclosporine-treated RCS rats at postnatal day 21 (P21), followed by a second transplantation at P95 into the previously untreated fellow eye. RESULTS hNPCctx delayed photoreceptor degeneration and preserved visual function, as measured by electroretinography (ERG), optokinetic response (OKR), and luminance threshold recordings (LTRs). Visual function and photoreceptors of the initially treated eye were still preserved 6 weeks after hNPCctx were injected into the second eye. Antibodies against T-cell markers showed that CD3, CD4, and CD8 T cells were not detected at P90 and P140 in most cases. No detectable level of anti-nestin antibody was found in serum by enzyme-linked immunosorbent assay (ELISA). CONCLUSIONS This xenograft study with cyclosporine-treated animals demonstrates that readministration of hNPCctx into the fellow eye did not induce anti-graft immune responses or lower therapeutic efficacy of hNPCctx in preserving vision. Thus, readministration of progenitor cells to sustain long-term efficacy may be an option for long-term therapies of retinal degeneration. TRANSLATIONAL RELEVANCE Redosing neural progenitors do not affect the efficacy of the initial grafts in protecting vision or induce unwanted immune responses.
Collapse
Affiliation(s)
- Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanhua Lin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuchun Tsai
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Melissa K. Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brandon Shelley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
146
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
147
|
Westenskow PD, Kurihara T, Bravo S, Feitelberg D, Sedillo ZA, Aguilar E, Friedlander M. Performing subretinal injections in rodents to deliver retinal pigment epithelium cells in suspension. J Vis Exp 2015:52247. [PMID: 25651341 DOI: 10.3791/52247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The conversion of light into electrical impulses occurs in the outer retina and is accomplished largely by rod and cone photoreceptors and retinal pigment epithelium (RPE) cells. RPE provide critical support for photoreceptors and death or dysfunction of RPE cells is characteristic of age-related macular degeneration (AMD), the leading cause of permanent vision loss in people age 55 and older. While no cure for AMD has been identified, implantation of healthy RPE in diseased eyes may prove to be an effective treatment, and large numbers of RPE cells can be readily generated from pluripotent stem cells. Several interesting questions regarding the safety and efficacy of RPE cell delivery can still be examined in animal models, and well-accepted protocols used to inject RPE have been developed. The technique described here has been used by multiple groups in various studies and involves first creating a hole in the eye with a sharp needle. Then a syringe with a blunt needle loaded with cells is inserted through the hole and passed through the vitreous until it gently touches the RPE. Using this injection method, which is relatively simple and requires minimal equipment, we achieve consistent and efficient integration of stem cell-derived RPE cells in between the host RPE that prevents significant amount of photoreceptor degeneration in animal models. While not part of the actual protocol, we also describe how to determine the extent of the trauma induced by the injection, and how to verify that the cells were injected into the subretinal space using in vivo imaging modalities. Finally, the use of this protocol is not limited to RPE cells; it may be used to inject any compound or cell into the subretinal space.
Collapse
Affiliation(s)
- Peter D Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute; Lowy Medical Research Institute;
| | - Toshihide Kurihara
- Department of Cell and Molecular Biology, The Scripps Research Institute
| | - Stephen Bravo
- Department of Cell and Molecular Biology, The Scripps Research Institute
| | - Daniel Feitelberg
- Department of Cell and Molecular Biology, The Scripps Research Institute
| | | | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute; Lowy Medical Research Institute;
| |
Collapse
|
148
|
Dang Y, Zhang C, Zhu Y. Stem cell therapies for age-related macular degeneration: the past, present, and future. Clin Interv Aging 2015; 10:255-64. [PMID: 25609937 PMCID: PMC4298283 DOI: 10.2147/cia.s73705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the developed world, age-related macular degeneration (AMD) is one of the major causes of irreversible blindness in the elderly. Although management of neovascular AMD (wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell biology have demonstrated that RPE cells can be easily generated from several cell types (pluripotent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies also showed that the restoration of visual function could be obtained by transplanting functional RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the US government have shown promising prospects in RPE transplantation. However, key issues such as implantation techniques, immune rejection, and xeno-free techniques are still needed to be further investigated. This review will summarize recent advances in cell transplantation for dry AMD. The obstacles and prospects in this field will also be discussed.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China ; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China ; Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China ; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
149
|
Hansson ML, Albert S, González Somermeyer L, Peco R, Mejía-Ramírez E, Montserrat N, Izpisua Belmonte JC. Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells. J Biol Chem 2015; 290:5661-72. [PMID: 25555917 DOI: 10.1074/jbc.m114.618835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements, such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient, but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study, we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand, administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly, transfection of mRNA encoding a key regulator of RPE gene expression, microphthalmia-associated transcription factor (MITF), confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF, primarily localized in the nucleus. Despite these findings, quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings, therefore, show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe, efficient, and functional.
Collapse
Affiliation(s)
- Magnus L Hansson
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain,
| | - Silvia Albert
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain
| | - Louisa González Somermeyer
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain, the Universitat de Barcelona, 08007 Barcelona, Spain, and
| | - Rubén Peco
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain
| | - Eva Mejía-Ramírez
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain
| | - Núria Montserrat
- From the Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain
| | | |
Collapse
|
150
|
Ilic D, Devito L, Miere C, Codognotto S. Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 2015; 116:19-27. [PMID: 26582538 DOI: 10.1093/bmb/ldv045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human embryonic and induced pluripotent stem cells (hESC and hiPSC) have tremendous potential for clinical implementation. In spite of all hurdles and controversy, clinical trials in treatment of spinal cord injury, macular degeneration of retina, type 1 diabetes and heart failure are already ongoing. SOURCES OF DATA ClinicalTrials.gov database, International Clinical Trials Registry Platform, PubMed and press releases and websites of companies and institutions working on hESC- and iPSC-based cellular therapy. AREAS OF AGREEMENT The initial results from multiple clinical trials demonstrate that hESC-based therapies are safe and promising. AREAS OF CONTROVERSY Are iPSC cells safe in the clinical application? Is there a room for both hESC and iPSC in the future clinical applications? GROWING POINTS Increasing number of new clinical trials. AREAS TIMELY FOR DEVELOPING RESEARCH Development of hESC- and/or iPSC-based cellular therapy for other diseases.
Collapse
Affiliation(s)
- Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Liani Devito
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Cristian Miere
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | |
Collapse
|