101
|
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017; 543:113-117. [PMID: 28225754 DOI: 10.1038/nature21405] [Citation(s) in RCA: 1219] [Impact Index Per Article: 174.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptors (CARs) are synthetic receptors that redirect and reprogram T cells to mediate tumour rejection. The most successful CARs used to date are those targeting CD19 (ref. 2), which offer the prospect of complete remission in patients with chemorefractory or relapsed B-cell malignancies. CARs are typically transduced into the T cells of a patient using γ-retroviral vectors or other randomly integrating vectors, which may result in clonal expansion, oncogenic transformation, variegated transgene expression and transcriptional silencing. Recent advances in genome editing enable efficient sequence-specific interventions in human cells, including targeted gene delivery to the CCR5 and AAVS1 loci. Here we show that directing a CD19-specific CAR to the T-cell receptor α constant (TRAC) locus not only results in uniform CAR expression in human peripheral blood T cells, but also enhances T-cell potency, with edited cells vastly outperforming conventionally generated CAR T cells in a mouse model of acute lymphoblastic leukaemia. We further demonstrate that targeting the CAR to the TRAC locus averts tonic CAR signalling and establishes effective internalization and re-expression of the CAR following single or repeated exposure to antigen, delaying effector T-cell differentiation and exhaustion. These findings uncover facets of CAR immunobiology and underscore the potential of CRISPR/Cas9 genome editing to advance immunotherapies.
Collapse
|
102
|
Li SJ, Luo Y, Zhang LM, Yang W, Zhang GG. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells. Mol Med Rep 2017; 15:1313-1318. [PMID: 28112377 PMCID: PMC5367337 DOI: 10.3892/mmr.2017.6131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hemophilia B occurs due to a deficiency in human blood coagulation factor IX (hFIX). Currently, no effective treatment for hemophilia B has been identified, and gene therapy has been considered the most appropriate treatment. Mesenchymal stem cells (MSCs) have homing abilities and low immunogenicity, and therefore they may be potential cell carriers for targeted drug delivery to lesional tissues. The present study constructed an adeno‑associated virus integration site 1 (AAVS1)‑targeted vector termed AAVS1‑green fluorescent protein (GFP)‑hFIX and a zinc finger nuclease (ZFN) expression vector. Nucleofection was used to co‑transfect the targeting vector and the ZFN expression vector into human MSCs. The GFP‑positive cells were selected using flow cytometry. Site‑specific integration clones were obtained following the monoclonal culture, subsequent detections were performed using polymerase chain reaction and Southern blotting. Following the confirmation of stem cell traits of the site‑specific integration MSCs, the in vivo and in vitro expression levels of hFIX were detected. The results demonstrated that the hFIX gene was successfully transfected into the AAVS1 locus in human MSCs. The clones with the site‑specific integration retained stem cell traits of the MSCs. In addition, hFIX was effectively expressed in vivo and in vitro. No significant differences in expression levels were identified among the individual clones. In conclusion, the present study demonstrated that the exogenous gene hFIX was effectively expressed following site‑specific targeting into the AAVS1 locus in MSCs; therefore, MSCs may be used as potential cell carriers for gene therapy of hemophilia B.
Collapse
Affiliation(s)
- Shu-Jun Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
103
|
Maetzig T, Ruschmann J, Lai CK, Ngom M, Imren S, Rosten P, Norddahl GL, von Krosigk N, Sanchez Milde L, May C, Selich A, Rothe M, Dhillon I, Schambach A, Humphries RK. A Lentiviral Fluorescent Genetic Barcoding System for Flow Cytometry-Based Multiplex Tracking. Mol Ther 2017; 25:606-620. [PMID: 28253481 DOI: 10.1016/j.ymthe.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.
Collapse
Affiliation(s)
- Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Courteney K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mor Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patricia Rosten
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Gudmundur L Norddahl
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Niklas von Krosigk
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lea Sanchez Milde
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Christopher May
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ishpreet Dhillon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
104
|
Bertero A, Pawlowski M, Ortmann D, Snijders K, Yiangou L, Cardoso de Brito M, Brown S, Bernard WG, Cooper JD, Giacomelli E, Gambardella L, Hannan NRF, Iyer D, Sampaziotis F, Serrano F, Zonneveld MCF, Sinha S, Kotter M, Vallier L. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 2016; 143:4405-4418. [PMID: 27899508 PMCID: PMC5201041 DOI: 10.1242/dev.138081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Pawlowski
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kirsten Snijders
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Miguel Cardoso de Brito
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - William G Bernard
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James D Cooper
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Giacomelli
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laure Gambardella
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas R F Hannan
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Dharini Iyer
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Felipe Serrano
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Mariëlle C F Zonneveld
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sanjay Sinha
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Mark Kotter
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| |
Collapse
|
105
|
LiPS-A3S, a human genomic site for robust expression of inserted transgenes. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e394. [PMID: 27898090 PMCID: PMC5155331 DOI: 10.1038/mtna.2016.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
Abstract
Transgenesis of human pluripotent stem cells (hPSCs) can enable and empower a variety of studies in stem cell research, including lineage tracing and functional genetics studies. While in recent years much progress has been made in the development of tools for gene targeting, little attention has been given to the identification of sites in the human genome where transgenes can be inserted and reliably expressed. In order to find human genomic sites capable of supporting long-term and high-level transgene expression in hPSCs, we performed a lentiviral screen in human induced pluripotent stem cells (iPSCs). We isolated 40 iPSC clones each harboring a single vector copy and characterized the level of transgene expression afforded by each unique integration site. We selected one clone, LiPS-A3 with an integration site in chromosome 15 maintaining robust expression without silencing and demonstrate that different transgenes can be inserted therein rapidly and efficiently through recombinase-mediated cassette exchange (RMCE). The LiPS-A3 line can greatly facilitate the insertion of reporter and other genes in hPSCs. Targeting transgenes in the LiPS-A3S genomic locus can find broad applications in stem cell research and possibly cell and gene therapy.
Collapse
|
106
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
107
|
Epigenetic modulations rendering cell-to-cell variability and phenotypic metastability. J Genet Genomics 2016; 43:503-11. [DOI: 10.1016/j.jgg.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
|
108
|
Galat V, Galat Y, Perepitchka M, Jennings LJ, Iannaccone PM, Hendrix MJC. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1060-72. [PMID: 27193052 PMCID: PMC4939377 DOI: 10.1089/scd.2015.0366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation.
Collapse
Affiliation(s)
- Vasiliy Galat
- 1 Department of Pathology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Yekaterina Galat
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Mariana Perepitchka
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Lawrence J Jennings
- 1 Department of Pathology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Philip M Iannaccone
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Mary J C Hendrix
- 3 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| |
Collapse
|
109
|
Baiamonte E, Spinelli G, Maggio A, Acuto S, Cavalieri V. The Sea Urchin sns5 Chromatin Insulator Shapes the Chromatin Architecture of a Lentivirus Vector Integrated in the Mammalian Genome. Nucleic Acid Ther 2016; 26:318-326. [PMID: 27248156 DOI: 10.1089/nat.2016.0614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentivirus vectors are presently the favorite vehicles for therapeutic gene transfer in hematopoietic cells. Nonetheless, these vectors integrate randomly throughout the genome, exhibiting variegation of transgene expression due to the spreading of heterochromatin into the vector sequences. Moreover, the cis-regulatory elements harbored by the vector could disturb the proper transcription of resident genes neighboring the integration site. The incorporation of chromatin insulators in flanking position to the transferred unit can alleviate both the above-mentioned dangerous effects, due to the insulator-specific barrier and enhancer-blocking activities. In this study, we report the valuable properties of the sea urchin-derived sns5 insulator in improving the expression efficiency of a lentivirus vector integrated in the mammalian erythroid genome. We show that these results neither reflect an intrinsic sns5 enhancer activity nor rely on the recruitment of the erythroid-specific GATA-1 factor to sns5. Furthermore, by using the Chromosome Conformation Capture technology, we report that a single copy of the sns5-insulated vector is specifically organized into an independent chromatin loop at the provirus locus. Our results not only provide new clues concerning the molecular mechanism of sns5 function in the erythroid genome but also reassure the use of sns5 to improve the performance of gene therapy vectors.
Collapse
Affiliation(s)
- Elena Baiamonte
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Giovanni Spinelli
- 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Palermo, Italy
| | - Aurelio Maggio
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Santina Acuto
- 1 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital , Palermo, Italy
| | - Vincenzo Cavalieri
- 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Palermo, Italy
- 3 Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), University of Palermo , Palermo, Italy
| |
Collapse
|
110
|
Morgan RA, Boyerinas B. Genetic Modification of T Cells. Biomedicines 2016; 4:biomedicines4020009. [PMID: 28536376 PMCID: PMC5344249 DOI: 10.3390/biomedicines4020009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Gene transfer technology and its application to human gene therapy greatly expanded in the last decade. One area of investigation that appears particularly promising is the transfer of new genetic material into T cells for the potential treatment of cancer. Herein, we describe several core technologies that now yield high-efficiency gene transfer into primary human T cells. These gene transfer techniques include viral-based gene transfer methods based on modified Retroviridae and non-viral methods such as DNA-based transposons and direct transfer of mRNA by electroporation. Where specific examples are cited, we emphasize the transfer of chimeric antigen receptors (CARs) to T cells, which permits engineered T cells to recognize potential tumor antigens.
Collapse
|
111
|
Tian Z, Guo F, Biswas S, Deng W. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. Int J Mol Sci 2016; 17:E594. [PMID: 27104529 PMCID: PMC4849048 DOI: 10.3390/ijms17040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, the Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
112
|
Griffin DO, Goff SP. Restriction of HIV-1-based lentiviral vectors in adult primary marrow-derived and peripheral mobilized human CD34+ hematopoietic stem and progenitor cells occurs prior to viral DNA integration. Retrovirology 2016; 13:14. [PMID: 26945863 PMCID: PMC4779582 DOI: 10.1186/s12977-016-0246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/18/2016] [Indexed: 01/10/2023] Open
Abstract
Background Gene therapy is currently being attempted using a number of delivery vehicles including lentiviral-based vectors. The delivery and insertion of a gene using lentiviral-based vectors involves multiple discrete steps, including reverse transcription of viral RNA into DNA, nuclear entry, integration of viral DNA into the host genome and expression of integrated genes. Transduction of murine stem cells by the murine leukemia viruses is inefficient because the expression of the integrated DNA is profoundly blocked. Transduction of human stem cells by lentivirus vectors is also inefficient, but the cause and specific part of the retroviral lifecycle where this block occurs is unknown. Results Here we demonstrate that the dominant point of restriction of an HIV-1-based lentiviral vector in adult human hematopoietic stem and progenitor cells (HSPCs) from bone marrow and also those obtained following peripheral mobilization is prior to viral DNA integration. We specifically show that restriction of HSPCs to an HIV-1-based lentiviral vector is prior to formation of nuclear DNA forms. Conclusions Murine restriction of MLV and human cellular restriction of HIV-1 are fundamentally different. While murine restriction of MLV occurs post integration, human restriction of HIV-1 occurs before integration.
Collapse
Affiliation(s)
- Daniel O Griffin
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
113
|
Papapetrou EP, Schambach A. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy. Mol Ther 2016; 24:678-84. [PMID: 26867951 DOI: 10.1038/mt.2016.38] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
114
|
Garcia Diaz AI, Moyon B, Coan PM, Alfazema N, Venda L, Woollard K, Aitman T. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein. Dis Model Mech 2016; 9:463-71. [PMID: 26769799 PMCID: PMC4852507 DOI: 10.1242/dmm.024208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 11/20/2022] Open
Abstract
The Wistar Kyoto (WKY) rat and the spontaneously hypertensive (SHR) rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN) and metabolic syndrome, respectively. Novel transgenic (Tg) strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP) under the rat elongation factor 1 alpha (EF1a) promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminaryin vitroandin vivoimaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.
Collapse
Affiliation(s)
- Ana Isabel Garcia Diaz
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ben Moyon
- Embryonic Stem Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Philip M Coan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neza Alfazema
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Venda
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK
| | - Tim Aitman
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
115
|
Poidevin L, Andreeva K, Khachatoorian C, Judelson HS. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans. PLoS One 2015; 10:e0145612. [PMID: 26716454 PMCID: PMC4696810 DOI: 10.1371/journal.pone.0145612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Kalina Andreeva
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Careen Khachatoorian
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
116
|
Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 2015; 85:1297-311.e2. [PMID: 26838464 DOI: 10.1016/j.theriogenology.2015.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transposition is a feasible approach for genetic engineering in the cattle genome.
Collapse
Affiliation(s)
- Ana P Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Alejandro E Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Wiebke Garrels
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Diego O Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - María F Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Ana C Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Romina J Bevacqua
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Virginia Savy
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - María I Hiriart
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Thirumala R Talluri
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Jesse B Owens
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina.
| |
Collapse
|
117
|
Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev 2015; 30:157-67. [PMID: 26574053 DOI: 10.1016/j.blre.2015.10.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 01/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy of cancer is generating enormous enthusiasm. Twenty-five years after the concept was first proposed, major advances in molecular biology, virology, and good manufacturing practices (GMP)-grade cell production have transformed antibody-T cell chimeras from a scientific curiosity to a fact of life for academic cellular immunotherapy researchers and, increasingly, for patients. In this review, we explain the preclinical concept, outline how it has been translated to the clinic, and draw lessons from the first years of CAR T cell therapy for the practicing clinician.
Collapse
Affiliation(s)
- Saar Gill
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA.
| | - Marcela V Maus
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - David L Porter
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| |
Collapse
|
118
|
Lee HJ, Lee HC, Kim YM, Hwang YS, Park YH, Park TS, Han JY. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange. FASEB J 2015; 30:555-63. [PMID: 26443821 DOI: 10.1096/fj.15-274712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/21/2015] [Indexed: 11/11/2022]
Abstract
Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence.
Collapse
Affiliation(s)
- Hong Jo Lee
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Hyung Chul Lee
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Min Kim
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Sun Hwang
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Young Hyun Park
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Tae Sub Park
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| | - Jae Yong Han
- *Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Korea; and Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
119
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
120
|
Das AT, Zhou X, Metz SW, Vink MA, Berkhout B. Selecting the optimal Tet-On system for doxycycline-inducible gene expression in transiently transfected and stably transduced mammalian cells. Biotechnol J 2015; 11:71-9. [PMID: 26333522 DOI: 10.1002/biot.201500236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/14/2015] [Accepted: 09/02/2015] [Indexed: 11/05/2022]
Abstract
The doxycycline (dox)-inducible Tet-On system is widely used to control gene expression in mammalian cells. This system is based on the bacterial Tet operon, which has been modified and improved for its function in eukaryotic cells. To identify the optimal system for different applications, we compared Tet-On variants in frequently used cell types that were either transiently transfected with the relevant plasmids or stably transduced with an "all-in-one" lentiviral vector. The V10 variant performed optimally in the transiently transfected cells and demonstrated no background activity without dox, high dox-induced activity and the highest fold-induction. Because of its very high dox-sensitivity, the V16 system may be preferred if only low intracellular dox concentrations can be reached. V16 performed optimally in the transduced cells and demonstrated the highest activity and dox-sensitivity without background activity. Moreover, V16 demonstrated more robust induction of gene expression after a latency period without dox. This study provides important findings for choosing the optimal Tet-On system for diverse cell culture settings. V10 is the best system for most applications in which the DNA is episomally present in cells, whereas V16 may be optimal when the Tet-On components are stably integrated in the cellular genome.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Xue Zhou
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan W Metz
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique A Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
121
|
Synthetic Biology--Toward Therapeutic Solutions. J Mol Biol 2015; 428:945-62. [PMID: 26334368 DOI: 10.1016/j.jmb.2015.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
Higher multicellular organisms have evolved sophisticated intracellular and intercellular biological networks that enable cell growth and survival to fulfill an organism's needs. Although such networks allow the assembly of complex tissues and even provide healing and protective capabilities, malfunctioning cells can have severe consequences for an organism's survival. In humans, such events can result in severe disorders and diseases, including metabolic and immunological disorders, as well as cancer. Dominating the therapeutic frontier for these potentially lethal disorders, cell and gene therapies aim to relieve or eliminate patient suffering by restoring the function of damaged, diseased, and aging cells and tissues via the introduction of healthy cells or alternative genes. However, despite recent success, these efforts have yet to achieve sufficient therapeutic effects, and further work is needed to ensure the safe and precise control of transgene expression and cellular processes. In this review, we describe the biological tools and devices that are at the forefront of synthetic biology and discuss their potential to advance the specificity, efficiency, and safety of the current generation of cell and gene therapies, including how they can be used to confer curative effects that far surpass those of conventional therapeutics. We also highlight the current therapeutic delivery tools and the current limitations that hamper their use in human applications.
Collapse
|
122
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
123
|
Zhong C, Yin Q, Xie Z, Bai M, Dong R, Tang W, Xing YH, Zhang H, Yang S, Chen LL, Bartolomei MS, Ferguson-Smith A, Li D, Yang L, Wu Y, Li J. CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell 2015; 17:221-32. [PMID: 26165924 DOI: 10.1016/j.stem.2015.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Mouse androgenetic haploid embryonic stem cells (AG-haESCs) can support full-term development of semi-cloned (SC) embryos upon injection into MII oocytes and thus have potential applications in genetic modifications. However, the very low birth rate of SC pups limits practical use of this approach. Here, we show that AG-haESCs carrying deletions in the DMRs (differentially DNA methylated regions) controlling two paternally repressed imprinted genes, H19 and Gtl2, can efficiently support the generation of SC pups. Genetic manipulation of these DKO-AG-haESCs in vitro using CRISPR-Cas9 can produce SC mice carrying multiple modifications with high efficiency. Moreover, transfection of DKO-AG-haESCs with a constitutively expressed sgRNA library and Cas9 allows functional mutagenic screening. DKO-AG-haESCs are therefore an effective tool for the introduction of organism-wide mutations in mice in a single generation.
Collapse
Affiliation(s)
- Cuiqing Zhong
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Xie
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meizhu Bai
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Rui Dong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Tang
- Animal Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Hang Xing
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongling Zhang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Suming Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Ling Chen
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dangsheng Li
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuxuan Wu
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jinsong Li
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China.
| |
Collapse
|
124
|
Romero Z, Campo-Fernandez B, Wherley J, Kaufman ML, Urbinati F, Cooper AR, Hoban MD, Baldwin KM, Lumaquin D, Wang X, Senadheera S, Hollis RP, Kohn DB. The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells. Mol Ther Methods Clin Dev 2015; 2:15012. [PMID: 26029723 PMCID: PMC4445009 DOI: 10.1038/mtm.2015.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 02/06/2023]
Abstract
Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the β-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human β-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term β-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.
Collapse
Affiliation(s)
- Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jennifer Wherley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Fabrizia Urbinati
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Aaron R Cooper
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, California, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Kismet M Baldwin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Dianne Lumaquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Xiaoyan Wang
- Department of Internal Medicine and Health Services Research, University of California, Los Angeles, California, USA
| | - Shantha Senadheera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Pediatrics, UCLA Children’s Discovery and Innovation Institute David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
125
|
Jackson M, Derrick Roberts A, Martin E, Rout-Pitt N, Gronthos S, Byers S. Mucopolysaccharidosis enzyme production by bone marrow and dental pulp derived human mesenchymal stem cells. Mol Genet Metab 2015; 114:584-93. [PMID: 25748347 DOI: 10.1016/j.ymgme.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
Mucopolysaccharidoses (MPS) are inherited metabolic disorders that arise from a complete loss or a reduction in one of eleven specific lysosomal enzymes. MPS children display pathology in multiple cell types leading to tissue and organ failure and early death. Mesenchymal stem cells (MSCs) give rise to many of the cell types affected in MPS, including those that are refractory to current treatment protocols such as hematopoietic stem cell (HSC) based therapy. In this study we compared multiple MPS enzyme production by bone marrow derived (hBM) and dental pulp derived (hDP) MSCs to enzyme production by HSCs. hBM MSCs produce significantly higher levels of MPS I, II, IIIA, IVA, VI and VII enzyme than HSCs, while hDP MSCs produce significantly higher levels of MPS I, IIIA, IVA, VI and VII enzymes. Higher transfection efficiency was observed in MSCs (89%) compared to HSCs (23%) using a lentiviral vector. Over-expression of four different lysosomal enzymes resulted in up to 9303-fold and up to 5559-fold greater levels in MSC cell layer and media respectively. Stable, persistent transduction of MSCs and sustained over-expression of MPS VII enzyme was observed in vitro. Transduction of MSCs did not affect the ability of the cells to differentiate down osteogenic, adipogenic or chondrogenic lineages, but did partially delay differentiation down the non-mesodermal neurogenic lineage.
Collapse
Affiliation(s)
- Matilda Jackson
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Ainslie Derrick Roberts
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ellenore Martin
- Department of Genetics, The University of Adelaide, South Australia, Australia
| | - Nathan Rout-Pitt
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia; Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia; Department of Genetics, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
126
|
Levine BL. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 2015; 22:79-84. [DOI: 10.1038/cgt.2015.5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 02/02/2023]
|
127
|
Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 2015; 195:15-29. [DOI: 10.1016/j.jbiotec.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
|
128
|
Müller-Kuller U, Ackermann M, Kolodziej S, Brendel C, Fritsch J, Lachmann N, Kunkel H, Lausen J, Schambach A, Moritz T, Grez M. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res 2015; 43:1577-92. [PMID: 25605798 PMCID: PMC4330381 DOI: 10.1093/nar/gkv019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic silencing of transgene expression represents a major obstacle for the efficient genetic modification of multipotent and pluripotent stem cells. We and others have demonstrated that a 1.5 kb methylation-free CpG island from the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) effectively prevents transgene silencing and variegation in cell lines, multipotent and pluripotent stem cells, and their differentiated progeny. However, the bidirectional promoter activity of this element may disturb expression of neighboring genes. Furthermore, the epigenetic basis underlying the anti-silencing effect of the UCOE on juxtaposed promoters has been only partially explored. In this study we removed the HNRPA2B1 moiety from the A2UCOE and demonstrate efficient anti-silencing properties also for a minimal 0.7 kb element containing merely the CBX3 promoter. This DNA element largely prevents silencing of viral and tissue-specific promoters in multipotent and pluripotent stem cells. The protective activity of CBX3 was associated with reduced promoter CpG-methylation, decreased levels of repressive and increased levels of active histone marks. Moreover, the anti-silencing effect of CBX3 was locally restricted and when linked to tissue-specific promoters did not activate transcription in off target cells. Thus, CBX3 is a highly attractive element for sustained, tissue-specific and copy-number dependent transgene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Uta Müller-Kuller
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Mania Ackermann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Stephan Kolodziej
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Christian Brendel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Jessica Fritsch
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Nico Lachmann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Hana Kunkel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Jörn Lausen
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Moritz
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| |
Collapse
|
129
|
Abstract
With the recent advances in regenerative medicine, nanotechnology has created a niche for itself as a promising avenue in this field. Innumerable studies have been carried out by researchers using virus-based methodologies for the purpose of epigenetic reprogramming. Although this method is ostensibly safe, nonetheless, they are tagged with the risk of viral genome integration into the host genome or insertional mutagenesis. Transient transfection by the use of nanocarriers is the best way to overcome these problems. This review focuses on some of the significant works carried out by researchers utilizing nanocarrier systems that have shown promising results and thus created a landmark in the epigenetic reprogramming.
Collapse
|
130
|
Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 2014; 35:770-7. [PMID: 25547290 DOI: 10.1128/mcb.01293-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps "noisy" control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks.
Collapse
|
131
|
|
132
|
Qian K, Huang CTL, Huang CL, Chen H, Blackbourn LW, Chen Y, Cao J, Yao L, Sauvey C, Du Z, Zhang SC. A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells 2014; 32:1230-8. [PMID: 24497442 DOI: 10.1002/stem.1653] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
Abstract
Regulatable transgene expression in human pluripotent stem cells (hPSCs) and their progenies is often necessary to dissect gene function in a temporal and spatial manner. However, hPSC lines with inducible transgene expression, especially in differentiated progenies, have not been established due to silencing of randomly inserted genes during stem cell expansion and/or differentiation. Here, we report the use of transcription activator-like effector nucleases-mediated targeting to AAVS1 site to generate versatile conditional hPSC lines. Transgene (both green fluorescent protein and a functional gene) expression in hPSCs and their derivatives was not only sustained but also tightly regulated in response to doxycycline both in vitro and in vivo. We modified the donor construct so that any gene of interest can be readily inserted to produce hPSC lines with conditional transgene expression. This technology will substantially improve the way we study human stem cells.
Collapse
Affiliation(s)
- Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Waisman Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Alpharetroviral vectors: from a cancer-causing agent to a useful tool for human gene therapy. Viruses 2014; 6:4811-38. [PMID: 25490763 PMCID: PMC4276931 DOI: 10.3390/v6124811] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022] Open
Abstract
Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.
Collapse
|
134
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
135
|
Burnight ER, Wiley LA, Mullins RF, Stone EM, Tucker BA. Gene therapy using stem cells. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a017434. [PMID: 25395375 DOI: 10.1101/cshperspect.a017434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Viral-mediated gene augmentation therapy has recently shown success in restoring vision to patients with retinal degenerative disorders. Key to this success was the availability of animal models that accurately presented the human phenotype to test preclinical efficacy and safety. These exciting studies support the use of gene therapy in the treatment of devastating retinal degenerative diseases. In some cases, however, in vivo gene therapy for retinal degeneration would not be effective because the cell types targeted are no longer present. The development of somatic cell reprogramming methods provides an attractive source of autologous cells for transplantation and treatment of retinal degenerative disease. This article explores the development of gene therapy and patient-derived stem cells for the purpose of restoring vision to individuals suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Erin R Burnight
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Luke A Wiley
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242 Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa 52242
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
136
|
Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res 2014; 74:6383-9. [PMID: 25371415 DOI: 10.1158/0008-5472.can-14-1530] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several decades of humoral immunotherapy using monoclonal antibodies and cellular immunotherapy using hematopoietic cell transplantation have recently culminated in a successful merger: the development and clinical application of genetically engineered antibody-T cell chimeras. Also known as chimeric antigen receptor T cells (CAR T cells), these entities combine the exquisite antigen specificity of antibodies with the polyfunctionality and potency of cellular immunity and are a prime example of the potential for synthetic biology to treat disease. CAR T cells overcome several of the biologic obstacles that have historically hampered immunotherapy while providing fundamental mechanistic insights into cellular immunology and revealing new challenges in genetic engineering and target selection. Results from early-phase CAR T-cell-based clinical trials demonstrate the significant potential for this approach to affect dramatic and complete clinical responses while revealing novel toxicities associated with activation of potent and specific antitumor immunity.
Collapse
Affiliation(s)
- Saad Sirop Kenderian
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marco Ruella
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar Gill
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Kalos
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
137
|
Nicholls PK, Stanton PG, Rainczuk KE, Qian H, Gregorevic P, Harrison CA. Lentiviral transduction of rat Sertoli cells as a means to modify gene expression. SPERMATOGENESIS 2014; 2:279-284. [PMID: 23248769 PMCID: PMC3521750 DOI: 10.4161/spmg.22516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primary cell culture is an established and widely used technique to study Sertoli cell function in vitro. However, the relative difficulty of stably overexpressing or knocking down genes in Sertoli cell culture has limited progress in the field. In this technical report, we present a method to transduce 20 dpp rat Sertoli cell cultures with VSV-G pseudotyped lentiviral based vectors at a high rate (~80%), with stable reporter gene expression. Although high transgene expression is desirable, it was noted that at transduction rates > 60% inter-Sertoli cell tight junction integrity and, hence, Sertoli cell function, were transiently compromised. We envisage that this optimized procedure has the potential to stimulate Sertoli cell research, and motivate the use of Sertoli cells in various cell therapy applications.
Collapse
Affiliation(s)
- Peter K Nicholls
- Prince Henry's Institute of Medical Research; Clayton, VIC Australia ; Department of Biochemistry and Molecular Biology; Monash University; Clayton, VIC Australia
| | | | | | | | | | | |
Collapse
|
138
|
Han JK, Chang SH, Cho HJ, Choi SB, Ahn HS, Lee J, Jeong H, Youn SW, Lee HJ, Kwon YW, Cho HJ, Oh BH, Oettgen P, Park YB, Kim HS. Direct Conversion of Adult Skin Fibroblasts to Endothelial Cells by Defined Factors. Circulation 2014; 130:1168-78. [DOI: 10.1161/circulationaha.113.007727] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background—
Cell-based therapies to augment endothelial cells (ECs) hold great therapeutic promise. Here, we report a novel approach to generate functional ECs directly from adult fibroblasts.
Methods and Results—
Eleven candidate genes that are key regulators of endothelial development were selected. Green fluorescent protein (GFP)–negative skin fibroblasts were prepared from Tie2-GFP mice and infected with lentiviruses allowing simultaneous overexpression of all 11 factors. Tie2-GFP
+
cells (0.9%), representing Tie2 gene activation, were detected by flow cytometry. Serial stepwise screening revealed 5 key factors (Foxo1, Er71, Klf2, Tal1, and Lmo2) that were required for efficient reprogramming of skin fibroblasts into Tie2-GFP
+
cells (4%). This reprogramming strategy did not involve pluripotency induction because neither Oct4 nor Nanog was expressed after 5 key factor transduction. Tie2-GFP
+
cells were isolated using fluorescence-activated cell sorting and designated as induced ECs (iECs). iECs exhibited endothelium-like cobblestone morphology and expressed EC molecular markers. iECs possessed endothelial functions such as
Bandeiraea simplicifolia
-1 lectin binding, acetylated low-density lipoprotein uptake, capillary formation on Matrigel, and nitric oxide production. The epigenetic profile of iECs was similar to that of authentic ECs because the promoters of VE-cadherin and Tie2 genes were demethylated. mRNA profiling showed clustering of iECs with authentic ECs and highly enriched endothelial genes in iECs. In a murine model of hind-limb ischemia, iEC implantation increased capillary density and enhanced limb perfusion, demonstrating the in vivo viability and functionality of iECs.
Conclusions—
We demonstrated the first direct conversion of adult fibroblasts to functional ECs. These results suggest a novel therapeutic modality for cell therapy in ischemic vascular disease.
Collapse
Affiliation(s)
- Jung-Kyu Han
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Sung-Hwan Chang
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hyun-Ju Cho
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Saet-Byeol Choi
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hyo-Suk Ahn
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jaewon Lee
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Heewon Jeong
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Seock-Won Youn
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Ho-Jae Lee
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Yoo-Wook Kwon
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hyun-Jai Cho
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Byung-Hee Oh
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Peter Oettgen
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Young-Bae Park
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hyo-Soo Kim
- From National Research Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., S-H.C, Hyun-Ju C., S-B.C., H-S.A., J.L., H.J., S-W.Y., H-J.L., Y-W.K., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J-K.H., Hyun-Jai C., B-H.O., Y-B.P., H-S.K.); Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
139
|
DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease. Mutat Res 2014; 776:2-8. [PMID: 26255934 DOI: 10.1016/j.mrfmmm.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.
Collapse
|
140
|
Dighe N, Khoury M, Mattar C, Chong M, Choolani M, Chen J, Antoniou MN, Chan JKY. Long-term reproducible expression in human fetal liver hematopoietic stem cells with a UCOE-based lentiviral vector. PLoS One 2014; 9:e104805. [PMID: 25118036 PMCID: PMC4130605 DOI: 10.1371/journal.pone.0104805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic Stem Cell (HSC) targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE) derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE)-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC). Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP) cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001). While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP), only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001). In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg-/-) demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.
Collapse
Affiliation(s)
- Niraja Dighe
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maroun Khoury
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
| | - Citra Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Chong
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guys Hospital, London, United Kingdom
| | - Jerry K. Y. Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
141
|
Dodd M, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J Gene Med 2014; 16:131-42. [DOI: 10.1002/jgm.2769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Megan Dodd
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Biomedical Engineering; Jimma Institute of Technology; Jimma Ethiopia
| | - Leah Marquez-Curtis
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
| | - Anna Janowska-Wieczorek
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
- Department of Medicine; University of Alberta; Edmonton AB Canada
| | - Gonzalo Hortelano
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Department of Biology & Chemistry, School of Science and Technology; Nazarbayev University; Astana Republic of Kazakhstan
| |
Collapse
|
142
|
Manufacturing of viral vectors: part II. Downstream processing and safety aspects. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
143
|
Galdiero S, Falanga A, Vitiello M, Grieco P, Caraglia M, Morelli G, Galdiero M. Exploitation of viral properties for intracellular delivery. J Pept Sci 2014; 20:468-78. [PMID: 24889153 PMCID: PMC7168031 DOI: 10.1002/psc.2649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/23/2023]
Abstract
Nanotechnology is an expanding area of study with potentially pivotal applications in a discipline as medicine where new biomedical active molecules or strategies are continuously developing. One of the principal drawbacks for the application of new therapies is the difficulty to cross membranes that represent the main physiological barrier in our body and in all living cells. Membranes are selectively permeable and allow the selective internalization of substances; generally, they form a highly impermeable barrier to most polar and charged molecules, and represent an obstacle for drug delivery, limiting absorption to specific routes and mechanisms. Viruses provide attracting suggestions for the development of targeted drug carriers as they have evolved naturally to deliver their genomes to host cells with high fidelity. A detailed understanding of virus structure and their mechanisms of entry into mammalian cells will facilitate the development and analysis of virus‐based materials for medical applications. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, and Via Domenico Montesano 49, 80100, Napoli, Italy; Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy; Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134, Napoli, Italy; DFM Scarl, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
144
|
Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:794-809. [PMID: 24625779 DOI: 10.1038/nprot.2014.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for a variety of inherited and acquired human diseases. In addition, the rabbit is the smallest livestock animal that is used to transgenically produce pharmaceutical proteins in its milk. Here we describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in rabbits by using the Sleeping Beauty (SB) transposon system. The protocol is based on co-injection into the pronuclei of fertilized oocytes of synthetic mRNA encoding the SB100X hyperactive transposase together with plasmid DNA carrying a transgene construct flanked by binding sites for the transposase. The translation of the transposase mRNA is followed by enzyme-mediated excision of the transgene cassette from the plasmids and its permanent genomic insertion to produce stable transgenic animals. Generation of a germline-transgenic founder animal by using this protocol takes ∼2 months. Transposon-mediated transgenesis compares favorably in terms of both efficiency and reliable transgene expression with classic pronuclear microinjection, and it offers comparable efficacies (numbers of transgenic founders obtained per injected embryo) to lentiviral approaches, without limitations on vector design, issues of transgene silencing, and the toxicity and biosafety concerns of working with viral vectors.
Collapse
|
145
|
Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:810-27. [DOI: 10.1038/nprot.2014.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
146
|
Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, Bösze Z, Geurts A, Pravenec M, Rülicke T, Izsvák Z. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:773-93. [PMID: 24625778 DOI: 10.1038/nprot.2014.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in two important biomedical models, the mouse and the rat, by using the Sleeping Beauty transposon system. The procedure is based on co-injection of synthetic mRNA encoding the SB100X hyperactive transposase, together with circular plasmid DNA carrying a transgene construct flanked by binding sites for the transposase, into the pronuclei of fertilized oocytes. Upon translation of the transposase mRNA, enzyme-mediated excision of the transgene cassettes from the injected plasmids followed by permanent genomic insertion produces stable transgenic animals. Generation of a germline-transgenic founder animal by using this protocol takes ∼3 months. Transposon-mediated transgenesis compares favorably in terms of both efficiency and reliable transgene expression with classic pronuclear microinjection, and it offers comparable efficacies to lentiviral approaches without limitations on vector design, issues of transgene silencing, and the toxicity and biosafety concerns of working with viral vectors.
Collapse
Affiliation(s)
- Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Lajos Mátés
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tien Yin Yau
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vladimír Landa
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vaclav Zidek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sanum Bashir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Wiebke Garrels
- Friedrich Loeffler Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Wilfried A Kues
- Friedrich Loeffler Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | | | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
147
|
Schambach A, Moritz T. Toward position-independent retroviral vector expression in pluripotent stem cells. Mol Ther 2014; 21:1474-7. [PMID: 23903574 DOI: 10.1038/mt.2013.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
148
|
|
149
|
Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014; 32:267-73. [PMID: 24535568 DOI: 10.1038/nbt.2800] [Citation(s) in RCA: 761] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022]
Abstract
Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
Collapse
Affiliation(s)
| | - Yilong Li
- 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. [2]
| | - E-Pien Tan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
150
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|