101
|
Wang LCS, Lynn RC, Cheng G, Alexander E, Kapoor V, Moon EK, Sun J, Fridlender ZG, Isaacs SN, Thorne SH, Albelda SM. Treating tumors with a vaccinia virus expressing IFNβ illustrates the complex relationships between oncolytic ability and immunogenicity. Mol Ther 2012; 20:736-48. [PMID: 22008913 PMCID: PMC3321606 DOI: 10.1038/mt.2011.228] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022] Open
Abstract
Since previous work using a nonreplicating adenovirus-expressing mouse interferon-β (Ad.mIFNβ) showed promising preclinical activity, we postulated that a vector-expressing IFNβ at high levels that could also replicate would be even more beneficial. Accordingly a replication competent, recombinant vaccinia viral vector-expressing mIFNβ (VV.mIFNβ) was tested. VV.mIFNβ-induced antitumor responses in two syngeneic mouse flank models of lung cancer. Although VV.mIFNβ had equivalent in vivo efficacy in both murine tumor models, the mechanisms of tumor killing were completely different. In LKRM2 tumors, viral replication was minimal and the tumor killing mechanism was due to activation of immune responses through induction of a local inflammatory response and production of antitumor CD8 T-cells. In contrast, in TC-1 tumors, the vector replicated well, induced an innate immune response, but antitumor activity was primarily due to a direct oncolytic effect. However, the VV.mIFNβ vector was able to augment the efficacy of an antitumor vaccine in the TC-1 tumor model in association with increased numbers of infiltrating CD8 T-cells. These data show the complex relationships between oncolytic viruses and the immune system which, if understood and harnessed correctly, could potentially be used to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Liang-Chuan S Wang
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel C Lynn
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guanjun Cheng
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward Alexander
- Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Veena Kapoor
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edmund K Moon
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jing Sun
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zvi G Fridlender
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stuart N Isaacs
- Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen H Thorne
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven M Albelda
- Division of Pulmonary, Thoracic Oncology Research Laboratory, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
102
|
Goldsmith M, Mizrahy S, Peer D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (Lond) 2012; 6:1771-85. [PMID: 22122585 DOI: 10.2217/nnm.11.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNAi is a ubiquitous and highly specific, endogenous, evolutionarily conserved mechanism of gene silencing. RNAi holds great promise as a novel therapeutic modality. Despite the rapid progress in the understanding and utilization of RNAi in vitro, the application of RNAi in vivo has been met with great difficulties, mainly in the delivery of these molecules into specific cell types. Here, we describe the major systemic nanomedicine platforms that have been developed. Focus is given to the development of new strategies to target subsets of leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss the hurdles and potential opportunities for in vivo manipulation of the immune response utilizing RNAi nanomedicines.
Collapse
Affiliation(s)
- Meir Goldsmith
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
103
|
Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. J Virol 2012; 86:5026-38. [PMID: 22419805 DOI: 10.1128/jvi.06684-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Poxviruses encode multiple inhibitors of the interferon (IFN) system, acting at different levels and blocking the induction of host defense mechanisms. Two viral gene products, B19 and B8, have been shown to act as decoy receptors of type I and type II IFNs, blocking the binding of IFN to its receptor. Since IFN plays a major role in innate immune responses, in this investigation we asked to what extent the viral inhibitors of the IFN system impact the capacity of poxvirus vectors to activate immune responses. This was tested in a mouse model with single and double deletion mutants of the vaccine candidate NYVAC-C, which expresses the HIV-1 Env, Gag, Pol, and Nef antigens. When deleted individually or in double, the type I (B19) and type II (B8) IFN binding proteins were not required for virus replication in cultured cells. Studies of immune responses in mice after DNA prime/NYVAC boost revealed that deletion of B8R and/or B19R genes improved the magnitude and quality of HIV-1-specific CD8(+) T cell adaptive immune responses and impacted their memory phase, changing the contraction, the memory differentiation, the effect magnitude, and the functionality profile. For B cell responses, deletion of the viral gene B8R and/or B19R had no effect on antibody levels to HIV-1 Env. These findings revealed that single or double deletion of viral factors (B8 and B19) targeting the IFN pathway is a useful approach in the design of improved poxvirus-based vaccines.
Collapse
|
104
|
Kan S, Wang Y, Sun L, Jia P, Qi Y, Su J, Liu L, Yang G, Liu L, Wang Z, Wang J, Liu G, Jin N, Li X, Ding Z. Attenuation of vaccinia Tian Tan strain by removal of viral TC7L-TK2L and TA35R genes. PLoS One 2012; 7:e31979. [PMID: 22363781 PMCID: PMC3283712 DOI: 10.1371/journal.pone.0031979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/16/2012] [Indexed: 12/19/2022] Open
Abstract
Vaccinia Tian Tan (VTT) was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP) flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines.
Collapse
Affiliation(s)
- Shifu Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Jilin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Leung DW, Basler CF, Amarasinghe GK. Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol 2012; 20:139-46. [PMID: 22325030 DOI: 10.1016/j.tim.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/25/2022]
Abstract
Activation of innate immune signaling pathways through cytosolic RIG-I-like receptors (RLR) is a crucial response that is antagonized by many viruses. A variety of RNA-related pathogen-associated molecular patterns (PAMPS) have been identified and their role in RLR activation has been examined. Recent studies suggest that several virus-encoded components that antagonize RLR signaling interact with and inhibit the interferon (IFN)-α/β activation pathway using both RNA-dependent and RNA-independent mechanisms. The structural basis for these RLR inhibitory mechanisms, as well as the multifunctional nature of viral RLR antagonists, is reviewed in the context of recent biochemical and structural studies.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
106
|
Johnston SC, Lin KL, Connor JH, Ruthel G, Goff A, Hensley LE. In vitro inhibition of monkeypox virus production and spread by Interferon-β. Virol J 2012; 9:5. [PMID: 22225589 PMCID: PMC3284473 DOI: 10.1186/1743-422x-9-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/06/2012] [Indexed: 12/14/2022] Open
Abstract
Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease.
Collapse
Affiliation(s)
- Sara C Johnston
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Fort Detrick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Guerra S, Abaitua F, Martínez-Sobrido L, Esteban M, García-Sastre A, Rodríguez D. Host-range restriction of vaccinia virus E3L deletion mutant can be overcome in vitro, but not in vivo, by expression of the influenza virus NS1 protein. PLoS One 2011; 6:e28677. [PMID: 22174864 PMCID: PMC3236761 DOI: 10.1371/journal.pone.0028677] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/13/2011] [Indexed: 12/18/2022] Open
Abstract
During the last decades, research focused on vaccinia virus (VACV) pathogenesis has been intensified prompted by its potential beneficial application as a vector for vaccine development and anti-cancer therapies, but also due to the fear of its potential use as a bio-terrorism threat. Recombinant viruses lacking a type I interferon (IFN) antagonist are attenuated and hence good vaccine candidates. However, vaccine virus growth requires production in IFN-deficient systems, and thus viral IFN antagonists that are active in vitro, yet not in vivo, are of great value. The VACV E3 and influenza virus NS1 proteins are distinct double-stranded RNA-binding proteins that play an important role in pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. Based on the functional similarities between E3 and NS1, we investigated the ability of NS1 to replace the biological functions of E3 of VACV in both in vitro and in vivo systems. For this, we generated a VACV recombinant virus lacking the E3L gene, yet expressing NS1 (VVΔE3L/NS1). Our study revealed that NS1 can functionally replace E3 in cultured cells, rescuing the protein synthesis blockade, and preventing apoptosis and RNA breakdown. In contrast, in vivo the VVΔE3L/NS1 virus was highly attenuated after intranasal inoculation, as it was unable to spread to the lungs and other organs. These results indicate that there are commonalities but also functional differences in the roles of NS1 and E3 as inhibitors of the innate antiviral response, which could potentially be utilized for vaccine production purposes in the future.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Department of Preventive Medicine and Public Health, Universidad Autónoma, Madrid, Spain
- * E-mail: (SG); (DR)
| | - Fernando Abaitua
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- * E-mail: (SG); (DR)
| |
Collapse
|
108
|
Denzler KL, Babas T, Rippeon A, Huynh T, Fukushima N, Rhodes L, Silvera PM, Jacobs BL. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine 2011; 29:9684-90. [PMID: 22001879 PMCID: PMC5001690 DOI: 10.1016/j.vaccine.2011.09.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
The New York City Board of Health (NYCBH) vaccinia virus is the currently licensed vaccine for use in the US against smallpox. The vaccine under investigation in this study has been attenuated by deletion of the innate immune evasion gene, E3L, and shown to be protective in homologous virus mouse challenge and heterologous virus mouse and rabbit challenge models. In this study we compared NYCBH deleted for the E3L gene (NYCBHΔE3L) to NYCBH for the ability to induce phosphorylation of proinflammatory signaling proteins and the ability to protect cynomolgus macaques from heterologous challenge with monkeypox virus (MPXV). NYCBHΔE3L induced phosphorylation of PKR and eIF2α as well as p38, SAPK/JNK, and IRF3 which can lead to induction of proinflammatory gene transcription. Vaccination of macaques with two doses of NYCBHΔE3L resulted in negligible pock formation at the site of scarification in comparison to vaccination using a single dose of NYCBH, but still elicited neutralizing antibodies and protected 75% of the animals from mortality after challenge with MPXV. However, NYCBHΔE3L-vaccinated animals developed a high number of secondary skin lesions and blood viral load similar to that seen in unvaccinated controls. The NYCBHΔE3L-vaccinated animals that survived MPXV challenge were able to show resolution of blood viral load, a decrease in number of skin lesions, and an improved clinical score by three weeks post challenge. These results suggest that although the highly attenuated NYCBHΔE3L allows proinflammatory signal transduction to occur, it does not provide full protection against monkeypox challenge.
Collapse
Affiliation(s)
- Karen L Denzler
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Little NS, Quon T, Upton C. Prediction of a novel RNA binding domain in crocodilepox Zimbabwe Gene 157. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:12. [PMID: 22587704 PMCID: PMC3372294 DOI: 10.1186/2042-5783-1-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022]
Abstract
Background Although the crocodilepox virus (CRV) is currently unclassified, phylogenetic analyses suggest that its closest known relatives are molluscum contagiosum virus (MCV) and the avipox viruses. The CRV genome is approximately 190 kb and contains a large number of unique genes in addition to the set of conserved Chordopoxvirus genes found in all such viruses. Upon sequencing the viral genome, others noted that this virus was also unusual because of the lack of a series of common immuno-suppressive genes. However, the genome contains multiple genes of unknown function that are likely to function in reducing the anti-viral response of the host. Results By using sensitive database searches for similarity, we observed that gene 157 of CRV-strain Zimbabwe (CRV-ZWE) encodes a protein with a domain that is predicted to bind dsRNA. Domain characterization supported this prediction, therefore, we tested the ability of the Robetta protein structure prediction server to model the amino acid sequence of this protein on a well-characterized RNA binding domain. The model generated by Robetta suggests that CRV-ZWE-157 does indeed contain an RNA binding domain; the model could be overlaid on the template protein structure with high confidence. Conclusion We hypothesize that CRV-ZWE-157 encodes a novel poxvirus RNA binding protein and suggest that as a non-core gene it may play a role in host-range determination or function to dampen host anti-viral responses. Potential targets for this CRV protein include the host interferon response and miRNA pathways.
Collapse
Affiliation(s)
- Nicole S Little
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| | - Taylor Quon
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| |
Collapse
|
110
|
Kibler KV, Gomez CE, Perdiguero B, Wong S, Huynh T, Holechek S, Arndt W, Jimenez V, Gonzalez-Sanz R, Denzler K, Haddad EK, Wagner R, Sékaly RP, Tartaglia J, Pantaleo G, Jacobs BL, Esteban M. Improved NYVAC-based vaccine vectors. PLoS One 2011; 6:e25674. [PMID: 22096477 PMCID: PMC3212513 DOI: 10.1371/journal.pone.0025674] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023] Open
Abstract
While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.
Collapse
Affiliation(s)
- Karen V. Kibler
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Carmen E. Gomez
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Beatriz Perdiguero
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Shukmei Wong
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Trung Huynh
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Susan Holechek
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - William Arndt
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Victoria Jimenez
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Ruben Gonzalez-Sanz
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Karen Denzler
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
- University of Montreal, Montreal, Canada
| | - James Tartaglia
- Sanofi-Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bertram L. Jacobs
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (BLJ); (ME)
| | - Mariano Esteban
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- * E-mail: (BLJ); (ME)
| |
Collapse
|
111
|
|
112
|
Smee DF, Wong MH, Russell A, Ennis J, Turner JD. Therapy and long-term prophylaxis of vaccinia virus respiratory infections in mice with an adenovirus-vectored interferon alpha (mDEF201). PLoS One 2011; 6:e26330. [PMID: 22022603 PMCID: PMC3192798 DOI: 10.1371/journal.pone.0026330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022] Open
Abstract
An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201) was evaluated for efficacy against lethal vaccinia virus (WR strain) respiratory infections in mice. mDEF201 was administered as a single intranasal treatment either prophylactically or therapeutically at doses of 106 to 108 plaque forming units/mouse. When the prophylactic treatment was given at 56 days prior to infection, it protected 90% of animals from death (100% protection for treatments given between 1–49 days pre-infection), with minimal weight loss occurring during infection. Surviving animals re-challenged with virus 22 days after the primary infection were protected from death, indicating that mDEF201 did not compromise the immune response against the initial infection. Post-exposure therapy was given between 6–24 h after vaccinia virus exposure and protection was afforded by a 108 dose of mDEF201 given at 24 h, whereas a 107 dose was effective up to 12 h. Comparisons were made of the ability of mDEF201, given either 28 or 1 day prior to infection, to inhibit tissue virus titers and lung infection parameters. Lung, liver, and spleen virus titers were inhibited to nearly the same extent by either treatment, as were lung weights and lung hemorrhage scores (indicators of pneumonitis). Lung virus titers were significantly (>100-fold) lower than in the placebo group, and the other infection parameters in mDEF201 treated mice were nearly at baseline. In contrast, viral titers and lung infection parameters were high in the placebo group on day 5 of the infection. These results demonstrate the long-acting prophylactic and treatment capacity of mDEF201 to combat vaccinia virus infections.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America.
| | | | | | | | | |
Collapse
|
113
|
Denzler KL, Schriewer J, Parker S, Werner C, Hartzler H, Hembrador E, Huynh T, Holechek S, Buller RM, Jacobs BL. The attenuated NYCBH vaccinia virus deleted for the immune evasion gene, E3L, completely protects mice against heterologous challenge with ectromelia virus. Vaccine 2011; 29:9691-6. [PMID: 21983358 DOI: 10.1016/j.vaccine.2011.09.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
The New York City Board of Health (NYCBH) vaccinia virus (VACV) vaccine strain was deleted for the immune evasion gene, E3L, and tested for its pathogenicity and ability to protect mice from heterologous challenge with ectromelia virus (ECTV). NYCBHΔE3L was found to be highly attenuated for pathogenicity in a newborn mouse model and showed a similar attenuated phenotype as the NYVAC strain of vaccinia virus. Scarification with one or two doses of the attenuated NYCBHΔE3L was able to protect mice equally as well as NYCBH from death, weight loss, and viral spread to visceral organs. A single dose of NYCBHΔE3L resulted in low poxvirus-specific antibodies, and a second dose increased levels of poxvirus-specific antibodies to a level similar to that seen in animals vaccinated with a single dose of NYCBH. However, similar neutralizing antibody titers were observed following one or two doses of NYCBHΔE3L or NYCBH. Thus, NYCBHΔE3L shows potential as a candidate for a safer human smallpox vaccine since it protects mice from challenge with a heterologous poxvirus.
Collapse
Affiliation(s)
- Karen L Denzler
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Unterholzner L, Sumner RP, Baran M, Ren H, Mansur DS, Bourke NM, Randow F, Smith GL, Bowie AG. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 2011; 7:e1002247. [PMID: 21931555 PMCID: PMC3169548 DOI: 10.1371/journal.ppat.1002247] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/17/2011] [Indexed: 12/24/2022] Open
Abstract
Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-β (IFN-β) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7. A key event in the innate immune response to virus infection is the detection of pathogen-associated molecular patterns (PAMPs) such as viral DNA and RNA by cellular pattern recognition receptors (PRRs). This leads to expression of interferon-β (IFN-β) by an infected cell. Many viruses have evolved mechanisms to evade the induction of IFN-β. Here a screen of poorly characterized vaccinia virus (VACV) proteins identified protein C6 as an inhibitor of IFN-β induction by PRRs. Data presented show that C6 prevents the activation of the transcription factors IRF3 and IRF7 by the kinases TBK1 and IKKε, which are key components at the point of convergence of several PRR signalling pathways. C6 interacts with the scaffold proteins NAP1, TANK and SINTBAD, which are components of the protein complexes containing TBK1 and IKKε, and this interaction might modulate the activity of these kinases. C6 is expressed early during infection and contributes to virulence because viruses that do not express C6 are attenuated in two in vivo models compared to wild type and revertant control viruses.
Collapse
Affiliation(s)
- Leonie Unterholzner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca P. Sumner
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Marcin Baran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Hongwei Ren
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Daniel S. Mansur
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Nollaig M. Bourke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Felix Randow
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
115
|
García-Arriaza J, Nájera JL, Gómez CE, Tewabe N, Sorzano COS, Calandra T, Roger T, Esteban M. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS One 2011; 6:e24244. [PMID: 21909386 PMCID: PMC3164197 DOI: 10.1371/journal.pone.0024244] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nolawit Tewabe
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
116
|
Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus. J Virol 2011; 85:11588-600. [PMID: 21880762 DOI: 10.1128/jvi.00641-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The barrier to autointegration factor (BAF) is an essential cellular protein with functions in mitotic nuclear reassembly, retroviral preintegration complex stability, and transcriptional regulation. Molecular properties of BAF include the ability to bind double-stranded DNA in a sequence-independent manner, homodimerize, and bind proteins containing a LEM domain. These capabilities allow BAF to compact DNA and assemble higher-order nucleoprotein complexes, the nature of which is poorly understood. Recently, it was revealed that BAF also acts as a potent host defense against poxviral DNA replication in the cytoplasm. Here, we extend these observations by examining the molecular mechanism through which BAF acts as a host defense against vaccinia virus replication and cytoplasmic DNA in general. Interestingly, BAF rapidly relocalizes to transfected DNA from a variety of sources, demonstrating that BAF's activity as a host defense factor is not limited to poxviral infection. BAF's relocalization to cytoplasmic foreign DNA is highly dependent upon its DNA binding and dimerization properties but does not appear to require its LEM domain binding activity. However, the LEM domain protein emerin is recruited to cytoplasmic DNA in a BAF-dependent manner during both transfection and vaccinia virus infection. Finally, we demonstrate that the DNA binding and dimerization capabilities of BAF are essential for its function as an antipoxviral effector, while the presence of emerin is not required. Together, these data provide further mechanistic insight into which of BAF's molecular properties are employed by cells to impair the replication of poxviruses or respond to foreign DNA in general.
Collapse
|
117
|
Esteban DJ, Hutchinson AP. Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution. BMC Genomics 2011; 12:261. [PMID: 21605412 PMCID: PMC3123329 DOI: 10.1186/1471-2164-12-261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Orthopoxviruses are dsDNA viruses with large genomes, some encoding over 200 genes. Genes essential for viral replication are located in the center of the linear genome and genes encoding host response modifiers and other host interacting proteins are located in the terminal regions. The central portion of the genome is highly conserved, both in gene content and sequence, while the terminal regions are more diverse. In this study, we investigated the role of adaptive molecular evolution in poxvirus genes and the selective pressures that act on the different regions of the genome. The relative fixation rates of synonymous and non-synonymous mutations (the d(N)/d(S) ratio) are an indicator of the mechanism of evolution of sequences, and can be used to identify purifying, neutral, or diversifying selection acting on a gene. Like highly conserved residues, amino acids under diversifying selection may be functionally important. Many genes experiencing diversifying selection are involved in host-pathogen interactions, such as antigen-antibody interactions, or the "host-pathogen arms race." RESULTS We analyzed 175 gene families from orthopoxviruses for evidence of diversifying selection. 79 genes were identified as experiencing diversifying selection, 25 with high confidence. Many of these genes are located in the terminal regions of the genome and function to modify the host response to infection or are virion-associated, indicating a greater role for diversifying selection in host-interacting genes. Of the 79 genes, 20 are of unknown function, and implicating diversifying selection as an important mechanism in their evolution may help characterize their function or identify important functional residues. CONCLUSIONS We conclude that diversifying selection is an important mechanism of orthopoxvirus evolution. Diversifying selection in poxviruses may be the result of interaction with host defense mechanisms.
Collapse
Affiliation(s)
- David J Esteban
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA.
| | | |
Collapse
|
118
|
Bahar MW, Graham SC, Chen RAJ, Cooray S, Smith GL, Stuart DI, Grimes JM. How vaccinia virus has evolved to subvert the host immune response. J Struct Biol 2011; 175:127-34. [PMID: 21419849 PMCID: PMC3477310 DOI: 10.1016/j.jsb.2011.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 01/06/2023]
Abstract
Viruses are obligate intracellular parasites and are some of the most rapidly evolving and diverse pathogens encountered by the host immune system. Large complicated viruses, such as poxviruses, have evolved a plethora of proteins to disrupt host immune signalling in their battle against immune surveillance. Recent X-ray crystallographic analysis of these viral immunomodulators has helped form an emerging picture of the molecular details of virus-host interactions. In this review we consider some of these immune evasion strategies as they apply to poxviruses, from a structural perspective, with specific examples from the European SPINE2-Complexes initiative. Structures of poxvirus immunomodulators reveal the capacity of viruses to mimic and compete against the host immune system, using a diverse range of structural folds that are unique or acquired from their hosts with both enhanced and unexpectedly divergent functions.
Collapse
Affiliation(s)
- Mohammad W Bahar
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX37BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
119
|
Montanuy I, Alejo A, Alcami A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J 2011; 25:1960-71. [PMID: 21372110 DOI: 10.1096/fj.10-177188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.
Collapse
Affiliation(s)
- Imma Montanuy
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Nicolás Cabrera, 1. Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
120
|
Quakkelaar ED, Redeker A, Haddad EK, Harari A, McCaughey SM, Duhen T, Filali-Mouhim A, Goulet JP, Loof NM, Ossendorp F, Perdiguero B, Heinen P, Gomez CE, Kibler KV, Koelle DM, Sékaly RP, Sallusto F, Lanzavecchia A, Pantaleo G, Esteban M, Tartaglia J, Jacobs BL, Melief CJM. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PLoS One 2011; 6:e16819. [PMID: 21347234 PMCID: PMC3039654 DOI: 10.1371/journal.pone.0016819] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Collapse
Affiliation(s)
- Esther D. Quakkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elias K. Haddad
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Stella Mayo McCaughey
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas Duhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Abdelali Filali-Mouhim
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Jean-Philippe Goulet
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Nikki M. Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul Heinen
- Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | - Karen V. Kibler
- Arizona State University, Tempe, Arizona, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rafick P. Sékaly
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | | | | | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Jim Tartaglia
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | | | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- ISA Pharmaceuticals B.V., Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
121
|
Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM, Szalay AA. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer 2011; 11:68. [PMID: 21320309 PMCID: PMC3044654 DOI: 10.1186/1471-2407-11-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/14/2011] [Indexed: 12/24/2022] Open
Abstract
Background In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV). Methods Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion) in nude mice. Results Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII+-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis. Conclusions Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome.
Collapse
Affiliation(s)
- Stephanie Weibel
- Department of Biochemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
123
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
124
|
Abstract
Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. VACV has been exploited as an oncolytic therapeutic agent for cancer since 1922. This virus selectively infects and destroys tumor cells, while sparing normal cells, both in cell cultures and in animal models. A certain degree of therapeutic efficacy also has been demonstrated in patients with different types of cancer. In recent years, several strategies have been successfully developed to further improve its tumor selectivity and antitumor efficacy. Oncolytic VACVs carrying imaging genes represent a new treatment strategy that combines tumor site-specific therapeutics with diagnostics (theranostics).
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA; Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, Suite 310, San Diego, CA 92109, USA
| | - Aladar A Szalay
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Biochemistry & Institute for Molecular Infection Biology, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
| |
Collapse
|
125
|
Gibbert K, Dietze KK, Zelinskyy G, Lang KS, Barchet W, Kirschning CJ, Dittmer U. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:6179-89. [PMID: 20943997 DOI: 10.4049/jimmunol.1000858] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The induction of type I IFN is the most immediate host response to viral infections. Type I IFN has a direct antiviral activity mediated by antiviral enzymes, but it also modulates the function of cells of the adaptive immune system. Many viruses can suppress type I IFN production, and in retroviral infections, the initial type I IFN is weak. Thus, one strategy of immunotherapy in viral infection is the exogenous induction of type I IFN during acute viral infection by TLR ligands. Along these lines, the TLR3/MDA5 ligand polyinosinic-polycytidylic acid [poly(I:C)] has already been used to treat viral infections. However, the immunological mechanisms underlying this successful therapy have not been defined until now. In this study, the Friend retrovirus (FV) mouse model was used to investigate the mode of action of poly(I:C) in antiretroviral immunotherapy. Postexposure, poly(I:C) treatment of FV-infected mice resulted in a significant reduction in viral loads and protection from virus-induced leukemia. This effect was IFN dependent because type I IFN receptor-deficient mice could not be protected by poly(I:C). The poly(I:C)-induced IFN response resulted in the expression of antiviral enzymes, which suppressed FV replication. Also, the virus-specific T cell response was augmented. Interestingly, it did not enhance the number of virus-specific CD4(+) and CD8(+) T cells, but rather the functional properties of these cells, such as cytokine production and cytotoxic activity. The results demonstrate a direct antiviral and immunomodulatory effect of poly(I:C) and, therefore, suggests its potential for clinical treatment of retroviral infections.
Collapse
Affiliation(s)
- Kathrin Gibbert
- Institute for Virology, University Clinics in Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
García-Arriaza J, Nájera JL, Gómez CE, Sorzano COS, Esteban M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 2010; 5:e12395. [PMID: 20811493 PMCID: PMC2927552 DOI: 10.1371/journal.pone.0012395] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
127
|
|
128
|
Modulation of the host immune response by cowpox virus. Microbes Infect 2010; 12:900-9. [PMID: 20673807 PMCID: PMC3500136 DOI: 10.1016/j.micinf.2010.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022]
Abstract
Cowpox virus, a zoonotic poxvirus endemic to Eurasia, infects a large number of host species which makes its eradication impossible. The elimination of world-wide smallpox vaccination programs renders the human population increasingly susceptible to infection by orthopoxviruses resulting in a growing number of zoonotic infections including CPXV transmitted from domestic animals to humans. The ability of CPXV to infect a wide range of mammalian host is likely due to the fact that, among the orthopoxviruses, CPXV encodes the most complete set of open reading frames expected to encode immunomodulatory proteins. This renders CPXV particularly interesting for studying poxviral strategies to evade and counteract the host immune responses.
Collapse
|
129
|
Nakayama Y, Plisch EH, Sullivan J, Thomas C, Czuprynski CJ, Williams BRG, Suresh M. Role of PKR and Type I IFNs in viral control during primary and secondary infection. PLoS Pathog 2010; 6:e1000966. [PMID: 20585572 PMCID: PMC2891951 DOI: 10.1371/journal.ppat.1000966] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 05/25/2010] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines.
Collapse
Affiliation(s)
- Yumi Nakayama
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin H. Plisch
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeremy Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chester Thomas
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bryan R. G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
130
|
Valentine R, Smith GL. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol 2010; 91:2221-9. [PMID: 20519457 PMCID: PMC3052519 DOI: 10.1099/vir.0.021998-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The vaccinia virus E3 protein is an important intracellular modulator of innate immunity that can be split into distinct halves. The C terminus contains a well defined dsRNA-binding domain, whereas the N terminus contains a Z-DNA-binding domain, and both domains are required for virulence. In this study, we investigated whether the E3 Z-DNA-binding domain functions by sequestering cytoplasmic dsDNA thereby preventing the induction of type I interferon (IFN). In line with this hypothesis, expression of E3 ablated both IFN-β expression and NF-κB activity in response to the dsDNA, poly(dA–dT). However, surprisingly, the ability of E3 to block poly(dA–dT) signalling was independent of the N terminus, whereas the dsRNA-binding domain was essential, suggesting that the Z-DNA-binding domain does not bind immunostimulatory dsDNA. This was confirmed by the failure of E3 to co-precipitate with biotinylated dsDNA, whereas the recruitment of several cytoplasmic DNA-binding proteins could be detected. Recently, AT-rich dsDNA was reported to be transcribed into 5′-triphosphate poly(A-U) RNA by RNA polymerase III, which then activates retinoic acid-inducible gene I (RIG-I). Consistent with this, RNA from poly(dA–dT) transfected cells induced IFN-β and expression of the E3 dsRNA-binding domain was sufficient to ablate this response. Given the well documented function of the E3 dsRNA-binding domain we propose that E3 blocks signalling in response to poly(dA–dT) by binding to transcribed poly(A-U) RNA preventing RIG-I activation. This report describes a DNA virus-encoded inhibitor of the RNA polymerase III-dsDNA-sensing pathway and extends our knowledge of E3 as a modulator of innate immunity.
Collapse
|
131
|
Abstract
Innate immunity is the first line of defense against viral infections. It is based on a mechanism of sensing pathogen-associated molecular patterns through host germline-encoded pattern recognition receptors. dsRNA is arguably the most important viral pathogen-associated molecular pattern due to its expression by almost all viruses at some point during their replicative cycle. Viral dsRNA has been studied for over 55 years, first as a toxin, then as a type I interferon inducer, a viral mimetic and an immunomodulator for therapeutic purposes. This article will focus on dsRNA, its structure, generation (both endogenous and viral), host sensing mechanisms and induction of type I interferons. The possible therapeutic applications of these findings will also be discussed. The goal of this article is to give an overview of these mechanisms, highlighting novel findings, while providing a historical perspective.
Collapse
Affiliation(s)
- Stephanie J DeWitte-Orr
- McMaster University, Department of Pathology & Molecular Medicine, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|
132
|
Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors: a GRIM story. Cytokine 2010; 52:128-42. [PMID: 20382543 DOI: 10.1016/j.cyto.2010.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
Cytokines belonging to the IFN family are potent growth suppressors. In a number of clinical and preclinical studies, vitamin A and its derivatives like retinoic acid (RA) have been shown to exert synergistic growth-suppressive effects on several tumor cells. We have employed a genome-wide expression-knockout approach to identify the genes critical for IFN/RA-induced growth suppression. A number of novel genes associated with Retinoid-Interferon-induced Mortality (GRIM) were isolated. In this review, we will describe the molecular mechanisms of actions of one, GRIM-19, which participates in multiple pathways for exerting growth control and/or cell death. This protein is emerging as a new tumor suppressor. In addition, GRIM-19 appears to participate in innate immune responses as its activity is modulated by several viruses and bacteria. Thus, GRIMs seem to couple with multiple biological responses by acting at critical nodes.
Collapse
Affiliation(s)
- Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
133
|
González JM, Esteban M. A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J 2010; 7:59. [PMID: 20230632 PMCID: PMC2907574 DOI: 10.1186/1743-422x-7-59] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/15/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Poxviruses evade the immune system of the host through the action of viral encoded inhibitors that block various signalling pathways. The exact number of viral inhibitors is not yet known. Several members of the vaccinia virus A46 and N1 families, with a Bcl-2-like structure, are involved in the regulation of the host innate immune response where they act non-redundantly at different levels of the Toll-like receptor signalling pathway. N1 also maintains an anti-apoptotic effect by acting similarly to cellular Bcl-2 proteins. Whether there are related families that could have similar functions is the main subject of this investigation. RESULTS We describe the sequence similarity existing among poxvirus A46, N1, N2 and C1 protein families, which share a common domain of approximately 110-140 amino acids at their C-termini that spans the entire N1 sequence. Secondary structure and fold recognition predictions suggest that this domain presents an all-alpha-helical fold compatible with the Bcl-2-like structures of vaccinia virus proteins N1, A52, B15 and K7. We propose that these protein families should be merged into a single one. We describe the phylogenetic distribution of this family and reconstruct its evolutionary history, which indicates an extensive gene gain in ancestral viruses and a further stabilization of its gene content. CONCLUSIONS Based on the sequence/structure similarity, we propose that other members with unknown function, like vaccinia virus N2, C1, C6 and C16/B22, might have a similar role in the suppression of host immune response as A46, A52, B15 and K7, by antagonizing at different levels with the TLR signalling pathways.
Collapse
Affiliation(s)
- José M González
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | | |
Collapse
|