101
|
Bermpohl D, You Z, Korsmeyer SJ, Moskowitz MA, Whalen MJ. Traumatic brain injury in mice deficient in Bid: effects on histopathology and functional outcome. J Cereb Blood Flow Metab 2006; 26:625-33. [PMID: 16395279 DOI: 10.1038/sj.jcbfm.9600258] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bid is a proapoptotic member of the Bcl-2 family that mediates cell death by caspase-dependent and -independent pathways. We tested mice genetically deficient in Bid in a controlled cortical impact (CCI) model to examine the hypothesis that Bid contributes to cell death and functional outcome after traumatic brain injury. After CCI, truncated Bid (15 kDa) was robustly detected in cortical brain homogenates of wild-type mice. Bid-/- mice had decreased numbers of cortical cells with acute plasmalemma injury at 6 h (wild type (WT), 1721+/-124; Bid-/-, 1173+/-129 cells/ x 200 field; P<0.01), decreased numbers of cells expressing cleaved caspase-3 in the dentate gyrus at 48 h (WT, 113+/-15; Bid-/-, 65+/-9 cells/ x 200 field; P<0.05), and reduced lesion volume at 12 days (Bid-/-, 5.9+/-0.4 mm(3); WT, 8.4+/-0.4 mm(3); P<0.001), but did not differ from WT mice at later times after injury regarding lesion size (30 days) or brain tissue atrophy (40 days). Compared with naïve mice, injured mice in both groups performed significantly worse on motor and Morris water maze (MWM) tests; however, mice deficient in Bid did not differ from WT in postinjury motor and MWM performance. The data show that Bid deficiency decreases early posttraumatic brain cell death and tissue damage, but does not reduce functional outcome deficits after CCI in mice.
Collapse
Affiliation(s)
- Daniela Bermpohl
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
102
|
Hughes S, Colantonio A, Santaguida PL, Paton T. Amantadine to enhance readiness for rehabilitation following severe traumatic brain injury. Brain Inj 2006; 19:1197-206. [PMID: 16286335 DOI: 10.1080/02699050500309296] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PRIMARY OBJECTIVE To evaluate the association between amantadine and recovery of consciousness from prolonged traumatic coma. RESEARCH DESIGN A retrospective cohort study. METHODS Subjects included 123 adults with severe traumatic brain injury (TBI) admitted over a 10-year period who remained in coma despite becoming medically stable. EXPERIMENTAL INTERVENTIONS Cases received 100-200 mg of amantadine twice daily. MAIN OUTCOMES AND RESULTS 46.4% (13/28) of cases emerged from coma compared to 37.9% (36/95) of controls (p = 0.42). Somatosensory evoked potential (SSEP) was the only significant predictor of emergence from coma (p = 0.02), while SSEP, age and Glasgow Coma Score (GCS) significantly predicted time to emerge from coma (p < 0.05). CONCLUSIONS Although the study and its design do not support the view that amantadine has an effect on recovery of consciousness; it remains safe, inexpensive and has few side effects. The lack of treatment alternatives and anecdotal support for its use may warrant further study. Prospective controlled trials would yield more definitive results.
Collapse
Affiliation(s)
- Shari Hughes
- Sunnybrook & Women's College Health Sciences Centre, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
103
|
Jorge RE, Starkstein SE. Pathophysiologic aspects of major depression following traumatic brain injury. J Head Trauma Rehabil 2006; 20:475-87. [PMID: 16304485 DOI: 10.1097/00001199-200511000-00001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mood disorders, particularly major depression, are the most frequent complication of traumatic brain injury. Major depression is present in about 40% of patients hospitalization for a traumatic brain injury. Anxiety disorders, substance abuse, dysregulation of emotional expression, and aggressive outbursts are frequently associated with major depression, and their coexistence constitutes a marker of a more disabling clinical course. The complex interactions of genetic, developmental, and psychosocial factors determine patients' vulnerability to developing affective disturbances following a traumatic brain injury. Symptoms of depression cluster into the domains of low mood and distorted self-attitude, lack of motivation and anhedonia, subjective cognitive complaints, and hyperactive and disinhibited behavior. It is reasonable to assume that these symptomatic clusters have specific underlying mechanisms that need to be integrated in a comprehensive pathophysiologic model.
Collapse
Affiliation(s)
- Ricardo E Jorge
- Department of Psychiatry, University of Iowa, Iowa City, USA.
| | | |
Collapse
|
104
|
Serbest G, Horwitz J, Jost M, Barbee K. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J 2005; 20:308-10. [PMID: 16371428 DOI: 10.1096/fj.05-4024fje] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms of cell death and the progressive degeneration of neural tissue following traumatic brain injury (TBI) have come under intense investigation. However, the complex interactions among the evolving pathologies in multiple cell types obscure the causal relationships between the initial effects of the mechanical trauma at the cellular level and the long-term dysfunction and neuronal death. We used an in vitro model of neuronal injury to study the mechanisms of cell death in response to a well-defined mechanical insult and found that the majority of dead cells were apoptotic. We have previously reported that promotion of membrane repair acutely with the non-ionic surfactant poloxamer 188 (P188) restored cell viability to control values at 24 h postinjury. Here, we showed that P188 significantly inhibits apoptosis and prevents necrosis. We also examined the role of mitogen-activated protein kinases (MAPKs) in cell death. There was a rapid, transient activation of extracellular signal-regulated kinases, c-Jun N-terminal kinase, and p38s after mechanical insult. Of these, activation of the proapoptotic p38 was the greatest. Treatment with P188 inhibited p38 activation; however, direct inhibition of p38 by SB203580, which selectively inhibits the activity of the p38 MAPK, provided only partial inhibition of apoptosis and had no effect on necrosis. These data suggest that multiple signaling pathways may be involved in the long-term response of neurons to mechanical injury. Furthermore, that the membrane resealing action of P188 provides such significant protection from both necrosis and apoptosis suggests that acute membrane damage due to trauma is a critical precipitating event that is upstream of the many signaling cascades contributing to the subsequent pathology.
Collapse
Affiliation(s)
- Gulyeter Serbest
- School of Biomedical Engineering, Science, and Health Systems, DrexelUniversity, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
105
|
Viant MR, Lyeth BG, Miller MG, Berman RF. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR IN BIOMEDICINE 2005; 18:507-16. [PMID: 16177961 DOI: 10.1002/nbm.980] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of traumatic brain injury (TBI) on brain chemistry and metabolism were examined in three groups of rats using high-resolution (1)H NMR metabolomics of brain tissue extracts and plasma. Brain injury in the TBI group (n = 6) was produced by lateral fluid percussion and regional changes in brain metabolites were analyzed at 1 h after injury in hippocampus, cortex and plasma and compared with changes in both a sham-surgery control group (n = 6) and an untreated control group (n = 6). Evidence was found of oxidative stress (e.g. decreases in ascorbate of 16.4% (p<0.01) and 29.7% (p<0.05) in cortex and hippocampus, respectively) in TBI rats versus the untreated control group, as well as excitotoxic damage (e.g. decreases in glutamate of 14.7% (p<0.05) and 12.3% (p<0.01) in the cortex and hippocampus, respectively), membrane disruption (e.g. decreases in the total level of phosphocholine and glycerophosphocholine of 23.0% (p<0.01) and 19.0% (p<0.01) in the cortex and hippocampus, respectively) and neuronal injury (e.g. decreases in N-acetylaspartate of 15.3% (p<0.01) and 9.7% (p>0.05) in the cortex and hippocampus, respectively). Significant changes in the overall pattern of NMR-observable metabolites using principal components analysis were also observed in TBI animals. Although TBI clearly had an effect on the metabolic profile found in brain tissue, no clear effects could be discerned in plasma samples. This was at least partly due to large variability in dominant glucose and lactate peaks in plasma. However, disruption of the blood-brain barrier and the subsequent movement of metabolites from brain into blood may have been relatively small and below the detection limits of our analytical procedures. Overall, these data indicate that TBI results in several significant changes in brain metabolism early after trauma and that a metabolomic approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes within specific brain regions. The results also provide support for further development and application of metabolomic technologies for studying TBI and for the utilization of multivariate models for classifying the extent of trauma within an individual.
Collapse
Affiliation(s)
- Mark R Viant
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
106
|
Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, Clough RW. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 2005; 22:1485-502. [PMID: 16379585 PMCID: PMC1769332 DOI: 10.1089/neu.2005.22.1485] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal's home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and /or level of final performance was observed in the VNS-LFP animals compared to nonstimulated LFP controls. Behavior in the Morris water maze was assessed on days 11-14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3 subarea of the hippocampus, at least at the one time point studied 15 days post-injury. These results support the idea that vagus nerve stimulation enhances the neural plasticity that underlies recovery of function following brain damage and provides indirect support for the hypothesis that enhanced NE release may mediate the effect. Importantly, since VNS facilitated both the rate of recovery and the extent of motor and cognitive recovery, these findings suggest that electrical stimulation of the vagus nerve may prove to be an effective non-pharmacological treatment for traumatic brain injury.
Collapse
Affiliation(s)
- Douglas C Smith
- Brain & Cognitive Sciences Program, Department of Psychology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6502, USA.
| | | | | | | | | | | | | |
Collapse
|
107
|
Sarajuuri JM, Kaipio ML, Koskinen SK, Niemelä MR, Servo AR, Vilkki JS. Outcome of a Comprehensive Neurorehabilitation Program for Patients With Traumatic Brain Injury. Arch Phys Med Rehabil 2005; 86:2296-302. [PMID: 16344026 DOI: 10.1016/j.apmr.2005.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 04/29/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the outcome of a comprehensive neurorehabilitation program compared with that of conventional clinical care and rehabilitation for patients with traumatic brain injury (TBI). DESIGN Nonrandomized, controlled trial with a 2-year follow-up. SETTING Nationwide rehabilitation center and level I trauma center, both in Finland. PARTICIPANTS We studied 19 consecutive adults with a significant TBI who underwent a comprehensive neurorehabilitation program and 20 control patients who received conventional rehabilitation referred by physicians in the general health care system. The outcome of the control patients was not known before the selection. The groups were similar in age, sex, education, injury severity (assessed on the Glasgow Coma Scale, radiologic and neuropsychologic findings, neurosurgical interventions), time from the injury, and preinjury employment status. INTERVENTIONS A postacute, intensive, interdisciplinary, 6-week rehabilitation program for TBI patients who are considered to have adequate potential to achieve productivity by this means; focus on neuropsychologic rehabilitation and psychotherapy with vocational interventions and follow-up support. MAIN OUTCOME MEASURE Status of productivity, judged as productive (defined as working, studying, or participating in volunteer activities) or nonproductive, evaluated on questionnaires filled in by patients and their significant others at the time of follow-up evaluation. RESULTS At follow-up, 89% of the treated patients were productive compared with 55% of the controls. The rehabilitation program was significantly predictive of the productive status at follow-up (odds ratio=6.96; 95% confidence interval, 1.26-38.44; P=.017). Other factors did not explain the better productivity of the treatment group. Two neuropsychologist-evaluators, who were blind to the rehabilitation history of patients and to each other's evaluations, were perfectly consistent in their classification of patients' productivity statuses. CONCLUSIONS The findings support the proposition that comprehensive neuropsychologically oriented rehabilitation programs can improve psychosocial functioning in terms of productivity in postacute patients with moderate to severe TBI. Additional larger controlled studies are needed to establish the efficacy of TBI rehabilitation interventions.
Collapse
Affiliation(s)
- Jaana M Sarajuuri
- Department of Clinical Neuropsychology, Käpylä Rehabilitation Centre, Finnish Association of People with Mobility Disabilities, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
108
|
Zhang Z, Artelt M, Burnet M, Trautmann K, Schluesener HJ. Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury. Exp Neurol 2005; 197:252-7. [PMID: 16259982 DOI: 10.1016/j.expneurol.2005.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/12/2005] [Accepted: 09/21/2005] [Indexed: 11/21/2022]
Abstract
P2X4 receptor (P2X4R) is an ATP-gated ion channel. ATP is an important messenger in traumatic brain injury. Here, we report expression of P2X4R in rat traumatic brain injury with focus on the early phase, most amenable to therapy. Accumulation of P2X4R+ cells was observed as early as 6 h after injury and continued to increase 4 days post-injury at the lesion and remote areas. Double staining revealed that most P2X4R+ cells co-expressed ED-1, a marker for reactive microglia/macrophages, but not nestin or W3/13. Our data suggest that P2X4R expression defines a subtype of activated microglia/macrophages involved in the early processes following traumatic brain injury.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Brain Research, University of Tuebingen, Calwer Str. 3, D-72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
109
|
Lifshitz J, Sullivan PG, Hovda DA, Wieloch T, McIntosh TK. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 2005; 4:705-13. [PMID: 16120426 DOI: 10.1016/j.mito.2004.07.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 07/12/2004] [Indexed: 11/24/2022]
Abstract
The enduring cognitive deficits and histopathology associated with traumatic brain injury (TBI) may arise from damage to mitochondrial populations, which initiates the metabolic dysfunction observed in clinical and experimental TBI. The anecdotal evidence for in vivo structural damage to mitochondria corroborates metabolic and physiologic dysfunction, which depletes substrates and promotes free radical generation. Excessive calcium pathology differentially disrupts the heterogeneous mitochondrial population, such that calcium sensitivity increases after TBI. The ongoing pathology may escalate to include protein and DNA oxidation that impacts mitochondrial function and promotes cell death. Thus, in vivo TBI damages, if not eliminates, mitochondrial populations depending on injury severity, with the remaining population left to provide metabolic support for survival or repair in the wake of cellular pathology. With a considerable understanding of post-injury mitochondrial populations, therapeutic interventions targeted to the mitochondria may delay or prevent secondary cascades that lead to long-term cell death and neurobehavioral disability.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, 5 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
110
|
Longhi L, Zanier ER, Royo N, Stocchetti N, McIntosh TK. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transpl Immunol 2005; 15:143-8. [PMID: 16412958 DOI: 10.1016/j.trim.2005.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Stem cell transplantation has enormous potential to be a viable therapeutic approach to replace the lost tissue/cells following traumatic brain injury (TBI). Several types of cell lines such as immortalized progenitors cells, embryonic rodent and human stem cells and bone marrow-derived cells have been successfully transplanted in experimental models of TBI, resulting in reduced neurobehavioral deficits and attenuation of histological damage. To date, it remains unclear whether stem cell are effective following transplantation into the injured brain via either cell replacement, trophic support, or manipulation of the local environment to stimulate endogenous neuroprotection/regeneration. This paper will review the most current and exciting pre-clinical data regarding the utility of cellular transplantation in experimental models of TBI. We believe that further work must continue to better understand the interaction between the host and the transplanted cells as well as the mechanisms regulating their differentiation into mature and functionally active neurons/glia.
Collapse
Affiliation(s)
- Luca Longhi
- Milan University, Neurosurgical Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy.
| | | | | | | | | |
Collapse
|
111
|
Koh DW, Dawson TM, Dawson VL. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 2005; 52:5-14. [PMID: 15911329 DOI: 10.1016/j.phrs.2005.02.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Accepted: 02/01/2005] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribosyl)ation plays an important role in modulating the cellular response to stress. The extent of poly(ADP-ribosyl)ation, chiefly via the activation of the poly(ADP-ribose) polymerase-1 (PARP-1), correlates with the severity of genotoxic stress and this determines the cellular response. Under mild and moderate stress, it plays important roles in DNA processing and it participates in the proinflammatory/cellular defense via transcriptional regulation. However, severe stress following acute neuronal injury causes the overactivation of PARP-1, which results in unregulated poly(ADP-ribose) (PAR) synthesis and widespread neuronal cell death. Previously, this PARP-1-dependent cell death mechanism was manifest solely through necrosis, but apoptotic mechanisms are also evident. Poly(ADP-ribosyl)ation directly induces the nuclear translocation of apoptosis-inducing factor, which results in caspase-independent cell death significant in many neurodegenerative conditions. Further, the hydrolysis of PAR by poly(ADP-ribose) glycohydrolase (PARG) has a protective role, since the accumulation of PAR leads to cell death by apoptosis. Thus, PAR signaling, regulated by PARP-1 and PARG, mediates cell death. Accordingly, modulation of PAR synthesis or degradation through the targeting of PARP-1 or PARG holds particular promise in the treatment of conditions such as cancer, stroke, and Parkinson's disease.
Collapse
Affiliation(s)
- David W Koh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway St., Suite 711, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
112
|
Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, Cohen AS. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience 2005; 133:1-15. [PMID: 15893627 DOI: 10.1016/j.neuroscience.2005.01.052] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/10/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Cognitive deficits persist in patients who survive traumatic brain injury (TBI). Lateral fluid percussion brain injury in the mouse, a model of human TBI, results in hippocampal-dependent cognitive impairment, similar to retrograde amnesia often associated with TBI. To identify potential substrates of the cognitive impairment, we evaluated regional neuronal loss, regional hippocampal excitability and inhibitory synaptic transmission. Design-based stereology demonstrated an approximate 40% loss of neurons through all subregions of the hippocampus following injury compared with sham. Input/output curves recorded in slices of injured brain demonstrated increased net synaptic efficacy in the dentate gyrus in concert with decreased net synaptic efficacy and excitatory postsynaptic potential-spike relationship in area CA1 compared with sham slices. Pharmacological agents modulating inhibitory transmission partially restored regional injury-induced alterations in net synaptic efficacy. Both evoked and spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in surviving dentate granule neurons were smaller and less frequent in injured brains than in uninjured brains. Conversely, both evoked and spontaneous mIPSCs recorded in surviving area CA1 pyramidal neurons were larger in injured brains than in uninjured brains. Together, these alterations suggest that regional hippocampal function is altered in the injured brain. This study demonstrates for the first time that brain injury selectively disrupts hippocampal function by causing uniform neuronal loss, inhibitory synaptic dysfunction, and regional, but opposing, shifts in circuit excitability. These changes may contribute to the cognitive impairments that result from brain injury.
Collapse
Affiliation(s)
- B M Witgen
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA.
| |
Collapse
|
114
|
Haranishi Y, Kawata R, Fukuda S, Kiyoshima T, Morimoto Y, Matsumoto M, Sakabe T. Moderate hypothermia, but not calpain inhibitor 2, attenuates the proteolysis of microtubule-associated protein 2 in the hippocampus following traumatic brain injury in rats. Eur J Anaesthesiol 2005; 22:140-7. [PMID: 15816594 DOI: 10.1017/s0265021505000268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVE The degradation of the cytoskeletal protein microtubule-associated protein 2 (MAP2), by calpain has been known to occur following traumatic brain injury. We examined the therapeutic potential of calpain inhibitor 2, compared with that of moderate hypothermia in traumatic brain injury produced by weight drop in rats. METHODS An inhibitor treated group (n = 8) received calpain inhibitor 2 intravenously (i.v.) for 5 min before and for 6 h after injury (total 2 micromol); a hypothermic (HT) group (n = 8) was maintained at 30 degrees C (temporalis muscle temperature) for 45 min prior to and 60 min after injury; an untreated (UT) group (n = 8) received an infusion of inactive vehicle. Eight rats (sham group) underwent surgery without brain injury. Histopathological (haematoxylin and eosin staining) and MAP2 (immunohistchemistry and western blotting) evaluations were performed at 6 h after injury. RESULTS Ipsilateral cortical damage was marked in the injured groups. In the hippocampus, marked pyramidal neuronal damage was observed in the UT and calpain inhibitor treated (CI) groups, while these neurons were better preserved in the HT group. The hippocampal MAP2 levels in the UT, CI and HT groups were significantly decreased to 13 +/- 9%, 28 +/- 33% and 62 +/- 25% of the sham contol, respectively. MAP2 concentration in the HT group was significantly higher than in UT and CI groups (P < 0.05). CONCLUSION The results suggest that moderate hypothermia, but not calpain inhibitor 2 with the tested regime, attenuates cytoskeletal damage in the ipsilateral hippocampus at 6 h after traumatic brain injury.
Collapse
Affiliation(s)
- Y Haranishi
- Yamaguchi University School of Medicine, Department of Anesthesiology-Resuscitology, Yamaguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
115
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Serbest G, Horwitz J, Barbee K. The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 2005; 22:119-32. [PMID: 15665607 DOI: 10.1089/neu.2005.22.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuronal injury resulting from mechanical deformation is poorly characterized at the cellular level. The immediate structural consequences of the mechanical loading lead to a variety of inter- and intra-cellular signaling events that interact on multiple time and length scales. Thus, it is often difficult to establish cause-and-effect relationships such that appropriate treatment strategies can be devised. In this report, we showed that treating mechanically injured neuronal cells with an agent that promotes the resealing of disrupted plasma membranes rescues them from death at 24 h post-injury. A new in vitro model was developed to allow uniform mechanical loading conditions with precisely controlled magnitude and onset rate of loading. Injury severity increased monotonically with increasing peak shear stress and was strongly dependent on the rate of loading as assessed with the MTT cell viability assay, 24 h post-injury. Mechanical injury produced an immediate disruption of membrane integrity as indicated by a rapid and transient release of LDH. For the most severe injury, cell viability decreased approximately 40% with mechanical trauma compared to sham controls. Treatment of cells with Poloxamer 188 at 15 min post-injury restored long-term viability to control values. These data establish membrane integrity as a novel therapeutic target in the treatment of neuronal injury.
Collapse
Affiliation(s)
- Gulyeter Serbest
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
117
|
Dunlop J, Zaleska MM, Eliasof S, Moyer JA. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
118
|
Long JB, Yourick DL, Slusher BS, Robinson MB, Meyerhoff JL. Inhibition of glutamate carboxypeptidase II (NAALADase) protects against dynorphin A-induced ischemic spinal cord injury in rats. Eur J Pharmacol 2005; 508:115-22. [PMID: 15680261 DOI: 10.1016/j.ejphar.2004.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 12/01/2004] [Accepted: 12/06/2004] [Indexed: 11/27/2022]
Abstract
Glutamate carboxypeptidase (GCP) II (EC 3.4.17.21), which is also known as N-acetylated-alpha-linked acidic dipeptidase (NAALADase), hydrolyses the endogenous acidic dipeptide N-acetylaspartylglutamate (NAAG), yielding N-acetyl-aspartate and glutamate. Inhibition of this enzyme by 2-(phosphonomethyl) pentanedioic acid (2-PMPA) has been shown to protect against ischemic injury to the brain and hypoxic and metabolic injury to neuronal cells in culture, presumably by increasing and decreasing the extracellular concentrations of NAAG and glutamate, respectively. Since both NAAG and GCP II are found in especially high concentrations in the spinal cord, injuries to the spinal cord involving pathophysiological elevations in extracellular glutamate might be particularly responsive to GCP II inhibition. Lumbar subarachnoid injections of dynorphin A in rats cause ischemic spinal cord injury, elevated extracellular glutamate and a persistent hindlimb paralysis that is mediated through excitatory amino acid receptors. We therefore used this injury model to evaluate the protective effects of 2-PMPA. When coadministered with dynorphin A, 2-PMPA significantly attenuated the dynorphin A-induced elevations in cerebrospinal fluid glutamate levels and by 24 h postinjection caused significant dose-dependent improvements in motor scores that were associated with marked histopathological improvements. These results indicate that 2-PMPA provides effective protection against excitotoxic spinal cord injury.
Collapse
Affiliation(s)
- Joseph B Long
- Department of Polytrauma and Resuscitation Research, Division of Military Casualty Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | |
Collapse
|
119
|
Poulsen CB, Penkowa M, Borup R, Nielsen FC, Cáceres M, Quintana A, Molinero A, Carrasco J, Giralt M, Hidalgo J. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis. J Neurochem 2005; 92:417-32. [PMID: 15663489 DOI: 10.1111/j.1471-4159.2004.02877.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays in wild-type and IL-6 knockout mice subjected to a cryolesion of the somatosensorial cortex and killed at 0, 1, 4, 8 and 16 days post-lesion. Overall gene expression was analyzed by using Affymetrix genechips/oligonucleotide arrays with approximately 12,400 probe sets corresponding to approximately 10,000 different murine genes (MG_U74Av2). A robust, conventional statistical method (two-way anova) was employed to select the genes significantly affected. An orderly pattern of gene responses was clearly detected, with genes being up- or down-regulated at specific timings consistent with the processes involved in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight the importance of IL-6 controlling the response of the brain to injury as well as the suitability of microarrays for identifying specific targets worthy of further study.
Collapse
Affiliation(s)
- Christian Bjørn Poulsen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cunningham MG, Bolay H, Scouten CW, Moore C, Jacoby D, Moskowitz M, Sorensen JC. Preclinical evaluation of a novel intracerebral microinjection instrument permitting electrophysiologically guided delivery of therapeutics. Neurosurgery 2004; 54:1497-507; discussion 1507. [PMID: 15157308 DOI: 10.1227/01.neu.0000125007.03145.00] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 12/17/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This series of studies was designed to evaluate the function of a new neurosurgical instrument for precision injection of therapeutics within the central nervous system. METHODS An intracerebral microinjection instrument was designed to 1) allow multiple injections to be placed in three-dimensional space within a target structure from a single proximal brain penetration, 2) incur minimal injury at the site of injection, 3) enable accurate microvolume injections, and 4) permit electrophysiological recording during the injection procedure. Rats received injections of fluorescent microspheres or suspensions of labeled cells to test instrument function and level of induced trauma. A rodent model of stroke was used to test the instrument's ability to record electrocorticograms or somatosensory evoked potentials from normal and damaged tissue. RESULTS Microliter volumes of fluorescent microspheres were accurately placed at predetermined sites within the rat striatum. Reactive gliosis was markedly reduced using the intracerebral microinjection instrument when compared with standard cannulas. In a stroke model, electrophysiological recording with the instrument allowed discrimination between viable and nonviable ischemic tissue, and function of pathways or circuits was assessed using evoked potentials. Embryonic stem cells grafted immediately after electrophysiological recordings demonstrated robust long-term survival. CONCLUSION The intracerebral microinjection instrument enables electrophysiologically guided microinjection of therapeutics to target areas with exquisite accuracy while incurring minimal local trauma and reactive gliosis at the injection site. The instrument also permits minimally invasive, multiple injections to be disseminated in three-dimensional space within the target region from a single proximal penetration of the brain.
Collapse
Affiliation(s)
- Miles G Cunningham
- Laboratory for Neural Reconstruction, Program in Neuroscience, Harvard Medical School, and Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
121
|
Neuroprotective effect of gacyclidine: A multicenter double-blind pilot trial in patients with acute traumatic brain injury. Neurochirurgie 2004. [DOI: 10.1016/s0028-3770(21)00116-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
122
|
Fee DB, Sewell DL, Andresen K, Jacques TJ, Piaskowski S, Barger BA, Hart MN, Fabry Z. Traumatic brain injury increases TGFβRII expression on endothelial cells. Brain Res 2004; 1012:52-9. [PMID: 15158160 DOI: 10.1016/j.brainres.2004.03.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Transforming growth factor beta (TGFbeta) modulates a variety of growth related functions following traumatic injury. The cellular response to TGFbeta is predominantly mediated through TGFbeta receptor I (TGFbetaRI) and receptor II (TGFbetaRII) on the cell surface and SMAD proteins intracellularly. We investigated the expression of TGFbeta receptors in the acute and chronic phases of a traumatic cerebral injury (TCI) by immunohistochemistry and in cultures of murine brain microvascular endothelial (EN) cells using cytofluorimetry. Here, we report that TGFbetaRII expression significantly increases on brain endothelial cells in the chronic phase of TCI. SMAD3 and SMAD4 protein expression were also upregulated suggesting the activation of TGFbeta receptor intracellular signaling. When TGFbetaRI and TGFbetaRII expression was studied in in vitro cultures of murine brain microvessel EN cells, TGFbetaRII showed increased expression on proliferating cells that are incorporating BrdU. These data show a differential expression of TGFbetaRI and TGFbetaRII on brain microvessel EN cells in the acute and chronic phases of TCI that might be associated with EN proliferation following injury.
Collapse
Affiliation(s)
- Dominic B Fee
- Department of Neurology, University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW Currently, no neuroprotective therapies have been shown to reduce the secondary neuronal damage occurring after traumatic brain injury. Recent studies have addressed the potentiality of hyperoxia to ameliorate brain metabolism after traumatic brain injury. In this article, we present the principles of oxygen transport to the brain, the effects of hyperoxia on cerebral metabolism, and the role of lactate in brain metabolism after traumatic brain injury. RECENT FINDINGS It has been shown that hyperoxia obtained by increasing the inspired fraction of oxygen results in a decreased cerebral lactate concentration measured in the extracellular space using the microdialysis. However, the brain oxygen delivery is not substantially improved by eubaric hyperoxia and the ratio between lactate and pyruvate (a better indicator of the cellular redox state than lactate alone) is not changed by hyperoxia. In addition, it has been shown the lactate might be an alternative fuel for neurons during the acute postinjury phase. SUMMARY At present, there is no evidence supporting any clinical benefit of hyperoxia in brain-injured patients, and the meaning of posttraumatic brain extracellular lactate accumulation should be further investigated.
Collapse
Affiliation(s)
- Luca Longhi
- University of Milano, Department of Anesthesia and Critical Care Medicine, Ospedale Maggiore Policlinico IRCCS, Milano, Italy
| | | |
Collapse
|
124
|
Abstract
Current knowledge regarding the pathophysiology of cerebral ischemia and brain trauma indicates that similar mechanisms contribute to loss of cellular integrity and tissue destruction. Mechanisms of cell damage include excitotoxicity, oxidative stress, free radical production, apoptosis and inflammation. Genetic and gender factors have also been shown to be important mediators of pathomechanisms present in both injury settings. However, the fact that these injuries arise from different types of primary insults leads to diverse cellular vulnerability patterns as well as a spectrum of injury processes. Blunt head trauma produces shear forces that result in primary membrane damage to neuronal cell bodies, white matter structures and vascular beds as well as secondary injury mechanisms. Severe cerebral ischemic insults lead to metabolic stress, ionic perturbations, and a complex cascade of biochemical and molecular events ultimately causing neuronal death. Similarities in the pathogenesis of these cerebral injuries may indicate that therapeutic strategies protective following ischemia may also be beneficial after trauma. This review summarizes and contrasts injury mechanisms after ischemia and trauma and discusses neuroprotective strategies that target both types of injuries.
Collapse
Affiliation(s)
- Helen M Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Medical School, FL 33101, USA
| | | |
Collapse
|
125
|
Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J. Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation. J Neurotrauma 2004; 20:929-41. [PMID: 14588110 DOI: 10.1089/089771503770195786] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluid percussion (FP) brain injury causes spatial memory dysfunction in rats regardless of injury location (midline vs. lateral). Standard histological analysis of the injured brains shows hippocampal neuronal loss after lateral, but not midline FP injury. We have used the optical volume fractionator (OVF) stereological procedure to quantify neuronal loss and glial proliferation within specific subregions of the hippocampus after midline or lateral FP injury. The OVF method is a design-based cell counting procedure, which combines cellular numerical density estimates (from the optical disector) with volume estimates (generated by point counting and the fractionator stereology method) to produce an estimate of the absolute cell number. Fifteen adult male Sprague-Dawley rats were randomly divided into 3 groups (n = 5/group): midline injury, lateral injury and naive. A single fluid percussion pulse was delivered to anesthetized rats in the injured groups. At 14 days post-injury, strict morphological criteria enabled the estimation of neurons, astrocytes, oligodendrocytes, and microglia in defined hippocampal subregions. The results confirm that hippocampal neurons are selectively vulnerable to brain injury, particularly observed as a significant loss in the hilus following both types of injury and in area CA3 after lateral injury. In contrast, the number of astrocytes and oligodendrocytes remains unaffected by brain injury, regardless of subregion. However, the significant increase in microglia number (bilaterally after midline and ipsilateral following lateral injury) suggests that underlying cellular processes continue weeks following injury. The implications of the observed cell population changes are discussed in relation to the reported cognitive deficits associated with both lateral and midline FP brain injury.
Collapse
Affiliation(s)
- M Sean Grady
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
126
|
HIDALGO J. Metallothioneins and Brain Injury: What Transgenic Mice Tell Us. Environ Health Prev Med 2004. [DOI: 10.1265/ehpm.9.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
127
|
Strauss KI, Narayan RK, Raghupathi R. Common patterns of bcl-2 family gene expression in two traumatic brain injury models. Neurotox Res 2004; 6:333-42. [PMID: 15545017 PMCID: PMC2590760 DOI: 10.1007/bf03033444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell death/survival following traumatic brain injury (TBI) may be a result of alterations in the intracellular ratio of death and survival factors. Bcl-2 family genes mediate both cell survival and the initiation of cell death. Using lysate RNase protection assays, mRNA expression of the anti-cell death genes Bcl-2 and Bcl-xL, and the pro-cell death gene Bax, was evaluated following experimental brain injuries in adult male Sprague-Dawley rats. Both the lateral fluid-percussion (LFP) and the lateral controlled cortical impact (LCI) models of TBI showed similar patterns of gene expression. Anti-cell death bcl-2 and bcl-xL mRNAs were attenuated early and tended to remain depressed for at least 3 days after injury in the cortex and hippocampus ipsilateral to injury. Pro-cell death bax mRNA was elevated in these areas, usually following the decrease in anti-cell death genes. These common patterns of gene expression suggest an important role for Bcl-2 genes in cell death and survival in the injured brain. Understanding the regulation of these genes may facilitate the development of new therapeutic strategies for a condition that currently has no proven pharmacologic treatments.
Collapse
Affiliation(s)
- Kenneth I Strauss
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
128
|
Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M. Atorvastatin Reduces Neurological Deficit and Increases Synaptogenesis, Angiogenesis, and Neuronal Survival in Rats Subjected to Traumatic Brain Injury. J Neurotrauma 2004; 21:21-32. [PMID: 14987462 DOI: 10.1089/089771504772695913] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Statins administered postischemia promote functional improvement in rats, independent of their capability to lower cholesterol. We therefore tested the effect of statin treatment on traumatic brain injury (TBI) in rats. Atorvastatin was orally administered (1 mg/kg/day) to Wistar rats starting 1 day after TBI for 7 consecutive days. Control animals received saline. Modified Neurological Severity Scores and Corner tests were utilized to evaluate functional response to treatment. Bromodeoxyuridine (BrdU, 100 mg/kg) was also intraperitoneally injected daily for 14 consecutive days to label the newly generated endothelial cells. Rats were sacrificed at day 14 after TBI, and the brain samples were processed for immunohistochemical staining. Atorvastatin administration after brain injury significantly reduced the neurological functional deficits, increased neuronal survival and synaptogenesis in the boundary zone of the lesion and in the CA3 regions of the hippocampus, and induced angiogenesis in these regions. The results suggest that atorvastatin may provide beneficial effects in experimental TBI.
Collapse
Affiliation(s)
- Dunyue Lu
- Department of Neurosurgery, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Rogatsky GG, Sonn J, Kamenir Y, Zarchin N, Mayevsky A. Relationship between Intracranial Pressure and Cortical Spreading Depression following Fluid Percussion Brain Injury in Rats. J Neurotrauma 2003; 20:1315-25. [PMID: 14748980 DOI: 10.1089/089771503322686111] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is known to be accompanied by an increase in intracranial pressure (ICP) and in some cases, by spontaneous generation of cortical spreading depression (CSD) cycles. However, the role of CSD in the pathophysiology of cerebral contusion is still unknown. A multiparametric monitoring assembly was placed on the right hemisphere of the rat brain to evaluate ICP, DC potential, extracellular K(+), cerebral blood flow (CBF), and electrocorticogram in 27 rats during 5 h. Fluid percussion brain injury (FPBI) with the magnitude of the impact 2.9, 3.3, 4.1, and 5.0 atmospheres was induced to the left parietal cortex in animal groups A, B, C, and D, respectively. A slow increase in ICP was evident, and was pronounced in group C and especially in group D, where four of nine animals died during the monitoring. At the end of the 5 h experiment, the mean ICP levels were 6.75 +/- 2.87, 8.40 +/- 2.70, 12.75 +/- 4.03, 29.56 +/- 9.25, and the mean total number of CSD cycles was 2.00 +/- 1.41, 4.29 +/- 4.23, 11.71 +/- 13.29, and 20.11 +/- 19.26 in groups A, B, C, and D, respectively. The maximal level of intensity of CSD cycle generation after FPBI was obtained in group D, where almost constant activity was maintained until the end of the experiment. A significant coefficient of correlation between ICP level and total number of CSD cycles was found for all ICP measurements (r = 0.47-0.63, p < 0.05, n = 27), however more significant (p < 0.001) was the coefficient during the period of monitoring between 2 and 4 h after FPBI. Our results suggest that numerous repeating CSD cycles are typical phenomena in moderate and especially severe forms of FPBI. The rising number of CSD cycles under condition of an ICP level >/=20 mm Hg may demonstrate, with high probability, the unfavorable development of TBI, caused by growing secondary hypoxic insult.
Collapse
Affiliation(s)
- G G Rogatsky
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
130
|
DeWitt DS, Prough DS. Traumatic Cerebral Vascular Injury: The Effects of Concussive Brain Injury on the Cerebral Vasculature. J Neurotrauma 2003; 20:795-825. [PMID: 14577860 DOI: 10.1089/089771503322385755] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In terms of human suffering, medical expenses, and lost productivity, head injury is one of the major health care problems in the United States, and inadequate cerebral blood flow is an important contributor to mortality and morbidity after traumatic brain injury. Despite the importance of cerebral vascular dysfunction in the pathophysiology of traumatic brain injury, the effects of trauma on the cerebral circulation have been less well studied than the effects of trauma on the brain. Recent research has led to a better understanding of the physiologic, cellular, and molecular components and causes of traumatic cerebral vascular injury. A more thorough understanding of the direct and indirect effects of trauma on the cerebral vasculature will lead to improvements in current treatments of brain trauma as well as to the development of novel and, hopefully, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Douglas S DeWitt
- Charles R. Allen Research Laboratories, Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA.
| | | |
Collapse
|
131
|
Dixon CE, Ma X, Kline AE, Yan HQ, Ferimer H, Kochanek PM, Wisniewski SR, Jenkins LW, Marion DW. Acute etomidate treatment reduces cognitive deficits and histopathology in rats with traumatic brain injury. Crit Care Med 2003; 31:2222-7. [PMID: 12973183 DOI: 10.1097/01.ccm.0000080493.04978.73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test the hypothesis that etomidate treatment improves functional, cognitive, and histologic outcome after experimental traumatic brain injury. DESIGN Controlled animal study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Traumatic brain injury was produced by controlled cortical impact injury (4 m/sec, 2.6 mm of tissue deformation). Etomidate (2 mg/kg) was administered intravenously immediately before injury (n = 13) or 5 mins after injury (n = 12). Additional rats received saline treatment 5 mins after injury (n = 12) or served as sham controls (n = 10). MEASUREMENTS AND MAIN RESULTS Rats were evaluated on beam balance and beam walk tasks on postoperative days 1-5 and then trained in the Morris water maze on postoperative days 14-18. On day 28, the rats were killed, and hippocampal CA1 and CA3 neuron counts and cortical lesion volume were measured in histologic brain sections. Preinjury etomidate attenuated beam balance deficits, water maze deficits, hippocampal CA3 neuronal loss, and cortical tissue loss but did not attenuate beam walk deficits or hippocampal CA1 neuronal loss. Postinjury etomidate attenuated water maze deficits, but it did not affect any other outcome measure. CONCLUSIONS Administration of etomidate both before and after injury attenuates secondary injury resulting from traumatic brain injury, but the effect is more pronounced with pretreatment. The ineffectiveness of postinjury etomidate on motor and histologic tasks suggests a brief therapeutic treatment window in rats. However, the treatment window in humans is unknown. Lastly, postinjury etomidate did not exacerbate neurologic or histologic outcome.
Collapse
Affiliation(s)
- C Edward Dixon
- Department of Neurological Surgery and Safar Center for Resuscitation Research, University of Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lu D, Mahmood A, Chopp M. Biologic Transplantation and Neurotrophin-Induced Neuroplasticity After Traumatic Brain Injury. J Head Trauma Rehabil 2003; 18:357-76. [PMID: 16222130 DOI: 10.1097/00001199-200307000-00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In this review, we analyze progress in the treatment of traumatic brain injury with neurotrophins, growth factors and cell and tissue neurotransplantation. The primary objective of these therapies is to reduce neurologic deficits associated with the trauma by inducing neuroplasticity. These therapies are restorative and not necessarily neuroprotective. MAIN OUTCOME MEASURES An extensive literature on administration of neurotrophics factors and cell and tissue cerebral transplantation is reviewed. The effects of these therapeutic approaches on brain biochemical, molecular, cellular, and tissue responses are summarized. CONCLUSION The cumulative data indicate that cell therapy shows substantial promise in the treatment of neural injury.
Collapse
Affiliation(s)
- Dunyue Lu
- Department of Neurosurgery, Henry Ford Health System, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
133
|
|
134
|
Carrasco J, Penkowa M, Giralt M, Camats J, Molinero A, Campbell IL, Palmiter RD, Hidalgo J. Role of metallothionein-III following central nervous system damage. Neurobiol Dis 2003; 13:22-36. [PMID: 12758064 DOI: 10.1016/s0969-9961(03)00015-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area surrounding the lesioned tissue, along with signs of increased oxidative stress and apoptosis. There was also significant upregulation of cytokines/growth factors such as tumor necrosis factor-alpha, interleukin (IL)-1 alpha/beta, and IL-6 as measured by ribonuclease protection assay. Mt3-null mice did not differ from control mice in these responses, in sharp contrast to results obtained in Mt1- Mt2-null mice. In contrast, Mt3-null mice showed increased expression of several neurotrophins as well as of the neuronal sprouting factor GAP-43. Thus, unlike MT-I and MT-II, MT-III does not affect the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process.
Collapse
Affiliation(s)
- Javier Carrasco
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain 08193
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Concentrations of Inducible Nitric Oxide Synthase (iNOS) and Neuronal Nitric Oxide Synthase (nNOS) in Cerebrospinal Fluid of Patients With Severe Head Injuries. ACTA ACUST UNITED AC 2003. [DOI: 10.1097/00013414-200306000-00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
136
|
Raghupathi R, Strauss KI, Zhang C, Krajewski S, Reed JC, McIntosh TK. Temporal alterations in cellular Bax:Bcl-2 ratio following traumatic brain injury in the rat. J Neurotrauma 2003; 20:421-35. [PMID: 12803975 PMCID: PMC2590756 DOI: 10.1089/089771503765355504] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell death/survival following CNS injury may be a result of alterations in the intracellular ratio of death and survival factors. Using immunohistochemistry, Western analysis and in situ hybridization, the expression of the anti-cell death protein, Bcl-2, and the pro-cell death protein, Bax, was evaluated following lateral fluid-percussion (FP) brain injury of moderate severity (2.3-2.6 atm) in adult male Sprague-Dawley rats. By 2 h post-injury, a marked reduction of cellular Bcl-2-immunoreactivity (IR) and a mild decrease in cellular Bax IR were observed in the temporal and occipital cortices, and in the hippocampal CA3 ipsilateral to the site of impact. These decreases in Bcl-2 and Bax IR appeared to precede the overt cell loss in these regions that was evident at 24 h. Immunoblot analysis supported the immunohistochemical data, with a modest but significant reduction in the intensities of both the Bcl-2 and Bax protein bands at 2 h (p < 0.05 compared to sham levels). However, the Bax:Bcl-2 ratio increased significantly at 2 h (2.28 +/- 0.13) and remained elevated up to 7 days (2.05 +/- 0.13) post-injury compared to sham-injured control tissue (1.62 +/- 0.10, p < 0.05). Furthermore, cortical, but not hippocampal, levels of Bax protein increased by 25% (p < 0.05 compared to sham-injured controls) at 24 h post-injury, and returned to control levels by 7 days. In situ hybridization analysis of Bax mRNA revealed increased cellular grain density in the injured cortex (p < 0.05 compared to sham-injured brains), but not in the CA3 region of the injured hippocampus. No injury-induced changes in the expression of Bcl-2 mRNA were observed in any brain region. Taken together, these data suggest that the association between regional post-traumatic cell death and alterations in the cellular ratio of Bcl-2 and Bax may be, in part, due to alterations in mRNA and/or protein expression of the Bcl-2 family of proteins.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
137
|
Ter Minassian A. [Treatment of cerebral oedema]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:336-48. [PMID: 12818327 DOI: 10.1016/s0750-7658(03)00056-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in brain imaging, monitoring and physiopathology allows the identification of brain oedema from brain swelling, determination of its interstitial or intracellular nature, as well as blood-brain barrier permeability and the evaluation of the impact on cerebral haemodynamic. Common treatment of all types of cerebral oedema is based on prevention of self-sustained disorders due to increased intracranial pressure resulting in ischemic cerebral oedema. The specific treatment of each type of cerebral oedema is reviewed. Optimization of conventional anti-oedematous strategies is based on the precise determination of the nature of the cerebral oedema and of the blood-brain barrier status.
Collapse
Affiliation(s)
- A Ter Minassian
- Département d'anesthésie-réanimation, CHU d'Angers, 4, rue Larrey, 49033 cedex, Angers, France
| |
Collapse
|
138
|
Dempsey RJ, Raghavendra Rao VL. Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J Neurosurg 2003; 98:867-73. [PMID: 12691414 DOI: 10.3171/jns.2003.98.4.0867] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In previous studies at their laboratory the authors showed that cytidinediphosphocholine (CDP-choline), an intermediate of phosphatidylcholine synthesis, decreases edema formation and blood-brain barrier disruption following traumatic brain injury (TBI). In the present study the authors investigate whether CDP-choline protects hippocampal neurons after controlled cortical impact (CCI)-induced TBI in adult rats. METHODS After adult male Sprague-Dawley rats had been anesthetized with halothane, a moderate-grade TBI was induced with the aid of a CCI device set at a velocity of 3 m/second, creating a 2-mm deformation. Sham-operated rats, which underwent craniectomy without impact served as controls. The CDP-choline (100, 200, and 400 mg/kg body weight) or saline was injected into the animals twice (once immediately postinjury and once 6 hours postinjury). Seven days after the injury, the rats were neurologically evaluated and killed, and the number of hippocampal neurons was estimated by examining thionine-stained brain sections. By 7 days postinjury, there was a significant amount of neuronal death in the ipsilateral hippocampus in the CA2 (by 53 +/- 7%, p < 0.05) and CA3 (by 59 +/- 9%, p < 0.05) regions and a contusion (volume 34 +/- 8 mm3) in the ipsilateral cortex compared with sham-operated control animals. Rats subjected to TBI also displayed severe neurological deficit at 7 days postinjury. Treating rats with CDP-choline (200 and 400 mg/kg, intraperitoneally) significantly prevented TBI-induced neuronal loss in the hippocampus, decreased cortical contusion volume, and improved neurological recovery. CONCLUSIONS Treatment with CDP-choline decreased brain damage following TBI.
Collapse
Affiliation(s)
- Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|
139
|
Esen F, Erdem T, Aktan D, Kalayci R, Cakar N, Kaya M, Telci L. Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. J Neurosurg Anesthesiol 2003; 15:119-25. [PMID: 12657997 DOI: 10.1097/00008506-200304000-00009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we examined the effects of magnesium sulfate administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. Seventy-one adult male Sprague-Dawley rats were anesthetized, and experimental closed head trauma was induced by allowing a 450-g weight to fall from a 2-m height onto a metallic disk fixed to the intact skull. Sixty-eight surviving rats were randomly assigned to receive an intraperitoneal bolus of either 750 micromol/kg magnesium sulfate (group 4; n = 30) or 1 mL of saline (group 2; n = 30) 30 minutes after induction of traumatic brain injury; 39 nontraumatized animals received saline (group 1; n = 21) or magnesium sulfate (group 3; n = 18) with an identical protocol of administration. Brain water content and brain tissue specific gravity, as indicators of brain edema, were measured 24 hours after traumatic brain injury. Blood-brain barrier integrity was evaluated quantitatively 24 hours after injury by spectrophotometric assay of Evans blue dye extravasations. In the magnesium-treated injured group, brain water content was significantly reduced (left hemisphere: group 2, 83.2 +/- 0.8; group 4, 78.4 +/- 0.7 [P <.05]; right hemisphere: group 2, 83.1 +/- 0.7; group 4, 78.4 +/- 0.5. [P <.05]) and brain tissue specific gravity was significantly increased (left hemisphere: group 2, 1.0391 +/- 0.0008; group 4, 1.0437 +/- 0.001 [P <.05]; right hemisphere, group 2, 1.0384 +/- 0.001; group 4, 1.0442 +/- 0.005 [P <.05]) compared with the saline-treated injured group. Evans blue dye content in the brain tissue was significantly decreased in the magnesium-treated injured group (left hemisphere: group 2, 0.0204 +/- 0.03; group 4, 0.0013 +/- 0.0002 [P <.05]; right hemisphere: group 2, 0.0064 +/- 0.0009; group 4, 0.0013 +/- 0.0003 [P <.05]) compared with the saline-treated injured group. The findings of the present study support that beneficial effects of magnesium sulfate exist after severe traumatic brain injury in rats. These results also indicate that a blood-brain barrier permeability defect occurs after this model of diffuse traumatic brain injury, and magnesium seems to attenuate this defect.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology and Intensive Care, University of Istanbul, Istanbul Faculty of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
140
|
Faden AI, Fox GB, Di X, Knoblach SM, Cernak I, Mullins P, Nikolaeva M, Kozikowski AP. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J Cereb Blood Flow Metab 2003; 23:355-63. [PMID: 12621310 DOI: 10.1097/01.wcb.0000046144.31247.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1-ARA-35b (35b) is a cyclized dipeptide that shows considerable neuroprotective activity in vitro and improves neurologic recovery after fluid percussion-induced traumatic brain injury in rats. The authors evaluated the effects of treatment with 35b in mice subjected to controlled cortical impact brain injury. Animals treated with intravenous 35b after traumatic injury showed significantly enhanced recovery of beam walking and place learning functions compared with vehicle-treated controls, in addition to reduced lesion volumes. Beneficial effects were dose related and showed an inverted U-shaped dose-response curve between 0.1 and 10 mg/kg. Protective actions were found when the drug was administered initially at 30 minutes or 1, 4, or 8 hours, but not at 24 hours, after trauma. In separate experiments, rats treated with 35b on days 7 through 10 after injury showed remarkably improved place learning in comparison with injured controls. These studies confirm and extend the neuroprotective effects of this diketopiperazine in traumatic brain injury. In addition, they show that 35b has a relatively wide therapeutic window and improves cognitive function after both acute and chronic injury.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Room EP-12, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Molinero A, Penkowa M, Hernández J, Camats J, Giralt M, Lago N, Carrasco J, Campbell IL, Hidalgo J. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6. J Neuropathol Exp Neurol 2003; 62:315-28. [PMID: 12638735 DOI: 10.1093/jnen/62.3.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased angiogenesis in GFAP-IL6 mice but not in control littermates. Overall, the results strongly suggest that MT-I+II proteins are valuable factors that protect against cytokine-induced CNS injury.
Collapse
Affiliation(s)
- Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Spinella PC, Dominguez T, Drott HR, Huh J, McCormick L, Rajendra A, Argon J, McIntosh T, Helfaer M. S-100beta protein-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury. Crit Care Med 2003; 31:939-45. [PMID: 12627009 DOI: 10.1097/01.ccm.0000053644.16336.52] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe normal serum levels of S-100beta in healthy children and determine whether serum S-100beta levels after traumatic brain injury are associated with outcome. DESIGN Prospective cohort study. SETTING Urban, tertiary care, children's teaching hospital. PATIENTS A total of 136 healthy children and 27 children with traumatic brain injury. METHODS Serum S-100beta levels were measured in 136 healthy children. A total of 27 children with traumatic brain injury had S-100beta levels collected within 12 hrs of injury. Other indices of severity of injury measured were admission Glasgow Coma Scale score, and Pediatric Risk of Mortality score at 24 hrs (PRISM 24). Outcome was measured by the Pediatric Cerebral Performance Category (PCPC) score at hospital discharge and 6 months postinjury or at death. MEASUREMENTS AND MAIN RESULTS S-100beta levels in healthy children had a mean of 0.3 microg/L (90% confidence interval, 0.03-1.47) and inversely correlated with age, (r = -.32, p <.001). In children with traumatic brain injury, 6-month postinjury outcome inversely correlated with Glasgow Coma Scale score (r = -.47, p =.01) and correlated with PRISM 24 score (r =.83, p <.001) and S-100beta levels (r =.75, p <.001). Six months postinjury, comparing good outcome (PCPC < or = 3, n = 20) vs. poor outcome (PCPC > or = 4, n = 7), median admission Glasgow Coma Scale scores were 8 (range, 3-15) and 3 (range, 3-7, p =.01), median PRISM 24 scores were 7 (range, 0-19) and 30 (range, 18-35, p <.001), and median S-100beta levels were 0.85 microg/L (range, 0.08-4.8 microg/L) and 3.6 microg/L (range, 1.4-20 microg/L, p <.001), respectively. A serum S-100beta level of > or =2.0 microg/L is associated with poor outcome, with a sensitivity of 86% and a specificity of 95%. The area under the receiver operating curve for S-100beta was 0.94 (+/-0.05). CONCLUSIONS Serum S-100beta levels in healthy children have a moderate inverse correlation with age. After traumatic brain injury in children, the acute assessment of serum S-100beta levels seems to be associated with outcome.
Collapse
Affiliation(s)
- Philip C Spinella
- Department of Anesthesiology, The Children's Hospital of Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Novel Diketopiperazine Enhances Motor and Cognitive Recovery After Traumatic Brain Injury in Rats and Shows Neuroprotection In Vitro and In Vivo. J Cereb Blood Flow Metab 2003. [DOI: 10.1097/00004647-200303000-00009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
144
|
Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 2003; 105:281-8. [PMID: 12557016 DOI: 10.1007/s00401-002-0649-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 10/18/2002] [Accepted: 10/18/2002] [Indexed: 12/22/2022]
Abstract
This study was undertaken to fulfill the need for additional data on the dynamics of Bax and Bcl-2 expression in conjunction to the cell death that ensues following experimental brain contusion. Adult Sprague-Dawley rats were subjected to a unilateral experimental controlled cortical contusion and killed at 1, 2, 4, 6 and 10 days post injury (dpi). Cell death was examined by the terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method together with immunohistochemistry for cellular markers. Expression of Bax and Bcl-2 were analyzed by immunohistochemistry and in situ hybridization. The number of TUNEL-positive cells was highest at 1 dpi and decreased with time. At all time points, 10-16% of the TUNEL-positive cells showed an apoptotic nuclear morphology. The apoptotic features were restricted to neurons and some inflammatory cells. Immunohistochemistry for Bax revealed a translocation of Bax from a diffuse to a granular distribution in neurons. An up-regulation of Bax mRNA at 6 dpi was discernible. This increase was associated with a statistically significant increase in number of cells with up-regulated and translocated Bax protein. Moreover, a statistically significant increase of Bcl-2 mRNA was detected at 10 dpi. The potential window for anti-apoptotic treatment to salvage neurons is wide. The susceptibility of neurons to necrosis and apoptosis through different pathways during a prolonged post-traumatic period indicate that different pharmacological strategies may be required at different time points after trauma.
Collapse
Affiliation(s)
- André Wennersten
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
145
|
Faden AI, Knoblach SM, Cernak I, Fan L, Vink R, Araldi GL, Fricke ST, Roth BL, Kozikowski AP. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J Cereb Blood Flow Metab 2003; 23:342-54. [PMID: 12621309 DOI: 10.1097/01.wcb.0000046143.31247.fd] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors developed a novel diketopiperazine that shows neuroprotective activity in a variety of in vitro models, as well as in a clinically relevant experimental model of traumatic brain injury (TBI) in rats. Treatment with 1-ARA-35b (35b), a cyclized dipeptide derived from a modified thyrotropin-releasing hormone (TRH) analog, significantly reduced cell death associated with necrosis (maitotoxin), apoptosis (staurosporine), or mechanical injury in neuronal-glial cocultures. Rats subjected to lateral fluid percussion-induced TBI and then treated with 1 mg/kg intravenous 35b thirty minutes after trauma showed significantly improved motor recovery and spatial learning compared with vehicle-treated controls. Treatment also significantly reduced lesion volumes as shown by magnetic resonance imaging, and decreased the number of TUNEL-positive neurons observed in ipsilateral hippocampus. Unlike TRH or traditional TRH analogs, 35b treatment did not change mean arterial pressure, body temperature, or thyroid-stimulating hormone release, and did not have analeptic activity. Moreover, in contrast to TRH or typical TRH analogs, 35b administration after TBI did not alter free-magnesium concentration or cellular bioenergetic state. Receptor-binding studies showed that 35b did not act with high affinity at 50 classical receptors, channels, or transporters. Thus, 35b shows none of the typical physiologic actions associated with TRH, but possesses neuroprotective actions in vivo and in vitro, and appears to attenuate both necrotic and apoptotic cell death.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Room EP-12, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Redell JB, Moore AN, Dash PK. Expression of the prodynorphin gene after experimental brain injury and its role in behavioral dysfunction. Exp Biol Med (Maywood) 2003; 228:261-9. [PMID: 12626770 DOI: 10.1177/153537020322800304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) causes excess release of neurotransmitters, such as glutamate, and increases intracellular calcium levels. Elevated levels of calcium, and perhaps other intracellular second messengers, as a result of TBI can alter the expression of many genes. The protein products of some of these genes may be signals for TBI-associated memory dysfunction. Therefore, identification of genes whose expression is altered after TBI in the hippocampus, a structure in the medial temporal lobe that plays a critical role in memory formation and storage, and elucidation of the role(s) of their protein products may shed light on the molecular mechanisms underlying TBI-elicited memory dysfunction. The prodynorphin gene is expressed in hippocampal granule cells, and its expression has been reported to be enhanced as a result of elevated intracellular calcium. The prodynorphin protein is proteolytically cleaved to generate multiple dynorphin peptides, which can modulate neurotransmitter release through the activation of presynaptic kappa opioid receptors. In this study, we report that 1) TBI transiently increases prodynorphin mRNA in the hippocampus, 2) dynorphin peptide immunoreactivity is enhanced for up to 24 hr after TBI and 3) intracerebroventricular infusion of the kappa receptor antagonist nor-binaltorphimine (nor-BNI) impairs subsequent performance in a spatial memory task. These results suggest that dynorphin action may serve a beneficial role after TBI.
Collapse
Affiliation(s)
- John B Redell
- The Vivian L Smith Center for Neurologic Research, Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
147
|
Long Y, Zou L, Liu H, Lu H, Yuan X, Robertson CS, Yang K. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 2003; 71:710-20. [PMID: 12584729 DOI: 10.1002/jnr.10524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using a cDNA microarray method, we analyzed gene expression profiles in mouse hippocampus after traumatic brain injury (TBI). Of 6,400 randomly selected arrayed genes and expressed sequence tags from a mouse cDNA library, 253 were found to be differentially expressed (106 increased and 147 decreased). Genes involved in cell homeostasis and calcium signaling were primarily up-regulated while those encoding mitochondrial enzymes, metabolic molecules, and structural proteins were predominantly down-regulated. Equal numbers of genes related to inflammatory reactions showed increased or decreased expression. Importantly, a large proportion of the dysregulated genes we identified have not been reported as differentially expressed in TBI models. Semiquantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analyses of representative genes confirmed the validity of the corresponding microarray findings. Thus, our microarray-based evaluation of gene expression in traumatically injured hippocampus identified both known and novel genes that respond to TBI. Further investigation of these candidate molecules may suggest new ways to attenuate the traumatic effects of brain injury.
Collapse
Affiliation(s)
- Yan Long
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Leker RR, Shohami E, Constantini S. Experimental models of head trauma. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 83:49-54. [PMID: 12442621 DOI: 10.1007/978-3-7091-6743-4_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Traumatic brain injury is one of the most common causes for chronic disability in young people. Despite this there are currently no widely available modes of therapy that would limit the extent of brain damage secondary to trauma. Therefore, new insights into the pathological mechanisms involved in head trauma possibly leading to the identification of new therapeutic targets are urgently needed. In order to attain these goals adequate animal models for traumatic brain injury are needed. In the following paper the authors will review the various animal models for head trauma and emphasize their potential strengths and weaknesses.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
149
|
Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003; 71:208-19. [PMID: 12503083 DOI: 10.1002/jnr.10486] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proper CNS function depends on concerted expression of thousands of genes in a controlled and timely manner. Traumatic brain injury (TBI) in mammals results in neuronal death and neurological dysfunction, which might be mediated by altered expression of several genes. By employing a CNS-specific GeneChip and real-time polymerase chain reaction (PCR), the present study analyzed the gene expression changes in adult rat cerebral cortex in the first 24 hr after a controlled cortical impact injury. Many functional families of genes not previously implicated in TBI-induced brain damage are altered in the injured cortex. These include up-regulated transcription factors (SOCS-3, JAK-2, STAT-3, CREM, IRF-1, SMN, silencer factor-B, ANIA-3, ANIA-4, and HES-1) and signal transduction pathways (cpg21, Narp, and CRBP) and down-regulated transmitter release mechanisms (CITRON, synaptojanin II, ras-related rab3, neurexin-1beta, and SNAP25A and -B), kinases (IP-3-kinase, Pak1, Ca(2+)/CaM-dependent protein kinases), and ion channels (K(+) channels TWIK, RK5, X62839, and Na(+) channel I). In addition, several genes previously shown to play a role in TBI pathophysiology, including proinflammatory genes, proapoptotic genes, heat shock proteins, immediate early genes, neuropeptides, and glutamate receptor subunits, were also observed to be altered in the injured cortex. Real-time PCR analysis confirmed the GeneChip data for many of these transcripts. The novel physiologically relevant gene expression changes observed here might explain some of the molecular mechanisms of TBI-induced neuronal damage.
Collapse
|
150
|
Abstract
BACKGROUND By affecting young people during the most productive period of their lives, spinal cord injury is a devastating problem for modern society. A decade ago, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. REVIEW SUMMARY This study addresses the present understanding of SCI, including the etiology, pathophysiology, treatment, and scientific advances. The discussion of treatment options includes a critical review of high-dose methylprednisolone and GM-1 ganglioside therapy. The concept that limited rebuilding can provide a disproportionate improvement in quality of life is emphasized throughout. CONCLUSIONS New surgical procedures, pharmacologic treatments, and functional neuromuscular stimulation methods have evolved over the last decades that can improve functional outcomes after spinal cord injury, but limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Neurology, Spinal Cord Injury Neuro-Rehabilitation Section, Restorative Treatment and Research Program, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | | | | |
Collapse
|