101
|
Padalhin A, Abueva C, Ryu HS, Yoo SH, Seo HH, Park SY, Chung PS, Woo SH. Impact of Thermo-Responsive N-Acetylcysteine Hydrogel on Dermal Wound Healing and Oral Ulcer Regeneration. Int J Mol Sci 2024; 25:4835. [PMID: 38732054 PMCID: PMC11084650 DOI: 10.3390/ijms25094835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the efficacy of a thermo-responsive N-acetylcysteine (NAC) hydrogel on wound healing and oral ulcer recovery. Formulated by combining NAC with methylcellulose, the hydrogel's properties were assessed for temperature-induced gelation and cell viability using human fibroblast cells. In vivo experiments on Sprague Dawley rats compared the hydrogel's effects against saline, NAC solution, and a commercial NAC product. Results show that a 5% NAC and 1% methylcellulose solution exhibited optimal outcomes. While modest improvements in wound healing were observed, significant enhancements were noted in oral ulcer recovery, with histological analyses indicating fully regenerated mucosal tissue. The study concludes that modifying viscosity enhances NAC retention, facilitating tissue regeneration. These findings support previous research on the beneficial effects of antioxidant application on damaged tissues, suggesting the potential of NAC hydrogels in improving wound care and oral ulcer treatment.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Seok Ryu
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Seung Hyeon Yoo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - Hwee Hyon Seo
- School of Medical Lasers, Dankook University, Cheonan 31116, Republic of Korea; (S.H.Y.); (H.H.S.)
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (A.P.); (C.A.); (H.S.R.); (S.Y.P.); (P.-S.C.)
- Medical Laser Research Center, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
102
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
103
|
Bansal R, Torres M, Hunt M, Wang N, Chatzopoulou M, Manchanda M, Taddeo EP, Shu C, Shirihai OS, Bachar-Wikstrom E, Wikstrom JD. Role of the mitochondrial protein cyclophilin D in skin wound healing and collagen secretion. JCI Insight 2024; 9:e169213. [PMID: 38564292 PMCID: PMC11141914 DOI: 10.1172/jci.insight.169213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.
Collapse
Affiliation(s)
- Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nuoqi Wang
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Margarita Chatzopoulou
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Evan P. Taddeo
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Cynthia Shu
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Orian S. Shirihai
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
104
|
Kussie HC, Hahn W, Sivaraj D, Quintero F, Knochel A, Alfsharif AM, Yasmeh JP, Fischer K, Mojadidi S, Hostler A, Granoski M, McKenna E, Henn D, Litmanovich B, Miller AA, Schurr DK, Li VW, Li WW, Gurtner GC, Chen K. Avenanthramide and β-Glucan Therapeutics Accelerate Wound Healing Via Distinct and Nonoverlapping Mechanisms. Adv Wound Care (New Rochelle) 2024; 13:155-166. [PMID: 38299969 DOI: 10.1089/wound.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Objective: Given the significant economic, health care, and personal burden of acute and chronic wounds, we investigated the dose dependent wound healing mechanisms of two Avena sativa derived compounds: avenanthramide (AVN) and β-Glucan. Approach: We utilized a splinted excisional wound model that mimics human-like wound healing and performed subcutaneous AVN and β-Glucan injections in 15-week-old C57BL/6 mice. Histologic and immunohistochemical analysis was performed on the explanted scar tissue to assess changes in collagen architecture and cellular responses. Results: AVN and β-Glucan treatment provided therapeutic benefits at a 1% dose by weight in a phosphate-buffered saline vehicle, including accelerated healing time, beneficial cellular recruitment, and improved tissue architecture of healed scars. One percent AVN treatment promoted an extracellular matrix (ECM) architecture similar to unwounded skin, with shorter, more randomly aligned collagen fibers and reduced inflammatory cell presence in the healed tissue. One percent β-Glucan treatment promoted a tissue architecture characterized by long, thick bundles of collagen with increased blood vessel density. Innovation: AVN and β-Glucan have previously shown promise in promoting wound healing, although the therapeutic efficacies and mechanisms of these bioactive compounds remain incompletely understood. Furthermore, the healed ECM architecture of these wounds has not been characterized. Conclusions: AVN and β-Glucan accelerated wound closure compared to controls through distinct mechanisms. AVN-treated scars displayed a more regenerative tissue architecture with reduced inflammatory cell recruitment, while β-Glucan demonstrated increased angiogenesis with more highly aligned tissue architecture more indicative of fibrosis. A deeper understanding of the mechanisms driving healing in these two naturally derived therapeutics will be important for translation to human use.
Collapse
Affiliation(s)
- Hudson C Kussie
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - William Hahn
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Dharshan Sivaraj
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Filiberto Quintero
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Amelia Knochel
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | | | - Jonathan P Yasmeh
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Katharina Fischer
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Sultana Mojadidi
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Andrew Hostler
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Maia Granoski
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Eamonn McKenna
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Dominic Henn
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Ben Litmanovich
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | | | | | - Vincent W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | - Geoffrey C Gurtner
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | - Kellen Chen
- Department of Surgery, University of Arizona, College of Medicine, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
105
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
106
|
Haim N, Kaufman JP, Gurevich M. The Use of Active Coagulation Whole Blood-An Innovative Treatment Strategy for Hard-To-Heal Wounds. Am Surg 2024; 90:710-716. [PMID: 37878333 DOI: 10.1177/00031348231207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
BACKGROUND Deep and tunneling wounds are a challenge to apply and maintain most advanced wound dressings to promote effective healing. An autologous whole blood clot is a topical treatment and has been found to be safe and effective in healing cutaneous wounds. The active coagulation whole blood (ACWB) clot treatment, using the patient's own blood, is used to treat deep and tunneling wounds, by mixing the blood with coagulation components and applying it into the wound cavity allowing the clot to re-form inside the wound. We aimed to explore ACWB treatment in hard-to-heal wounds. METHODS 5 patients with multiple comorbidities, exhibiting surgical abdominal wound, chronic pilonidal sinus, stage 4 sacral pressure ulcer with exposed bone, post-amputation surgical site wound, and non-healing wound dehiscence at the site of a prior hip replacement, were all treated with the ACWB clot treatment. RESULTS Complete wound healing was observed in 4/5 cases. In the fifth case, there was a 70% reduction in the depth and surface area of the abdominal surgical wound. DISCUSSION The ACWB treatment was found to be effective in deep wounds with cavities and exposed structures. ACWB, in its flowable form, can effectively provide coverage of the deepest interstices of the wound's cavities by virtue of its liquid properties, forming a fibrin matrix, mimicking the role of the extracellular matrix. The flowable formulation of ACWB treatment safely and efficiently provides coverage of the entirety of the wound surface to improve the time and process of complex wound surface healing.
Collapse
Affiliation(s)
- Nadav Haim
- Department of Surgery, Shamir Medical Center, Be'er Ya'akov, Israel
| | - Jarrod P Kaufman
- Premier Surgical, Department of Surgery at Temple University School of Medicine, Brick, NJ, USA
| | - Maxim Gurevich
- Diabetic Foot Unit, Orthopedic B Department, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
107
|
Dirand Z, Maraux M, Tissot M, Chatelain B, Supp D, Viennet C, Perruche S, Rolin G. Macrophage phenotype is determinant for fibrosis development in keloid disease. Matrix Biol 2024; 128:79-92. [PMID: 38485100 DOI: 10.1016/j.matbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Keloid refers to a fibroproliferative disorder characterized by an accumulation of extracellular matrix (ECM) components at the dermis level, overgrowth beyond initial wound, and formation of tumor-like nodule areas. Treating keloid is still an unmet clinical need and the lack of an efficient therapy is clearly related to limited knowledge about keloid etiology, despite the growing interest of the scientific community in this pathology. In past decades, keloids were often studied in vitro through the sole prism of fibroblasts considered as the major effector of ECM deposition. Nevertheless, development of keloids results from cross-interactions of keloid fibroblasts (KFs) and their surrounding microenvironment, including immune cells such as macrophages. Our study aimed to evaluate the effect of M1 and M2 monocyte-derived macrophages on KFs in vitro. We focused on the effects of the macrophage secretome on fibrosis-related criteria in KFs, including proliferation, migration, differentiation, and ECM synthesis. First, we demonstrated that M2-like macrophages enhanced the fibrogenic profile of KFs in culture. Then, we surprisingly founded that M1-like macrophages can have an anti-fibrogenic effect on KFs, even in a pro-fibrotic environment. These results demonstrate, for the first time, that M1 and M2 macrophage subsets differentially impact the fibrotic fate of KFs in vitro, and suggest that restoring the M1/M2 balance to favor M1 in keloids could be an efficient therapeutic lever to prevent or treat keloid fibrosis.
Collapse
Affiliation(s)
- Zélie Dirand
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mélissa Maraux
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Marion Tissot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France
| | - Brice Chatelain
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, 25000 Besançon, France
| | - Dorothy Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| | - Céline Viennet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France
| | - Sylvain Perruche
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; MED'INN'Pharma 25000 Besançon, France
| | - Gwenaël Rolin
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; DImaCell Imaging Resource Center, 25000 Besançon, France; INSERM CIC-1431, CHU Besançon, 25000 Besançon, France.
| |
Collapse
|
108
|
Zhang Z, Xu C, Xu L, Wan J, Cao G, Liu Z, Ji P, Jin Q, Fu Y, Le Y, Ju J, Hou R, Zhang G. Bioprinted dermis with human adipose tissue-derived microvascular fragments promotes wound healing. Biotechnol Bioeng 2024; 121:1407-1421. [PMID: 37876343 DOI: 10.1002/bit.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Jiaming Wan
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
- Department of Orthopaedics, Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Pengxiang Ji
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
109
|
Hiebert P, Antoniazzi G, Aronoff M, Werner S, Wennemers H. A lysyl oxidase-responsive collagen peptide illuminates collagen remodeling in wound healing. Matrix Biol 2024; 128:11-20. [PMID: 38382767 DOI: 10.1016/j.matbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Tissue repair and fibrosis involve the dynamic remodeling of collagen, and accurate detection of these sites is of utmost importance. Here, we use a collagen peptide sensor (1) to visualize collagen formation and remodeling during wound healing in mice and humans. We show that the probe binds selectively to sites of collagen formation and remodeling at different stages of healing. Compared to conventional methods, the peptide sensor localizes preferentially to areas of collagen synthesis and remodeling at the wound edge and not in matured fibrillar collagen. We also demonstrate its applicability for in vivo wound imaging and for discerning differential remodeling in wounds of transgenic mice with altered collagen dynamics. Our findings show the value of 1 as a diagnostic tool to rapidly identify the sites of matrix remodeling in tissue sections, which will aid in the conception of new therapeutic strategies for fibrotic disorders and defective tissue repair.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich 8093, Switzerland
| | - Giuseppe Antoniazzi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog Weg 3, Zurich 8093, Switzerland
| | - Matthew Aronoff
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog Weg 3, Zurich 8093, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, Zurich 8093, Switzerland.
| | - Helma Wennemers
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
110
|
Liu X, Sun Y, Wang J, Kang Y, Wang Z, Cao W, Ye J, Gao C. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds. Bioact Mater 2024; 34:269-281. [PMID: 38261887 PMCID: PMC10794931 DOI: 10.1016/j.bioactmat.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Wound management is an important issue that places enormous pressure on the physical and mental health of patients, especially in cases of infection, where the increased inflammatory response could lead to severe hypertrophic scars (HSs). In this study, a hydrogel dressing was developed by combining the high strength and toughness, swelling resistance, antibacterial and antioxidant capabilities. The hydrogel matrix was composed of a double network of polyvinyl alcohol (PVA) and agarose with excellent mechanical properties. Hyperbranched polylysine (HBPL), a highly effective antibacterial cationic polymer, and tannic acid (TA), a strong antioxidant molecule, were added to the hydrogel as functional components. Examination of antibacterial and antioxidant properties of the hydrogel confirmed the full play of the efficacy of HBPL and TA. In the in vivo studies of methicillin-resistant Staphylococcus aureus (MRSA) infection, the hydrogel had shown obvious promotion of wound healing, and more profoundly, significant suppression of scar formation. Due to the common raw materials and simple preparation methods, this hydrogel can be mass produced and used for accelerating wound healing while preventing HSs in infected wounds.
Collapse
Affiliation(s)
- Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Sun
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|
111
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
112
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
113
|
Sangha MS, Deroide F, Meys R. Wound healing, scarring and management. Clin Exp Dermatol 2024; 49:325-336. [PMID: 38001053 DOI: 10.1093/ced/llad410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Understanding wound healing is imperative for the dermatological physician to optimize surgical outcomes. Poor healing may result in negative functional, cosmetic and psychological sequelae. This review briefly outlines the physiology of wound healing, with a view to improving the management of wounds and scars, and minimizing the long-term scarring complications.
Collapse
Affiliation(s)
| | - Florence Deroide
- Department of Dermatology, Royal Free London NHS Foundation Trust, London, UK
| | - Rhonda Meys
- Department of Dermatology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
114
|
Negrin LL, Carlin GL, Ristl R, Hajdu S. Serum levels of matrix metalloproteinases 1, 2, and 7, and their tissue inhibitors 1, 2, 3, and 4 in polytraumatized patients: Time trajectories, correlations, and their ability to predict mortality. PLoS One 2024; 19:e0300258. [PMID: 38457458 PMCID: PMC10923431 DOI: 10.1371/journal.pone.0300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
There has been limited research on assessing metalloproteinases (MMPs) 1, 2, and 7, as well as their tissue inhibitors (TIMPs) 1, 2, 3, and 4 in the context of polytrauma. These proteins play crucial roles in various physiological and pathological processes and could be a reliable tool in polytrauma care. We aimed to determine their clinical relevance. We assessed 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and spent at least one night in the intensive care unit. We measured serum levels of the selected proteins on admission (day 0) and days 1, 3, 5, 7, and 10. The serum levels of the seven proteins varied considerably among individuals, resulting in similar median trend curves for TIMP1 and TIMP4 and for MMP1, MMP2, TIMP2, and TIMP3. We also found a significant interrelationship between the MMP2, TIMP2, and TIMP3 levels at the same measurement points. Furthermore, we calculated significant cross-correlations between MMP7 and MMP1, TIMP1 and MMP7, TIMP3 and MMP1, TIMP3 and MMP2, and TIMP4 and TIMP3 and an almost significant correlation between MMP7 and TIMP1 for a two-day-lag. The autocorrelation coefficient reached statistical significance for MMP1 and TIMP3. Finally, lower TIMP1 serum levels were associated with in-hospital mortality upon admission. The causal effects and interrelationships between selected proteins might provide new insights into the interactions of MMPs and TIMPs. Identifying the underlying causes might help develop personalized therapies for patients with multiple injuries. Administering recombinant TIMP1 or increasing endogenous production could improve outcomes for those with multiple injuries. However, before justifying further investigations into basic research and clinical relevance, our findings must be validated in a multicenter study using independent cohorts to account for clinical and biological variability.
Collapse
Affiliation(s)
- Lukas L. Negrin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Greta L. Carlin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- University Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stefan Hajdu
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
115
|
Yu BY, Eom DH, Kim HW, Jeong YJ, Keum YS. Dimethyl α-Ketoglutarate Promotes the Synthesis of Collagen and Inhibits Metalloproteinases in HaCaT Cells. Biomol Ther (Seoul) 2024; 32:240-248. [PMID: 38296652 PMCID: PMC10902708 DOI: 10.4062/biomolther.2023.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 02/02/2024] Open
Abstract
We observed that treatment with dimethyl α-ketoglutarate (DMK) increased the amount of intracellular α-ketoglutarate significantly more than that of α-ketoglutarate in HaCaT cells. DMK also increased the level of intracellular 4-hydroxyproline and promoted the production of collagen in HaCaT cells. In addition, DMK decreased the production of collagenase and elastase and down-regulated the expression of selected matrix metalloproteinases (MMPs), such as MMP-1, MMP-9, MMP-10, and MMP-12, via transcriptional inhibition. The inhibition of MMPs by DMK was mediated by the suppression of the IL-1 signaling cascade, leading to the attenuation of ERK1/2 phosphorylation and AP-1 transactivation. Our study results illustrate that DMK, an alkylated derivative of α-ketoglutarate, increased the level of 4-hydroxyproline, promoted the production of collagen, and inhibited the expression of selected MMPs by affecting the IL-1 cascade and AP-1 transactivation in HaCaT cells. The results suggest that DMK might be useful as an anti-wrinkle ingredient.
Collapse
Affiliation(s)
- Bo-Yeong Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Goyang 10326, Republic of Korea
| | - Da-Hae Eom
- Panacea Company, Incheon 21631, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Goyang 10326, Republic of Korea
| | - Yong-Joo Jeong
- School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Goyang 10326, Republic of Korea
- Panacea Company, Incheon 21631, Republic of Korea
| |
Collapse
|
116
|
Mude L, Jupudi S, Swaroop AK, Tallapaneni V, Karri VVSR. Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:2437-2448. [PMID: 37160705 DOI: 10.1080/07391102.2023.2209666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Veera Venkata Satyanarayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
- Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
117
|
Sireesha K, Samundeshwari EL, Surekha K, Chandrasekhar C, Sarma PVGK. In vitro generation of epidermal keratinocytes from human CD34-positive hematopoietic stem cells. In Vitro Cell Dev Biol Anim 2024; 60:236-248. [PMID: 38502372 DOI: 10.1007/s11626-024-00862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
The epidermis is largely composed of keratinocytes (KCs), and the proliferation and differentiation of KCs from the stratum basale to the stratum corneum is the cellular hierarchy present in the epidermis. In this study, we explore the differentiation abilities of human hematopoietic stem cells (HSCs) into KCs. Cultured HSCs positive for CD34, CD45, and CD133 with prominent telomerase activity were induced with keratinocyte differentiation medium (KDM), which is composed of bovine pituitary extract (BPE), epidermal growth factor (EGF), insulin, hydrocortisone, epinephrine, transferrin, calcium chloride (CaCl2), bone morphogenetic protein 4 (BMP4), and retinoic acid (RA). Differentiation was monitored through the expression of cytokeratin markers K5 (keratin 5), K14 (keratin 14), K10 (keratin 10), K1 (keratin 1), transglutaminase 1 (TGM1), involucrin (IVL), and filaggrin (FLG) on day 0 (D0), day 6 (D6), day 11 (D11), day 18 (D18), day 24 (D24), and day 30 (D30) using immunocytochemistry, fluorescence microscopy, flow cytometry, qPCR, and Western blotting. The results revealed the expression of K5 and K14 genes in D6 cells (early keratinocytes), K10 and K1 genes in D11-D18 cells (mature keratinocytes) with active telomerase enzyme, and FLG, IVL, and TGM1 in D18-D24 cells (terminal keratinocytes), and by D30, the KCs were completely enucleated similar to cornified matrix. This method of differentiation of HSCs to KCs explains the cellular order exists in the normal epidermis and opens the possibility of exploring the use of human HSCs in the epidermal differentiation.
Collapse
Affiliation(s)
- Kodavala Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, 517507, Andhra Pradesh, India
| | | | - Kattaru Surekha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, 517507, Andhra Pradesh, India
| | - Chodimella Chandrasekhar
- Department of Hematology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517507, Andhra Pradesh, India
| | | |
Collapse
|
118
|
Park JG, Lim DC, Park JH, Park S, Mok J, Kang KW, Park J. Benzbromarone Induces Targeted Degradation of HSP47 Protein and Improves Hypertrophic Scar Formation. J Invest Dermatol 2024; 144:633-644. [PMID: 37838329 DOI: 10.1016/j.jid.2023.09.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Fibrotic diseases are characterized by the abnormal accumulation of collagen in the extracellular matrix, leading to the functional impairment of various organs. In the skin, excessive collagen deposition manifests as hypertrophic scars and keloids, placing a substantial burden on patients and the healthcare system worldwide. HSP47 is essential for proper collagen assembly and contributes to fibrosis. However, identifying clinically applicable HSP47 inhibitors has been a major pharmaceutical challenge. In this study, we identified benzbromarone (BBR) as an HSP47 inhibitor for hypertrophic scarring treatment. BBR inhibited collagen production and secretion in fibroblasts from patients with keloid by binding to HSP47 and inhibiting the interaction between HSP47 and collagen. Interestingly, BBR not only inhibits HSP47 but also acts as a molecular glue degrader that promotes its proteasome-dependent degradation. Through these molecular mechanisms, BBR effectively reduced hypertrophic scarring in mini pigs and rats with burns and/or excisional skin damage. Thus, these findings suggest that BBR can be used to clinically treat hypertrophic scars and, more generally, fibrotic diseases.
Collapse
Affiliation(s)
- Jung Gyu Park
- Innovo Therapeutics, Daejeon, Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | - Jeong Hwan Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Seoah Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Jongsoo Mok
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea.
| |
Collapse
|
119
|
Zhao X, Chen Y, Lin Z, Jin X, Su B, Liu X, Yang M, Chen K, Zhu M, Wang L, Zhu YZ. H 2S donor S-propargyl-cysteine for skin wound healing improvement via smart transdermal delivery. MedComm (Beijing) 2024; 5:e485. [PMID: 38434762 PMCID: PMC10908363 DOI: 10.1002/mco2.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Hydrogen sulfide for wound healing has drawn a lot of attention recently. In this research, the S-propargyl-cysteine (SPRC), an endogenous H2S donor, was loaded on carbomer hydrogel, and a copper sheet rat burn model was developed. Pathological changes in rat skin tissue were examined using hematoxylin-eosin (HE) and Masson staining. The immunohistochemistry (IHC) staining was performed to detect the expression of Collagen I (Col I) and Collagen III (Col III). The mRNA levels of interleukin (IL)-6, Col Iα2, Col IIIα1, tissue inhibitors of metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β1 were examined by quantitative real-time chain polymerase reaction. The findings demonstrated that the collagen layer was thicker in the SPRC group during the proliferative phase, SPRC hydrogel promoted VEGF expression. In the late stage of wound healing, the expression of IL-6, TIMP-1, MMP-9, and TGF-β1 was inhibited, and the Col I content was closer to that of normal tissue. These results surface that SPRC hydrogel can promote wound healing and play a positive role in reducing scar formation. Our results imply that SPRC can facilitate wound healing and play a positive role in reducing scar formation.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Yao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- Department of Medical CosmetologyAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhongxiao Lin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Xinyang Jin
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Bolun Su
- School of MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaotong Liu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Mao Yang
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Keyuan Chen
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Menglin Zhu
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Lei Wang
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
120
|
Raps S, Bahr L, Karkossa I, Rossol M, von Bergen M, Schubert K. Triclosan and its alternatives, especially chlorhexidine, modulate macrophage immune response with distinct modes of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169650. [PMID: 38159774 DOI: 10.1016/j.scitotenv.2023.169650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Since European regulators restricted the use of bacteriocidic triclosan (TCS), alternatives for TCS are emerging. Recently, TCS has been shown to reprogram immune metabolism, trigger the NLRP3 inflammasome, and subsequently the release of IL-1β in human macrophages, but data on substitutes is scarce. Hence, we aimed to examine the effects of TCS compared to its alternatives at the molecular level in human macrophages. LPS-stimulated THP-1 macrophages were exposed to TCS or its substitutes, including benzalkonium chloride, benzethonium chloride, chloroxylenol, chlorhexidine (CHX) and cetylpyridinium chloride, with the inhibitory concentration (IC10-value) of cell viability to decipher their mode of action. TCS induced the release of the pro-inflammatory cytokine TNF and high level of IL-1β, suggesting the activation of the NLRP3-inflammasome, which was confirmed by non-apparent IL-1β under the NLRP3-inhibitor MCC950 treatment d. While IL-6 release was reduced in all treatments, the alternative CHX completely abolished the release of all investigated cytokines. To unravel the underlying molecular mechanisms, we used untargeted LC-MS/MS-based proteomics. TCS and CHX showed the strongest cellular response at the protein and signalling pathway level, whereby pathways related to metabolism, translation, cellular stress and migration were mainly affected but to different proposed modes of action. TCS inhibited mitochondrial electron transfer and affected phagocytosis. In contrast, in CHX-treated cells, the translation was arrested due to stress conditions, resulting in the formation of stress granules. Mitochondrial (e.g. ATP5F1D, ATP5PB, UQCRQ) and ribosomal (e.g. RPL10, RPL35, RPS23) proteins were revealed as putative key drivers. Furthermore, we have demonstrated the formation of podosomes by CHX, potentially involved in ECM degradation. Our results exhibit modulation of the immune response in macrophages by TCS and its substitutes and illuminated underlying molecular effects. These results illustrate critical processes involved in the modulation of macrophages' immune response by TCS and its alternatives, providing information essential for hazard assessment.
Collapse
Affiliation(s)
- Stefanie Raps
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Bahr
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Manuela Rossol
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
121
|
Kesavan R, Sheela Sasikumar C, Narayanamurthy VB, Rajagopalan A, Kim J. Management of Diabetic Foot Ulcer with MA-ECM (Minimally Manipulated Autologous Extracellular Matrix) Using 3D Bioprinting Technology - An Innovative Approach. INT J LOW EXTR WOUND 2024; 23:161-168. [PMID: 34636693 DOI: 10.1177/15347346211045625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic foot ulcers are the leading cause of prolonged hospitalization and loss of social participation in people with diabetes. Conventional management of diabetic foot ulcers (DFU) is associated with slow healing, high cost, and recurrent visits to the hospital. Currently, the application of autologous lipotransfer is more popular, as the regenerative and reparative effects of fat are well established. Herein we report the efficacy of minimally manipulated extracellular matrix (MA-ECM) prepared from autologous homologous adipose tissue by using 3D bioprinting in DFU (test group) in comparison to the standard wound care (control group). A total of 40 subjects were screened and randomly divided into test and control groups. In the test group, the customized MA-ECM was printed as a scaffold from the patient autologous fat using a 3D bioprinter device and applied to the wound directly. The control group received standard wound care and weekly follow-up was done for all the patients. We evaluated the efficacy of this novel technology by assessing the reduction in wound size and attainment of epithelialization. The patients in the test group (n = 17) showed complete wound closure with re-epithelialization approximately within a period of 4 weeks. On the other hand, most of the patients in the control group (n = 16) who received standard wound dressings care showed a delay in wound healing in comparison to the test group. This technique can be employed as a personalized therapeutic method to accelerate diabetic wound healing and may provide a promising potential alternative approach to protect against lower foot amputation a most common complication in diabetes.
Collapse
Affiliation(s)
- Rajesh Kesavan
- Department of Podiatric Surgery, NRA Wound Care Pvt Ltd, Hycare Super speciality Hospital, Chennai, Tamilnadu, India
- SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Changam Sheela Sasikumar
- Department of Clinical Research, S.S. Healthcare, NRA Wound Care Pvt Ltd, Hycare Super Speciality, Hospital, Chennai, Tamilnadu, India
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai, Tamilnadu, India
| | - V B Narayanamurthy
- Department of Plastic Surgery, NRA Wound Care Pvt Ltd, Hycare Super Speciality Hospital, Chennai, Tamilnadu, India
| | - Arvind Rajagopalan
- Department of Orthopedic Surgery, NRA Wound Care Pvt Ltd, Hycare Super Speciality Hospital, Chennai, Tamilnadu, India
| | - Jeehee Kim
- R&D Center, ROKIT AMERICA, 3580 Wilshire Blvd., Los Angeles, CA, USA
| |
Collapse
|
122
|
Meyer JA, Silverstein J, Timor-Tritsch IE, Antoine C. The effect of uterine closure technique on cesarean scar niche development after multiple cesarean deliveries. J Perinat Med 2024; 52:150-157. [PMID: 38081042 DOI: 10.1515/jpm-2023-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVES To use saline infusion sonohysterography (SIS) to evaluate the effect of uterine closure technique on niche formation after multiple cesarean deliveries (CDs). METHODS Patients with at least one prior CD were evaluated for niche via SIS. Subgroups of any number repeat CD (>1 prior), lower-order CD (<4 prior), and higher-order CD (≥4 prior) were analyzed, stratifying by hysterotomy closure technique at last cesarean preceding imaging; techniques included Technique A (endometrium-free double-layer closure) and Technique B (single- or double-layer routine endo-myometrial closure). Niche defects were quantified (depth, length, width, and residual myometrial thickness). The primary outcome was clinically significant niche, defined as depth >2 mm. Statistical analysis was performed using chi-square, ANOVA, t-test, Kruskal-Wallis, and multiple logistic regression, with p-values of <0.05 were statistically significant. RESULTS A total of 172 post-cesarean SIS studies were reviewed: 105 after repeat CDs, 131 after lower-order CDs, and 41 after higher-order CDs. Technique A was associated with a shorter interval to imaging and more double-layer closures. Technique B was associated with more clinically significant niches across all subgroups, and these niches were significantly longer and deeper when present. Multiple logistic regression demonstrated a 5.6, 8.1, and 11-fold increased adjusted odds of clinically significant niche following Technique B closure in the repeat CD (p<0.01), lower-order CD (p<0.001), and higher-order CD (p=0.04) groups, respectively. CONCLUSIONS While multiple CDs are known to increase risk for niche defects and their sequelae, hysterotomy closure technique may help to reduce niche development and severity.
Collapse
Affiliation(s)
- Jessica A Meyer
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jenna Silverstein
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ilan E Timor-Tritsch
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Maternal Resources, Hoboken, NJ, USA
| | - Clarel Antoine
- Department of Obstetrics & Gynecology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
123
|
Pan Z, Zhang X, Xie W, Cui J, Wang Y, Zhang B, Du L, Zhai W, Sun H, Li Y, Li D. Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment. Front Bioeng Biotechnol 2024; 12:1335377. [PMID: 38456005 PMCID: PMC10917957 DOI: 10.3389/fbioe.2024.1335377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Mouth ulcers, a highly prevalent ailment affecting the oral mucosa, leading to pain and discomfort, significantly impacting the patient's daily life. The development of innovative approaches for oral ulcer treatment is of great importance. Moreover, a deeper and more comprehensive understanding of mouth ulcers will facilitate the development of innovative therapeutic strategies. The oral environment possesses distinct traits as it serves as the gateway to the digestive and respiratory systems. The permeability of various epithelial layers can influence drug absorption. Moreover, oral mucosal injuries exhibit distinct healing patterns compared to cutaneous lesions, influenced by various inherent and extrinsic factors. Furthermore, the moist and dynamic oral environment, influenced by saliva and daily physiological functions like chewing and speaking, presents additional challenges in local therapy. Also, suitable mucosal adhesion materials are crucial to alleviate pain and promote healing process. To this end, the review comprehensively examines the anatomical and structural aspects of the oral cavity, elucidates the healing mechanisms of oral ulcers, explores the factors contributing to scar-free healing in the oral mucosa, and investigates the application of mucosal adhesive materials as drug delivery systems. This endeavor seeks to offer novel insights and perspectives for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wangni Xie
- School of Stomatology, Jilin University, Changchun, China
| | - Jing Cui
- School of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Boya Zhang
- School of Stomatology, Jilin University, Changchun, China
| | - Liuyi Du
- School of Stomatology, Jilin University, Changchun, China
| | - Wenhao Zhai
- School of Stomatology, Jilin University, Changchun, China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
124
|
Shyu YC, Huang TS, Chiu HS, Sumazin P, Lin XY, Liao PC, Liou CC, Hsu FC, Lin JS, Hsu CC, Hsu PH, Sun CC, Chen CT. Deciphering Early-Stage Molecular Mechanisms of Negative Pressure Wound Therapy in a Murine Model. Int J Mol Sci 2024; 25:2373. [PMID: 38397048 PMCID: PMC10888958 DOI: 10.3390/ijms25042373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Negative Pressure Wound Therapy (NPWT) is a commonly employed clinical strategy for wound healing, yet its early-stage mechanisms remain poorly understood. To address this knowledge gap and overcome the limitations of human trials, we establish an NPWT C57BL/6JNarl mouse model to investigate the molecular mechanisms involved in NPWT. In this study, we investigate the intricate molecular mechanisms through which NPWT expedites wound healing. Our focus is on NPWT's modulation of inflammatory immune responses and the concurrent orchestration of multiple signal transduction pathways, resulting in shortened coagulation time and reduced inflammation. Notably, we observe a significant rise in dickkopf-related protein 1 (DKK-1) concentration during NPWT, promoting the differentiation of Hair Follicle Stem Cells (HFSCs) into epidermal cells, expediting wound closure. Under negative pressure, macrophages express and release DKK-1 cytokines, crucial for stimulating HFSC differentiation, as validated in animal experiments and in vitro studies. Our findings illuminate the inflammatory dynamics under NPWT, revealing potential signal transduction pathways. The proposed framework, involving early hemostasis, balanced inflammation, and macrophage-mediated DKK-1 induction, provides a novel perspective on enhancing wound healing during NPWT. Furthermore, these insights lay the groundwork for future pharmacological advancements in managing extensive wounds, opening avenues for targeted therapeutic interventions in wound care.
Collapse
Affiliation(s)
- Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ting-Shuo Huang
- Department of General Surgery, Jen Ai Hospital, Taichung 400, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hua-Sheng Chiu
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX 77030, USA; (H.-S.C.); (P.S.)
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX 77030, USA; (H.-S.C.); (P.S.)
| | - Xin-Yu Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
| | - Cai-Cin Liou
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
| | - Fang-Chia Hsu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
| | - Jyuan-Siou Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan; (X.-Y.L.); (P.-C.L.); (C.-C.L.); (F.-C.H.); (J.-S.L.)
| | - Chih-Chin Hsu
- Department of Medicine, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan;
| | - Chien-Tzung Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Craniofacial Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
125
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
126
|
Suh JW, Lee MH, Oh HK, Kim HK, Kweon DK, Lee J, Ahn HM, Kim DW, Kang SB. Accelerated wound healing after topical application of hyaluronic acid cotton to hemorrhoidectomy wounds in a rat model. Ann Surg Treat Res 2024; 106:85-92. [PMID: 38318095 PMCID: PMC10838657 DOI: 10.4174/astr.2024.106.2.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
Purpose Anal wounds following hemorrhoidectomy can lead to severe pain and postoperative bleeding, impacting patient recovery and quality of life. Hyaluronic acid (HA) stimulates tissue regeneration and wound healing by accelerating cell migration and proliferation. This study aimed to investigate the differences in wound healing rate and completeness of recovery of perianal wounds topically treated with HA-soaked cotton in a murine model. Methods Forty-eight 8-week-old Sprague-Dawley rats with perianal wounds created using a biopsy punch were divided into 2 groups: simple dressing with gauze (control) and topical HA-soaked cotton. A single application of HA-soaked cotton was administered after surgery. Wound healing rate and completeness of recovery were evaluated by measuring the healed area and conducting histological analyses. Results The HA-cotton group exhibited a shorter complete wound healing duration compared to the control group (13.9 days vs. 16.4 days, P = 0.031). Differences in wound healing area between the 2 groups were greatest on postoperative day 2 (51.6% vs. 28.8%, P < 0.001). The HA-cotton group exhibited fewer cases of granulation tissue (2 vs. 5) or redness (0 vs. 3) upon complete wound healing. Histologically, the HA-cotton group showed accelerated reepithelialization, rapid shift to lymphocyte-dominant inflammation, enhanced fibroblast proliferation, and increased collagen deposition compared to the control group. Conclusion Herein, topical application of HA-soaked cotton on perianal wounds in rats resulted in accelerated wound healing, particularly in the initial stages, and improved completeness of recovery, underscoring the potential of the topical application of HA-soaked cotton on hemorrhoidectomy wounds in human patients to improve wound healing.
Collapse
Affiliation(s)
- Jung Wook Suh
- Department of Surgery, Dankook University Hospital, Cheonan, Korea
| | | | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyung Kyung Kim
- Department of Pathology, Samsung Medical Center, Seoul, Korea
| | | | - Jeehye Lee
- Department of Surgery, Yongin Severance Hospital, Yongin, Korea
| | - Hong-min Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
127
|
Dehbashi S, Tahmasebi H, Alikhani MY, Vidal JE, Seifalian A, Arabestani MR. The healing effect of Pseudomonas Quinolone Signal (PQS) with co-infection of Staphylococcus aureus and Pseudomonas aeruginosa: A preclinical animal co-infection model. J Infect Public Health 2024; 17:329-338. [PMID: 38194764 DOI: 10.1016/j.jiph.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Because of the rise in antibiotic resistance and the control of pathogenicity, polymicrobial bacterial biofilms exacerbate wound infections. Since bacterial quorum sensing (QS) signals can dysregulate biofilm development, they are interesting therapeutic treatments. In this study, Pseudomonas Quinolone Signal (PQS) was used to treat an animal model of a wound that had both Staphylococcus aureus and Pseudomonas aeruginosa co-infection. METHODS S. aureus and P. aeruginosa mono- and co-infection models were developed in vitro on the L-929 cell line and in an animal model of wound infection. Moreover, PQS was extracted and purified using liquid chromatography. Then, the mono- and co-infection models were treated by PQS in vitro and in vivo. RT-PCR analysis was used to look into changes in biofilm, QS, tissue regeneration, and apoptosis genes after the treatment. RESULTS PQS significantly disrupted established biofilm up to 90% in both in vitro and in vivo models. Moreover, a 93% reduction in the viability of S. aureus and P. aeruginosa was detected during the 10 days of treatment in comparison to control groups. In addition, the biofilm-encoding and QS-regulating genes were down-regulated to 75% in both microorganisms. Also, fewer epithelial cells died when treated with PQS compared to control groups in both mono- and co-infection groups. CONCLUSION According to this study, PQS may facilitate wound healing by stimulating the immune system and reducing apoptosis. It seems to be a potential medication to use in conjunction with antibiotics to treat infections that are difficult to treat.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
128
|
Fumasi FM, MacCulloch T, Bernal-Chanchavac J, Stephanopoulos N, Holloway JL. Using dynamic biomaterials to study the temporal role of bioactive peptides during osteogenesis. BIOMATERIALS ADVANCES 2024; 157:213726. [PMID: 38096646 PMCID: PMC10842892 DOI: 10.1016/j.bioadv.2023.213726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.
Collapse
Affiliation(s)
- Fallon M Fumasi
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Julio Bernal-Chanchavac
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America; School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.
| | - Julianne L Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States of America; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
129
|
Vendrame S, Alaba T, Marchi N, Tsakiroglou P, Klimis-Zacas D. In Vitro and In Vivo Evaluation of Bioactive Compounds from Berries for Wound Healing. Curr Dev Nutr 2024; 8:102078. [PMID: 38351974 PMCID: PMC10862523 DOI: 10.1016/j.cdnut.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Managing chronic wounds can be challenging and have a major impact on the quality of life, due to the significant financial and psychosocial burden on the affected individuals and their families. The need for safe, effective, and cost-efficient wound healing remedies has led to the identification of naturally occurring bioactive compounds with positive effects on tissue regeneration. Berry fruits are a promising source of such compounds and may therefore prove distinctively beneficial. Here, we present a qualitative review of the available evidence specifically investigating the effects of berry extracts on in vitro and in vivo models of wound healing. The evidence shows that a variety of berry extracts significantly promote wound healing through their antibacterial, antioxidant, and anti-inflammatory properties as well as their ability to stimulate collagen synthesis, re-epithelization, granulation, and vascularization pathways. However, data are still insufficient to pinpoint the differential effect that individual berries may have based on their nutrient and bioactive profile, the type and frequency of application, and the dosage required. Future research is needed in view of translating the available evidence into practice for clinical wound treatment.
Collapse
Affiliation(s)
- Stefano Vendrame
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Tolu Alaba
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Natalie Marchi
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Panagiotis Tsakiroglou
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Dorothy Klimis-Zacas
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
130
|
Rajinikanth B S, Rajkumar DSR, K K, Vijayaragavan V. Chitosan-Based Biomaterial in Wound Healing: A Review. Cureus 2024; 16:e55193. [PMID: 38562272 PMCID: PMC10983058 DOI: 10.7759/cureus.55193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Wound healing is an evolving and intricate technique that is vital to the restoration of tissue integrity and function. Over the past few decades, chitosan a biopolymer derived from chitin, became known as an emerging biomaterial in the field of healing wounds due to its distinctive characteristics including biocompatibility, biodegradability, affinity to biomolecules, and wound-healing activity. This natural polymer exhibits excellent healing capabilities by accelerating the development of new skin cells, reducing inflammation, and preventing infections. Due to its distinct biochemical characteristics and innate antibacterial activity, chitosan has been extensively researched as an antibacterial wound dressing. Chronic wounds, such as diabetic ulcers and liver disease, are a growing medical problem. Chitosan-based biomaterials are a promising solution in the domain of wound care. The article analyzes the depth of chitosan-based biomaterials and their impact on wound healing and also the methods to enhance the advantages of chitosan by incorporating bioactive compounds. This literature review is aimed to improve the understanding and knowledge about biomaterials and their use in wound healing.
Collapse
Affiliation(s)
- Suba Rajinikanth B
- Pediatrics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Chennai, IND
| | | | - Keerthika K
- Biotechnology, ACS Advanced Medical Research Institute, Dr MGR Educational and Research Institute, Chennai, IND
| | - Vinothini Vijayaragavan
- Biotechnology, ACS Advanced Medical Research Institute, Dr MGR Educational and Research Institute, Chennai, IND
| |
Collapse
|
131
|
Kumar M, Banerjee P, Das A, Singh K, Guith T, Kacar S, Gourishetti K, Sen CK, Roy S, Khanna S. Hydrolyzed Collagen Powder Dressing Improves Wound Inflammation, Perfusion, and Breaking Strength of Repaired Tissue. Adv Wound Care (New Rochelle) 2024; 13:70-82. [PMID: 37534840 DOI: 10.1089/wound.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Objective: Hydrolyzed collagen-based matrices are widely used as wound care dressings. Information on the mechanism of action of such dressings is scanty. The objective of this study was to test the effect of a specific hydrolyzed collagen powder (HCP), which is extensively used for wound care management in the United States. Approach: The effects of HCP on resolution of wound inflammation, perfusion, closure, and breaking strength of the repaired skin were studied in an experimental murine model. Results: In early (day 7) inflammatory phase of wound macrophages, HCP treatment boosted phagocytosis and efferocytosis of wound-site macrophages. In these cells, inducible reactive oxygen species were also higher on day (d) 7. HCP treatment potentiated the expression of anti-inflammatory interleukin (IL)-10 cytokine and proangiogenic vascular endothelial growth factor (VEGF) production. Excisional wounds dressed with HCP showed complete closure on day 21, while the control wounds remained open. HCP treatment also demonstrated improved quality of wound healing as marked by the improved breaking strength of the closed wound tissue/repaired skin. Innovation: These data represent first evidence on the mechanism of action of clinically used HCP. Conclusion: HCP dressing favorably influenced both wound inflammation and vascularization. Improved breaking strength of HCP-treated repaired skin lays the rationale for future studies testing the hypothesis that HCP-treated closed wounds would show fewer recurrences.
Collapse
Affiliation(s)
- Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tanner Guith
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karthik Gourishetti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
132
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
133
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
134
|
Kohlhauser M, Tuca A, Kamolz LP. The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cell Mol Biol Lett 2024; 29:10. [PMID: 38182971 PMCID: PMC10771009 DOI: 10.1186/s11658-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Burn injuries can be associated with prolonged healing, infection, a substantial inflammatory response, extensive scarring, and eventually death. In recent decades, both the mortality rates and long-term survival of severe burn victims have improved significantly, and burn care research has increasingly focused on a better quality of life post-trauma. However, delayed healing, infection, pain and extensive scar formation remain a major challenge in the treatment of burns. ADSCs, a distinct type of mesenchymal stem cells, have been shown to improve the healing process. The aim of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries. METHODS A systematic review of the literature was conducted using the electronic databases PubMed, Web of Science and Embase. The basic research question was formulated with the PICO framework, whereby the usage of ADSCs in the treatment of burns in vivo was determined as the fundamental inclusion criterion. Additionally, pertinent journals focusing on burns and their treatment were screened manually for eligible studies. The review was registered in PROSPERO and reported according to the PRISMA statement. RESULTS Of the 599 publications screened, 21 were considered relevant to the key question and were included in the present review. The included studies were almost all conducted on rodents, with one exception, where pigs were investigated. 13 of the studies examined the treatment of full-thickness and eight of deep partial-thickness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs exhibit immunomodulatory effects during the inflammatory response. 16 studies have shown improved neovascularisation with the use of ADSCs. 14 studies report positive influences of ADSCs on granulation tissue formation, while 11 studies highlight their efficacy in promoting re-epithelialisation. 11 trials demonstrated an improvement in outcomes during the remodelling phase. CONCLUSION In conclusion, it appears that adipose-derived stem cells demonstrate remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs in the treatment of burns is still at an early experimental stage, and further investigations are required in order to examine the potential usage of ADSCs in future clinical burn care.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | - Alexandru Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Department of Surgery, State Hospital Güssing, Güssing, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
135
|
Heebkaew N, Promjantuek W, Chaicharoenaudomrung N, Phonchai R, Kunhorm P, Soraksa N, Noisa P. Encapsulation of HaCaT Secretome for Enhanced Wound Healing Capacity on Human Dermal Fibroblasts. Mol Biotechnol 2024; 66:44-55. [PMID: 37016178 DOI: 10.1007/s12033-023-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Abstract
In the epidermal and dermal layers of the skin, diverse cell types are reconstituted during the wound healing process. Delays or failures in wound healing are a major issue in skin therapy because they prevent the normal structure and function of wounded tissue from being restored, resulting in ulceration or other skin abnormalities. Human immortalized keratinocytes (HaCAT) cells are a spontaneously immortalized human keratinocyte cell line capable of secreting many bioactive chemicals (a secretome) that stimulate skin cell proliferation, rejuvenation, and regeneration. In this study, the HaCaT secretome was encapsulated with polyesters such as poly (lactic-co-glycolic acid) (PLGA) and cassava starch in an effort to maximize its potential. According to the estimated mechanism of the HaCaT secretome, all treatments were conducted on immortalized dermal fibroblast cell lines, a model of wound healing. Encapsulation of HaCaT secretome and cassava starch enhanced the effectiveness of cell proliferation, migration, and anti-aging. On the other hand, the levels of reactive oxygen species (ROS) were lowered, activating antioxidants in immortalized dermal fibroblast cells. The HaCaT secretome induced in a dose-dependent manner the expression of antioxidant-associated genes, including SOD, CAT, and GPX. Six cytokines, including CCL2 and MCP-1, influenced immunoregulatory and inflammatory processes in cultured HaCAT cells. HaCaT secretome encapsulated in cassava starch can reduce ROS buildup by boosting antioxidant to stimulate wound healing. Hence, the HaCaT secretome may have a new chance in the cosmetics business to develop components for wound prevention and healing.
Collapse
Affiliation(s)
- Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
136
|
Huang X, Zheng L, Zhou Y, Hu S, Ning W, Li S, Lin Z, Huang S. Controllable Adaptive Molybdate-Oligosaccharide Nanoparticles Regulate M2 Macrophage Mitochondrial Function and Promote Angiogenesis via PI3K/HIF-1α/VEGF Pathway to Accelerate Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2302256. [PMID: 37922497 DOI: 10.1002/adhm.202302256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/22/2023] [Indexed: 11/05/2023]
Abstract
The complex wound environment of diabetic wounds leads to poor treatment efficacy, and the inflammatory disorders and vascular injury are the primary causes of death in such patients. Herein, a sprayable, controllable adaptive, pH-responsive nanosystem of molybdate and oligosaccharide (CMO) is specially developed as an immunomodulatory and angiogenesis-promotion material for diabetic wound healing. CMO exhibited pH-responsive release of Mo2+ and oligosaccharide (COS), specifically in response to the alkalescent environment observed in diabetic wounds. CMO provide an anti-inflammatory environment by promoting M2 polarization through significantly stimulating macrophage mitochondrial function. Specifically, CMO with a certain concentration reduce reactive oxygen species (ROS) and tumor necrosis factor α (TNF-α) expression, and upregulated mitochondrial membrane potential (MMP), superoxide dismutase (SOD), and interleukin 10 (IL-10) expression in macrophages. Moreover, CMO facilitate angiogenesis via upregulating the PI3K/HIF-1α/VEGF pathway-a critical process for the formation of new blood vessels that supply nutrients and oxygen to the healing tissue. Remarkably, CMO promote cell viability and migration of endothelial cells, and enhance the expression of angiogenic genes. In vitro and in vivo studies suggest this simple but powerful nanosystem targeting mitochondrial function has the potential to become an effective treatment for diabetic wound healing.
Collapse
Affiliation(s)
- Xiuhong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Liqin Zheng
- Department of The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yueshan Zhou
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Shaonan Hu
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wancheng Ning
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Simin Li
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziling Lin
- Department of Orthopedic Trauma, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| |
Collapse
|
137
|
Chassonnery P, Paupert J, Lorsignol A, Séverac C, Ousset M, Degond P, Casteilla L, Peurichard D. Fibre crosslinking drives the emergence of order in a three-dimensional dynamical network model. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231456. [PMID: 38298399 PMCID: PMC10827420 DOI: 10.1098/rsos.231456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
The extracellular-matrix (ECM) is a complex interconnected three-dimensional network that provides structural support for the cells and tissues and defines organ architecture as key for their healthy functioning. However, the intimate mechanisms by which ECM acquire their three-dimensional architecture are still largely unknown. In this paper, we study this question by means of a simple three-dimensional individual based model of interacting fibres able to spontaneously crosslink or unlink to each other and align at the crosslinks. We show that such systems are able to spontaneously generate different types of architectures. We provide a thorough analysis of the emerging structures by an exhaustive parametric analysis and the use of appropriate visualization tools and quantifiers in three dimensions. The most striking result is that the emergence of ordered structures can be fully explained by a single emerging variable: the number of links per fibre in the network. If validated on real tissues, this simple variable could become an important putative target to control and predict the structuring of biological tissues, to suggest possible new therapeutic strategies to restore tissue functions after disruption, and to help in the development of collagen-based scaffolds for tissue engineering. Moreover, the model reveals that the emergence of architecture is a spatially homogeneous process following a unique evolutionary path, and highlights the essential role of dynamical crosslinking in tissue structuring.
Collapse
Affiliation(s)
- Pauline Chassonnery
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
- Inria Paris, team MAMBA, Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR7598, 75005 Paris, France
| | - Jenny Paupert
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
| | - Anne Lorsignol
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
| | - Childérick Séverac
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
| | - Marielle Ousset
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
| | - Pierre Degond
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 9, France
| | - Louis Casteilla
- RESTORE, Université de Toulouse, Inserm U1031, EFS, INP-ENVT, UPS, CNRS ERL5311, Toulouse, France
| | - Diane Peurichard
- Inria Paris, team MAMBA, Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR7598, 75005 Paris, France
| |
Collapse
|
138
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
139
|
Arif S, Larochelle S, Trudel B, Gounou C, Bordeleau F, Brisson AR, Moulin VJ. The diffusion of normal skin wound myofibroblast-derived microvesicles differs according to matrix composition. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e131. [PMID: 38938680 PMCID: PMC11080821 DOI: 10.1002/jex2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024]
Abstract
Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2β1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Sébastien Larochelle
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
| | - Benjamin Trudel
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - François Bordeleau
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Centre de Recherche sur le Cancer de l'Université Laval QuebecQuebec CityCanada
| | | | - Véronique J. Moulin
- Faculté de MédecineUniversité Laval QuebecQuebec CityCanada
- Centre de Recherche du CHU de Québec‐Université Laval QuebecQuebec CityCanada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX QuebecQuebec CityCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuebec CityCanada
| |
Collapse
|
140
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
141
|
Zhang XR, Ryu U, Najmiddinov B, Trinh TTT, Choi KM, Nam SY, Heo CY. Effect of Silicone Patch Containing Metal-organic Framework on Hypertrophic Scar Suppression. In Vivo 2024; 38:235-245. [PMID: 38148076 PMCID: PMC10756491 DOI: 10.21873/invivo.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Hypertrophic scars (HS) are an abnormal cutaneous condition of wound healing characterized by excessive fibrosis and disrupted collagen deposition. This study assessed the potential of a silicone patch embedded with chemically stable zirconium-based metal-organic frameworks (MOF)-808 structures to mitigate HS formation using a rabbit ear model. MATERIALS AND METHODS A silicone patch was strategically engineered by incorporating Zr-MOF-808, a composite structure comprising metal ions and organic ligands. Structural integrity of the Zr-MOF-808 silicone patch was validated using scanning electron microscopy and X-ray diffraction analysis. The animals were divided into three groups: a control, no treatment group (Group 1), a silicone patch treatment group (Group 2), and a group treated with a 0.2% loaded Zr-MOF-808 silicone patch (Group 3). HS suppression effects were quantified using scar elevation index (SEI), dorsal skin thickness measurements, and myofibroblast protein expression. RESULTS Histopathological examination of post-treatment HS samples revealed substantial reductions in SEI (34.6%) and epidermal thickness (49.5%) in Group 3. Scar hyperplasia was significantly diminished by 53.5% (p<0.05), while collagen density declined by 15.7% in Group 3 compared to Group 1. Western blot analysis of protein markers, including TGF-β1, collagen-1, and α-SMA, exhibited diminished levels by 8.8%, 12%, and 21.3%, respectively, in Group 3, and substantially higher levels by 21.9%, 27%, and 39.9%, respectively, in Group 2. On the 35th day post-wound generation, Zr-MOF-808-treated models exhibited smoother, less conspicuous, and flatter scars. CONCLUSION Zr-MOF-808-loaded silicone patch reduced HS formation in rabbit ear models by inducing the proliferation and remodeling of the wound healing process.
Collapse
Affiliation(s)
- Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Unjin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Republic of Korea
| | - Bakhtiyor Najmiddinov
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Korean Institute of Nonclinical Study, H&Bio. Co. Ltd., Seongnam, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Republic of Korea;
- R&D Center, LabInCube Co. Ltd., Cheongju, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea;
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea;
- Korean Institute of Nonclinical Study, H&Bio. Co. Ltd., Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
142
|
Zhou S, Wang Q, Yang W, Wang L, Wang J, You R, Luo Z, Zhang Q, Yan S. Development of a bioactive silk fibroin bilayer scaffold for wound healing and scar inhibition. Int J Biol Macromol 2024; 255:128350. [PMID: 37995792 DOI: 10.1016/j.ijbiomac.2023.128350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
In cases of deep skin defects, spontaneous tissue regeneration and excessive collagen deposition lead to hyperplastic scars. Conventional remedial action after scar formation is limited with a high recurrence rate. In this study, we designed a new artificial skin bilayer using silk fibroin nanofibers films (SNF) as the epidermis, and silk fibroin (SF) / hyaluronic acid (HA) scaffold as the dermal layer. The regenerated SF film was used as a binder to form a functional SNF-SF-HA bilayer scaffold. The bilayer scaffold showed high porosity, hydrophilicity, and strength, and retained its shape over 30 days in PBS. In vitro, human umbilical vein endothelial cells were seeded into the bilayer scaffold and showed superior cell viability. In vivo analyses using the rabbit ear hypertrophic scar (HS) model indicated that the bilayer scaffold not only supported the reconstruction of new tissue, but also inhibited scar formation. The scaffold possibly achieved scar inhabitation by reducing wound contraction, weakening inflammatory reactions, and regulating collagen deposition and type conversion, which was partly observed through the downregulation of type I collagen, transforming growth factor-β, and α-smooth muscle actin. This study describes a new strategy to expand the application of silk-based biomaterials for the treatment of hyperplastic skin scars.
Collapse
Affiliation(s)
- Shuiqing Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiusheng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wenjing Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiangnan Wang
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zuwei Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China.
| |
Collapse
|
143
|
Man RC, Idrus RBH, Ibrahim WIW, Saim AB, Lokanathan Y. Secretome Analysis of Human Nasal Fibroblast Identifies Proteins That Promote Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:59-76. [PMID: 37247133 DOI: 10.1007/5584_2023_777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.
Collapse
Affiliation(s)
- Rohaina Che Man
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Izlina Wan Ibrahim
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Selangor, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
144
|
Cai X, Zhu J, Luo X, Jin G, Huang Y, Li L. A Thermally Stable Recombinant Human Fibronectin Peptide-Fused Protein (rhFN3C) for Faster Aphthous Ulcer (AU) Healing. Bioengineering (Basel) 2023; 11:38. [PMID: 38247915 PMCID: PMC10813363 DOI: 10.3390/bioengineering11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Approximately 59.4-100% of head and neck cancer patients receiving radiotherapy or radio chemotherapy suffer from aphthous ulcers (AUs), which seriously affect the subsequent treatment. At the same time, AUs are a common oral mucosal disease with a high incidence rate among the population, often accompanied by severe pain, and affect both physical and mental health. Strategies to increase the ulcer healing rate and relieve pain symptoms quickly is a long-term clinical objective. Oral mucosal discontinuity is the main histological hallmark of AUs. So, covering the inner mucosal defect with an in vitro engineered oral mucosal equivalent shows good prospects for AU alleviation. Fibronectin (FN) is a glycopeptide in the extracellular matrix and exhibits opsonic properties, aiding the phagocytosis and clearance of foreign pathogens through all stages of ulcer healing. But native FN comes from animal blood, which has potential health risks. rhFN3C was designed with multi-domains of native FN, whose core functions are the recruitment of cells and growth factors to accelerate AU healing. rhFN3C is a peptide-fused recombinant protein. The peptides are derived from the positions of 1444-1545 (FNIII10) and 1632-1901 (FNIII12-14) in human native FN. We optimized the fermentation conditions of rhFN3C in E. coli BL21 to enable high expression levels. rhFN3C is thermally stable and nontoxic for L929, strongly promotes the migration and adhesion of HaCaT, decreases the incidence of wound infection, and shortens the mean healing time by about 2 days compared to others (p < 0.01). rhFN3C may have great potential for use in the treatment of AUs. The specific methods and mechanisms of rhFN3C are yet to be investigated.
Collapse
Affiliation(s)
- Xiang Cai
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Jiawen Zhu
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Xin Luo
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Guoguo Jin
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Lihua Li
- State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, Guangzhou 510632, China; (X.C.); (J.Z.); (X.L.); (G.J.); (Y.H.)
- Department of Materials Science and Engineering, Institute of Biomedical Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| |
Collapse
|
145
|
Farhangniya M, Samadikuchaksaraei A. A Review of Genes Involved in Wound Healing. Med J Islam Repub Iran 2023; 37:140. [PMID: 38318414 PMCID: PMC10843200 DOI: 10.47176/mjiri.37.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 02/07/2024] Open
Abstract
Background Gene therapy holds immense potential in the field of wound healing. However, we still do not recognize this procedure well enough to give oversight effectively to improve healing processes. A wide range of information has been achieved from the database for gene expression profiling by clinical trials, So we performed this study to gain a better understanding of the mechanisms behind wound healing and how it could be utilized to develop new therapies and treatments. Methods In this study, we have been focusing on wound-healing genes, conducting a thorough review to explore the various genes and pathways involved in this process. For this purpose, a total of 320 articles were collected. All experimental studies, systematic or narrative reviews, studies and clinical trials included in this paper were searched on PubMed, Medline, Embase, Science Direct, and Scopus databases in English using the following terms: Wound Healing, wound regeneration, Gene Transfer, and Gene Therapy were used to search the mentioned databases. Unfortunately, we didn't find a large sample cohort study on this topic. A total amount of 330 articles were collected based on the guidelines of the PRISMA method. Both inclusion and exclusion criteria were settled. Results During the last decade, different models of gene delivery have been introduced, which include viral transfection and Non-viral techniques. In this regard, TIMP-2 protein and VEGF mutants such as VEGF165, CARP, and HIF-1 are the genes that accelerate the rate of tissue repair. Conclusion The process of wound healing is mainly related to the change of expression of genes that have a role in the parts of inflammation and repair. In our study, some of the most suitable genes involved in the wound-healing process are mentioned.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Fu XY, Jiang ZY, Zhang CY, Shen LY, Yan XD, Li XK, Lin JY, Wang Y, Mao XL, Li SW. New hope for esophageal stricture prevention: A prospective single-center trial on acellular dermal matrix. World J Gastrointest Endosc 2023; 15:725-734. [PMID: 38187918 PMCID: PMC10768038 DOI: 10.4253/wjge.v15.i12.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 12/15/2023] Open
Abstract
BACKGROUND Given the high incidence of esophageal cancer in China, an increasing number of patients there are undergoing endoscopic mucosal dissection (ESD). Although the 5-year survival rate after ESD can exceed 95%, esophageal stricture, the most common and serious postoperative complication, affects the long-term prognosis of patients and the quality of life. Autologous mucosal grafts have proven to be successful in preventing stricture after ESD for early esophageal cancer.
AIM To examine the viability of acellular dermal matrix (ADM) as an alternative to autologous mucosa for the prevention of stricture after ESD.
METHODS This is a prospective, single-center, controlled study. Consecutive patients who underwent ESD surgery and were willing to undergo autologous mucosal transplantation were recruited between January 1 and December 31, 2017. Consecutive patients who underwent ESD surgery and were willing to undergo ADM transplantation were recruited between January 1 to December 31, 2019. A final three-year follow-up of patients who received transplants was conducted.
RESULTS Based on the current incidence of esophageal stricture, the sample size required for both the autologous mucosal graft group and the ADM group was calculated to be 160 cases. Due to various factors, a total of 20 patients with autologous mucosal grafts and 25 with ADM grafts were recruited. Based on the inclusion exclusion and withdrawal criteria, 9 patients ultimately received autologous mucosal grafts and completed the follow-up, while 11 patients received ADM grafts and completed the follow-up. Finally, there were 2 cases of stenosis in the autologous mucosal transplantation group with a stenosis rate of 22.22% and 2 cases of stenosis in the ADM transplantation group with a stenosis rate of 18.18%, with no significant difference noted between the groups (P = 0.94).
CONCLUSION In this prospective, single-center, controlled trial, we compared the effectiveness of autologous mucosa transplantation and ADM for the prevention of esophageal stricture. Due to certain condition limitations, we were unable to recruit sufficient subjects meeting our target requirements. However, we implemented strict inclusion, exclusion, and withdrawal criteria and successfully completed three years of follow-up, resulting in valuable clinical insights. Based on our findings, we hypothesize that ADM may be similarly effective to autologous mucosal transplantation in the prevention of esophageal stricture, offering a comparable and alternative approach. This study provides a new therapeutic idea and direction for the prevention of esophageal stricture.
Collapse
Affiliation(s)
- Xin-Yu Fu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhen-Yu Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, Inner Mongolia Autonomous Region, China
| | - Chen-Yang Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Ling-Yan Shen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiao-Dan Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiao-Kang Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 1540001, Japan
| | - Jia-Ying Lin
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Yi Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xin-Li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
147
|
Artsen AM, Liang R, Meyn L, Bradley MS, Moalli PA. Dysregulated wound healing in the pathogenesis of urogynecologic mesh complications. Sci Rep 2023; 13:21437. [PMID: 38052928 PMCID: PMC10698181 DOI: 10.1038/s41598-023-48388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
To test the hypothesis that dysregulated wound healing is associated with Urogynecologic mesh complications, we collected vaginal cell secretions using vaginal swabs after polypropylene mesh implantation in patients with (N = 39) and without (N = 40) complication. A customized multiplex immunoassay measured markers of inflammation (MCP-1, IGFBP-1, IL-2, IL-10, IL-17, PDGF-BB, bFGF, IL-1b, IL-6, IL-12p70, TNF-α), neuroinflammation (IL-1RA, TGF-β, IL-15, IL-18, IL-3, M-CSF), angiogenesis (VEGF), and matrix proteins (fibronectin, tenasin c, thrombospondin-2, lumican) between groups. Patients with complications were younger, heavier, implanted with mesh longer, and more likely to be ever smokers. A 5 kg/m2 BMI increase and ever-smoking were associated with a 2.4-fold and sixfold increased risk of complication, respectively. Patients with the highest tertile of bFGF, fibronectin, thrombospondin-2, TNF-β, or VEGF had an odds ratio (OR) of 11.8 for having a mesh complication while ≥ 3 elevated had an OR of 237 while controlling for age, BMI, and smoking. The highest tertile of bFGF, thrombospondin-2, and fibronectin together perfectly indicated a complication (P < 0.0001). A receiver-operator curve for high bFGF, thrombospondin-2, and fibronectin showed excellent discrimination between complications and controls (AUC 0.87). These data provide evidence of dysregulated wound healing in mesh complications. Modifiable factors provide potential targets for patient counseling and interventions.
Collapse
Affiliation(s)
- Amanda M Artsen
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA.
| | - Rui Liang
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Leslie Meyn
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Megan S Bradley
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Pamela A Moalli
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| |
Collapse
|
148
|
Kang L, Zhou Y, Chen X, Yue Z, Liu X, Baker C, Wallace GG. Fabrication and Characterization of an Electro-Compacted Collagen/Elastin/Hyaluronic Acid Sheet as a Potential Skin Scaffold. Macromol Biosci 2023; 23:e2300220. [PMID: 37589999 DOI: 10.1002/mabi.202300220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The development of biomimetic structures with integrated extracellular matrix (ECM) components represents a promising approach to biomaterial fabrication. Here, an artificial ECM, comprising the structural protein collagen I and elastin (ELN), as well as the glycosaminoglycan hyaluronan (HA), is reported. Specifically, collagen and ELN are electrochemically aligned to mimic the compositional characteristics of the dermal matrix. HA is incorporated into the electro-compacted collagen-ELN matrices via adsorption and chemical immobilization, to give a final composition of collagen/ELN/HA of 7:2:1. This produces a final collagen/ELN/hyaluronic acid scaffold (CEH) that recapitulates the compositional feature of the native skin ECM. This study analyzes the effect of CEH composition on the cultivation of human dermal fibroblast cells (HDFs) and immortalized human keratinocytes (HaCaTs). It is shown that the CEH scaffold supports dermal regeneration by promoting HDFs proliferation, ECM deposition, and differentiation into myofibroblasts. The CEH scaffolds are also shown to support epidermis growth by supporting HaCaTs proliferation, differentiation, and stratification. A double-layered epidermal-dermal structure is constructed on the CEH scaffold, further demonstrating its ability in supporting skin cell function and skin regeneration.
Collapse
Affiliation(s)
- Lingzhi Kang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ying Zhou
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xifang Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3065, Australia
- Department of Medicine (Dermatology), University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
149
|
Liu Y, Suarez-Arnedo A, Caston EL, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304049. [PMID: 37721722 PMCID: PMC10874253 DOI: 10.1002/adma.202304049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Eleanor L.P. Caston
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Michelle Schneider
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
- Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
150
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|