101
|
Hocking JC, Distel M, Köster RW. Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Exp Neurol 2013; 242:1-10. [DOI: 10.1016/j.expneurol.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 11/22/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
|
102
|
Shen MC, Ozacar AT, Osgood M, Boeras C, Pink J, Thomas J, Kohtz JD, Karlstrom R. Heat-shock-mediated conditional regulation of hedgehog/gli signaling in zebrafish. Dev Dyn 2013; 242:539-49. [PMID: 23441066 DOI: 10.1002/dvdy.23955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/16/2012] [Accepted: 01/14/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is required for embryogenesis and continues to play key roles postembryonically in many tissues, influencing growth, stem cell proliferation, and tumorigenesis. Systems for conditional regulation of Hh signaling facilitate the study of these postembryonic Hh functions. RESULTS We used the hsp70l promoter to generated three heat-shock-inducible transgenic lines that activate Hh signaling and one line that represses Hh signaling. Heat-shock activation of these transgenes appropriately recapitulates early embryonic loss or gain of Hh function phenotypes. Hh signaling remains activated 24 hr after heat shock in the Tg(hsp70l:shha-EGFP) and Tg(hsp70l:dnPKA-BGFP) lines, while a single heat shock of the Tg(hsp70l:gli1-EGFP) or Tg(hsp70l:gli2aDR-EGFP) lines results in a 6- to 12-hr pulse of Hh signal activation or inactivation, respectively. Using both in situ hybridization and quantitative polymerase chain reaction, we show that these lines can be used to manipulate Hh signaling through larval and juvenile stages. A ptch2 promoter element was used to generate new reporter lines that allow clear visualization of Hh responding cells throughout the life cycle, including graded Hh responses in the embryonic central nervous system. CONCLUSIONS These zebrafish transgenic lines provide important new experimental tools to study the embryonic and postembryonic roles of Hh signaling.
Collapse
Affiliation(s)
- Meng-Chieh Shen
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Levesque MP, Krauss J, Koehler C, Boden C, Harris MP. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish. Zebrafish 2013; 10:21-9. [PMID: 23461416 DOI: 10.1089/zeb.2012.0775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.
Collapse
Affiliation(s)
- Mitchell P Levesque
- Department of Genetics, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany .
| | | | | | | | | |
Collapse
|
104
|
Binder V, Zon LI. High throughput in vivo phenotyping: The zebrafish as tool for drug discovery for hematopoietic stem cells and cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.ddmod.2012.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Terriente J, Pujades C. Use of Zebrafish Embryos for Small Molecule Screening Related to Cancer. Dev Dyn 2013. [DOI: 10.1002/dvdy.23912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| |
Collapse
|
106
|
Campbell LJ, Willoughby JJ, Jensen AM. Two types of Tet-On transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit. PLoS One 2012; 7:e51270. [PMID: 23251476 PMCID: PMC3520995 DOI: 10.1371/journal.pone.0051270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
The ability to control transgene expression within specific tissues is an important tool for studying the molecular and cellular mechanisms of development, physiology, and disease. We developed a Tet-On system for spatial and temporal control of transgene expression in zebrafish rod photoreceptors. We generated two transgenic lines using the Xenopus rhodopsin promoter to drive the reverse tetracycline-controlled transcriptional transactivator (rtTA), one with self-reporting GFP activity and one with an epitope tagged rtTA. The self-reporting line includes a tetracycline response element (TRE)-driven GFP and, in the presence of doxycycline, expresses GFP in larval and adult rods. A time-course of doxycycline treatment demonstrates that maximal induction of GFP expression, as determined by the number of GFP-positive rods, is reached within approximately 24 hours of drug treatment. The epitope-tagged transgenic line eliminates the need for the self-reporting GFP activity by expressing a FLAG-tagged rtTA protein. Both lines demonstrate strong induction of TRE-driven transgenes from plasmids microinjected into one-cell embryos. These results show that spatial and temporal control of transgene expression can be achieved in rod photoreceptors. Additionally, system components are constructed in Gateway compatible vectors for the rapid cloning of doxycycline-inducible transgenes and use in other areas of zebrafish research.
Collapse
Affiliation(s)
- Leah J. Campbell
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - John J. Willoughby
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Abbie M. Jensen
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
107
|
Tallafuss A, Gibson D, Morcos P, Li Y, Seredick S, Eisen J, Washbourne P. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 2012; 139:1691-9. [PMID: 22492359 PMCID: PMC3317972 DOI: 10.1242/dev.072702] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To understand the molecular mechanisms of development it is essential to be able to turn genes on and off at will and in a spatially restricted fashion. Morpholino oligonucleotides (MOs) are very common tools used in several model organisms with which it is possible to block gene expression. Recently developed photo-activated MOs allow control over the onset of MO activity. However, deactivation of photo-cleavable MO activity has remained elusive. Here, we describe photo-cleavable MOs with which it is possible to activate or de-activate MO function by UV exposure in a temporal and spatial manner. We show, using several different genes as examples, that it is possible to turn gene expression on or off both in the entire zebrafish embryo and in single cells. We use these tools to demonstrate the sufficiency of no tail expression as late as tailbud stage to drive medial precursor cells towards the notochord cell fate. As a broader approach for the use of photo-cleavable MOs, we show temporal control over gal4 function, which has many potential applications in multiple transgenic lines. We demonstrate temporal manipulation of Gal4 transgene expression in only primary motoneurons and not secondary motoneurons, heretofore impossible with conventional transgenic approaches. In another example, we follow and analyze neural crest cells that regained sox10 function after deactivation of a photo-cleavable sox10-MO at different time points. Our results suggest that sox10 function might not be critical during neural crest formation.
Collapse
|
108
|
Del Bene F, Wyart C. Optogenetics: A new enlightenment age for zebrafish neurobiology. Dev Neurobiol 2012; 72:404-14. [DOI: 10.1002/dneu.20914] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
109
|
Simmich J, Staykov E, Scott E. Zebrafish as an appealing model for optogenetic studies. PROGRESS IN BRAIN RESEARCH 2012; 196:145-62. [PMID: 22341325 DOI: 10.1016/b978-0-444-59426-6.00008-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetics, the use of light-based protein tools, has begun to revolutionize biological research. The approach has proven especially useful in the nervous system, where light has been used both to detect and to manipulate activity in targeted neurons. Optogenetic tools have been deployed in systems ranging from cultured cells to primates, with each offering a particular combination of advantages and drawbacks. In this chapter, we provide an overview of optogenetics in zebrafish. Two of the greatest attributes of the zebrafish model system are external fertilization and transparency in early life stages. Combined, these allow researchers to observe the internal structures of developing zebrafish embryos and larvae without dissections or other interference. This transparency, combined with the animals' small size, simple husbandry, and similarity to mammals in many structures and processes, has made zebrafish a particularly popular model system in developmental biology. The easy optical access also dovetails with optogenetic tools, allowing their use in intact, developing, and behaving animals. This means that optogenetic studies in embryonic and larval zebrafish can be carried out in a high-throughput fashion with relatively simple equipment. As a consequence, zebrafish have been an important proving ground for optogenetic tools and approaches and have already yielded important new knowledge about the neural circuits underlying behavior. Here, we provide a general introduction to zebrafish as a model system for optogenetics. Through descriptions and analyses of important optogenetic studies that have been done in zebrafish, we highlight the advantages and liabilities that the system brings to optogenetic experiments.
Collapse
Affiliation(s)
- Joshua Simmich
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|
110
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
111
|
Abstract
Zebrafish studies in the past two decades have made major contributions to our understanding of hematopoiesis and its associated disorders. The zebrafish has proven to be a powerful organism for studies in this area owing to its amenability to large-scale genetic and chemical screening. In addition, the externally fertilized and transparent embryos allow convenient genetic manipulation and in vivo imaging of normal and aberrant hematopoiesis. This review discusses available methods for studying hematopoiesis in zebrafish, summarizes key recent advances in this area, and highlights the current and potential contributions of zebrafish to the discovery and development of drugs to treat human blood disorders.
Collapse
Affiliation(s)
- Lili Jing
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
112
|
Nucleosomes and the accessibility problem. Trends Genet 2011; 27:487-92. [PMID: 22019336 DOI: 10.1016/j.tig.2011.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/21/2022]
Abstract
Eukaryotic DNA is packaged in nucleosomes. How does this sequestration affect the ability of transcription regulators to access their sites? We cite evidence against the idea that nucleosome positioning is determined primarily by the intrinsic propensities of DNA sequences to form nucleosomes--such that, for example, regulatory sites would be 'nucleosome-free'. Instead, studies in yeast show that nucleosome positioning is primarily determined by specific DNA-binding proteins. Where nucleosomes would otherwise compete with regulatory protein binding (a modest but potentially biologically important effect), this obstacle can be relieved by at least two strategies for exposing regulatory sites. In contrast to their lack of effect on nucleosome positioning, DNA sequence differences do directly affect both the efficiencies with which nucleosomes form in regions flanking regulatory sites before induction, and the extent of their removal upon induction. These nucleosomes, evidently, inhibit basal transcription but are poised to be removed quickly upon command.
Collapse
|
113
|
Huang X, Nguyen AT, Li Z, Emelyanov A, Parinov S, Gong Z. One step forward: the use of transgenic zebrafish tumor model in drug screens. ACTA ACUST UNITED AC 2011; 93:173-81. [PMID: 21671356 DOI: 10.1002/bdrc.20208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The zebrafish (Danio rerio) has been an experimental model in the developmental biology and toxicology since the 1950s. In recent years, with the aid of transgenic technology, it has also gained an increasing popularity to model human diseases, including various cancers. As a feasible vertebrate model for large-scale chemical screens, the zebrafish has also given us a new option for the search of potential anticancer drugs. It is hopeful that in the near future with automation and analytical tools, drug development processes will be significantly shortened for quick and effective identification of candidate drugs.
Collapse
Affiliation(s)
- Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
114
|
Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000-17. [PMID: 21366518 PMCID: PMC3319919 DOI: 10.2174/138945011795677809] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
115
|
Wyart C, Del Bene F. Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev Neurosci 2011; 22:121-30. [PMID: 21615266 DOI: 10.1515/rns.2011.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Optogenetics has revolutionized the toolbox arsenal that neuroscientists now possess to investigate neuronal circuit function in intact and living animals. With a combination of light emitting 'sensors' and light activated 'actuators', we can monitor and control neuronal activity with minimal perturbation and unprecedented spatiotemporal resolution. Zebrafish neuronal circuits represent an ideal system to apply an optogenetic based analysis owing to its transparency, relatively small size and amenability to genetic manipulation. In this review, we describe some of the most recent advances in the development and applications of optogenetic sensors (i.e., genetically encoded calcium indicators and voltage sensors) and actuators (i.e., light activated ion channels and ion pumps). We focus mostly on the tools that have already been successfully applied in zebrafish and on those that show the greatest potential for the future. We also describe crucial technical aspects to implement optogenetics in zebrafish including strategies to drive a high level of transgene expression in defined neuronal populations, and recent optical advances that allow the precise spatiotemporal control of sample illumination.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau et de la Moelle epiniere, Centre de Recherche, CHU Pitié-Salpétrière, Paris, France.
| | | |
Collapse
|
116
|
Campbell RN, Westhorpe F, Reece RJ. Isolation of compensatory inhibitor domain mutants to novel activation domain variants using the split-ubiquitin screen. Yeast 2011; 28:569-78. [DOI: 10.1002/yea.1861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/17/2011] [Indexed: 12/13/2022] Open
|
117
|
Abstract
First established as a valuable vertebrate model system for studying development, zebrafish have emerged as an attractive animal system for modeling human cancers. Major technical advances have been essential for the generation of zebrafish cancer models relevant to human diseases. These models develop tumors in various organ sites that bear striking resemblance to human malignances, both histologically and genetically. Thus, the focus of cancer research in zebrafish has transcended the need to validate zebrafish as a viable model organism to study cancer biology. With the significant advantages of in vivo imaging, the power of forward genetics, well-established high efficiency for transgenesis, and ease of transplantation, further exploration of the zebrafish cancer models not only will generate unique insights into underlying mechanisms of cancer but will also provide platforms useful for drug discovery.
Collapse
Affiliation(s)
- Shu Liu
- Department of Surgery, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
118
|
Rieger S, Wang F, Sagasti A. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 2011; 49:534-45. [PMID: 21305690 DOI: 10.1002/dvg.20729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/01/2023]
Abstract
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.
Collapse
Affiliation(s)
- Sandra Rieger
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | | | | |
Collapse
|
119
|
Abstract
The visual pigment rhodopsin (rh1) constitutes the first step in the sensory transduction cascade in the rod photoreceptors of the vertebrate eye, forming the basis of vision at low light levels. In most vertebrates, rhodopsin is a single-copy gene whose function in rod photoreceptors is highly conserved. We found evidence for a second rhodopsin-like gene (rh1-2) in the zebrafish genome. This novel gene was not the product of a zebrafish-specific gene duplication event and contains a number of unique amino acid substitutions. Despite these differences, expression of rh1-2 in vitro yielded a protein that not only bound chromophore, producing an absorption spectrum in the visible range (λmax ≈ 500 nm), but also activated in response to light. Unlike rh1, rh1-2 is not expressed during the first 4 days of embryonic development; it is expressed in the retina of adult fish but not the brain or muscle. Similar rh1-2 sequences were found in two other Danio species, as well as a more distantly related cyprinid, Epalzeorhynchos bicolor. While sequences were only identified in cyprinid fish, phylogenetic analyses suggest an older origin for this gene family. Our study suggests that rh1-2 is a functional opsin gene that is expressed in the retina later in development. The discovery of a new previously uncharacterized opsin gene in zebrafish retina is surprising given its status as a model system for studies of vertebrate vision and visual development.
Collapse
|
120
|
Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 2011; 117:4915-23. [PMID: 21393479 DOI: 10.1182/blood-2010-10-313064] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6-induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation.
Collapse
|
121
|
An effect of DNA sequence on nucleosome occupancy and removal. Nat Struct Mol Biol 2011; 18:507-9. [PMID: 21378966 PMCID: PMC3071895 DOI: 10.1038/nsmb.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 01/13/2011] [Indexed: 01/16/2023]
Abstract
A barrier phases nucleosomes at the yeast (S. cerevisiae) GAL1/10 genes. Here we separate nucleosome positioning from occupancy, and show that the degree of occupancy of these phased sites is predictably determined by the underlying DNA sequences. As this occupancy is increased (by sequence alteration) nucleosome removal upon induction is decreased, as is mRNA production. These results explain why promoter sequences have evolved to form nucleosomes relatively inefficiently.
Collapse
|
122
|
Renninger SL, Schonthaler HB, Neuhauss SCF, Dahm R. Investigating the genetics of visual processing, function and behaviour in zebrafish. Neurogenetics 2011; 12:97-116. [PMID: 21267617 DOI: 10.1007/s10048-011-0273-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/04/2011] [Indexed: 12/11/2022]
Abstract
Over the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly. Combined with the classical strengths of the zebrafish as a model organism, these advances are set to substantially expand the type of biological questions that can be addressed in this species. In this review, we outline how the potential of the zebrafish can be harvested in the context of eye development and visual function. We review recent technological advances used to study the formation of the eyes and visual areas of the brain, visual processing on the cellular, subcellular and molecular level, and the genetics of visual behaviour in vertebrates.
Collapse
Affiliation(s)
- Sabine L Renninger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
123
|
Faucherre A, López-Schier H. Delaying Gal4-driven gene expression in the zebrafish with morpholinos and Gal80. PLoS One 2011; 6:e16587. [PMID: 21298067 PMCID: PMC3027692 DOI: 10.1371/journal.pone.0016587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
The modular Gal4/UAS gene expression system has become an indispensable tool in modern biology. Several large-scale gene- and enhancer-trap screens in the zebrafish have generated hundreds of transgenic lines expressing Gal4 in unique patterns. However, the early embryonic expression of the Gal4 severely limits their use for studies on regeneration or behavior because UAS-driven effectors could disrupt normal organogenesis. To overcome this limitation, we explored the use of the Gal4 repressor Gal80 in transient assays and with stable transgenes to temporally control Gal4 activity. We also validated a strategy to delay Gal4-driven gene expression using a morpholino targeted to Gal4. The first approach is limited to transgenes expressing the native Gal4. The morphant approach can also be applied to transgenic lines expressing the Gal4-VP16 fusion protein. It promises to become a standard approach to delay Gal4-driven transgene expression and enhance the genetic toolkit for the zebrafish.
Collapse
Affiliation(s)
- Adèle Faucherre
- Laboratory of Sensory Cell Biology and Organogenesis, Centre de Regulació Genòmica, Barcelona, Spain
| | - Hernán López-Schier
- Laboratory of Sensory Cell Biology and Organogenesis, Centre de Regulació Genòmica, Barcelona, Spain
- * E-mail:
| |
Collapse
|
124
|
Gray C, Loynes CA, Whyte MKB, Crossman DC, Renshaw SA, Chico TJA. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 2011; 105:811-9. [PMID: 21225092 DOI: 10.1160/th10-08-0525] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/08/2010] [Indexed: 11/05/2022]
Abstract
The zebrafish is an outstanding model for intravital imaging of inflammation due to its optical clarity and the ability to express fluorescently labelled specific cell types by transgenesis. However, although several transgenic labelling myeloid cells exist, none allow distinction of macrophages from neutrophils. This prevents simultaneous imaging and examination of the individual contributions of these important leukocyte subtypes during inflammation. We therefore used Bacterial Artificial Chromosome (BAC) recombineering to generate a transgenic Tg(fms:GAL4.VP16)i186 , in which expression of the hybrid transcription factor Gal4-VP16 is driven by the fms (CSF1R) promoter. This was then crossed to a second transgenic expressing a mCherry-nitroreductase fusion protein under the control of the Gal4 binding site (the UAS promoter), allowing intravital imaging of mCherry-labelled macrophages. Further crossing this compound transgenic with the neutrophil transgenic Tg(mpx:GFP)i114 allowed clear distinction between macrophages and neutrophils and simultaneous imaging of their recruitment and behaviour during inflammation. Compared with neutrophils, macrophages migrate significantly more slowly to an inflammatory stimulus. Neutrophil number at a site of tissue injury peaked around 6 hours post injury before resolving, while macrophage recruitment increased until at least 48 hours. We show that macrophages were effectively ablated by addition of the prodrug metronidazole, with no effect on neutrophil number. Crossing with Tg(Fli1:GFP)y1 transgenic fish enabled intravital imaging of macrophage interaction with endothelium for the first time, revealing that endothelial contact is associated with faster macrophage migration. Tg(fms:GAL4.VP16)i186 thus provides a powerful tool for intravital imaging and functional manipulation of macrophage behaviour during inflammation.
Collapse
Affiliation(s)
- C Gray
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
125
|
Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A, Spaink HP, Meijer AH. Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol 2011; 105:273-308. [PMID: 21951535 DOI: 10.1016/b978-0-12-381320-6.00012-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major cell types of the innate immune system, macrophages and neutrophils, develop during the first two days of zebrafish embryogenesis. The interaction of these immune cells with pathogenic microbes can excellently be traced in the optically transparent zebrafish embryos. Various tools and methods have recently been developed for visualizing and isolating the zebrafish embryonic innate immune cells, for establishing infections by different micro-injection techniques, and for analyzing the host innate immune response following microbial recognition. Here we provide practical guidelines for the application of these methodologies and review the current state of the art in zebrafish infectious disease research.
Collapse
Affiliation(s)
- Chao Cui
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Pancreatic cancer is a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in a majority of tumors. KRAS mutations represent an early event during pancreatic tumorigenesis, crucial for cancer initiation and progression. Recent studies, including comprehensive sequencing of the pancreatic cancer exome, have implicated the involvement of a number of additional core signaling pathways during pancreatic tumorigenesis. Improving our understanding of genetic interactions between KRAS and these additional pathways represents a critical challenge, as these interactions may provide novel opportunities for diagnosis and treatment. However, studying these interactions requires the expression of multiple transgenes in relevant cell types, an effort that has proven very difficult to achieve using gene targeted mice and is also technically challenging in zebrafish. Based on the ability of the Gal4 transcriptional activator to drive the expression of multiple transgenes under regulation of UAS (upstream activator sequence) regulatory elements, the Gal4/UAS system represents an attractive strategy for the study of genetic interactions. In this chapter, we review our experience using the Gal4/UAS system to model KRAS-initiated pancreatic cancer in zebrafish, as well as our early efforts using this system to study the influence of other cooperating oncogenes. We also describe techniques used to identify and characterize pancreatic tumors in adult transgenic fish.
Collapse
Affiliation(s)
- Shu Liu
- Department of Surgery and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
127
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
128
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, Texas, USA
| | | | | |
Collapse
|
129
|
Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 2010; 5:e15170. [PMID: 21170325 PMCID: PMC3000817 DOI: 10.1371/journal.pone.0015170] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Melanoma is the most aggressive and lethal form of skin cancer. Because of the increasing incidence and high lethality of melanoma, animal models for continuously observing melanoma formation and progression as well as for testing pharmacological agents are needed. METHODOLOGY AND PRINCIPAL FINDINGS Using the combinatorial Gal4-UAS system, we have developed a zebrafish transgenic line that expresses oncogenic HRAS under the kita promoter. Already at 3 days transgenic kita-GFP-RAS larvae show a hyper-pigmentation phenotype as earliest evidence of abnormal melanocyte growth. By 2-4 weeks, masses of transformed melanocytes form in the tail stalk of the majority of kita-GFP-RAS transgenic fish. The adult tumors evident between 1-3 months of age faithfully reproduce the immunological, histological and molecular phenotypes of human melanoma, but on a condensed time-line. Furthermore, they show transplantability, dependence on mitfa expression and do not require additional mutations in tumor suppressors. In contrast to kita expressing melanocyte progenitors that efficiently develop melanoma, mitfa expressing progenitors in a second Gal4-driver line were 4 times less efficient in developing melanoma during the three months observation period. CONCLUSIONS AND SIGNIFICANCE This indicates that zebrafish kita promoter is a powerful tool for driving oncogene expression in the right cells and at the right level to induce early onset melanoma in the presence of tumor suppressors. Thus our zebrafish model provides a link between kita expressing melanocyte progenitors and melanoma and offers the advantage of a larval phenotype suitable for large scale drug and genetic modifier screens.
Collapse
|
130
|
The habenula prevents helpless behavior in larval zebrafish. Curr Biol 2010; 20:2211-6. [PMID: 21145744 DOI: 10.1016/j.cub.2010.11.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/16/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
Animals quickly learn to avoid predictable danger. However, if pre-exposed to a strong stressor, they do not display avoidance even if this causes continued contact with painful stimuli [1, 2]. In rodents, lesioning the habenula, an epithalamic structure that regulates the monoaminergic system, has been reported to reduce avoidance deficits caused by inescapable shock [3]. This is consistent with findings that inability to overcome a stressor is accompanied by an increase in serotonin levels [4]. However, other studies conclude that habenula lesions cause avoidance deficits [5, 6]. These contradictory results may be caused by lesions affecting unintended regions [6]. To clarify the role of the habenula, we used larval zebrafish, whose transparency and amenability to genetic manipulation enables more precise disruption of cells. We show that larval zebrafish learn to avoid a light that has been paired with a mild shock but fail to do so when pre-exposed to inescapable shock. Photobleaching of habenula afferents expressing the photosensitizer KillerRed causes a similar failure in avoidance. Expression of tetanus toxin in dorsal habenula neurons is sufficient to prevent avoidance. We suggest that this region may signal the ability to control a stressor, and that its disruption could contribute to anxiety disorders.
Collapse
|
131
|
Gerety SS, Wilkinson DG. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 2010; 350:279-89. [PMID: 21145318 PMCID: PMC3111810 DOI: 10.1016/j.ydbio.2010.11.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/02/2010] [Accepted: 11/25/2010] [Indexed: 12/16/2022]
Abstract
Morpholino antisense oligonucleotides (MOs) are widely used as a tool to achieve loss of gene function, but many have off-target effects mediated by activation of Tp53 and associated apoptosis. Here, we re-examine our previous MO-based loss-of-function studies that had suggested that Wnt1 expressed at hindbrain boundaries in zebrafish promotes neurogenesis and inhibits boundary marker gene expression in the adjacent para-boundary regions. We find that Tp53 is highly activated and apoptosis is frequently induced by the MOs used in these studies. Co-knockdown of Tp53 rescues the decrease in proneural and neuronal marker expression, which is thus an off-target effect of MOs. While loss of gene expression can be attributed to cell loss through apoptotic cell death, surprisingly we find that the ectopic expression of hindbrain boundary markers is also dependent on Tp53 activity and its downstream apoptotic effectors. We examine whether this non-specific activation of hindbrain boundary gene expression provides insight into the endogenous mechanisms underlying boundary cell specification. We find that the pro-apoptotic Bcl genes puma and bax-a are required for hindbrain boundary marker expression, and that gain of function of the Bcl-caspase pathway leads to ectopic boundary marker expression. These data reveal a non-apoptotic role for pro-apoptotic genes in the regulation of gene expression at hindbrain boundaries. In light of these findings, we discuss the precautions needed in performing morpholino knockdowns and in interpreting the data derived from their use.
Collapse
Affiliation(s)
- Sebastian S Gerety
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
132
|
Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M. Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 2010; 240:108-15. [DOI: 10.1002/dvdy.22497] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
133
|
Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci 2010; 30:13718-28. [PMID: 20943912 DOI: 10.1523/jneurosci.1887-10.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disruption of E3 ubiquitin ligase activity in immature zebrafish mind bomb mutants leads to a failure in Notch signaling, excessive numbers of neurons, and depletion of neural progenitor cells. This neurogenic phenotype is associated with defects in neural patterning and brain development. Because developmental brain abnormalities are recognized as an important feature of childhood neurological disorders such as epilepsy and autism, we determined whether zebrafish mutants with grossly abnormal brain structure exhibit spontaneous electrical activity that resembles the long-duration, high-amplitude multispike discharges reported in immature zebrafish exposed to convulsant drugs. Electrophysiological recordings from agar immobilized mind bomb mutants at 3 d postfertilization confirmed the occurrence of electrographic seizure activity; seizure-like behaviors were also noted during locomotion video tracking of freely behaving mutants. To identify genes differentially expressed in the mind bomb mutant and provide insight into molecular pathways that may mediate these epileptic phenotypes, a transcriptome analysis was performed using microarray. Interesting candidate genes were further analyzed using conventional reverse transcriptase-PCR and real-time quantitative PCR, as well as whole-mount in situ hybridization. Approximately 150 genes, some implicated in development, transcription, cell metabolism, and signal transduction, are differentially regulated, including downregulation of several genes necessary for GABA-mediated signaling. These findings identify a collection of gene transcripts that may be responsible for the abnormal electrical discharge and epileptic activities observed in a mind bomb zebrafish mutant. This work may have important implications for neurological and neurodevelopmental disorders associated with mutations in ubiquitin ligase activity.
Collapse
|
134
|
Kabashi E, Brustein E, Champagne N, Drapeau P. Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta Mol Basis Dis 2010; 1812:335-45. [PMID: 20887784 DOI: 10.1016/j.bbadis.2010.09.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 09/22/2010] [Indexed: 02/06/2023]
Abstract
In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Edor Kabashi
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
135
|
In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 2010; 26:373-81. [PMID: 20580116 DOI: 10.1016/j.tig.2010.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/27/2010] [Accepted: 05/22/2010] [Indexed: 12/12/2022]
Abstract
The advantage of zebrafish as a model to study human pathologies lies in the ease of manipulating gene expression in vivo. Here we focus on recent progress in our understanding of motor neuron diseases and neurodevelopmental disorders and discuss how novel technologies will permit further disease models to be developed. Together these advances set the stage for this simple functional model, with particular advantages for transgenesis, multigenic analyses and chemical biology, to become uniquely suited for advancing the functional genomics of neurological and possibly psychiatric diseases - from understanding the genetics and cell biology of degenerative and developmental disorders to the discovery of therapeutics.
Collapse
|
136
|
Wiens KM, Lee HL, Shimada H, Metcalf AE, Chao MY, Lien CL. Platelet-derived growth factor receptor beta is critical for zebrafish intersegmental vessel formation. PLoS One 2010; 5:e11324. [PMID: 20593033 PMCID: PMC2892519 DOI: 10.1371/journal.pone.0011324] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/24/2010] [Indexed: 12/14/2022] Open
Abstract
Background Platelet-derived growth factor receptor β (PDGFRβ) is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRβ functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. Methodology/Principal Findings In order to investigate the role of PDGFRβ in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRβ. We found that pdgfrβ is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRβ, and a dominant negative PDGFRβ transgenic line, we found that PDGFRβ is necessary for angiogenesis of the intersegmental vessels. Significance/Conclusion Our data provide the first evidence that PDGFRβ signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRβ signaling that regulates vascular angiogenesis in the absence of mural cells.
Collapse
Affiliation(s)
- Katie M. Wiens
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Hyuna L. Lee
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Hiroyuki Shimada
- Department of Pathology, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Metcalf
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Michael Y. Chao
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Ching-Ling Lien
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
137
|
A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery. PLoS One 2010; 5:e9797. [PMID: 20339547 PMCID: PMC2842432 DOI: 10.1371/journal.pone.0009797] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/19/2010] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors.
Collapse
|
138
|
Abstract
Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems.
Collapse
Affiliation(s)
- E Elizabeth Patton
- Institute for Genetics and Molecular Medicine, MRC Human Genetics Unit and Division of Cancer Research, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
139
|
Abstract
Tumor transplant studies are important tools for studying cancer biology in a model organism. Transplantation is especially important for assaying tumor cell malignancy and migration capabilities, and is critical for identifying putative cancer stem cell populations. In this review, we discuss the current state of tumor transplantation studies performed in the zebrafish. We address several zebrafish-specific considerations for development of the transplant assay, including choosing recipient animals, transplant methods, and post-transplant observation. We also examine how the zebrafish is an advantageous model for transplantation, particularly with development of the translucent fish. Transplantation has already been critical for characterizing zebrafish models of leukemia, rhabdomyosarcoma, and melanoma. With further development of imaging techniques and other tools, zebrafish tumor transplantation will continue to contribute to our understanding of tumor cell biology.
Collapse
Affiliation(s)
- Alison M Taylor
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
140
|
Collins RT, Linker C, Lewis J. MAZe: a tool for mosaic analysis of gene function in zebrafish. Nat Methods 2010; 7:219-23. [PMID: 20139970 DOI: 10.1038/nmeth.1423] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/12/2010] [Indexed: 01/21/2023]
Abstract
To trace cell lineages in a developing vertebrate and to observe, in vivo, how behaviors of individual cells are affected by the genes they express, we created a zebrafish line containing a transgene called mosaic analysis in zebrafish (MAZe), built around a self-excising hsp70:Cre cassette. Heat shock triggers Cre recombinase-mediated recombination in a random subset of cells, bringing the transcriptional activator Gal4:VP16 under control of the EF1alpha promoter. Gal4-VP16 then activates expression of a fluorescent protein from an upstream activating sequence (UAS) promoter. Marked clones of cells expressing any desired gene product can be generated by crossing MAZe fish with other lines containing UAS-driven transgenes. The number of clones induced, and their time of origin, could be varied by adjusting heat-shock timing and duration. As an alternative to heat shock, we introduced Cre under a tissue-specific promoter in MAZe fish to generate clones in a designated tissue.
Collapse
Affiliation(s)
- Russell T Collins
- Vertebrate Development Laboratory, Cancer Research UK London Research Institute, London, UK.
| | | | | |
Collapse
|
141
|
Zhan H, Gong Z. Delayed and restricted expression of UAS-regulated GFP gene in early transgenic zebrafish embryos by using the GAL4/UAS system. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:1-7. [PMID: 19590921 DOI: 10.1007/s10126-009-9217-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 06/18/2009] [Indexed: 05/28/2023]
Abstract
A stable Tg(UAS:GFP) zebrafish line was generated and crossed with Tg(hsp70:GAL4) line, in which the GAL4 gene is under the control of an inducible zebrafish promoter derived from the heat shock 70 protein gene (hsp70). The dynamic green fluorescent protein (GFP) expression in early zebrafish embryos in the GAL4/UAS binary system was then investigated. We found that, at early developmental stages, expression of GFP effector gene was restricted and required a long recovery time to reach a detectable level. At later developmental stage (after 2 days postfertilization), GFP could be activated in multiple tissues in a shorter time, apparently due to a higher level of GAL4 messenger RNA induction. It appears that the type of tissues expressing GFP was dependent on whether they had been developed at the time of heat shock. Therefore, the delayed and restricted transgene expression should be taken into consideration when GAL4/UAS system is used to study transgene expression in early developmental stages.
Collapse
Affiliation(s)
- Huiqing Zhan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore 117543
| | | |
Collapse
|
142
|
Hirata H, Carta E, Yamanaka I, Harvey RJ, Kuwada JY. Defective glycinergic synaptic transmission in zebrafish motility mutants. Front Mol Neurosci 2010; 2:26. [PMID: 20161699 PMCID: PMC2813725 DOI: 10.3389/neuro.02.026.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022] Open
Abstract
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) beta subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called 'accordion' phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the 'twitch-once' phenotype. We review current knowledge regarding zebrafish 'accordion' and 'twitch-once' mutants, including beo and sho, and report the identification of a new alpha2 subunit that revises the phylogeny of zebrafish GlyRs.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Eloisa Carta
- Department of Pharmacology, The School of PharmacyLondon, UK
| | - Iori Yamanaka
- Graduate School of Science, Nagoya UniversityNagoya, Japan
| | | | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
143
|
Placinta M, Shen MC, Achermann M, Karlstrom RO. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2009; 9:73. [PMID: 20042114 PMCID: PMC2810295 DOI: 10.1186/1471-213x-9-73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 01/02/2023]
Abstract
Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. Results We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 μm targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. Conclusion This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.
Collapse
Affiliation(s)
- Mike Placinta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
144
|
Anelli V, Santoriello C, Distel M, Köster RW, Ciccarelli FD, Mione M. Global Repression of Cancer Gene Expression in a Zebrafish Model of Melanoma Is Linked to Epigenetic Regulation. Zebrafish 2009; 6:417-24. [DOI: 10.1089/zeb.2009.0612] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Viviana Anelli
- IFOM Foundation—FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Cristina Santoriello
- IFOM Foundation—FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Martin Distel
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Reinhard W. Köster
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany
| | | | - Marina Mione
- IFOM Foundation—FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
145
|
Rieger S, Senghaas N, Walch A, Köster RW. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 2009; 7:e1000240. [PMID: 19901980 PMCID: PMC2766073 DOI: 10.1371/journal.pbio.1000240] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 10/02/2009] [Indexed: 12/17/2022] Open
Abstract
Imaging cerebellar granule neurons in zebrafish embryos reveals a further role for Cadherin-2 in neurogenesis: regulating cohesive and directional granule cell migration via intra-membranous Cadherin-2 relocalisation and centrosome stabilization. Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations. As the vertebrate nervous system develops, neurons migrate from proliferation zones to their later place of function. Adhesion molecules have been implicated as key players in regulating cellular motility. In addition, the centrosome (the main microtubule organizing center of the cell) orients into the direction of neuronal migration. In this study we assign the trans-membrane adhesion molecule Cadherin-2 with an important function in the migration of granule neurons in the cerebellum, by interconnecting adhesion with directionality of migration. Time-lapse analysis in transparent zebrafish embryos revealed that Cadherin-2 enables granule neurons to form ‘chain’-like structures during migration. In addition, this adhesion molecule stabilized the position of the centrosome at the leading edge of the migrating neuron. In vivo tracing of a fluorescent Cadherin-2 reporter molecule showed that during individual migratory steps of a granule neuron, Cadherin-2 is shifted along the cell membrane in contact with chain-migrating neighboring neurons to the front compartment of migrating cells. Cadherin-2 is a crucial component of adherens junctions, which are connected via microtubules to the centrosome. We propose that the forward translocation of Cadherin-2-containing adherens junctions stabilizes the centrosome to the cell's front. Cadherin-2 thus transmits cell-cell contact modulation into directional migration of cerebellar granule neurons.
Collapse
Affiliation(s)
- Sandra Rieger
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Niklas Senghaas
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Reinhard W. Köster
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- * E-mail:
| |
Collapse
|
146
|
Scott EK, Baier H. The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Front Neural Circuits 2009; 3:13. [PMID: 19862330 PMCID: PMC2763897 DOI: 10.3389/neuro.04.013.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022] Open
Abstract
We have carried out a Gal4 enhancer trap screen in zebrafish, and have generated 184 stable transgenic lines with interesting expression patterns throughout the nervous system. Of these, three display clear expression in the tectum, each with a distinguishable and stereotyped distribution of Gal4 expressing cells. Detailed morphological analysis of single cells, using a genetic “Golgi-like” labelling method, revealed four common cell types (superficial, periventricular, shallow periventricular, and radial glial), along with a range of other less common neurons. The shallow periventricular (PV) and a subset of the PV neurons are tectal efferent neurons that target various parts of the reticular formation. We find that it is specifically PV neurons with dendrites in the deep tectal neuropil that target the reticular formation. This indicates that these neurons receive the tectum's highly processed visual information (which is fed from the superficial retinorecipient layers), and relay it to premotor regions. Our results show that the larval tectum, both broadly and at the single cell level, strongly resembles a miniature version of its adult counterpart, and that it has all of the necessary anatomical characteristics to inform motor responses based on sensory input. We also demonstrate that mosaic expression of GFP in Gal4 enhancer trap lines can be used to describe the types and abundance of cells in an expression pattern, including the architectures of individual neurons. Such detailed anatomical descriptions will be an important part of future efforts to describe the functions of discrete tectal circuits in the generation of behavior.
Collapse
Affiliation(s)
- Ethan K Scott
- Department of Physiology, University of California San Francisco, CA, USA
| | | |
Collapse
|
147
|
Baier H, Scott EK. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight. Curr Opin Neurobiol 2009; 19:553-60. [PMID: 19781935 DOI: 10.1016/j.conb.2009.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/11/2009] [Indexed: 01/01/2023]
Abstract
Methods to label neurons and to monitor their activity with genetically encoded fluorescent reporters have been a staple of neuroscience research for several years. The recent introduction of photoswitchable ion channels and pumps, such as channelrhodopsin (ChR2), halorhodopsin (NpHR), and light-gated glutamate receptor (LiGluR), is enabling remote optical manipulation of neuronal activity. The translucent brains of zebrafish offer superior experimental conditions for optogenetic approaches in vivo. Enhancer and gene trapping approaches have generated hundreds of Gal4 driver lines in which the expression of UAS-linked effectors can be targeted to subpopulations of neurons. Local photoactivation of genetically targeted LiGluR, ChR2, or NpHR has uncovered novel functions for specific areas and cell types in zebrafish behavior. Because the manipulation is restricted to times and places where genetics (cell types) and optics (beams of light) intersect, this method affords excellent resolving power for the functional analysis of neural circuitry.
Collapse
Affiliation(s)
- Herwig Baier
- University of California, San Francisco, Department of Physiology, San Francisco, CA 94158-2324, USA.
| | | |
Collapse
|
148
|
Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V. Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 2009; 10:418. [PMID: 19737393 PMCID: PMC2753552 DOI: 10.1186/1471-2164-10-418] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. RESULTS We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. CONCLUSION Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Marta Garcia-Lecea
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Alexander Emelyanov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Sergey Parinov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Vladimir Korzh
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
149
|
Distel M, Wullimann MF, Köster RW. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 2009; 106:13365-70. [PMID: 19628697 PMCID: PMC2726396 DOI: 10.1073/pnas.0903060106] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Indexed: 01/08/2023] Open
Abstract
Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by establishing an optimized Gal4-activator (KalTA4). We provide quantitative data for KalTA4-mediated transgene activation in dependence of UAS copy numbers to allow for studying dosage effects of transgene expression. Employing a Tol2 transposon-mediated KalTA4 enhancer trap screen biased for central nervous system expression, we present a collection of self-reporting red fluorescent KalTA4 activator strains. These strains reliably transactivate UAS-dependent transgenes and can be rendered homozygous. Furthermore, we have characterized the transactivation kinetics of tissue-specific KalTA4 activation, which led to the development of a self-maintaining effector strain "Kaloop." This strain relates transient KalTA4 expression during embryogenesis via a KalTA4-mediated autoregulatory mechanism to live adult structures. We demonstrate its use by showing that the secondary octaval nucleus in the adult hindbrain is likely derived from egr2b-expressing cells in rhombomere 5 during stages of early embryogenesis. These data demonstrate prolonged and maintained expression by Kalooping, a technique that can be used for permanent spatiotemporal genetic fate mapping and targeted transgene expression in zebrafish.
Collapse
Affiliation(s)
- Martin Distel
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| | - Mario F. Wullimann
- Ludwig-Maximilians-University Munich, Department of Biology II, Graduate School of Systemic Neurosciences, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Reinhard W. Köster
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| |
Collapse
|
150
|
Abstract
Over recent years, several groundbreaking techniques have been developed that allow for the anatomical description of neurons, and the observation and manipulation of their activity. Combined, these approaches should provide a great leap forward in our understanding of the structure and connectivity of the nervous system and how, as a network of individual neurons, it generates behavior. Zebrafish, given their external development and optical transparency, are an appealing system in which to employ these methods. These traits allow for direct observation of fluorescence in describing anatomy and observing neural activity, and for the manipulation of neurons using a host of light-triggered proteins. Gal4/Upstream Activating Sequence techniques, as they are based on a binary system, allow for the flexible deployment of a range of transgenes in expression patterns of interest. As such, they provide a promising approach for viewing neurons in a variety of ways, each of which can reveal something different about their structure, connectivity, or function. In this study, the author will review recent progress in the development of the Gal4/Upstream Activating Sequence system in zebrafish, feature examples of promising studies to date, and examine how various new technologies can be used in the future to untangle the complex mechanisms by which behavior is generated.
Collapse
Affiliation(s)
- Ethan K Scott
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| |
Collapse
|