101
|
Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, Rosenberg SA, Robbins PF. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 2015; 20:3401-10. [PMID: 24987109 DOI: 10.1158/1078-0432.ccr-14-0433] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Cancer immunotherapy with adoptive transfer of tumor-infiltrating lymphocytes (TIL) represents an effective treatment for patients with metastatic melanoma, with the objective regressions in up to 72% of patients in three clinical trials. However, the antigen targets recognized by these effective TILs remain largely unclear. EXPERIMENTAL DESIGN Melanoma patients 2359 and 2591 both experienced durable complete regressions of metastases ongoing beyond five years following adoptive TIL transfer. Two conventional screening approaches were carried out to identify the antigens recognized by these clinically effective TILs. In addition, a novel approach was developed in this study to identify mutated T-cell antigens by screening a tandem minigene library, which comprised nonsynonymous mutation sequences identified by whole-exome sequencing of autologous tumors. RESULTS Screening of an autologous melanoma cDNA library using a conventional approach led to the identification of previously undescribed nonmutated targets recognized by TIL 2359 or TIL 2591. In contrast, screening of tandem minigene libraries encoding tumor-specific mutations resulted in the identification of mutated kinesin family member 2C (KIF2C) antigen as a target of TIL 2359, and mutated DNA polymerase alpha subunit B (POLA2) antigen as a target of TIL 2591. Both KIF2C and POLA2 have been found to play important roles in cell proliferation. CONCLUSIONS These findings suggest that the minigene screening approach can facilitate the antigen repertoire analysis of tumor reactive T cells, and lead to the development of new adoptive cell therapies with purified T cells that recognize candidate-mutated antigens derived from genes essential for the carcinogenesis.
Collapse
Affiliation(s)
- Yong-Chen Lu
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Xin Yao
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Jessica S Crystal
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Yong F Li
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Mona El-Gamil
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Colin Gross
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Lindy Davis
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Mark E Dudley
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - James C Yang
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steven A Rosenberg
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Paul F Robbins
- Authors' Affiliations: Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| |
Collapse
|
102
|
Bakhoum SF, Kabeche L, Wood MD, Laucius CD, Qu D, Laughney AM, Reynolds GE, Louie RJ, Phillips J, Chan DA, Zaki BI, Murnane JP, Petritsch C, Compton DA. Numerical chromosomal instability mediates susceptibility to radiation treatment. Nat Commun 2015; 6:5990. [PMID: 25606712 DOI: 10.1038/ncomms6990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023] Open
Abstract
The exquisite sensitivity of mitotic cancer cells to ionizing radiation (IR) underlies an important rationale for the widely used fractionated radiation therapy. However, the mechanism for this cell cycle-dependent vulnerability is unknown. Here we show that treatment with IR leads to mitotic chromosome segregation errors in vivo and long-lasting aneuploidy in tumour-derived cell lines. These mitotic errors generate an abundance of micronuclei that predispose chromosomes to subsequent catastrophic pulverization thereby independently amplifying radiation-induced genome damage. Experimentally suppressing whole-chromosome missegregation reduces downstream chromosomal defects and significantly increases the viability of irradiated mitotic cells. Further, orthotopically transplanted human glioblastoma tumours in which chromosome missegregation rates have been reduced are rendered markedly more resistant to IR, exhibiting diminished markers of cell death in response to treatment. This work identifies a novel mitotic pathway for radiation-induced genome damage, which occurs outside of the primary nucleus and augments chromosomal breaks. This relationship between radiation treatment and whole-chromosome missegregation can be exploited to modulate therapeutic response in a clinically relevant manner.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Lilian Kabeche
- 1] Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA [2] Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Matthew D Wood
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA
| | - Christopher D Laucius
- 1] Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA [2] Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Dian Qu
- 1] Department of Neurological Surgery and the Brain Tumor Research Center, University of California San Francisco, San Francisco, California 94143, USA [2] Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Ashley M Laughney
- Department of Radiology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Gloria E Reynolds
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Raymond J Louie
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Joanna Phillips
- 1] Department of Neurological Surgery and the Brain Tumor Research Center, University of California San Francisco, San Francisco, California 94143, USA [2] Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Denise A Chan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Bassem I Zaki
- Section of Radiation Oncology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - John P Murnane
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143, USA
| | - Claudia Petritsch
- 1] Department of Neurological Surgery and the Brain Tumor Research Center, University of California San Francisco, San Francisco, California 94143, USA [2] Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Duane A Compton
- 1] Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA [2] Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
103
|
Eagleson G, Pfister K, Knowlton AL, Skoglund P, Keller R, Stukenberg PT. Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo. Mol Biol Cell 2015; 26:924-37. [PMID: 25568341 PMCID: PMC4342028 DOI: 10.1091/mbc.e13-12-0721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Characterization of Kif2a in Xenopus embryos identifies new roles for the Kif2a microtubule depolymerase in coordinating cytokinesis and centrosome coalescence. In addition, defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues. Kif2a is a member of the kinesin-13 microtubule depolymerases, which tightly regulate microtubule dynamics for many cellular processes. We characterized Kif2a depletion in Xenopus animal caps and embryos. Kif2a depletion generates defects in blastopore closure. These defects are rescued by removing the animal cap, suggesting that Kif2a-depleted animal caps are not compliant enough to allow gastrulation movements. Gastrulation defects are not rescued by a Kif2a mutated in an Aurora kinase phosphorylation site, suggesting that the phenotypes are caused by problems in mitosis. During animal cap mitoses, Kif2a localizes to the spindle poles and centromeres. Depletion of Kif2a generated multipolar spindles in stage 12 embryos. Kif2a-depleted animal caps have anaphase lagging chromosomes in stage 9 and 10 embryos and subsequent cytokinesis failure. Later divisions have greater than two centrosomes, generating extra spindle poles. Kif2a-depleted embryos are also defective at coalescing extra spindle poles into a bipolar spindle. The gastrulation and mitotic phenotypes can be rescued by either human Kif2a or Kif2b, which suggests that the two homologues redundantly regulate mitosis in mammals. These studies demonstrate that defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues.
Collapse
Affiliation(s)
- Gerald Eagleson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Katherine Pfister
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Anne L Knowlton
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
104
|
Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 2014; 16:57-64. [PMID: 25466864 DOI: 10.1038/nrm3916] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Faithful chromosome segregation during mitosis is essential for genome integrity and is mediated by the bi-oriented attachment of replicated chromosomes to spindle microtubules through kinetochores. Errors in kinetochore-microtubule (k-MT) attachment that could cause chromosome mis-segregation are frequent and are corrected by the dynamic turnover of k-MT attachments. Thus, regulating the rate of spindle microtubule attachment and detachment to kinetochores is crucial for mitotic fidelity and is frequently disrupted in cancer cells displaying chromosomal instability. A model based on homeostatic principles involving receptors, a core control network, effectors and feedback control may explain the precise regulation of k-MT attachment stability during mitotic progression to ensure error-free mitosis.
Collapse
|
105
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
106
|
Kim H, Fonseca C, Stumpff J. A unique kinesin-8 surface loop provides specificity for chromosome alignment. Mol Biol Cell 2014; 25:3319-29. [PMID: 25208566 PMCID: PMC4214779 DOI: 10.1091/mbc.e14-06-1132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kif18A and Kif4A display a similar ability to attenuate the dynamics of microtubules but function to control the lengths of distinct subsets of spindle microtubules during mitosis. Kif18A and Kif4A are not functionally equivalent for chromosome alignment, and Kif18A's function in this process depends on its loop2 region. Microtubule length control is essential for the assembly and function of the mitotic spindle. Kinesin-like motor proteins that directly attenuate microtubule dynamics make key contributions to this control, but the specificity of these motors for different subpopulations of spindle microtubules is not understood. Kif18A (kinesin-8) localizes to the plus ends of the relatively slowly growing kinetochore fibers (K-fibers) and attenuates their dynamics, whereas Kif4A (kinesin-4) localizes to mitotic chromatin and suppresses the growth of highly dynamic, nonkinetochore microtubules. Although Kif18A and Kif4A similarly suppress microtubule growth in vitro, it remains unclear whether microtubule-attenuating motors control the lengths of K-fibers and nonkinetochore microtubules through a common mechanism. To address this question, we engineered chimeric kinesins that contain the Kif4A, Kif18B (kinesin-8), or Kif5B (kinesin-1) motor domain fused to the C-terminal tail of Kif18A. Each of these chimeric kinesins localizes to K-fibers; however, K-fiber length control requires an activity specific to kinesin-8s. Mutational studies of Kif18A indicate that this control depends on both its C-terminus and a unique, positively charged surface loop, called loop2, within the motor domain. These data support a model in which microtubule-attenuating kinesins are molecularly “tuned” to control the dynamics of specific subsets of spindle microtubules.
Collapse
Affiliation(s)
- Haein Kim
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Cindy Fonseca
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
107
|
Kleyman M, Kabeche L, Compton DA. STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments. J Cell Sci 2014; 127:4225-33. [PMID: 25074805 DOI: 10.1242/jcs.151613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Marianna Kleyman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Lilian Kabeche
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Duane A Compton
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| |
Collapse
|
108
|
Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization. Structure 2014; 22:1173-1183. [PMID: 25066134 DOI: 10.1016/j.str.2014.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
Members of the kinesin-13 subfamily use motor domains in an unconventional fashion to initiate microtubule (MT) depolymerization at MT ends, suggesting unique conformational transitions for lattice engagement, end adaptation, or both. Using hydrogen-deuterium exchange and electron microscopy, we explored conformational changes in free dimeric mitotic centromere-associated kinesin (MCAK) and when bound to a depolymerization intermediate. ATP hydrolysis relaxes the conformation of the dimer, notably in the neck and N-terminal domain. Exchanging ADP in dimeric MCAK with ATP at the MT plus end induces outward curvature in α/β-tubulin, accompanied by a restructuring of the MCAK neck and N terminus, as it returns to a closed state. Reestablishing a closed dimer induces lateral separation of paired tubulin dimers, which may assist in depolymerization. Thus, full-length ADP-MCAK transitions from an open diffusion-competent configuration to a closed state upon plus end-mediated nucleotide exchange, which is mediated by conformational changes in the N-terminal domains of the dimer.
Collapse
|
109
|
Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proc Natl Acad Sci U S A 2014; 111:10568-73. [PMID: 25002494 DOI: 10.1073/pnas.1411016111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras-transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras-dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype.
Collapse
|
110
|
Wang J, Ma S, Ma R, Qu X, Liu W, Lv C, Zhao S, Gong Y. KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer. BMC Cancer 2014; 14:461. [PMID: 24950762 PMCID: PMC4076253 DOI: 10.1186/1471-2407-14-461] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/17/2014] [Indexed: 02/01/2023] Open
Abstract
Background Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied. Methods Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients’ survival in relation to KIF2A expression was estimated using the Kaplan–Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection. Results The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P < 0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P < 0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P < 0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P < 0.05). Conclusions KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Pathology and Pathophysiology, School of Medicine, Shandong University, 44# Wen Hua Xi Road, Jinan, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Bakhoum SF, Swanton C. Chromosomal instability, aneuploidy, and cancer. Front Oncol 2014; 4:161. [PMID: 24995162 PMCID: PMC4062911 DOI: 10.3389/fonc.2014.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samuel F. Bakhoum
- Department of Internal Medicine, Mount Auburn Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles Swanton
- Cancer Research UK London Research Institute, London, UK
- University College London Cancer Institute, London, UK
| |
Collapse
|
112
|
Do KK, Hoàng KL, Endow SA. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates. Biol Open 2014; 3:561-70. [PMID: 24907370 PMCID: PMC4154291 DOI: 10.1242/bio.20148276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient – KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form.
Collapse
Affiliation(s)
- Kevin K Do
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kim Liên Hoàng
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sharyn A Endow
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
113
|
Sanhaji M, Ritter A, Belsham HR, Friel CT, Roth S, Louwen F, Yuan J. Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget 2014; 5:3130-44. [PMID: 24931513 PMCID: PMC4102797 DOI: 10.18632/oncotarget.1861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022] Open
Abstract
Proper bi-orientation of chromosomes is critical for the accurate segregation of chromosomes in mitosis. A key regulator of this process is MCAK, the mitotic centromere-associated kinesin. During mitosis the activity and localization of MCAK are regulated by mitotic key kinases including Plk1 and Aurora B. We show here that S621 in the MCAK's C-terminal domain is the major phosphorylation site for Plk1. This phosphorylation regulates MCAK's stability and facilitates its recognition by the ubiquitin/proteasome dependent APC/C(Cdc20) pathway leading to its D-box dependent degradation in mitosis. While phosphorylation of S621 does not directly affect its microtubule depolymerising activity, loss of Plk1 phosphorylation on S621 indirectly enhances its depolymerization activity in vivo by stabilizing MCAK, leading to an increased level of protein. Interfering with phosphorylation at S621 causes spindle formation defects and chromosome misalignments. Therefore, this study suggests a new mechanism by which Plk1 regulates MCAK: by regulating its degradation and hence controlling its turnover in mitosis.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Hannah R. Belsham
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Claire T. Friel
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
114
|
Talje L, Ben El Kadhi K, Atchia K, Tremblay-Boudreault T, Carreno S, Kwok BH. DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases. FEBS Lett 2014; 588:2315-20. [PMID: 24859087 DOI: 10.1016/j.febslet.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
The kinesin-13 family of microtubule depolymerases is a major regulator of microtubule dynamics. RNA interference-induced knockdown studies have highlighted their importance in many cell division processes including spindle assembly and chromosome segregation. Since microtubule turnovers and most mitotic events are relatively rapid (in minutes or seconds), developing tools that offer faster control over protein functions is therefore essential to more effectively interrogate kinesin-13 activities in living cells. Here, we report the identification and characterization of a selective allosteric kinesin-13 inhibitor, DHTP. Using high resolution microscopy, we show that DHTP is cell permeable and can modulate microtubule dynamics in cells.
Collapse
Affiliation(s)
- Lama Talje
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Khaled Ben El Kadhi
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Kaleem Atchia
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Thierry Tremblay-Boudreault
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sébastien Carreno
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada; Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benjamin H Kwok
- Chemical Biology of Cell Division Laboratory, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada; Département de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
115
|
Cheerambathur DK, Desai A. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr Opin Cell Biol 2014; 26:113-22. [PMID: 24529253 DOI: 10.1016/j.ceb.2013.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Accurate segregation of the replicated genome during cell division depends on dynamic attachments formed between chromosomes and the microtubule polymers of the spindle. Here we review recent advances in mechanistic analysis of microtubule attachment formation and regulation.
Collapse
Affiliation(s)
- Dhanya K Cheerambathur
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
116
|
Interplay between mitotic kinesins and the Aurora kinase–PP1 (protein phosphatase 1) axis. Biochem Soc Trans 2013; 41:1761-5. [DOI: 10.1042/bst20130191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Correct transmission of genetic information from mother to daughter cells is necessary for development and survival. Accurate segregation is achieved by bipolar attachment of sister kinetochores in each chromatid pair to spindle microtubules emanating from opposite spindle poles, a process known as chromosome bi-orientation. Achieving this requires dynamic interplay between kinetochore proteins, kinesin motor proteins and cell cycle regulators. Chromosome bi-orientation is monitored by a surveillance mechanism known as the SAC (spindle assembly checkpoint). The Aurora B kinase, which is bound to the inner centromere during early mitosis, plays a central role in both chromosome bi-orientation and the spindle checkpoint. The application of tension across centromeres establishes a spatial gradient of high phosphorylation activity at the inner centromere and low phosphorylation activity at the outer kinetochore. This gradient is further refined by the association of PP1 (protein phosphatase 1) to the outer kinetochore, which stabilizes kinetochore–microtubule interactions and silences the spindle checkpoint by dephosphorylating Aurora B kinase targets when chromosome bi-orientation is achieved. In the present review, I discuss emerging evidence that bidirectional cross-talk between mitotic kinesins and the Aurora kinase–PP1 axis is crucial for co-ordinating chromosome bi-orientation and spindle checkpoint signalling in eukaryotes.
Collapse
|
117
|
Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene 2013; 33:5457-66. [PMID: 24240690 PMCID: PMC4025984 DOI: 10.1038/onc.2013.486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
We show that expression of the microtubule depolymerizing kinesin KIF2C is induced by transformation of immortalized human bronchial epithelial cells by expression of K-RasG12V and knockdown of p53. Further investigation demonstrates that this is due to the K-Ras/ERK1/2 MAPK pathway, as loss of p53 had little effect on KIF2C expression. In addition to KIF2C, we also found that the related kinesin KIF2A is modestly upregulated in this model system; both proteins are expressed more highly in many lung cancer cell lines compared to normal tissue. As a consequence of their depolymerizing activity, these kinesins increase dynamic instability of microtubules. Depletion of either of these kinesins impairs the ability of cells transformed with mutant K-Ras to migrate and invade matrigel. However, depletion of these kinesins does not reverse the epithelial-mesenchymal transition caused by mutant K-Ras. Our studies indicate that increased expression of microtubule destabilizing factors can occur during oncogenesis to support enhanced migration and invasion of tumor cells.
Collapse
|
118
|
A second tubulin binding site on the kinesin-13 motor head domain is important during mitosis. PLoS One 2013; 8:e73075. [PMID: 24015286 PMCID: PMC3755979 DOI: 10.1371/journal.pone.0073075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 01/03/2023] Open
Abstract
Kinesin-13s are microtubule (MT) depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD) containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2) on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.
Collapse
|
119
|
Shrestha R, Draviam V. Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr Biol 2013; 23:1514-26. [PMID: 23891108 PMCID: PMC3748344 DOI: 10.1016/j.cub.2013.06.040] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proper attachment of chromosomes to microtubules is crucial for the accurate segregation of chromosomes. Human chromosomes attach initially to lateral walls of microtubules. Subsequently, attachments to lateral walls disappear and attachments to microtubule ends (end-on attachments) predominate. While it is known in yeasts that lateral to end-on conversion of attachments occurs through a multistep process, equivalent conversion steps in humans remain unknown. RESULTS By developing a high-resolution imaging assay to visualize intermediary steps of the lateral to end-on conversion process, we show that the mechanisms that bring a laterally bound chromosome and its microtubule end closer to each other are indispensable for proper end-on attachment because laterally attached chromosomes seldom detach. We show that end-on conversion requires (1) the plus-end-directed motor CENP-E to tether the lateral kinetochore onto microtubule walls and (2) the microtubule depolymerizer MCAK to release laterally attached microtubules after a partial end-on attachment is formed. CONCLUSIONS By uncovering a CENP-E mediated wall-tethering event and a MCAK-mediated wall-removing event, we establish that human chromosome-microtubule attachment is achieved through a set of deterministic sequential events rather than stochastic direct capture of microtubule ends.
Collapse
Affiliation(s)
| | - Viji M. Draviam
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
120
|
Wang CQ, Li YJ, Wei ZM, Zhu CJ, Qu X, Wei FC, Xing XM, Yu WJ. Stable gene-silence of Kif2a synergistic with 5-fluorouracil suppresses oral tongue squamous cell carcinoma growth in vitro and in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:49-54. [DOI: 10.1016/j.oooo.2013.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/04/2013] [Accepted: 01/26/2013] [Indexed: 10/27/2022]
|
121
|
Fiore M, Mattiuzzo M, Mancuso G, Totta P, Degrassi F. The pesticide dichlorvos disrupts mitotic division by delocalizing the kinesin Kif2a from centrosomes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:250-60. [PMID: 23532982 DOI: 10.1002/em.21769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 05/25/2023]
Abstract
The molecular mechanism(s) mediating long-term adverse effects of dichlorvos, a widely used insecticide, are still unclear. Our work uncovered a new cellular effect of dichlorvos in cultured human cells, i.e. its capacity to induce extremely aberrant mitotic spindles with monopolar microtubule arrays that were associated with hypercondensed chromosomes and pyknotic chromatin masses. Monopolar spindles produced by dichlorvos treatment were characterized by the delocalization of the depolymerizing kinesin Kif2a from spindle poles. Dichlorvos-induced spindle monopolarity could be reversed by promoting microtubule stabilization through chemical treatment or by inhibiting the depolymerizing function of the kinesin MCAK at kinetochores. These findings demonstrate that dichlorvos inhibits the depolymerizing activity of Kif2a at centrosomes and thereby disrupts the balance of opposing centrosomal and kinetochore forces controlling spindle bipolarity during prometaphase. Dichlorvos-induced defects in spindle bipolarity may be responsible for the previously reported induction of aneuploidy by this chemical. Collectively, these results indicate that environmental chemicals, such as dichlorvos, may promote chromosome instability by interfering with the cell division machinery.
Collapse
Affiliation(s)
- Mario Fiore
- Institute of Molecular Biology and Pathology, CNR, National Research Council of Italy, c/o Sapienza University, Rome, Italy
| | | | | | | | | |
Collapse
|
122
|
Hochegger H, Hégarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol 2013; 3:120185. [PMID: 23516109 PMCID: PMC3718339 DOI: 10.1098/rsob.120185] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| | | | | |
Collapse
|
123
|
Petsalaki E, Zachos G. Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments. J Cell Sci 2013; 126:1235-46. [PMID: 23321637 DOI: 10.1242/jcs.119677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
If uncorrected, merotelic kinetochore attachments can induce mis-segregated chromosomes in anaphase. We show that checkpoint kinase 1 (Chk1) protects vertebrate cells against merotelic attachments and lagging chromosomes and is required for correction of merotelic attachments during a prolonged metaphase. Decreased Chk1 activity leads to hyper-stable kinetochore microtubules, unstable binding of MCAK, Kif2b and Mps1 to centromeres or kinetochores and reduced phosphorylation of Hec1 by Aurora-B. Phosphorylation of Aurora-B at serine 331 (Ser331) by Chk1 is high in prometaphase and decreases significantly in metaphase cells. We propose that Ser331 phosphorylation is required for optimal localization of MCAK, Kif2b and Mps1 to centromeres or kinetochores and for Hec1 phosphorylation. Furthermore, inhibition of Mps1 activity diminishes initial recruitment of MCAK and Kif2b to centromeres or kinetochores, impairs Hec1 phosphorylation and exacerbates merotelic attachments in Chk1-deficient cells. We propose that Chk1 and Mps1 jointly regulate Aurora-B, MCAK, Kif2b and Hec1 to correct merotelic attachments. These results suggest a role for Chk1 and Mps1 in error correction.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | | |
Collapse
|
124
|
Asenjo AB, Chatterjee C, Tan D, DePaoli V, Rice WJ, Diaz-Avalos R, Silvestry M, Sosa H. Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep 2013; 3:759-68. [PMID: 23434508 DOI: 10.1016/j.celrep.2013.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/12/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022] Open
Abstract
To elucidate the structural basis of the mechanism of microtubule depolymerization by kinesin-13s, we analyzed complexes of tubulin and the Drosophila melanogaster kinesin-13 KLP10A by electron microscopy (EM) and fluorescence polarization microscopy. We report a nanometer-resolution (1.1 nm) cryo-EM three-dimensional structure of the KLP10A head domain (KLP10AHD) bound to curved tubulin. We found that binding of KLP10AHD induces a distinct tubulin configuration with displacement (shear) between tubulin subunits in addition to curvature. In this configuration, the kinesin-binding site differs from that in straight tubulin, providing an explanation for the distinct interaction modes of kinesin-13s with the microtubule lattice or its ends. The KLP10AHD-tubulin interface comprises three areas of interaction, suggesting a crossbow-type tubulin-bending mechanism. These areas include the kinesin-13 family conserved KVD residues, and as predicted from the crossbow model, mutating these residues changes the orientation and mobility of KLP10AHDs interacting with the microtubule.
Collapse
Affiliation(s)
- Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Li X, Foley EA, Kawashima SA, Molloy KR, Li Y, Chait BT, Kapoor TM. Examining post-translational modification-mediated protein-protein interactions using a chemical proteomics approach. Protein Sci 2013; 22:287-95. [PMID: 23281010 DOI: 10.1002/pro.2210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 01/15/2023]
Abstract
Post-translational modifications (PTM) of proteins can control complex and dynamic cellular processes via regulating interactions between key proteins. To understand these regulatory mechanisms, it is critical that we can profile the PTM-dependent protein-protein interactions. However, identifying these interactions can be very difficult using available approaches, as PTMs can be dynamic and often mediate relatively weak protein-protein interactions. We have recently developed CLASPI (cross-linking-assisted and stable isotope labeling in cell culture-based protein identification), a chemical proteomics approach to examine protein-protein interactions mediated by methylation in human cell lysates. Here, we report three extensions of the CLASPI approach. First, we show that CLASPI can be used to analyze methylation-dependent protein-protein interactions in lysates of fission yeast, a genetically tractable model organism. For these studies, we examined trimethylated histone H3 lysine-9 (H3K9Me₃)-dependent protein-protein interactions. Second, we demonstrate that CLASPI can be used to examine phosphorylation-dependent protein-protein interactions. In particular, we profile proteins recognizing phosphorylated histone H3 threonine-3 (H3T3-Phos), a mitotic histone "mark" appearing exclusively during cell division. Our approach identified survivin, the only known H3T3-Phos-binding protein, as well as other proteins, such as MCAK and KIF2A, that are likely to be involved in weak but selective interactions with this histone phosphorylation "mark". Finally, we demonstrate that the CLASPI approach can be used to study the interplay between histone H3T3-Phos and trimethylation on the adjacent residue lysine 4 (H3K4Me₃). Together, our findings indicate the CLASPI approach can be broadly applied to profile protein-protein interactions mediated by PTMs.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Chemistry and Cell Biology, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Welburn JPI, Cheeseman IM. The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle. Mol Biol Cell 2012; 23:4786-95. [PMID: 23087211 PMCID: PMC3521686 DOI: 10.1091/mbc.e12-03-0214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The N-terminus of the kinesin-13 family (Kif2a, Kif2b, Kif2c) is the primary localization determinant. However, the C-terminus of Kif2b associates with Cep170 and Cep170R to create targeting specificity. Cep170 has microtubule-binding properties in vitro and provides a second microtubule-binding site to Kif2b to target it to the spindle. Microtubule dynamics are essential throughout mitosis to ensure correct chromosome segregation. Microtubule depolymerization is controlled in part by microtubule depolymerases, including the kinesin-13 family of proteins. In humans, there are three closely related kinesin-13 isoforms (Kif2a, Kif2b, and Kif2c/MCAK), which are highly conserved in their primary sequences but display distinct localization and nonoverlapping functions. Here we demonstrate that the N-terminus is a primary determinant of kinesin-13 localization. However, we also find that differences in the C-terminus alter the properties of kinesin-13, in part by facilitating unique protein–protein interactions. We identify the spindle-localized proteins Cep170 and Cep170R (KIAA0284) as specifically associating with Kif2b. Cep170 binds to microtubules in vitro and provides Kif2b with a second microtubule-binding site to target it to the spindle. Thus the intrinsic properties of kinesin-13s and extrinsic factors such as their associated proteins result in the diversity and specificity within the kinesin-13 depolymerase family.
Collapse
Affiliation(s)
- Julie P I Welburn
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | | |
Collapse
|
127
|
Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 2012; 199:285-301. [PMID: 23045552 PMCID: PMC3471233 DOI: 10.1083/jcb.201203091] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT-MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 "phospho-switch" that temporally regulates KT-MT attachment stability.
Collapse
Affiliation(s)
- Ana R.R. Maia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zaira Garcia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Lilian Kabeche
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Marin Barisic
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Stefano Maffini
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
128
|
Pakala SB, Nair VS, Reddy SD, Kumar R. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem 2012; 287:40560-9. [PMID: 23055517 DOI: 10.1074/jbc.m112.399576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although PAK1 regulates cytoskeleton and microtubule dynamics, its role in controlling the functions of MCAK remains unknown. RESULTS PAK1 phosphorylates MCAK and thereby regulates both its localization and function. CONCLUSION MCAK is a cognate substrate of PAK1. SIGNIFICANCE This study provides a novel mechanistic insight into PAK1 regulation of MCAK functions. Although p21-activated kinase 1 (PAK1) and microtubule (MT) dynamics regulate numerous fundamental processes including cytoskeleton remodeling, directional motility, and mitotic functions, the significance of PAK1 signaling in regulating the functions of MT-destabilizing protein mitotic centromere-associated kinesin (MCAK) remains unknown. Here we found that MCAK is a cognate substrate of PAK1 wherein PAK1 phosphorylates MCAK on serines 192 and 111 both in vivo and in vitro. Furthermore, we found that PAK1 phosphorylation of MCAK on serines 192 and 111 preferentially regulates its microtubule depolymerization activity and localization to centrosomes, respectively, in the mammalian cells.
Collapse
Affiliation(s)
- Suresh B Pakala
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
129
|
Microtubule-depolymerizing kinesin KLP10A restricts the length of the acentrosomal meiotic spindle in Drosophila females. Genetics 2012; 192:431-40. [PMID: 22865737 DOI: 10.1534/genetics.112.143503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.
Collapse
|
130
|
Abstract
Kinesins are a family of molecular motors that travel unidirectionally along microtubule tracks to fulfil their many roles in intracellular transport or cell division. Over the past few years kinesins that are involved in mitosis have emerged as potential targets for cancer drug development. Several compounds that inhibit two mitotic kinesins (EG5 (also known as KIF11) and centromere-associated protein E (CENPE)) have entered Phase I and II clinical trials either as monotherapies or in combination with other drugs. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the range of kinesin-based drug targets may expand in the future.
Collapse
Affiliation(s)
- Oliver Rath
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | | |
Collapse
|
131
|
Hood EA, Kettenbach AN, Gerber SA, Compton DA. Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 2012; 23:2264-74. [PMID: 22535524 PMCID: PMC3374746 DOI: 10.1091/mbc.e11-12-1013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 12/31/2022] Open
Abstract
Solid tumors are frequently aneuploid, and many display high rates of ongoing chromosome missegregation in a phenomenon called chromosomal instability (CIN). The most common cause of CIN is the persistence of aberrant kinetochore-microtubule (k-MT) attachments, which manifest as lagging chromosomes in anaphase. k-MT attachment errors form during prometaphase due to stochastic interactions between kinetochores and microtubules. The kinesin-13 protein Kif2b promotes the correction of k-MT attachment errors in prometaphase, but the mechanism restricting this activity to prometaphase remains unknown. Using mass spectrometry, we identified multiple phosphorylation sites on Kif2b, some of which are acutely sensitive to inhibition of Polo-like kinase 1 (Plk1). We show that Plk1 directly phosphorylates Kif2b at threonine 125 (T125) and serine 204 (S204), and that these two sites differentially regulate Kif2b function. Phosphorylation of S204 is required for the kinetochore localization and activity of Kif2b in prometaphase, and phosphorylation of T125 is required for Kif2b activity in the correction of k-MT attachment errors. These data demonstrate that Plk1 regulates both the localization and activity of Kif2b during mitosis to promote the correction of k-MT attachment errors to ensure mitotic fidelity.
Collapse
Affiliation(s)
- Emily A. Hood
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| | - Arminja N. Kettenbach
- Norris Cotton Cancer Center, Lebanon, NH 03766
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
| | - Scott A. Gerber
- Norris Cotton Cancer Center, Lebanon, NH 03766
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766
| | - Duane A. Compton
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03766
| |
Collapse
|
132
|
Bie L, Zhao G, Wang YP, Zhang B. Kinesin family member 2C (KIF2C/MCAK) is a novel marker for prognosis in human gliomas. Clin Neurol Neurosurg 2012; 114:356-60. [DOI: 10.1016/j.clineuro.2011.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/28/2022]
|
133
|
Domnitz SB, Wagenbach M, Decarreau J, Wordeman L. MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. ACTA ACUST UNITED AC 2012; 197:231-7. [PMID: 22492725 PMCID: PMC3328376 DOI: 10.1083/jcb.201108147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinesin MCAK binds to end-binding proteins and antagonizes centrosome separation and promotes robust kinetochore attachments to spindle microtubules. Mitotic centromere-associated kinesin (MCAK) is a microtubule-depolymerizing kinesin-13 member that can track with polymerizing microtubule tips (hereafter referred to as tip tracking) during both interphase and mitosis. MCAK tracks with microtubule tips by binding to end-binding proteins (EBs) through the microtubule tip localization signal SKIP, which lies N terminal to MCAK’s neck and motor domain. The functional significance of MCAK’s tip-tracking behavior during mitosis has never been explained. In this paper, we identify and define a mitotic function specific to the microtubule tip–associated population of MCAK: negative regulation of microtubule length within the assembling bipolar spindle. This function depends on MCAK’s ability to bind EBs and track with polymerizing nonkinetochore microtubule tips. Although this activity antagonizes centrosome separation during bipolarization, it ultimately benefits the dividing cell by promoting robust kinetochore attachments to the spindle microtubules.
Collapse
Affiliation(s)
- Sarah B Domnitz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
134
|
Janski N, Masoud K, Batzenschlager M, Herzog E, Evrard JL, Houlné G, Bourge M, Chabouté ME, Schmit AC. The GCP3-interacting proteins GIP1 and GIP2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. THE PLANT CELL 2012; 24:1171-87. [PMID: 22427335 PMCID: PMC3336128 DOI: 10.1105/tpc.111.094904] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/03/2012] [Accepted: 02/27/2012] [Indexed: 05/18/2023]
Abstract
Microtubules (MTs) are crucial for both the establishment of cellular polarity and the progression of all mitotic phases leading to karyokinesis and cytokinesis. MT organization and spindle formation rely on the activity of γ-tubulin and associated proteins throughout the cell cycle. To date, the molecular mechanisms modulating γ-tubulin complex location remain largely unknown. In this work, two Arabidopsis thaliana proteins interacting with gamma-tubulin complex protein3 (GCP3), GCP3-interacting protein1 (GIP1) and GIP2, have been characterized. Both GIP genes are ubiquitously expressed in all tissues analyzed. Immunolocalization studies combined with the expression of GIP-green fluorescent protein fusions have shown that GIPs colocalize with γ-tubulin, GCP3, and/or GCP4 and reorganize from the nucleus to the prospindle and the preprophase band in late G2. After nuclear envelope breakdown, they localize on spindle and phragmoplast MTs and on the reforming nuclear envelope of daughter cells. The gip1 gip2 double mutants exhibit severe growth defects and sterility. At the cellular level, they are characterized by MT misorganization and abnormal spindle polarity, resulting in ploidy defects. Altogether, our data show that during mitosis GIPs play a role in γ-tubulin complex localization, spindle stability and chromosomal segregation.
Collapse
Affiliation(s)
- Natacha Janski
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Kinda Masoud
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Morgane Batzenschlager
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Jean-Luc Evrard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Mickael Bourge
- Laboratoire Dynamique de la Compartimentation Cellulaire, Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355/Institut Fédératif de Recherche 87, Centre de Recherche de Gif (Fédération de Recherche du Centre National de la Recherche Scientifique 115), 91198 Gif-sur-Yvette cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
- Address correspondence to
| |
Collapse
|
135
|
Bakhoum SF, Compton DA. Kinetochores and disease: keeping microtubule dynamics in check! Curr Opin Cell Biol 2011; 24:64-70. [PMID: 22196931 DOI: 10.1016/j.ceb.2011.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 12/12/2022]
Abstract
The essential role of microtubules in cell division has long been known. Yet the mechanism by which microtubule attachment to chromosomes at kinetochores is regulated has only been recently revealed. Here, we review the role of kinetochore-microtubule (kMT) attachment dynamics in the cell cycle as well as emerging evidence linking deregulation of kMT attachments to diseases where chromosome mis-segregation and aneuploidy play a central role. Evidence indicates that the dynamic behavior of kMTs must fall within narrow permissible boundaries, which simultaneously allow a level of stability sufficient to establish and maintain chromosome-microtubule attachments and a degree of instability that permits error correction required for accurate chromosome segregation.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
136
|
Hégarat N, Smith E, Nayak G, Takeda S, Eyers PA, Hochegger H. Aurora A and Aurora B jointly coordinate chromosome segregation and anaphase microtubule dynamics. ACTA ACUST UNITED AC 2011; 195:1103-13. [PMID: 22184196 PMCID: PMC3246887 DOI: 10.1083/jcb.201105058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)-inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, England, UK
| | | | | | | | | | | |
Collapse
|
137
|
Sanhaji M, Friel CT, Wordeman L, Louwen F, Yuan J. Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget 2011; 2:935-47. [PMID: 22249213 PMCID: PMC3282097 DOI: 10.18632/oncotarget.416] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 11/25/2022] Open
Abstract
The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Claire T. Friel
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Center for Cell Dynamics, Friday Harbor, Laboratories, Friday Harbor, WA 98250, USA
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
138
|
The site of RanGTP generation can act as an organizational cue for mitotic microtubules. Biol Cell 2011; 103:421-34. [PMID: 21692748 DOI: 10.1042/bc20100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND INFORMATION RanGTP, which is generated on chromosomes during mitosis, is required for microtubule spindle assembly. Due to its restricted spatial generation within the cell it has been suggested that RanGTP acts as a spatial cue to organize site-specific spindle assembly within the cell. However, the absence of a detectable sharp gradient of RanGTP in somatic cells has led to suggestions that it may only act as a spatial cue in large cells and that it may operate as a general activator of the mitotic cytosol in somatic cells. RESULTS We report that ectopic generation of RanGTP at the plasma membrane stimulates the formation of organized arrays of microtubules at the plasma membrane. CONCLUSIONS These results suggest that the site of RanGTP generation in a mitotic somatic cell can generate critical spatial information that specifies where microtubules grow towards and where microtubules are organized. As RanGTP is normally generated on chromosomes, these results suggest that RanGTP may play an important role in specifying that spindle assembly occurs around chromosomes.
Collapse
|
139
|
Good JAD, Skoufias DA, Kozielski F. Elucidating the functionality of kinesins: an overview of small molecule inhibitors. Semin Cell Dev Biol 2011; 22:935-45. [PMID: 22001111 DOI: 10.1016/j.semcdb.2011.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/30/2011] [Indexed: 12/19/2022]
Abstract
Kinesin motor proteins are ubiquitously involved in multiple fundamental cellular processes, coordinating transport and mediating changes to cellular architecture. Thus, specific small molecule kinesin inhibitors can shed new light on the functions of kinesins and the dynamic roles in which they participate. Here we review the range of known inhibitors, their key characteristics, and specificity, and discuss their potential suitability for chemical genetics as starting points to further investigate complex kinesin-mediated processes.
Collapse
Affiliation(s)
- James A D Good
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | | | | |
Collapse
|
140
|
Abstract
The mechanisms that move chromatids poleward during anaphase A have fascinated researchers for decades. There is now growing evidence that this movement is tightly linked to the active depolymerization of both ends of kinetochore-associated microtubules, a mechanism we refer to as "Pacman-Flux." Contemporary data suggest that this is catalyzed by the integration of multiple enzymatic activities including (1) microtubule-end depolymerases housed at the pole or kinetochore, (2) microtubule-severing enzymes used to uncap the ends of kinetochore-associated microtubules, and (3) molecular motors which drive tubulins towards the pole or into kinetochores.
Collapse
|
141
|
Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S, Iorio F, Oliva G, Polishchuck R, Brunetti-Pierri N, di Bernardo D. Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 2011; 39:8677-88. [PMID: 21785136 PMCID: PMC3203605 DOI: 10.1093/nar/gkr593] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We collected a massive and heterogeneous dataset of 20 255 gene expression profiles (GEPs) from a variety of human samples and experimental conditions, as well as 8895 GEPs from mouse samples. We developed a mutual information (MI) reverse-engineering approach to quantify the extent to which the mRNA levels of two genes are related to each other across the dataset. The resulting networks consist of 4 817 629 connections among 20 255 transcripts in human and 14 461 095 connections among 45 101 transcripts in mouse, with a inter-species conservation of 12%. The inferred connections were compared against known interactions to assess their biological significance. We experimentally validated a subset of not previously described protein–protein interactions. We discovered co-expressed modules within the networks, consisting of genes strongly connected to each other, which carry out specific biological functions, and tend to be in physical proximity at the chromatin level in the nucleus. We show that the network can be used to predict the biological function and subcellular localization of a protein, and to elucidate the function of a disease gene. We experimentally verified that granulin precursor (GRN) gene, whose mutations cause frontotemporal lobar degeneration, is involved in lysosome function. We have developed an online tool to explore the human and mouse gene networks.
Collapse
Affiliation(s)
- Vincenzo Belcastro
- Telethon Institute of Genetics and Medicine, Via P. Castellino, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 2011; 22:3070-80. [PMID: 21737685 PMCID: PMC3164455 DOI: 10.1091/mbc.e11-04-0363] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kif18B is a newly discovered plus-tip-tracking protein that is enriched on astral microtubule (MT) ends during early mitosis. Kif18B binds directly to EB1, and this interaction is required for proper localization of Kif18B and to control astral MT length. Regulation of microtubule (MT) dynamics is essential for proper spindle assembly and organization. Kinesin-8 family members are plus-end-directed motors that modulate plus-end MT dynamics by acting as MT depolymerases or as MT plus-end capping proteins. In this paper, we show that the human kinesin-8 Kif18B functions during mitosis to control astral MT organization. Kif18B is a MT plus-tip-tracking protein that localizes to the nucleus in interphase and is enriched at astral MT plus ends during early mitosis. Knockdown of Kif18B caused spindle defects, resulting in an increased number and length of MTs. A yeast two-hybrid screen identified an interaction of the C-terminal domain of Kif18B with the plus-end MT-binding protein EB1. EB1 knockdown disrupted Kif18B targeting to MT plus ends, indicating that EB1/Kif18B interaction is physiologically important. This interaction is direct, as the far C-terminal end of Kif18B is sufficient for binding to EB1 in vitro. Overexpression of this domain is sufficient for plus-end MT targeting in cells; however, targeting is enhanced by the motor domain, which cooperates with the tail to achieve proper Kif18B localization at MT plus ends. Our results suggest that Kif18B is a new MT dynamics regulatory protein that interacts with EB1 to control astral MT length.
Collapse
Affiliation(s)
- Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
143
|
Jaillard S, Andrieux J, Plessis G, Krepischi ACV, Lucas J, David V, Le Brun M, Bertola DR, David A, Belaud-Rotureau MA, Mosser J, Lazaro L, Treguier C, Rosenberg C, Odent S, Dubourg C. 5q12.1 deletion: delineation of a phenotype including mental retardation and ocular defects. Am J Med Genet A 2011; 155A:725-31. [PMID: 21594994 DOI: 10.1002/ajmg.a.33758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/15/2010] [Indexed: 11/06/2022]
Abstract
Array-CGH enables the detection of submicroscopic chromosomal deletions and duplications and leads to an accurate delineation of the imbalances, raising the possibility of genotype to phenotype and mapping minimal critical regions associated with particular patterns of clinical features. We report here on four patients sharing common clinical features (psychomotor retardation, coarse facies and ocular anomalies), with proximal 5q deletions identified by oligo array-CGH. The deletions range from 5.75 to 17.26-Mb in size and occurred de novo. A common 2.63-Mb region between the deletions described here can be defined in 5q12.1 (59,390,122-62,021,754 bp from 5pter, hg18) and includes 12 genes. Among them, KIF2A, which encodes a kinesin superfamily protein, is a particularly interesting candidate for the phenotype, as it suppresses the growth of axonal collateral branches and is involved in normal brain development. Ocular defects, albeit unspecific, seem to be common in the 5q12.1 deletion. Identification of additional cases of deletions involving the 5q12.1 region will allow more accurate genotype-phenotype correlations.
Collapse
Affiliation(s)
- Sylvie Jaillard
- Cytogenetics Department, Pontchaillou University Hospital, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011; 31:443-81. [PMID: 21381049 DOI: 10.1002/med.20242] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These "biological vectors" can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work.
Collapse
|
145
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|
146
|
Matos I, Maiato H. Prevention and Correction Mechanisms behind Anaphase Synchrony: Implications for the Genesis of Aneuploidy. Cytogenet Genome Res 2011; 133:243-53. [DOI: 10.1159/000323803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
147
|
Zhang L, Shao H, Huang Y, Yan F, Chu Y, Hou H, Zhu M, Fu C, Aikhionbare F, Fang G, Ding X, Yao X. PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 2011; 286:3033-46. [PMID: 21078677 PMCID: PMC3024797 DOI: 10.1074/jbc.m110.165340] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/15/2010] [Indexed: 12/22/2022] Open
Abstract
During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.
Collapse
Affiliation(s)
- Liangyu Zhang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Hengyi Shao
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Yuejia Huang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Feng Yan
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Youjun Chu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Hai Hou
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Mei Zhu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Chuanhai Fu
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Felix Aikhionbare
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Guowei Fang
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Xia Ding
- the Department of Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuebiao Yao
- From the Anhui Laboratory of Cellular Dynamics and Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
- the Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| |
Collapse
|
148
|
Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles. PLoS One 2010; 5:e15020. [PMID: 21124853 PMCID: PMC2990766 DOI: 10.1371/journal.pone.0015020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/13/2010] [Indexed: 12/02/2022] Open
Abstract
Background Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. Methodology/Principal Findings The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. Conclusions/Significance These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
149
|
Pal D, Wu D, Haruta A, Matsumura F, Wei Q. Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell Cycle 2010; 9:4117-29. [PMID: 20962590 PMCID: PMC3055196 DOI: 10.4161/cc.9.20.13387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/22/2010] [Indexed: 11/19/2022] Open
Abstract
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.
Collapse
Affiliation(s)
- Debjani Pal
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Di Wu
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Akiko Haruta
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Fumio Matsumura
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| | - Qize Wei
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| |
Collapse
|
150
|
Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA. CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J 2010; 29:3531-43. [PMID: 20852589 DOI: 10.1038/emboj.2010.230] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/24/2010] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosome segregation during mitosis requires precise coordination of various processes, such as chromosome alignment, maturation of proper kinetochore-microtubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. In this study, we show that the temporal regulation of kMT attachments by CLASP1, astrin and Kif2b is central to mitotic progression and chromosome segregation fidelity. In early mitosis, a Kif2b-CLASP1 complex is recruited to kinetochores to promote chromosome movement, kMT turnover, correction of attachment errors, and maintenance of SAC signalling. However, during metaphase, this complex is replaced by an astrin-CLASP1 complex, which promotes kMT stability, chromosome alignment, and silencing of the SAC. We show that these two complexes are differentially recruited to kinetochores and are mutually exclusive. We also show that other kinetochore proteins, such as Kif18a, affect kMT attachments and chromosome movement through these proteins. Thus, CLASP1-astrin-Kif2b complex act as a central switch at kinetochores that defines mitotic progression and promotes fidelity by temporally regulating kMT attachments.
Collapse
Affiliation(s)
- Amity L Manning
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03766, USA
| | | | | | | | | | | |
Collapse
|