101
|
Huang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Eng Part C Methods 2017; 22:524-33. [PMID: 27108525 DOI: 10.1089/ten.tec.2015.0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical properties.
Collapse
Affiliation(s)
- Angela H Huang
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jenna L Balestrini
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | | | - Kevin C Zhou
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Liping Zhao
- 2 School of Medicine, Yale University , New Haven, Connecticut
| | - Jacopo Ferruzzi
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Barry C Starcher
- 3 Department of Biochemistry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Michael J Levene
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Jay D Humphrey
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut
| | - Laura E Niklason
- 1 Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University , New Haven, Connecticut.,2 School of Medicine, Yale University , New Haven, Connecticut
| |
Collapse
|
102
|
Lee CS, Fu H, Baratang N, Rousseau J, Kumra H, Sutton VR, Niceta M, Ciolfi A, Yamamoto G, Bertola D, Marcelis CL, Lugtenberg D, Bartuli A, Kim C, Hoover-Fong J, Sobreira N, Pauli R, Bacino C, Krakow D, Parboosingh J, Yap P, Kariminejad A, McDonald MT, Aracena MI, Lausch E, Unger S, Superti-Furga A, Lu JT, Cohn DH, Tartaglia M, Lee BH, Reinhardt DP, Campeau PM, Campeau PM. Mutations in Fibronectin Cause a Subtype of Spondylometaphyseal Dysplasia with "Corner Fractures". Am J Hum Genet 2017; 101:815-823. [PMID: 29100092 DOI: 10.1016/j.ajhg.2017.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023] Open
Abstract
Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylometaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of "corner fractures" at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
103
|
Mas-Stachurska A, Siegert AM, Batlle M, Gorbenko Del Blanco D, Meirelles T, Rubies C, Bonorino F, Serra-Peinado C, Bijnens B, Baudin J, Sitges M, Mont L, Guasch E, Egea G. Cardiovascular Benefits of Moderate Exercise Training in Marfan Syndrome: Insights From an Animal Model. J Am Heart Assoc 2017; 6:JAHA.117.006438. [PMID: 28947563 PMCID: PMC5634291 DOI: 10.1161/jaha.117.006438] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Marfan syndrome (MF) leads to aortic root dilatation and a predisposition to aortic dissection, mitral valve prolapse, and primary and secondary cardiomyopathy. Overall, regular physical exercise is recommended for a healthy lifestyle, but dynamic sports are strongly discouraged in MF patients. Nonetheless, evidence supporting this recommendation is lacking. Therefore, we studied the role of long-term dynamic exercise of moderate intensity on the MF cardiovascular phenotype. METHODS AND RESULTS In a transgenic mouse model of MF (Fbn1C1039G/+), 4-month-old wild-type and MF mice were subjected to training on a treadmill for 5 months; sedentary littermates served as controls for each group. Aortic and cardiac remodeling was assessed by echocardiography and histology. The 4-month-old MF mice showed aortic root dilatation, elastic lamina rupture, and tunica media fibrosis, as well as cardiac hypertrophy, left ventricular fibrosis, and intramyocardial vessel remodeling. Over the 5-month experimental period, aortic root dilation rate was significantly greater in the sedentary MF group, compared with the wild-type group (∆mm, 0.27±0.07 versus 0.13±0.02, respectively). Exercise significantly blunted the aortic root dilation rate in MF mice compared with sedentary MF littermates (∆mm, 0.10±0.04 versus 0.27±0.07, respectively). However, these 2 groups were indistinguishable by aortic root stiffness, tunica media fibrosis, and elastic lamina ruptures. In MF mice, exercise also produced cardiac hypertrophy regression without changes in left ventricular fibrosis. CONCLUSIONS Our results in a transgenic mouse model of MF indicate that moderate dynamic exercise mitigates the progression of the MF cardiovascular phenotype.
Collapse
Affiliation(s)
| | - Anna-Maria Siegert
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Monsterrat Batlle
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBERCV, Barcelona, Spain
| | | | - Thayna Meirelles
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Cira Rubies
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fabio Bonorino
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Carla Serra-Peinado
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Bart Bijnens
- ICREA, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Julio Baudin
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Sitges
- Institut Cardiovascular, Hospital Clínic de Barcelona Universitat de Barcelona, Spain.,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBERCV, Barcelona, Spain
| | - Lluís Mont
- Institut Cardiovascular, Hospital Clínic de Barcelona Universitat de Barcelona, Spain.,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBERCV, Barcelona, Spain
| | - Eduard Guasch
- Institut Cardiovascular, Hospital Clínic de Barcelona Universitat de Barcelona, Spain .,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBERCV, Barcelona, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Spain .,Institut de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, Spain.,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
104
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
105
|
Fibronectin, the extracellular glue. Matrix Biol 2017; 60-61:27-37. [DOI: 10.1016/j.matbio.2016.07.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 12/13/2022]
|
106
|
Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M. Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-β in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1559-1569. [PMID: 28619995 DOI: 10.1161/atvbaha.117.309696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β1 (TGFβ1). Thus, we considered whether BMPs like TGFβ1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFβ1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFβ1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFβ1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFβ1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFβ1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS Disrupting BMPR2 impairs TGFβ1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Protein Receptors, Type I/deficiency
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Elastic Tissue/physiopathology
- Elastin/genetics
- Elastin/metabolism
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Genetic Predisposition to Disease
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA Interference
- Transfection
- Transforming Growth Factor beta/pharmacology
- Vascular Remodeling
Collapse
Affiliation(s)
- Nancy F Tojais
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Aiqin Cao
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Ying-Ju Lai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lingli Wang
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Pin-I Chen
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Miguel A Alejandre Alcazar
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Vinicio A de Jesus Perez
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Rachel K Hopper
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Christopher J Rhodes
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Matthew A Bill
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lynn Y Sakai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Marlene Rabinovitch
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.).
| |
Collapse
|
107
|
Eoh JH, Shen N, Burke JA, Hinderer S, Xia Z, Schenke-Layland K, Gerecht S. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater 2017; 52:49-59. [PMID: 28163239 DOI: 10.1016/j.actbio.2017.01.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have become of interest due to their ability to supplement tissue engineered scaffolds. Their ability to differentiate into cells of vascular lineages with defined phenotypes serves as a potential solution to a major cause of graft failure in which phenotypic shifts in smooth muscle cells lead to over proliferation and occlusion of the graft. Herein, we have differentiated human induced-pluripotent stem cells in a pulsatile flow bioreactor, resulting in vascular smooth muscle tissue with robust elastic fibers and enhanced functionality. This study highlights an effective approach to engineering elastic functional vascular smooth muscle tissue for tissue engineering and regenerative medicine applications.
Collapse
|
108
|
Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 2017; 7:41871. [PMID: 28176809 PMCID: PMC5296908 DOI: 10.1038/srep41871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Secreted metalloproteases have diverse roles in the formation, remodeling, and the destruction of extracellular matrix. Recessive mutations in the secreted metalloprotease ADAMTS17 cause ectopia lentis and short stature in humans with Weill-Marchesani-like syndrome and primary open angle glaucoma and ectopia lentis in dogs. Little is known about this protease or its connection to fibrillin microfibrils, whose major component, fibrillin-1, is genetically associated with ectopia lentis and alterations in height. Fibrillin microfibrils form the ocular zonule and are present in the drainage apparatus of the eye. We show that recombinant ADAMTS17 has unique characteristics and an unusual life cycle. It undergoes rapid autocatalytic processing in trans after its secretion from cells. Secretion of ADAMTS17 requires O-fucosylation and its autocatalytic activity does not depend on propeptide processing by furin. ADAMTS17 binds recombinant fibrillin-2 but not fibrillin-1 and does not cleave either. It colocalizes to fibrillin-1 containing microfibrils in cultured fibroblasts and suppresses fibrillin-2 (FBN2) incorporation in microfibrils, in part by transcriptional downregulation of Fbn2 mRNA expression. RNA in situ hybridization detected Adamts17 expression in specific structures in the eye, skeleton and other organs, where it may regulate the fibrillin isoform composition of microfibrils.
Collapse
|
109
|
Loy C, Meghezi S, Lévesque L, Pezzoli D, Kumra H, Reinhardt D, Kizhakkedathu JN, Mantovani D. A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell–matrix interactions in mono-, bi- and tri-culture models. Biomater Sci 2017; 5:153-162. [DOI: 10.1039/c6bm00643d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy to prepare and manipulate model of the vascular wall in a planar shape to investigate physiological and pathological processes of vascular tissues.
Collapse
Affiliation(s)
- Caroline Loy
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Sébastien Meghezi
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Lucie Lévesque
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Heena Kumra
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Dieter Reinhardt
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- Department of Chemistry
- University of British Columbia
- Vancouver
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| |
Collapse
|
110
|
Sato F, Seino-Sudo R, Okada M, Sakai H, Yumoto T, Wachi H. Lysyl Oxidase Enhances the Deposition of Tropoelastin through the Catalysis of Tropoelastin Molecules on the Cell Surface. Biol Pharm Bull 2017; 40:1646-1653. [DOI: 10.1248/bpb.b17-00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Ryo Seino-Sudo
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Mami Okada
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Tetsuro Yumoto
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Hiroshi Wachi
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
111
|
Campo H, Baptista PM, López-Pérez N, Faus A, Cervelló I, Simón C. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod 2016. [DOI: 10.1095/biolre/bio143396] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Valenciano de Infertilidad/INCLIVA, Valencia, Spain
| | - Pedro M Baptista
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Instituto de Investigacion Sanitaria de Aragon, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Zaragoza, Spain
- Department of Biomedical and Aerospace Engineering, Universidad Carlos III, Madrid, Spain
| | - Nuria López-Pérez
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Valenciano de Infertilidad/INCLIVA, Valencia, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Valenciano de Infertilidad/INCLIVA, Valencia, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Valenciano de Infertilidad/INCLIVA, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad, Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Valenciano de Infertilidad/INCLIVA, Valencia, Spain
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, California
| |
Collapse
|
112
|
Rubio-Azpeitia E, Bilbao AM, Sánchez P, Delgado D, Andia I. The Properties of 3 Different Plasma Formulations and Their Effects on Tendinopathic Cells. Am J Sports Med 2016; 44:1952-61. [PMID: 27161868 DOI: 10.1177/0363546516643814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathies are attributed to failure of the healing process and inadequate tissue remodeling. Plasma injections can trigger regenerative responses by modifying the molecular microenvironment. PURPOSE To examine the differences in the mitotic, chemotactic, anabolic, and inflammatory effects between leukocyte- and platelet-rich plasma (L-PRP), platelet-rich plasma (PRP), and platelet-poor plasma (PPP). STUDY DESIGN Controlled laboratory study. METHODS Tendinopathic cells were cultured in 3-dimensional (3D) hydrogels formed using PPP, PRP, and L-PRP. Cell migration was evaluated using a μ-Slide chemotaxis chamber with video microscopy. Proliferation was assessed using XTT assays. Expression of genes associated with matrix turnover, including type 1 collagen (COL1A1), COL3A1, aggrecan, decorin, fibronectin, matrix metalloproteinase 1 (MMP-1), MMP-3, A Disintegrin-Like And Metalloprotease With Thrombospondin Type 1 Motif proteins 4 (ADAMTS-4), and ADAMTS-5, was assessed using real-time reverse-transcription polymerase chain reaction. Secreted inflammatory proteins, including interleukin (IL)-1β, IL-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES), as well as vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF), were quantified using enzyme-linked immunosorbent assay. RESULTS Tendinopathic cells migrate at a higher velocity along L-PRP and PRP than along PPP gradients. PRP and L-PRP promote hypercellularity. PPP and PRP showed more pronounced anabolic properties, as demonstrated by enhanced COL1A1 and COL3A1 and reduced MMP-1 expression. Decorin, fibronectin, and aggrecan were downregulated in L-PRP compared with PPP and PRP. L-PRP and PRP were shown to be more proinflammatory than PPP in terms of IL-6 secretion, but cells in PPP showed MCP-1(high) phenotype. CTGF secretion was significantly reduced in L-PRP compared with PPP and PRP. CONCLUSION The main advantages of L-PRP and PRP use, compared with PPP, include their stronger chemotactic and proliferative properties. While PPP and PRP stimulate matrix anabolism, L-PRP is more proinflammatory. Emphasis should be placed on the temporal needs and biological characteristics of injured tendons, and plasma formulations need to be tailored accordingly. CLINICAL RELEVANCE Versatile systems allowing the preparation of different plasma formulations, such as PPP, PRP, or L-PRP, can help refine clinical applications by taking advantage of their different biological properties.
Collapse
Affiliation(s)
- Eva Rubio-Azpeitia
- BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Ane M Bilbao
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Isabel Andia
- BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
113
|
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 2016; 8:8/6/a021907. [PMID: 27252363 DOI: 10.1101/cshperspect.a021907] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
114
|
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
115
|
New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem J 2016; 473:827-38. [DOI: 10.1042/bj20151108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022]
Abstract
The 10–12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10–12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10–12 nm diameter microfibril and perform such diverse roles.
Collapse
|
116
|
Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev 2016; 97:101-10. [PMID: 26639577 DOI: 10.1016/j.addr.2015.11.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
Fibronectin is an extracellular matrix protein with pivotal physiological and pathological functions in development and adulthood. Alternative splicing of the precursor mRNA, produced from the single copy fibronectin gene, occurs at three sites coding for the EDA, EDB and IIICS domains. Fibronectin isoforms comprising the EDA or EDB domains are known as oncofetal forms due to their developmental importance and their re-expression in tumors, contrasting with restricted presence in normal adult tissues. These isoforms are also recognized as important markers of angiogenesis, a crucial physiological process in development and required by tumor cells in cancer progression. Attributed to this feature, EDA and EDB domains have been extensively used for the targeted delivery of cytokines, cytotoxic agents, chemotherapy drugs and radioisotopes to fibronectin-expressing tumors to exert therapeutic effects on primary cancers and metastatic lesions. In addition to drug delivery, the EDA and EDB domains of fibronectin have also been utilized to develop imaging strategies for tumor tissues. Furthermore, EDA and EDB based vaccines seem to be promising for the treatment and prevention of certain cancer types. In this review, we will summarize recent advances in fibronectin EDA and EDB-based therapeutic strategies developed to treat cancer.
Collapse
|
117
|
Filipova D, Walter AM, Gaspar JA, Brunn A, Linde NF, Ardestani MA, Deckert M, Hescheler J, Pfitzer G, Sachinidis A, Papadopoulos S. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca(2+) release channel. Sci Rep 2016; 6:20050. [PMID: 26831464 PMCID: PMC4735524 DOI: 10.1038/srep20050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
In mature skeletal muscle, the intracellular Ca2+ concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca2+ release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1’s potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca2+ signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca2+ signaling during muscle organ development.
Collapse
Affiliation(s)
- Dilyana Filipova
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Anna M Walter
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - John A Gaspar
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Anna Brunn
- Department of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Nina F Linde
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Mostafa A Ardestani
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Martina Deckert
- Department of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Gabriele Pfitzer
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Symeon Papadopoulos
- Center of Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty of the University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| |
Collapse
|
118
|
Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol 2016; 91:228-37. [PMID: 26778458 DOI: 10.1016/j.yjmcc.2016.01.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) is a complex and dynamic scaffold that maintains tissue structure and dynamics. However, the view of the ECM as an inert architectural support has been increasingly challenged. The ECM is a vibrant meshwork, a crucial organizer of cellular microenvironments. It plays a direct role in cellular interactions regulating cell growth, survival, spreading, proliferation, differentiation and migration through the intricate relationship among cellular and acellular tissue components. This complex interrelationship preserves cardiac function during homeostasis; however it is also responsible for pathologic remodeling following myocardial injury. Therefore, enhancing our understanding of this cross-talk may provide mechanistic insights into the pathogenesis of heart failure and suggest new approaches to novel, targeted pharmacologic therapies. This review explores the implications of ECM-cell interactions in myocardial cell behavior and cardiac function at baseline and following myocardial injury.
Collapse
|
119
|
Schmidt JG, Andersen EW, Ersbøll BK, Nielsen ME. Muscle wound healing in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2016; 48:273-284. [PMID: 26702558 DOI: 10.1016/j.fsi.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to bathing in an immunomodulatory β-glucan product during wound healing, but found this to have very limited effect on wound healing in contrast to a previously published study on common carp.
Collapse
Affiliation(s)
- J G Schmidt
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1970 Frederiksberg, Denmark.
| | - E W Andersen
- Technical University of Denmark, Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Matematiktorvet, Building 324, DK-2800 Kgs. Lyngby, Denmark
| | - B K Ersbøll
- Technical University of Denmark, Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Matematiktorvet, Building 324, DK-2800 Kgs. Lyngby, Denmark
| | - M E Nielsen
- Leo Pharma A/S, Industriparken 55, DK-2750 Ballerup, Denmark
| |
Collapse
|
120
|
Rush MN, Coombs KE, Hedberg-Dirk EL. Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta Biomater 2015; 28:76-85. [PMID: 26428193 DOI: 10.1016/j.actbio.2015.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Abstract
The primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into a diseased phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood. This study isolates the effect of substrate surface chemistry on in vitro VIC differentiation and calcified tissue formation. Using ω-functionalized alkanethiol self-assembled monolayers (SAMs) on gold [CH3 (hydrophobic), OH (hydrophilic), COOH (COO(-), negative at physiological pH), and NH2 (NH3(+), positive at physiological pH)], we have demonstrated that surface chemistry modulates VIC phenotype and calcified tissue deposition independent of osteoblastic-inducing media additives. Over seven days VICs exhibited surface-dependent differences in cell proliferation (COO(-)=NH3(+)>OH>CH3), morphology, and osteoblastic potential. Both NH3(+)and CH3-terminated SAMs promoted calcified tissue formation while COO(-)-terminated SAMs showed no calcification. VICs on NH3(+)-SAMs exhibited the most osteoblastic phenotypic markers through robust nodule formation, up-regulated osteocalcin and α-smooth muscle actin expression, and adoption of a round/rhomboid morphology indicative of osteoblastic differentiation. With the slowest proliferation, VICs on CH3-SAMs promoted calcified aggregate formation through cell detachment and increased cell death indicative of dystrophic calcification. Furthermore, induction of calcified tissue deposition on NH3(+) and CH3-SAMs was distinctly different than that of media induced osteoblastic VICs. These results demonstrate that substrate surface chemistry alters VIC behavior and plays an important role in calcified tissue formation. In addition, we have identified two novel methods of calcified VIC induction in vitro. Further study of these environments may yield new models for in vitro testing of therapeutics for calcified valve stenosis, although additional studies need to be conducted to correlate results to in vivo models. STATEMENT OF SIGNIFICANCE Valvular interstitial cell (VIC) differentiation and aortic valve calcification is associated with increased risk of mortality and onset of other cardiovascular disorders. This research examines effects of in vitro substrate surface chemistry on VIC differentiation and has led to the identification of two materials-based initiation mechanisms of osteoblastic-like calcified tissue formation independent of soluble signaling methods. Such findings are important for their potential to study signaling cascades responsible for valvular heart disease initiation and progression as well providing in vitro disease models for drug development. We have also identified a VIC activating in vitro environment that does not exhibit confluence induced nodule formation with promise for the development of tissue regenerating scaffolds.
Collapse
|
121
|
Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal 2015; 9:309-25. [PMID: 26449569 DOI: 10.1007/s12079-015-0307-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Fibrillins constitute the backbone of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Mutations in fibrillins are associated with a wide range of connective tissue disorders, the most common is Marfan syndrome. Microfibrils are on one hand important for structural stability in some tissues. On the other hand, microfibrils are increasingly recognized as critical mediators and drivers of cellular signaling. This review focuses on the signaling mechanisms initiated by fibrillins and microfibrils, which are often dysregulated in fibrillin-associated disorders. Fibrillins regulate the storage and bioavailability of growth factors of the TGF-β superfamily. Cells sense microfibrils through integrins and other receptors. Fibrillins potently regulate pathways of the immune response, inflammation and tissue homeostasis. Emerging evidence show the involvement of microRNAs in disorders caused by fibrillin deficiency. A thorough understanding of fibrillin-mediated cell signaling pathways will provide important new leads for therapeutic approaches of the underlying disorders.
Collapse
|
122
|
Papke CL, Tsunezumi J, Ringuette LJ, Nagaoka H, Terajima M, Yamashiro Y, Urquhart G, Yamauchi M, Davis EC, Yanagisawa H. Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations. Hum Mol Genet 2015. [PMID: 26220971 DOI: 10.1093/hmg/ddv308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Tsunezumi
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Léa-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hideaki Nagaoka
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Masahiko Terajima
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Yoshito Yamashiro
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA, Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Greg Urquhart
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitsuo Yamauchi
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA, Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
123
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
124
|
Rabkin SW. Accentuating and Opposing Factors Leading to Development of Thoracic Aortic Aneurysms Not Due to Genetic or Inherited Conditions. Front Cardiovasc Med 2015; 2:21. [PMID: 26664893 PMCID: PMC4671360 DOI: 10.3389/fcvm.2015.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding and unraveling the pathophysiology of thoracic aortic aneurysm (TAA), a vascular disease with a potentially high-mortality rate, is one of the next frontiers in vascular biology. The processes leading to the formation of TAA, of unknown cause, so-called degenerative TAA, are complex. This review advances the concept of promoters and inhibitors of the development of degenerative TAA. Promoters of TAA development include age, blood pressure elevation, increased pulse pressure, neurohumeral factors increasing blood pressure, inflammation specifically IFN-γ, IL-1 β, IL-6, TNF-α, and S100 A12; the coagulation system specifically plasmin, platelets, and thrombin as well as matrix metalloproteinases (MMPs). SMAD-2 signaling and specific microRNAs modulate TAA development. The major inhibitors or factors opposing TAA development are the constituents of the aortic wall (elastic lamellae, collagen, fibulins, fibronectin, proteoglycans, and vascular smooth muscle cells), which maintain normal aortic dimensions in the face of aortic wall stress, specific tissue MMP inhibitors, plasminogen activator inhibitor-1, protease nexin-1, and Syndecans. Increases in promoters and reductions in inhibitors expand the thoracic aorta leading to TAA formation.
Collapse
Affiliation(s)
- Simon W Rabkin
- Division of Cardiology, Department of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
125
|
Kim DJ, Christofidou ED, Keene DR, Hassan Milde M, Adams JC. Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix. Mol Biol Cell 2015; 26:2640-54. [PMID: 25995382 PMCID: PMC4501361 DOI: 10.1091/mbc.e14-05-0996] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/12/2015] [Indexed: 02/01/2023] Open
Abstract
A novel mechanism of intermolecular interactions in trans is identified by which thrombospondin molecules accumulate as puncta within the extracellular matrix. This process depends on a novel, conserved, surface-exposed site on the thrombospondin L-type lectin domain. Thrombospondins participate in many aspects of tissue organization in adult tissue homeostasis, and their dysregulation contributes to pathological processes such as fibrosis and tumor progression. The incorporation of thrombospondins into extracellular matrix (ECM) as discrete puncta has been documented in various tissue and cell biological contexts, yet the underlying mechanisms remain poorly understood. We find that collagen fibrils are disorganized in multiple tissues of Thbs1−/− mice. In investigating how thrombospondins become retained within ECM and thereby affect ECM organization, we find that accumulation of thrombospondin-1 or thrombospondin-5 puncta within cell-derived ECM is controlled by a novel, conserved, surface-exposed site on the thrombospondin L-type lectin domain. This site acts to recruit thrombospondin molecules into ECM by intermolecular interactions in trans. This mechanism is fibronectin independent, can take place extracellularly, and is demonstrated to be direct in vitro. The trans intermolecular interactions can also be heterotypic—for example, between thrombospondin-1 and thrombospondin-5. These data identify a novel concept of concentration-dependent, intermolecular “matrix trapping” as a conserved mechanism that controls the accumulation and thereby the functionality of thrombospondins in ECM.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | | | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239
| | - Marwah Hassan Milde
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195 School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
126
|
Hubmacher D, Apte SS. ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol 2015; 47:34-43. [PMID: 25957949 DOI: 10.1016/j.matbio.2015.05.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
Abstract
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin-type 1 motifs) protein superfamily includes 19 secreted metalloproteases and 7 secreted ADAMTS-like (ADAMTSL) glycoproteins. The possibility of functional linkage between ADAMTS proteins and fibrillin microfibrils was first revealed by a human genetic consilience, in which mutations in ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 were found to phenocopy rare genetic disorders caused by mutations affecting fibrillin-1 (FBN1), the major microfibril component in adults. The manifestations of these ADAMTS gene disorders in humans and animals suggested that they participated in the structural and regulatory roles of microfibrils. Whereas two such disorders, Weill-Marchesani syndrome 1 and Weill-Marchesani-like syndrome involve proteases (ADAMTS10 and ADAMTS17, respectively), geleophysic dysplasia and isolated ectopia lentis in humans involve ADAMTSL2 and ADAMTSL4, respectively, which are not proteases. In addition to broadly similar dysmorphology, individuals affected by Weill-Marchesani syndrome 1, Weill-Marchesani-like syndrome or geleophysic dysplasia each show characteristic anomalies suggesting molecule-, tissue-, or context-specific functions for the respective ADAMTS proteins. Ectopia lentis occurs in each of these conditions except geleophysic dysplasia, and is due to a defect in the ciliary zonule, which is predominantly composed of FBN1 microfibrils. Together, this strongly suggests that ADAMTS proteins are involved either in microfibril assembly, stability, and anchorage, or the formation of function-specific supramolecular networks having microfibrils as their foundation. Here, the genetics and molecular biology of this subset of ADAMTS proteins is discussed from the perspective of how they might contribute to fully functional or function-specific microfibrils.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
127
|
Hubmacher D, Wang LW, Mecham RP, Reinhardt DP, Apte SS. Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia--a novel mouse model providing insights into geleophysic dysplasia. Dis Model Mech 2015; 8:487-99. [PMID: 25762570 PMCID: PMC4415891 DOI: 10.1242/dmm.017046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/05/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in the secreted glycoprotein ADAMTSL2 cause recessive geleophysic dysplasia (GD) in humans and Musladin–Lueke syndrome (MLS) in dogs. GD is a severe, often lethal, condition presenting with short stature, brachydactyly, stiff skin, joint contractures, tracheal-bronchial stenosis and cardiac valve anomalies, whereas MLS is non-lethal and characterized by short stature and severe skin fibrosis. Although most mutations in fibrillin-1 (FBN1) cause Marfan syndrome (MFS), a microfibril disorder leading to transforming growth factor-β (TGFβ) dysregulation, domain-specific FBN1 mutations result in dominant GD. ADAMTSL2 has been previously shown to bind FBN1 and latent TGFβ-binding protein-1 (LTBP1). Here, we investigated mice with targeted Adamtsl2 inactivation as a new model for GD (Adamtsl2−/− mice). An intragenic lacZ reporter in these mice showed that ADAMTSL2 was produced exclusively by bronchial smooth muscle cells during embryonic lung development. Adamtsl2−/− mice, which died at birth, had severe bronchial epithelial dysplasia with abnormal glycogen-rich inclusions in bronchial epithelium resembling the cellular anomalies described previously in GD. An increase in microfibrils in the bronchial wall was associated with increased FBN2 and microfibril-associated glycoprotein-1 (MAGP1) staining, whereas LTBP1 staining was increased in bronchial epithelium. ADAMTSL2 was shown to bind directly to FBN2 with an affinity comparable to FBN1. The observed extracellular matrix (ECM) alterations were associated with increased bronchial epithelial TGFβ signaling at 17.5 days of gestation; however, treatment with TGFβ-neutralizing antibody did not correct the epithelial dysplasia. These investigations reveal a new function of ADAMTSL2 in modulating microfibril formation, and a previously unsuspected association with FBN2. Our studies suggest that the bronchial epithelial dysplasia accompanying microfibril dysregulation in Adamtsl2−/− mice cannot be reversed by TGFβ neutralization, and thus might be mediated by other mechanisms. Summary: The extracellular protein ADAMTSL2 is a crucial regulator of microfibril composition in the extracellular matrix of bronchial smooth muscle cells and influences bronchial epithelial function.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 0C7
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
128
|
Cui C, Kaartinen MT. Serotonin (5-HT) inhibits Factor XIII-A-mediated plasma fibronectin matrix assembly and crosslinking in osteoblast cultures via direct competition with transamidation. Bone 2015; 72:43-52. [PMID: 25460579 DOI: 10.1016/j.bone.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 01/24/2023]
Abstract
Serotonin (5-HT)--a monoamine with a variety of physiological functions--has recently emerged as a major regulator of bone mass. 5-HT is synthesized in the brain and the gut, and gut-derived 5-HT contributes to circulating 5-HT levels and is a negative modulator of bone mass and quality. 5-HT's negative effects on the skeleton are considered to be mediated via its receptors and transporter in osteoblasts and osteoclasts; however, 5-HT can also incorporate covalently into proteins via a transglutaminase-mediated serotonylation reaction, which in turn can alter protein function. Plasma fibronectin (pFN)--a major component of the bone extracellular matrix that regulates bone matrix quality in vivo--is a major transglutaminase substrate in bone and in osteoblast cultures. We have recently demonstrated that pFN assembly into osteoblast culture matrix requires a Factor XIII-A (FXIII-A) transglutaminase-mediated crosslinking step that regulates both quantity and quality of type I collagen matrix in vitro. In this study, we show that 5-HT interferes with pFN assembly into the extracellular matrix in osteoblast cultures, which in turn has major consequences on matrix assembly and mineralization. 5-HT treatment of MC3T3-E1 osteoblast cultures dramatically decreased both pFN fibrillogenesis as analyzed by immunofluorescence microscopy and pFN levels in DOC-soluble and DOC-insoluble matrix fractions. This was accompanied by an increase in pFN levels in the culture media. Analysis of the media showed covalent incorporation of 5-HT into pFN. Minor co-localization of pFN with 5-HT was also seen in extracellular fibrils. 5-HT also showed co-localization with FXIII-A on the cell surface and inhibited its transamidation activity directly. 5-HT treatment of osteoblast cultures resulted in a discontinuous pFN matrix and impaired type I collagen deposition, decreased alkaline phosphatase and lysyl oxidase activity, and delayed mineralization of the cultures. Addition of excess exogenous pFN to cultures treated with 5-HT resulted in a significant rescue of pFN fibrillogenesis as well as type I collagen deposition and mineralization. In summary, our study presents a novel mechanism on how increased peripheral extracellular 5-HT levels might contribute to the weakening of bone by directly affecting the stabilization of extracellular matrix networks.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
129
|
Torr EE, Ngam CR, Bernau K, Tomasini-Johansson B, Acton B, Sandbo N. Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem 2015; 290:6951-61. [PMID: 25627685 DOI: 10.1074/jbc.m114.606186] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts have increased expression of contractile proteins and display augmented contractility. It is not known if the augmented contractile gene expression characterizing the myofibroblast phenotype impacts its intrinsic ability to assemble fibronectin (FN) and extracellular matrix. In this study we investigated whether myofibroblasts displayed increased rates of FN fibril assembly when compared with their undifferentiated counterparts. Freshly plated myofibroblasts assemble exogenous FN (488-FN) into a fibrillar matrix more rapidly than fibroblasts that have not undergone myofibroblast differentiation. The augmented rate of FN matrix formation by myofibroblasts was dependent on intact Rho/Rho kinase (ROCK) and myosin signals inasmuch as treatment with Y27632 or blebbistatin attenuated 488-FN assembly. Inhibiting contractile gene expression by pharmacologic disruption of the transcription factors megakaryoblastic leukemia-1 (MKL1)/serum response factor (SRF) during myofibroblast differentiation resulted in decreased contractile force generation and attenuated 488-FN incorporation although not FN expression. Furthermore, disruption of the MKL1/SRF target gene, smooth muscle α-actin (α-SMA) via siRNA knockdown resulted in attenuation of 488-FN assembly. In conclusion, this study demonstrates a linkage between increased contractile gene expression, most importantly α-SMA, and the intrinsic capacity of myofibroblasts to assemble exogenous FN into fibrillar extracellular matrix.
Collapse
Affiliation(s)
| | | | | | - Bianca Tomasini-Johansson
- Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53792
| | | | | |
Collapse
|
130
|
Binding of MAGP2 to microfibrils is regulated by proprotein convertase cleavage. Matrix Biol 2014; 40:27-33. [DOI: 10.1016/j.matbio.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
|
131
|
Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. ACTA ACUST UNITED AC 2014; 207:283-97. [PMID: 25332161 PMCID: PMC4210443 DOI: 10.1083/jcb.201402006] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A mild strain induced by matrix remodeling mechanically primes latent TGF-β1 for its subsequent activation and release in response to contractile forces. Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.
Collapse
Affiliation(s)
- Franco Klingberg
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Melissa L Chow
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Anne Koehler
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas M Quinn
- Soft Tissue Biophysics Laboratory, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Mercedes Costell
- Laboratory of Extracellular Matrix Proteins, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of València, 46100 València, Spain
| | - Benjamin A Alman
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Elisabeth Genot
- Centre Cardiothoracique de Bordeaux, U1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
132
|
Flintoff KA, Arudchelvan Y, Gong SG. FLRT2 interacts with fibronectin in the ATDC5 chondroprogenitor cells. J Cell Physiol 2014; 229:1538-47. [PMID: 24585683 DOI: 10.1002/jcp.24597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
Expression studies have implicated FLRT2 in cranial neural crest cell migration and prechondrogenic cell condensation during craniofacial skeletogenesis. We aimed to determine whether FLRT2 was involved in mediating cell-matrix interactions in the ATDC5 chondroprogenitor cell line. Immunolocalization experiments of ATDC5 cells revealed that FLRT2 was present on the cell membrane as well as extracellularly, where it colocalized with Fibronectin (Fn). After cell extraction of the matrix, FLRT2 was identified in the ATDC5-derived extracellular matrix (ECM) and was further found to be associated with Fn-coated beads in cell cultures. Blockage of Fn fibril formation via a blocking peptide resulted in a concomitant decrease in extracellular FLRT2 accumulation. Over a 7-day period following the replenishment of the Fn blocking peptide to the cultures, there was a partial rebound in Fn fibril formation that was accompanied by a concomitant reappearance of FLRT2 co-expression. Co-immunoprecipitation confirmed that FLRT2 and Fn interacted, either directly or indirectly. Immunoprecipitation and Western blot analyses with antibodies recognizing epitopes located on the extra- and intracellular domains of FLRT2 further revealed the presence of different sized bands, suggesting that FLRT2 may exist in both membrane-bound and shed forms. Our data therefore provide evidence that FLRT2 and/or its cleavage products may be cooperating with Fn and other ECM proteins to regulate critical cellular events. Further studies will be necessary in delineate more precisely the roles of FLRT2 in mediating cell- and cell-matrix interactions during normal development.
Collapse
Affiliation(s)
- K A Flintoff
- Department of Orthodontics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
133
|
Sabatier L, Djokic J, Hubmacher D, Dzafik D, Nelea V, Reinhardt DP. Heparin/heparan sulfate controls fibrillin-1, -2 and -3 self-interactions in microfibril assembly. FEBS Lett 2014; 588:2890-7. [DOI: 10.1016/j.febslet.2014.06.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/05/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
134
|
C-terminal propeptide is required for fibrillin-1 secretion and blocks premature assembly through linkage to domains cbEGF41-43. Proc Natl Acad Sci U S A 2014; 111:10155-60. [PMID: 24982166 DOI: 10.1073/pnas.1401697111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fibrillin microfibrils are 10-12 nm diameter, extracellular matrix assemblies that provide dynamic tissues of metazoan species with many of their biomechanical properties as well as sequestering growth factors and cytokines. Assembly of fibrillin monomers into microfibrils is thought to occur at the cell surface, with initial steps including proprotein processing, multimerization driven by the C terminus, and the head-to-tail alignment of adjacent molecules. At present the mechanisms that regulate microfibril assembly are still to be elucidated. We have used structure-informed protein engineering to create a recombinant, GFP-tagged version of fibrillin-1 (GFP-Fbn) to study this process. Using HEK293T cells transiently transfected with GFP-Fbn constructs, we show that (i) the C-terminal propeptide is an essential requirement for the secretion of full-length fibrillin-1 from cells; (ii) failure to cleave off the C-terminal propeptide blocks the assembly of fibrillin-1 into microfibrils produced by dermal fibroblasts; and (iii) the requirement of the propeptide for secretion is linked to the presence of domains cbEGF41-43, because either deletion or exchange of domains in this region leads to cellular retention. Collectively, these data suggest a mechanism in which the propeptide blocks a key site at the C terminus to prevent premature microfibril assembly.
Collapse
|
135
|
Muiznieks LD, Cirulis JT, van der Horst A, Reinhardt DP, Wuite GJ, Pomès R, Keeley FW. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin. Matrix Biol 2014; 36:39-50. [DOI: 10.1016/j.matbio.2014.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/25/2022]
|
136
|
Hubmacher D, Bergeron E, Fagotto-Kaufmann C, Sakai LY, Reinhardt DP. Early fibrillin-1 assembly monitored through a modifiable recombinant cell approach. Biomacromolecules 2014; 15:1456-68. [PMID: 24559401 PMCID: PMC4961472 DOI: 10.1021/bm5000696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrillin proteins constitute the backbone of extra-cellular macromolecular microfibrils. Mutations in fibrillins cause heritable connective tissue disorders, including Marfan syndrome, dominant Weill-Marchesani syndrome, and stiff skin syndrome. Fibronectin provides a critical scaffold for microfibril assembly in cell culture models. Full length recombinant fibrillin-1 was expressed by HEK 293 cells, which deposited the secreted protein in a punctate pattern on the cell surface. Cocultured fibroblasts consistently triggered assembly of recombinant fibrillin-1, which was dependent on a fibronectin network formed by the fibroblasts. Deposition of recombinant fibrillin-1 on fibronectin fibers occurred first in discrete packages that subsequently extended along fibronectin fibers. Mutant fibrillin-1 harboring either a cysteine 204 to serine mutation or a RGD to RGA mutation which prevents integrin binding, did not affect fibrillin-1 assembly. In conclusion, we developed a modifiable recombinant full-length fibrillin-1 assembly system that allows for rapid analysis of critical roles in fibrillin assembly and functionality. This system can be used to study the contributions of specific residues, domains, or regions of fibrillin-1 to the biogenesis and functionality of microfibrils. It provides also a method to evaluate disease-causing mutations, and to produce microfibril-containing matrices for tissue engineering applications, for example, in designing novel vascular grafts or stents.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC H3A 0C7, Canada
| | - Eric Bergeron
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC H3A 0C7, Canada
| | - Christine Fagotto-Kaufmann
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC H3A 0C7, Canada
| | - Lynn Y. Sakai
- Research Unit, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Dieter P. Reinhardt
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
137
|
Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies. Atherosclerosis 2014; 233:590-600. [DOI: 10.1016/j.atherosclerosis.2014.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 02/01/2023]
|
138
|
Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 2014; 37:142-9. [PMID: 24613575 DOI: 10.1016/j.matbio.2014.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein-protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5(-/-)) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4(-/-)) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|
139
|
Kuchtey J, Kuchtey RW. The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure. J Ocul Pharmacol Ther 2014; 30:170-80. [PMID: 24521159 DOI: 10.1089/jop.2013.0184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microfibrils are macromolecular aggregates located in the extracellular matrix of both elastic and nonelastic tissues that have essential functions in formation of elastic fibers and control of signaling through the transforming growth factor beta (TGFβ) family of cytokines. Elevation of systemic TGFβ and chronic activation of TGFβ signal transduction are associated with diseases caused by mutations in microfibril-associated genes, including FBN1. A role for microfibrils in glaucoma is suggested by identification of risk alleles in LOXL1 for exfoliation glaucoma and mutations in LTBP2 for primary congenital glaucoma, both of which are microfibril-associated genes. Recent identification of a mutation in another microfibril-associated gene, ADAMTS10, in a dog model of primary open-angle glaucoma led us to form the microfibril hypothesis of glaucoma, which in general states that defective microfibrils may be an underlying cause of glaucoma. Microfibril defects could contribute to glaucoma through alterations in biomechanical properties of tissue and/or through effects on signaling through TGFβ, which is well established to be elevated in the aqueous humor of glaucoma patients. Recent work has shown that diseases caused by microfibril defects are associated with increased concentrations of TGFβ protein and chronic activation of TGFβ-mediated signal transduction. In analogy with other microfibril-related diseases, defective microfibrils could provide a mechanism for the elevation of TGFβ2 in glaucomatous aqueous humor. If glaucoma shares mechanisms with other diseases caused by defective microfibrils, such as Marfan syndrome, therapeutic interventions to inhibit chronic activation of TGFβ signaling used in those diseases may be applied to glaucoma.
Collapse
Affiliation(s)
- John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University , Nashville, Tennessee
| | | |
Collapse
|
140
|
Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures. Bone 2014; 59:127-38. [PMID: 24246248 DOI: 10.1016/j.bone.2013.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
Abstract
Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis using EDA-FN blocking antibody showed that it regulated preosteoblast proliferation whereas pFN depletion from the serum had no effect on this process. In conclusion, our study shows that pFN assembly into bone matrix in vitro requires FXIIIA transglutaminase activity making pFN assembly an active, osteoblast-mediated process.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Shuai Wang
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Kiyotaka Hitomi
- Department of Applied Molecular Biosciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
141
|
Abstract
Fibrillins constitute the backbone of extracellular multifunctional assemblies present in elastic and non-elastic matrices, termed microfibrils. Assembly of fibrillins into microfibrils and their homoeostasis is poorly understood and is often compromised in connective tissue disorders such as Marfan syndrome and other fibrillinopathies. Using interaction mapping studies, we demonstrate that fibrillins require the complete gelatin-binding region of fibronectin for interaction, which comprises domains FNI6-FNI9. However, the interaction of fibrillin-1 with the gelatin-binding domain of fibronectin is not involved in fibrillin-1 network assembly mediated by human skin fibroblasts. We show further that the fibronectin network is essential for microfibril homoeostasis in early stages. Fibronectin is present in extracted mature microfibrils from tissue and cells as well as in some in situ microfibrils observed at the ultrastructural level, indicating an extended mechanism for the involvement of fibronectin in microfibril assembly and maturation.
Collapse
|
142
|
Beene LC, Wang LW, Hubmacher D, Keene DR, Reinhardt DP, Annis DS, Mosher DF, Mecham RP, Traboulsi EI, Apte SS. Nonselective assembly of fibrillin 1 and fibrillin 2 in the rodent ocular zonule and in cultured cells: implications for Marfan syndrome. Invest Ophthalmol Vis Sci 2013; 54:8337-44. [PMID: 24265020 DOI: 10.1167/iovs.13-13121] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Fibrillins are the major constituent of tissue microfibrils, which form the ocular zonule. In Marfan syndrome (MFS), FBN1 mutations lead to ectopia lentis. The goal of this work was to investigate zonule composition and formation in fibrillin-deficient and wild-type mice. METHODS Immunofluorescence staining of eyes from wild-type, Fbn1-deficient, and Fbn2-deficient mice, as well as other species, was performed using monospecific fibrillin 1 and fibrillin 2 antibodies. The zonule of Fbn1-deficient and Fbn2-deficient mice was studied by electron microscopy. Microfibril formation in vitro was evaluated by immunofluorescence microscopy of cultured nonpigmented ciliary epithelial cells and fibroblasts. RESULTS A zonule was present in both Fbn1-deficient and Fbn2-deficient mouse eyes. Immunofluorescence demonstrated that the zonule of Fbn1-deficient mice, wild-type mice, rats, and hamsters contained fibrillin 2. The zonule of Fbn2(-/-) mice contained fibrillin 1. Fibrillin 1 and fibrillin 2 colocalized in microfibrils formed in human nonpigmented ciliary epithelium cultures. Like fibrillin 1, fibrillin 2 microfibril assembly was fibronectin dependent and initiated by cell surface punctate deposits that elongated to form microfibrils. CONCLUSIONS These data suggest that fibrillin 1 assembly and fibrillin 2 assembly share similar mechanisms. Microfibril composition depends substantially on the local levels of fibrillin isoforms and is not highly selective in regard to the isoform. This raises the intriguing possibility that the zonule could be strengthened in MFS by inducing fibrillin 2 expression in ciliary epithelium. The presence of fibrillin 2 in the murine zonule and an intact zonule in Fbn1-knockout mice may limit the utility of rodent models for studying ectopia lentis in MFS.
Collapse
Affiliation(s)
- Lauren C Beene
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CLR, Kielty CM. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci 2013; 127:158-71. [PMID: 24190885 PMCID: PMC3874785 DOI: 10.1242/jcs.134270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here, we show that epithelial–mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell–cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial–mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial–mesenchymal status modulates microfibril deposition.
Collapse
Affiliation(s)
- Andrew K Baldwin
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
144
|
Sideek MA, Menz C, Parsi MK, Gibson MA. LTBP-2 competes with tropoelastin for binding to fibulin-5 and heparin, and is a negative modulator of elastinogenesis. Matrix Biol 2013; 34:114-23. [PMID: 24148803 DOI: 10.1016/j.matbio.2013.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of ill-defined function associated with elastic fibers during elastinogenesis. Although LTBP-2 binds fibrillin-1, fibulin-5, and heparin/heparan sulfate, molecules critical for normal elastic fiber assembly, it does not interact directly with elastin or its precursor, tropoelastin. We investigated the modulating effect of LTBP-2 on two key interactions of tropoelastin during elastinogenesis a) with fibulin-5 and b) with heparan sulfate (using heparin). Firstly, using solid phase assays we showed that LTBP-2 bound fibulin-5 (Kd=26.47±5.68 nM) with an affinity similar to that of the tropoelastin-fibulin-5 interaction (Kd=24.66±5.64 nM). Then using a competitive binding assay we showed that LTBP-2 inhibited the tropoelastin-fibulin-5 interaction in a dose dependent manner with almost complete inhibition obtained with 5-fold molar excess of LTBP-2. Interestingly, a fragment of LTBP-2 containing the fibulin-5 binding sequence only partially inhibited the tropoelasin-fibulin-5 interaction suggesting that LTBP-2 was directly blocking only the C-terminal tropoelastin binding site on fibulin-5 and indirectly blocking tropoelastin binding to the N-terminal region. In parallel experiments heparin was shown to have minor inhibitory effects on fibulin-5 interactions with tropoelastin and LTBP-2. However, LTBP-2 was shown to significantly inhibit the binding of heparin to tropoelastin with 50% inhibition achieved with 10 fold molar excess of LTBP-2. Confocal microscopy of fibroblast matrix showed strong co-distribution of LTBP-2 with fibulin-5 and fibrillin-1 and partial co-distribution with heparan sulfate proteoglycans, perlecan and syndecan-4. Also addition of exogenous LTBP-2 to ear cartilage chondrocyte cultures blocked elastinogenesis in a concentration-dependent manner. Overall the results indicate that LTBP-2 may have a negative regulatory role during elastic fiber assembly, perhaps in displacing elastin microassemblies from complexes with fibulin-5 and/or cell surface heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Mohamed A Sideek
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Clementine Menz
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mahroo K Parsi
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark A Gibson
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
145
|
Abstract
Elastic fibres are insoluble components of the extracellular matrix of dynamic connective tissues such as skin, arteries, lungs and ligaments. They are laid down during development, and comprise a cross-linked elastin core within a template of fibrillin-based microfibrils. Their function is to endow tissues with the property of elastic recoil, and they also regulate the bioavailability of transforming growth factor β. Severe heritable elastic fibre diseases are caused by mutations in elastic fibre components; for example, mutations in elastin cause supravalvular aortic stenosis and autosomal dominant cutis laxa, mutations in fibrillin-1 cause Marfan syndrome and Weill–Marchesani syndrome, and mutations in fibulins-4 and -5 cause autosomal recessive cutis laxa. Acquired elastic fibre defects include dermal elastosis, whereas inflammatory damage to fibres contributes to pathologies such as pulmonary emphysema and vascular disease. This review outlines the latest understanding of the composition and assembly of elastic fibres, and describes elastic fibre diseases and current therapeutic approaches.
Collapse
|
146
|
Grigorescu S, Hindié M, Axente E, Carreiras F, Anselme K, Werckmann J, Mihailescu IN, Gallet O. Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1809-1821. [PMID: 23615786 DOI: 10.1007/s10856-013-4927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/06/2013] [Indexed: 06/02/2023]
Abstract
Laser direct write techniques represent a prospective alternative for engineering a new generation of hybrid biomaterials via the creation of patterns consisting of biological proteins onto practically any type of substrate. In this paper we report on the characterization of fibronectin features obtained onto titanium substrates by UV nanosecond laser transfer. Fourier-transform infrared spectroscopy measurements evidenced no modification in the secondary structure of the post-transferred protein. The molecular weight of the transferred protein was identical to the initial fibronectin, no fragment bands being found in the transferred protein's Western blot migration profile. The presence of the cell-binding domain sequence and the mannose groups within the transferred molecules was revealed by anti-fibronectin monoclonal antibody immunolabelling and FITC-Concanavalin-A staining, respectively. The in vitro tests performed with MC3T3-E1 osteoblast-like cells and Swiss-3T3 fibroblasts showed that the cells' morphology and spreading were strongly influenced by the presence of the fibronectin spots.
Collapse
Affiliation(s)
- S Grigorescu
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Av. Adolphe Chauvin, 95302, Cergy Pontoise, France.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Votteler M, Berrio DAC, Horke A, Sabatier L, Reinhardt DP, Nsair A, Aikawa E, Schenke-Layland K. Elastogenesis at the onset of human cardiac valve development. Development 2013; 140:2345-53. [PMID: 23637335 PMCID: PMC3912871 DOI: 10.1242/dev.093500] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semilunar valve leaflets have a well-described trilaminar histoarchitecture, with a sophisticated elastic fiber network. It was previously proposed that elastin-containing fibers play a subordinate role in early human cardiac valve development; however, this assumption was based on data obtained from mouse models and human second and third trimester tissues. Here, we systematically analyzed tissues from human fetal first (4-12 weeks) and second (13-18 weeks) trimester, adolescent (14-19 years) and adult (50-55 years) hearts to monitor the temporal and spatial distribution of elastic fibers, focusing on semilunar valves. Global expression analyses revealed that the transcription of genes essential for elastic fiber formation starts early within the first trimester. These data were confirmed by quantitative PCR and immunohistochemistry employing antibodies that recognize fibronectin, fibrillin 1, 2 and 3, EMILIN1 and fibulin 4 and 5, which were all expressed at the onset of cardiac cushion formation (~week 4 of development). Tropoelastin/elastin protein expression was first detectable in leaflets of 7-week hearts. We revealed that immature elastic fibers are organized in early human cardiovascular development and that mature elastin-containing fibers first evolve in semilunar valves when blood pressure and heartbeat accelerate. Our findings provide a conceptual framework with the potential to offer novel insights into human cardiac valve development and disease.
Collapse
Affiliation(s)
- Miriam Votteler
- University Women's Hospital Tübingen and Inter-University Centre for Medical Technology Stuttgart-Tübingen (IZST), Eberhard Karls University, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Latent TGF-β binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc Natl Acad Sci U S A 2013; 110:2852-7. [PMID: 23382201 DOI: 10.1073/pnas.1215779110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Elastic fiber assembly requires deposition of elastin monomers onto microfibrils, the mechanism of which is incompletely understood. Here we show that latent TGF-β binding protein 4 (LTBP-4) potentiates formation of elastic fibers through interacting with fibulin-5, a tropoelastin-binding protein necessary for elastogenesis. Decreased expression of LTBP-4 in human dermal fibroblast cells by siRNA treatment abolished the linear deposition of fibulin-5 and tropoelastin on microfibrils. It is notable that the addition of recombinant LTBP-4 to cell culture medium promoted elastin deposition on microfibrils without changing the expression of elastic fiber components. This elastogenic property of LTBP-4 is independent of bound TGF-β because TGF-β-free recombinant LTBP-4 was as potent an elastogenic inducer as TGF-β-bound recombinant LTBP-4. Without LTBP-4, fibulin-5 and tropoelastin deposition was discontinuous and punctate in vitro and in vivo. These data suggest a unique function for LTBP-4 during elastic fibrogenesis, making it a potential therapeutic target for elastic fiber regeneration.
Collapse
|
149
|
Zilberberg L, Todorovic V, Dabovic B, Horiguchi M, Couroussé T, Sakai LY, Rifkin DB. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol 2012; 227:3828-36. [PMID: 22495824 DOI: 10.1002/jcp.24094] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrillin microfibrils are extracellular matrix structures with essential functions in the development and the organization of tissues including blood vessels, bone, limbs and the eye. Fibrillin-1 and fibrillin-2 form the core of fibrillin microfibrils, to which multiple proteins associate to form a highly organized structure. Defining the components of this structure and their interactions is crucial to understand the pathobiology of microfibrillopathies associated with mutations in fibrillins and in microfibril-associated molecules. In this study, we have analyzed both in vitro and in vivo the role of fibrillin microfibrils in the matrix deposition of latent TGF-β binding protein 1 (LTBP-1), -3 and -4; the three LTBPs that form a complex with TGF-β. In Fbn1(-/-) ascending aortas and lungs, LTBP-3 and LTBP-4 are not incorporated into a matrix lacking fibrillin-1 microfibrils, whereas LTBP-1 is still deposited. In addition, in cultures of Fbn1(-/-) smooth muscle cells or lung fibroblasts, LTBP-3 and LTBP-4 are not incorporated into a matrix lacking fibrillin-1 microfibrils, whereas LTBP-1 is still deposited. Fibrillin-2 is not involved in the deposition of LTBP-1 in Fbn1(-/-) extracellular matrix as cells deficient for both fibrillin-1 and fibrillin-2 still incorporate LTBP-1 in their matrix. However, blocking the formation of the fibronectin network in Fbn1(-/-) cells abrogates the deposition of LTBP-1. Together, these data indicate that LTBP-3 and LTBP-4 association with the matrix depends on fibrillin-1 microfibrils, whereas LTBP-1 association depends on a fibronectin network.
Collapse
Affiliation(s)
- Lior Zilberberg
- Department of Cell Biology, New York University Langone School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Roy DC, Hocking DC. Recombinant fibronectin matrix mimetics specify integrin adhesion and extracellular matrix assembly. Tissue Eng Part A 2012; 19:558-70. [PMID: 23020251 DOI: 10.1089/ten.tea.2012.0257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering seeks to create functional tissues and organs by integrating natural or synthetic scaffolds with bioactive factors and cells. Creating biologically active scaffolds that support key aspects of tissue regeneration, including the re-establishment of a functional extracellular matrix (ECM), is a challenge currently facing this field. During tissue repair, fibronectin is converted from an inactive soluble form into biologically active ECM fibrils through a cell-dependent process. ECM fibronectin promotes cell processes critical to tissue regeneration and regulates the deposition and organization of other ECM proteins. We previously developed biomimetics of ECM fibronectin by directly coupling the heparin-binding fragment of the first type III repeat of fibronectin (FNIII1H) to the integrin-binding repeats (FNIII8-10). As adhesive substrates, fibronectin matrix mimetics promote cell growth, migration, and contractility through a FNIII1H-dependent mechanism. Here, we analyzed fibronectin matrix mimetic variants designed to include all or part of the integrin-binding domain for their ability to support new ECM assembly. We found that specific modifications of the integrin-binding domain produced adhesive substrates that selectively engage different integrin receptors to, in turn, regulate the amount of fibronectin and collagen deposited into the ECM. The ability of fibronectin matrix mimetics to direct cell-substrate interactions and regulate ECM assembly makes them promising candidates for use as bioactive surfaces, where precise control over integrin-binding specificity and ECM deposition are required.
Collapse
Affiliation(s)
- Daniel C Roy
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|