101
|
Gawai T, Sadawarte S, Khandagale K, Raj A, Kulkarni A, Jaiswal DK, Ade AB, Gawande S. Phylogenetic and population genetic analyses of Thrips tabaci Lindeman (Thysanoptera: Thripidae) on Allium host in India. PeerJ 2024; 12:e17679. [PMID: 39011376 PMCID: PMC11249009 DOI: 10.7717/peerj.17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Background Onion thrips (Thrips tabaci) is a complex of cryptic species with subtle morphological differences and distinct genetic backgrounds; thus, species identification using traditional methods remains challenging. The existence of different haplotypes and genotypes within a species can significantly influence various aspects of its biology, including host preference, reproductive capacity, resistance to pesticides, and vector competence for plant viruses. Understanding the genetic diversity and population structure of cryptic species within T. tabaci will not only aid in the development of more effective control strategies tailored to specific genetic variants but also in monitoring population dynamics, tracking invasive species, and implementing quarantine measures to prevent the spread of economically damaging thrips biotypes. Methods This study aims to explore intraspecies genetic diversity and molecular evolutionary relationships of the mitochondrial cytochrome oxidase gene subunit I (mtCOI) in T. tabaci populations from India. To capture diversity within the Indian T. tabaci populations, amplicon sequencing was performed for the thrips mtCOI gene from eight diverse localities in India. A total of 48 sequences retrieved for the mtCOI gene from the NCBI Nucleotide database were analysed. Results Multiple insertions and deletions were detected at various genomic positions across the populations from different localities, with the highest variation observed in the 300-400 genome position range. Molecular diversity analyses identified 30 haplotypes within the population, with certain subpopulations exhibiting higher gene flow. Analysis of single nucleotide polymorphism patterns within the mtCOI gene across diverse Indian locales revealed significant intrapopulation genetic heterogeneity and its potential repercussions on gene functionality. Elevated F statistics (Fst) values in the northern-western subpopulations suggested high genetic variability, particularly evident in haplotype networks originating mainly from the northern region, notably Delhi. While most populations displayed stable and ancient evolutionary histories, thrips populations from northern, western, and north-eastern regions indicated rapid growth.
Collapse
Affiliation(s)
- Tushar Gawai
- ICAR-Directorate of Onion and Garlic Research, Pune, India
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Sharwari Sadawarte
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, India
| | | | - Anusha Raj
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Abhijeet Kulkarni
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, India
| | - Durgesh Kumar Jaiswal
- ICAR-Directorate of Onion and Garlic Research, Pune, India
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| |
Collapse
|
102
|
Bolshakov V, Prokin A, Ivanova E, Movergoz E. The first record of Chironomusnuditarsis Keyl, 1961 from Sevan Lake (Armenia) confirmed by morphology, karyotype and COI gene sequence. COMPARATIVE CYTOGENETICS 2024; 18:123-141. [PMID: 39045233 PMCID: PMC11263815 DOI: 10.3897/compcytogen.18.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
Chironomusnuditarsis Keyl, 1961 is recorded from Sevan Lake for the first time. This species is widespread in Europe, the Caucasus, and Siberia. For species identification, we used a comprehensive approach that included morphological, cytogenetic and molecular genetic analyses. Morphological analysis showed a high similarity with the description. Nine chromosome banding sequences ndtA1, ndtA2, ndtB2, ndtC1, ndtD1, ndtE1, ndtF1, ndtG1, and ndtG2 were found. The banding sequences ndtA1, ndtA2, ndtG1, and ndtG2 are species-specific for C.nuditarsis and allow us to accurately distinguish it from the sibling species Ch.curabilis Belyanina, Sigareva et Loginova, 1990. Molecular-genetic analysis of the COI gene sequences has shown low genetic distances of 0.38-0.95% in the sibling species Ch.nuditarsis and Ch.curabilis complex and the insufficiency of using a single COI as a molecular marker for their separation.
Collapse
Affiliation(s)
- Viktor Bolshakov
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Yaroslavl reg., Nekouz dist., Borok, 152742, RussiaRussian Academy of SciencesBorokRussia
| | - Alexander Prokin
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Yaroslavl reg., Nekouz dist., Borok, 152742, RussiaRussian Academy of SciencesBorokRussia
| | - Elena Ivanova
- Cherepovets State University, Lunacharski 5, Cherepovets 162600, RussiaCherepovets State UniversityCherepovetsRussia
| | - Ekaterina Movergoz
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Yaroslavl reg., Nekouz dist., Borok, 152742, RussiaRussian Academy of SciencesBorokRussia
| |
Collapse
|
103
|
Alawfi MS, Alzahrani DA, Albokhari EJ. Complete plastome genomes of three medicinal heliotropiaceae species: comparative analyses and phylogenetic relationships. BMC PLANT BIOLOGY 2024; 24:654. [PMID: 38987665 PMCID: PMC11234707 DOI: 10.1186/s12870-024-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Heliotropiaceae is a family of the order Boraginales and has over 450 species. The members of the family Heliotropiaceae have been widely reported to be used in traditional medicine Over time, the classification of Heliotropiaceae has remained uncertain and has moved from family to subfamily, or conversely. RESULTS In the present study, we sequenced, analyzed, and compared the complete plastomes of Euploca strigosa, Heliotropium arbainense, and Heliotropium longiflorum with the genomes of related taxa. The lengths of the plastomes of E. strigosa, H. arbainense, and H. longiflorum were 155,174 bp, 154,709 bp, and 154,496 bp, respectively. Each plastome consisted of 114 genes: 80 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. The long repeats analysis indicated that reverse, palindromic, complement and forward repeats were all found in the three plastomes. The simple repeats analysis showed that the plastomes of E. strigosa, H. arbainense, and H. longiflorum contained 158, 165, and 151 microsatellites, respectively. The phylogenetic analysis confirmed two major clades in the Boraginales: clade I comprised Boraginaceae, while clade II included Heliotropiaceae, Ehretiaceae, Lennoaceae, and Cordiaceae. Inside the family Heliotropiaceae, E. strigosa is nested within the Heliotropium genus. CONCLUSIONS This study expands our knowledge of the evolutionary relationships within Heliotropiaceae and offers useful genetic resources.
Collapse
Affiliation(s)
- Mohammad S Alawfi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia.
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dhafer A Alzahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas J Albokhari
- Department of Biological Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
104
|
Li J, Li Y, Agyenim-Boateng KG, Shaibu AS, Liu Y, Feng Y, Qi J, Li B, Zhang S, Sun J. Natural variation of domestication-related genes contributed to latitudinal expansion and adaptation in soybean. BMC PLANT BIOLOGY 2024; 24:651. [PMID: 38977969 PMCID: PMC11232268 DOI: 10.1186/s12870-024-05382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yecheng Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | - Yitian Liu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yue Feng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Qi
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bin Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shengrui Zhang
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Junming Sun
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
105
|
Yang LM, Xue JF, Zhao XM, Ding K, Liu ZW, Wang ZSY, Chen JB, Huang YK. Mitochondrial Genome Characteristics Reveal Evolution of Acanthopsetta nadeshnyi (Jordan and Starks, 1904) and Phylogenetic Relationships. Genes (Basel) 2024; 15:893. [PMID: 39062672 PMCID: PMC11276143 DOI: 10.3390/genes15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.
Collapse
Affiliation(s)
- Li-min Yang
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - Jing-feng Xue
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Xiao-man Zhao
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Ke Ding
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China;
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhao-wen Liu
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Zhou-si-yu Wang
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - Jian-bing Chen
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - You-kun Huang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| |
Collapse
|
106
|
Zhang Z, Shi X, Tian H, Qiu J, Ma H, Tan D. Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae. Genes (Basel) 2024; 15:886. [PMID: 39062665 PMCID: PMC11276580 DOI: 10.3390/genes15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunyan Tan
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Z.Z.); (X.S.); (H.T.); (J.Q.); (H.M.)
| |
Collapse
|
107
|
Miao X, Yang W, Li D, Wang A, Li J, Deng X, He L, Niu J. Assembly and comparative analysis of the complete mitochondrial and chloroplast genome of Cyperus stoloniferus (Cyperaceae), a coastal plant possessing saline-alkali tolerance. BMC PLANT BIOLOGY 2024; 24:628. [PMID: 38961375 PMCID: PMC11220973 DOI: 10.1186/s12870-024-05333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes. RESULTS We assembled the mitochondrial and chloroplast genomes of C. stoloniferus. The total length of the mitochondrial genome (mtDNA) was 927,413 bp, with a GC content of 40.59%. It consists of two circular DNAs, including 37 protein-coding genes (PCGs), 22 tRNAs, and five rRNAs. The length of the chloroplast genome (cpDNA) was 186,204 bp, containing 93 PCGs, 40 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 81 and 129 tandem repeats, respectively, and 346 and 1,170 dispersed repeats, respectively, both of which have 270 simple sequence repeats. The third high-frequency codon (RSCU > 1) in the organellar genome tended to end at A or U, whereas the low-frequency codon (RSCU < 1) tended to end at G or C. The RNA editing sites of the PCGs were relatively few, with only 9 and 23 sites in the mtDNA and cpDNA, respectively. A total of 28 mitochondrial plastid DNAs (MTPTs) in the mtDNA were derived from cpDNA, including three complete trnT-GGU, trnH-GUG, and trnS-GCU. Phylogeny and collinearity indicated that the relationship between C. stoloniferus and C. rotundus are closest. The mitochondrial rns gene exhibited the greatest nucleotide variability, whereas the chloroplast gene with the greatest nucleotide variability was infA. Most PCGs in the organellar genome are negatively selected and highly evolutionarily conserved. Only six mitochondrial genes and two chloroplast genes exhibited Ka/Ks > 1; in particular, atp9, atp6, and rps7 may have undergone potential positive selection. CONCLUSION We assembled and validated the mtDNA of C. stoloniferus, which contains a 15,034 bp reverse complementary sequence. The organelle genome sequence of C. stoloniferus provides valuable genomic resources for species identification, evolution, and comparative genomic research in Cyperaceae.
Collapse
Affiliation(s)
- Xiaorong Miao
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenwen Yang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Donghai Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Juanyun Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Xu Deng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junqi Niu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
108
|
Zheng JX, Sun XH, Wei X, Wang G, Yuan CQ, Weng XD, Zuo QQ, Liu JY, Mu ZQ, Mao TC, Ding YZ, Wang XM, Wang X, Wang ZH. Species Composition of a Small Mammal Community and Prevalence of Echinococcus spp. in the Alpine Pastoral Area of the Eastern Tibetan Plateau. Pathogens 2024; 13:558. [PMID: 39057785 PMCID: PMC11280319 DOI: 10.3390/pathogens13070558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to investigate the species composition of a small mammal community and the prevalence of Echinococcus spp. in a typical endemic area of the Tibetan Plateau. One pika and five rodent species were identified based on the morphological characteristics of 1278 small mammal specimens collected during 2014-2019. Detection of Echinococcus DNA in tissue samples from small mammal specimens revealed that Ochotona curzoniae (pika, total prevalence: 6.02%, 26/432), Neodon fuscus (5.91%, 38/643), N. leucurus (2.50%, 3/120), and Alexandromys limnophilus (21.74%, 10/46) were infected by both E. multilocularis and E. shiquicus; Cricetulus longicaudatus (16.67%, 1/6) was infected by E. shiquicus; and no infection was detected in N. irene (0/15). Neodon fuscus and O. curzoniae were the two most abundant small mammal species. There was no significant difference in the prevalence of pika and the overall rodent species assemblage (6.26%, 53/846); however, the larger rodent populations suggested that more attention should be paid to their role in the transmission of echinococcosis in the wildlife reservoir, which has long been underestimated. Moreover, although DNA barcoding provides a more efficient method than traditional morphological methods for identifying large numbers of small mammal samples, commonly used barcodes failed to distinguish the three Neodon species in this study. The close genetic relationships between these species suggest the need to develop more powerful molecular taxonomic tools.
Collapse
Affiliation(s)
- Jia-Xin Zheng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao-Hui Sun
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Wei
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Gang Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang-Qing Yuan
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao-Dong Weng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qing-Qiu Zuo
- School of Life Sciences, East China Normal University, Shanghai 200241, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jia-Yu Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhi-Qiang Mu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian-Ci Mao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - You-Zhong Ding
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao-Ming Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Zheng-Huan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
109
|
Calchi AC, Braga LDQV, Bassini-Silva R, Castro-Santiago AC, Herrera HM, Soares JF, Barros-Battesti DM, Machado RZ, Rocha FL, André MR. Phylogenetic inferences based on distinct molecular markers reveals a novel Babesia (Babesia pantanalensis nov. sp.) and a Hepatozoon americanum-related genotype in crab-eating foxes (Cerdocyon thous). Exp Parasitol 2024; 262:108786. [PMID: 38762200 DOI: 10.1016/j.exppara.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Piroplasmids and Hepatozoon spp. Are apicomplexan protozoa that may cause disease in several canid species. The present study aimed to expand the knowledge on the diversity of piroplasmids and Hepatozoon in crab-eating foxes (Cerdocyon thous; n = 12) sampled in the Pantanal of Mato Grosso do Sul State, central-western Brazil. PCR assays based on the 18S rRNA were used as screening. Three (25%) and 11 (91.7%) were positive for piroplasmids and Hepatozoon spp., respectively. Co-infection was found in three C. thous. Phylogenetic analyses based on the near-complete 18S rRNA, cox-1 and hsp70 genes evidenced the occurrence of a novel of Babesia spp. (namely Babesia pantanalensis nov. sp.) closely related to Rangelia vitalii and Babesia sp. 'Coco'. This finding was supported by the genetic divergence analysis which showed (i) high divergence, ranging from 4.17 to 5.62% for 18 S rRNA, 6.16% for hps70 and 4.91-9.25% for cox-1 and (ii) the genotype network (which displayed sequences separated from the previously described Piroplasmida species by median vectors and several mutational events). Also, phylogenetic analysis based on the 18S rRNA gene of Hepatozoon spp. positioned the sequences obtained herein in a clade phylogenetically related to Hepatozoon sp. 'Curupira 2', Hepatozoon sp. detected in domestic and wild canids from Uruguay and Hepatozoon americanum. The present study described Babesia pantanalensis nov sp. and Hepatozoon closely related to H. americanum in crab-eating foxes from Brazil. Moreover, the coinfection by piroplasmids and Hepatozoon sp. for the first time in crab-eating foxes strongly suggesting that this wild canid species potentially acts as a bio-accumulate of hemoprotozoan in wild environment.
Collapse
Affiliation(s)
- Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | - Ricardo Bassini-Silva
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Ana Carolina Castro-Santiago
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, School of Veterinary Medicine and Animal Science of University of São Paulo (FMVZ-USP), São Paulo, SP, Brazil
| | - Heitor Miraglia Herrera
- Parasitic Biology Laboratory, Interface Research Group Between Human, Animal and Environmental Health (INSANAHUNA.com), Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - João Fábio Soares
- Laboratório de Protozoologia e Rickettsioses Vetoriais (ProtoZooVet), Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Fabiana Lopes Rocha
- Laboratório de Mamíferos, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| |
Collapse
|
110
|
Noh ES, Lee MN, Dong CM, Park J, Jung HS, Kim WJ, Kim YO. SNP Array for Small-Shrimp (Genus Acetes) Origin Determination Using Machine Learning. Foods 2024; 13:2087. [PMID: 38998595 PMCID: PMC11241690 DOI: 10.3390/foods13132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Accurate origin determination of seafood is crucial for consumer trust and safety. This study was performed to develop a machine learning-based single-nucleotide polymorphism (SNP) analysis technique to determine the origin of Acetes species in salted small-shrimp products. Mitochondrial DNA (COI and 16S rRNA) analysis revealed genetic variations among species and origins. Eight candidate SNPs were identified, six of which were developed into markers for genotyping analysis. Using the developed markers, an SNP array was created and SNP data from salted small-shrimp samples were obtained. Machine learning analysis using a supervised learning algorithm achieved 100% accuracy in classifying the origin of Acetes based on SNP data. This method offers a reliable method for regulatory bodies to combat food fraud and ensure product integrity. The approach can be further improved by expanding the data set to encompass a wider range of species and origins. This study highlights the potential of SNP analysis and machine learning for ensuring seafood authenticity and promoting sustainable practices.
Collapse
Affiliation(s)
- Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, 216, Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea; (M.N.L.); (C.-M.D.); (J.P.); (H.S.J.); (W.-J.K.); (Y.-O.K.)
| | | | | | | | | | | | | |
Collapse
|
111
|
Palandačić A, Diripasko OA, Kirchner S, Stefanov T, Bogutskaya NG. An integrative approach highlights the discrepancy in the genetic, phenotypic, and presumptive taxonomic structure of Phoxinus (Actinopterygii, Leuciscidae, Phoxininae) in Bulgaria. JOURNAL OF FISH BIOLOGY 2024; 105:214-238. [PMID: 38711300 DOI: 10.1111/jfb.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024]
Abstract
The present drainage network of Bulgaria is the result of a complex Neogene and Quaternary evolution. Karst, which has developed on 23% of the territory, further complicates the hydrological pattern. Fresh waters of Bulgaria drain into the Black Sea and the Aegean Sea basins and can be roughly divided into the Danube (Middle and Lower Danube), non-Danube Black Sea, East Aegean, and West Aegean hydrological regions. Phoxinus, a small leuciscid fish, has a mosaic distribution in all four of these regions, inhabiting small mountainous and semi-mountainous streams. Based on morphology, it was identified as three species, Phoxinus phoxinus in the Danube, Phoxinus strandjae in the non-Danube, and Phoxinus strymonicus in West Aegean region. Later, molecular data revealed Phoxinus csikii and Phoxinus lumaireul in the Middle Danube and P. csikii in the Lower Danube. Phoxinus has been the focus of many studies, showing a high molecular and morphological diversity, which is not entirely consistent with previous morphology-only-based taxonomic concepts. In this study, molecular (a mitochondrial marker and a nuclear marker) and morphological data from both historical and recently sampled collections were analysed to assess the applicability of the integrative approach in Phoxinus. The results showed a significant influence of the complex paleo- and recent hydrology on the currently observed genetic structure of the considered populations and species. Furthermore, the study also demonstrated a strong influence of phenotypic plasticity on the morphological analysis of Phoxinus and the lack of a clear differentiation between P. csikii and P. strandjae. A barcoded specimen was designated as neotype to fix the species named P. strandjae in the current taxonomic concept. Finally, a significant discordance between genetically delimited clades and phenotypic groups did not allow a proper delineation of the species distributed in Bulgaria, demonstrating that more molecular markers are needed for further taxonomic study of the Phoxinus complex.
Collapse
Affiliation(s)
- Anja Palandačić
- First Zoological Department, Natural History Museum Vienna, Vienna, Austria
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Sandra Kirchner
- First Zoological Department, Natural History Museum Vienna, Vienna, Austria
| | | | - Nina G Bogutskaya
- First Zoological Department, Natural History Museum Vienna, Vienna, Austria
- BIOTA j d.o.o., Ponikva, Slovenia
| |
Collapse
|
112
|
Geng LY, Jiang TY, Chen X, Li Q, Ma JH, Hou WX, Tang CQ, Wang Q, Deng YF. Plastome structure, phylogeny and evolution of plastid genes in Reevesia (Helicteroideae, Malvaceae). JOURNAL OF PLANT RESEARCH 2024; 137:589-604. [PMID: 38739241 DOI: 10.1007/s10265-024-01547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Reevesia is an eastern Asian-eastern North American disjunction genus in the family Malvaceae s.l. and comprises approximately 25 species. The relationships within the genus are not well understood. Here, 15 plastomes representing 12 Reevesia species were compared, with the aim of better understanding the species circumscription and phylogenetic relationships within the genus and among genera in the family Malvaceae s.l. The 11 newly sequenced plastomes range between 161,532 and 161, 945 bp in length. The genomes contain 114 unique genes, 18 of which are duplicated in the inverted repeats (IRs). Gene content of these plastomes is nearly identical. All the protein-coding genes are under purifying selection in the Reevesia plastomes compared. The top ten hypervariable regions, SSRs, and the long repeats identified are potential molecular markers for future population genetic and phylogenetic studies. Phylogenetic analysis based on the whole plastomes confirmed the monophyly of Reevesia and a close relationship with Durio (traditional Bombacaceae) in subfamily Helicteroideae, but not with the morphologically similar genera Pterospermum and Sterculia (both of traditional Sterculiaceae). Phylogenetic relationships within Reevesia suggested that two species, R. pubescens and R. thyrsoidea, as newly defined, are not monophyletic. Six taxa, R. membranacea, R. xuefengensis, R. botingensis, R. lofouensis, R. longipetiolata and R. pycnantha, are suggested to be recognized.
Collapse
Affiliation(s)
- Li-Yang Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Tian-Yi Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Qiang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jian-Hui Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wen-Xiang Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chen-Qian Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yun-Fei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
113
|
Ma Y, López‐Pujol J, Yan D, Zhou Z, Deng Z, Niu J. Complete chloroplast genomes of the hemiparasitic genus Cymbaria: Insights into comparative analysis, development of molecular markers, and phylogenetic relationships. Ecol Evol 2024; 14:e11677. [PMID: 38962021 PMCID: PMC11221886 DOI: 10.1002/ece3.11677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
The hemiparasitic tribe Cymbarieae (Orobanchaceae) plays a crucial role in elucidating the initial stage of the transition from autotrophism to heterotrophism. However, the complete chloroplast genome of the type genus Cymbaria has yet to be reported. In addition, the traditional Mongolian medicine Cymbaria daurica is frequently subjected to adulteration or substitution because of the minor morphological differences with Cymbaria mongolica. In this study, the complete chloroplast genomes of the two Cymbaria species were assembled and annotated, and those of other published 52 Orobanchaceae species were retrieved for comparative analyses. We found that the Cymbaria chloroplast genomes are characterized by pseudogenization or loss of stress-relevant genes (ndh) and a unique rbcL-matK inversion. Unlike the high variability observed in holoparasites, Cymbaria and other hemiparasites exhibit high similarity to autotrophs in genome size, guanine-cytosine (GC) content, and intact genes. Notably, four pairs of specific DNA barcodes were developed and validated to distinguish the medicinal herb from its adulterants. Phylogenetic analyses revealed that the genus Cymbaria and the Schwalbea-Siphonostegia clade are grouped into the tribe Cymbarieae, which forms a sister clade to the remaining Orobanchaceae parasitic lineages. Moreover, the diversification of monophyletic Cymbaria occurred during the late Miocene (6.72 Mya) in the Mongol-Chinese steppe region. Our findings provide valuable genetic resources for studying the phylogeny of Orobanchaceae and plant parasitism, and genetic tools to validate the authenticity of the traditional Mongolian medicine "Xinba.".
Collapse
Affiliation(s)
- Yang Ma
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jordi López‐Pujol
- Botanic Institute of Barcelona (IBB)CSIC‐CMCNBBarcelonaSpain
- Escuela de Ciencias AmbientalesUniversidad Espíritu Santo (UEES)SamborondónEcuador
| | - Dongqing Yan
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zhen Zhou
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zekun Deng
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jianming Niu
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauHohhotChina
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and TechnologyHohhotChina
| |
Collapse
|
114
|
Ren J, Zhang R. Delimiting species, revealing cryptic diversity in Molytinae (Coleoptera: Curculionidae) weevil through DNA barcoding. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:25. [PMID: 39348593 PMCID: PMC11441576 DOI: 10.1093/jisesa/ieae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024]
Abstract
The subfamily Molytinae (Coleoptera: Curculionidae), being the second largest group within the family Curculionidae, exhibits a diverse range of hosts and poses a serious threat to agricultural and forestry industries. We used 1,290 cytochrome c oxidase subunit I (COI) barcodes to assess the efficiency of COI barcodes in species differentiation and uncover cryptic species diversity within weevils of Molytinae. The average Kimura 2-parameter distances within species, genus, and subfamily were 2.90%, 11.0%, and 22.26%, respectively, indicating significant genetic differentiation at both levels. Moreover, there exists a considerable degree of overlap between intraspecific (0%-27.50%) and interspecific genetic distances (GDs; 0%-39.30%). The application of Automatic barcode gap discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Poisson Tree Processes (PTP), Bayesian Poisson Tree Processes (bPTP), and jMOTU resulted in the identification of 279, 275, 494, 322, 320, and 279 molecular operational taxonomic units, respectively. The integration of 6 methods successfully delimited species of Molytinae in 86.6% of all examined morphospecies, surpassing a threshold value of 3% GD (73.0%). A total of 28 morphospecies exhibiting significant intraspecific divergences were assigned to multiple MOTUs, respectively, suggesting the presence of cryptic diversity or population divergence. The identification of cryptic species within certain morphological species in this study necessitates further investigation through comprehensive taxonomic practices in the future.
Collapse
Affiliation(s)
- Jinliang Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
115
|
Han Y, Hu Q, Gong N, Yan H, Khan NU, Du Y, Sun H, Zhao Q, Peng W, Li Z, Zhang Z, Li J. Natural variation in MORE GRAINS 1 regulates grain number and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1440-1458. [PMID: 38780111 DOI: 10.1111/jipb.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024]
Abstract
Grain yield is determined mainly by grain number and grain weight. In this study, we identified and characterized MORE GRAINS1 (MOG1), a gene associated with grain number and grain weight in rice (Oryza sativa L.), through map-based cloning. Overexpression of MOG1 increased grain yield by 18.6%-22.3% under field conditions. We determined that MOG1, a bHLH transcription factor, interacts with OsbHLH107 and directly activates the expression of LONELY GUY (LOG), which encodes a cytokinin-activating enzyme and the cell expansion gene EXPANSIN-LIKE1 (EXPLA1), positively regulating grain number per panicle and grain weight. Natural variations in the promoter and coding regions of MOG1 between Hap-LNW and Hap-HNW alleles resulted in changes in MOG1 expression level and transcriptional activation, leading to functional differences. Haplotype analysis revealed that Hap-HNW, which results in a greater number and heavier grains, has undergone strong selection but has been poorly utilized in modern lowland rice breeding. In summary, the MOG1-OsbHLH107 complex activates LOG and EXPLA1 expression to promote cell expansion and division of young panicles through the cytokinin pathway, thereby increasing grain number and grain weight. These findings suggest that Hap-HNW could be used in strategies to breed high-yielding temperate japonica lowland rice.
Collapse
Affiliation(s)
- Yingchun Han
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qianfeng Hu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Nuo Gong
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huimin Yan
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Najeeb Ullah Khan
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Rice Industrial Technology Research Institute, Guizhou University, Guiyang, 550025, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
116
|
Yusof S, Othman NW, Dzomir AZM, Mohammed MA, Aman-Zuki A, Yaakop S. New Insight into Nucleotide Changes on Irradiated Bactrocera dorsalis (Hendel), A Pest of Horticultural Importance. Trop Life Sci Res 2024; 35:289-307. [PMID: 39234473 PMCID: PMC11371409 DOI: 10.21315/tlsr2024.35.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/26/2024] [Indexed: 09/06/2024] Open
Abstract
Bactrocera dorsalis (Hendel) is a major quarantine pest species infesting most of the tropical fruits. Its infestation had significantly reduced and disrupted the export market trade, thus, very crucial to be controlled during the preharvest and postharvest. One of the most sustainable control methods is by using the radiation technique to reduce the pest population, thus curbing the spread of this pest to new geographical areas. The objective of this study was to measure the nucleotide changes in B. dorsalis (larval, pupal and adult stages) which had been irradiated with 50 to 400 Gray, using Gamma Cell Biobeam GM8000 irradiator with Cesium-137 source at the Malaysian Nuclear Agency, Selangor, Malaysia. Data from the treated samples (with and without morphological changes) were analysed using cytochrome oxidase subunit I (COI). The alignment of 59 sequences resulted in 0.92% variables with only four characters that were parsimony informative, and six sites (30, 60, 234, 282, 483 and 589) which had nucleotide changes, but had not been translated to another protein. Low polymorphism was presented on the sample groups, with only four haplotypes, but with high diversity value (Hd) = 0.5885. The phylogeny trees formed soft polytomy in both trees [neighbour joining (NJ) and maximum parsimony (MP)] presenting a mixture of individuals but did not show any significant difference between treatments. This finding concluded that low mutation had occurred on the treated B. dorsalis and this information is very valuable in getting new insight on the survival of B. dorsalis in the horticulture industry.
Collapse
Affiliation(s)
- Suhana Yusof
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia
| | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
| | | | - Muhamad Azmi Mohammed
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
| | - Ameyra Aman-Zuki
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Department of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
| |
Collapse
|
117
|
Wu M, Cheng Y, Jiang C, Zhang M, Shi T, Zhao C. Phylogeography of Morella nana: The Wumeng Mountains as a natural geographical isolation boundary on the Yunnan-Guizhou Plateau. Ecol Evol 2024; 14:e11566. [PMID: 38983704 PMCID: PMC11232048 DOI: 10.1002/ece3.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
The Yunnan-Guizhou Plateau (YGP) is characterized by the distinctive isolated habitat of the limestone Karst Islands and features the Wumeng Mountains, which divide the YGP into the two Plateaus of Yunnan and Guizhou. This study aimed to assess the effects of geographic isolation and past climate fluctuation on the distribution of flora in the YGP. To achieve this, we carried out the phylogeographical pattern and genetic structure based on chloroplast and nuclear ribosomal DNA sequence in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modeling for Morella nana, an important wild plant resource and endemic to the YGP once considered a vulnerable species. The results suggest that the genetic and chlorotype network structures of M. nana are divided into at least two groups: cpDNA chlorotype H2 (or dominant nrDNA haplotypes h1 and h2), distributed primarily to the east of the Wumeng Mountains, and cpDNA chlorotypes H1 and H3-H10 (or dominant nrDNA haplotype h2 and h3), distributed to the west of the Wumeng Mountains. A deep genetic split was noted within the two groups to reach 25 steps, especially for the cpDNA fragment variation. This east-west divergence reveals the existence of a natural geographical isolation boundary in the form of the Wumeng Mountains, and supports the existence of at least two glacial refuges during the Quaternary glacial period, along with two genetic diversity center, and at least two large geographic protection units for the important species of M. nana. This study indicates that the phylogeographical pattern of M. nana can be attributed to geographic/environmental isolation caused by the Wumeng Mountains and climate fluctuation during the last glacial maximum, and proposes an effective strategy to protecting this important plant resource.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| | - Yu Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| | - Chunxue Jiang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| | - Mingsheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| | - Tian Shi
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| | - Cai Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro‐Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
118
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
119
|
Ren J, Ren L, Zhang R. Delimiting species, revealing cryptic diversity, and population divergence in Qinghai-Tibet Plateau weevils through DNA barcoding. Ecol Evol 2024; 14:e11592. [PMID: 38979006 PMCID: PMC11229427 DOI: 10.1002/ece3.11592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The Leptomias group represents one of the most diverse taxonomic group of weevils in the Qinghai-Tibet Plateau and its adjacent areas. Despite the potential of hidden diversity, relatively few comprehensive studies have been conducted on species diversity in this taxonomic group. In this study, we performed DNA barcoding analysis for species of the Leptomias group using a comprehensive DNA barcode dataset that included 476 sequences representing 54 morphospecies. Within the dataset, our laboratory contributed 474 sequences, and 390 sequences were newly generated for this study. The average Kimura 2-parameter distances among morphospecies and genera were 0.76% and 19.15%, respectively. In 94.4% of the species, the minimum interspecific distances exceeded the maximum intraspecific distances, indicating the presence of barcode gaps in most species of Leptomias group. The application of Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Bayesian Poisson tree processes, jMOTU, and Neighbor-joining tree methods revealed 45, 45, 63, 54, and 55 distinct clusters representing single species, respectively. Additionally, a total of four morphospecies, Leptomias kangmarensis, L. midlineatus, L. siahus, and L. sp.9RL, were found to be assigned to multiple subclade each, indicating the geographical divergences and the presence of cryptic diversity. Our findings of this study demonstrate that Qinghai-Tibet Plateau exhibits a higher species diversity of the Leptomias group, and it is imperative to investigate cryptic species within certain morphospecies using integrative taxonomic approaches in future studies. Moreover, the construction of a DNA barcode reference library presented herein establishes a robust foundational dataset to support forthcoming research on weevil taxonomy, phylogenetics, ecology, and evolution.
Collapse
Affiliation(s)
- Jinliang Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
120
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
121
|
Kamali K, Nazarizadeh M, Fatemizadeh F, Salmabadi S, Hung CM, Kaboli M. Integrating phylogenetic, phylogeographic, and morphometric analyses to reveal cryptic lineages within the genus Asaccus (Reptilia: Squamata: Phyllodactylidae) in Iran. BMC ZOOL 2024; 9:12. [PMID: 38926885 PMCID: PMC11202258 DOI: 10.1186/s40850-024-00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The Middle Eastern endemic genus Asaccus comprises Southwest Asian leaf-toed geckos. To date, this genus includes 19 species of leaf-toed geckos (seven in Arabia and 12 in the Zagros Mountains). Despite a recent study on the taxonomy and phylogeny of Asaccus species in Iran, controversies still remain surrounding the phylogeny and phylogeography of the genus. Here, we used an integrative approach to determine the phylogeny and phylogeography of Asaccus species using two mitochondrial genes (12 S and Cyt b), and one nuclear gene (c-mos). Our results uncovered 22 distinct lineages, demonstrating a significant cryptic diversity that challenges the current morphological classifications of these species. Phylogenetic analyses reinforce the monophyly of the Asaccus group, positioning A. montanus as a basal lineage, which supports a deep evolutionary divergence dating back to the Late Oligocene, approximately 27.94 million years ago. This genetic diversity also highlights the impact of historical climatic and geographical changes on species diversification. The findings advocate for an integrative approach combining both molecular and morphological data to resolve species identities accurately, thereby enhancing conservation strategies to protect these genetically distinct lineages.
Collapse
Affiliation(s)
- Kamran Kamali
- Iranian Herpetology Institute, Tehran, Iran
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Masoud Nazarizadeh
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Faezeh Fatemizadeh
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Mohammad Kaboli
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Tehran, Iran.
| |
Collapse
|
122
|
Lubna, Asaf S, Khan I, Jan R, Asif S, Bilal S, Kim KM, Al-Harrasi A. Genetic characterization and phylogenetic analysis of the Nigella sativa (black seed) plastome. Sci Rep 2024; 14:14509. [PMID: 38914674 PMCID: PMC11196742 DOI: 10.1038/s41598-024-65073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa's plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Ibrahim Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
123
|
Jondeung A, Boonjorn N. Population genetic structure and demographic history of short mackerel, Rastrelliger brachysoma, in the Gulf of Thailand. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 38907535 DOI: 10.1080/24701394.2024.2368570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
The short mackerel Rastrelliger brachysoma (Bleeker 1851) is an important fish in the Gulf of Thailand (GoT). The biology of this species has been intensively studied, but its genetic diversity is little known. The genetic diversity, population genetic structure, and demographic history of this species in the GoT were studied using complete mt control region sequences. The CR sequences of 455 mackerel samples collected from 23 localities at four fishing grounds revealed 333 haplotypes with haplotype diversity (h) per population, ranging between 0.8933 and 1.000, with an average of 0.9781. In turn, the nucleotide diversity (µ) ranged between 0.0119 ± 0.0060 and 0.0333 ± 0.0174, with an average of 0.0220 ± 0.00059.A haplotype network analysis showed that all sequences segregated into two subgroups named, clade I and clade II. Two clades were separated by 26 mutational steps. Each clade formed star-like clusters with many haplotypes derived from a common haplotype. Moreover, an analysis of molecular variance (AMOVA) revealed no significant differences among the studied localities, suggesting the presence of a single population in the GoT. Pairwise differences between samples from different fishing regions also indicated no population structure. Both Tajima's D and Fu's FS statistics were highly significant for the two clades but nonsignificant for the entire population according to a mismatch distribution analysis. These results confirmed that both clades experienced demographic expansion. The estimated expansion times for clade I and clade II were 1,542.307 years (1.5423 ka BP) and 7,602.541 (7.6025 ka BP) years, respectively.
Collapse
Affiliation(s)
- Amnuay Jondeung
- Department of Genetics, Kasetsart University, Chatujak, Bangkok
| | - Nuntachai Boonjorn
- Central Gulf Fisheries Research and Development Center (Chumphon), Muang, Chumphon, Thailand
| |
Collapse
|
124
|
Yang YX, Kang Y, Ge XY, Yuan SL, Li XY, Liu HY. A Mysterious Asian Firefly Genus, Oculogryphus Jeng, Engel & Yang (Coleoptera, Lampyridae): The First Complete Mitochondrial Genome and Its Phylogenetic Implications. INSECTS 2024; 15:464. [PMID: 39057197 PMCID: PMC11277304 DOI: 10.3390/insects15070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
The firefly genus Oculogryphus Jeng, Engel & Yang, 2007 is a rare-species group endemic to Asia. Since its establishment, its position has been controversial but never rigorously tested. To address this perplexing issue, we are the first to present the complete mitochondrial sequence of Oculogryphus, using the material of O. chenghoiyanae Yiu & Jeng, 2018 determined through a comprehensive morphological identification. Our analyses demonstrate that its mitogenome exhibits similar characteristics to that of Stenocladius, including a rearranged gene order between trnC and trnW, and a long intergenic spacer (702 bp) between the two rearranged genes, within which six remnants (29 bp) of trnW were identified. Further, we incorporated this sequence into phylogenetic analyses of Lampyridae based on different molecular markers and datasets using ML and BI analyses. The results consistently place Oculogryphus within the same clade as Stenocladius in all topologies, and the gene rearrangement is a synapomorphy for this clade. It suggests that Oculogryphus should be classified together with Stenocladius in the subfamily Ototretinae at the moment. This study provides molecular evidence confirming the close relationship between Oculogryphus and Stenocladius and discovers a new phylogenetic marker helpful in clarifying the monophyly of Ototretinae, which also sheds a new light on firefly evolution.
Collapse
Affiliation(s)
- Yu-Xia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Ya Kang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Xue-Ying Ge
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Shuai-Long Yuan
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Xue-Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hao-Yu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
125
|
Laifi-Necibi N, Amor N, Merella P, Mohammed OB, Medini L. DNA barcoding reveals cryptic species in the sea slater Ligia italica (Crustacea, Isopoda) from Tunisia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 38899428 DOI: 10.1080/24701394.2024.2363350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Barcoding studies have provided significant insights into phylogenetic relationships among species belonging to the genus Ligia (Crustacea, Isopoda). Herein the diversity of the Italian sea slater Ligia italica from Tunisia is studied for the first time. Samples were collected from 18 localities in Tunisia, and the analysis included previously published sequences from Italy and Greece available in GenBank. Bayesian and Maximum Likelihood phylogenetic analyses were carried out using a fragment of the mitochondrial COI gene. Putative cryptic species were explored using the 'barcode gap' approach in the software ASAP. A genetic landscape shape analysis was carried out using the program Alleles in Space. The analyses revealed highly divergent and well-supported clades of L. italica dispersed across Tunisia (Clades A1 and A2), Greece (Clade B) and Italy (Clades C1 and C2). High genetic dissimilarity among clades suggested that L. italica constitute a cryptic species complex. Divergence among different L. italica lineages (Clades A, B and C) occurred around 7-4.5 Ma. The detected high genetic distances among clades did not result from atypical mitochondrial DNAs or intracellular infection by Wolbachia bacteria. The complex history of the Mediterranean Sea appears to have played a significant role in shaping the phylogeographic pattern of Ligia italica. Additional morphological and molecular studies are needed to confirm the existence of cryptic species in Ligia italica in Mediterranean.
Collapse
Affiliation(s)
- Nermine Laifi-Necibi
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| | - Nabil Amor
- Higher Institute of Applied Biological Sciences of Tunis, University Tunis EL Manar, Tunis, Tunisia
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Lamia Medini
- Faculté des Sciences de Tunis, Laboratoire Diversité, Gestion et Conservation des Systèmes Biologiques, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
126
|
Musiał AD, Radović L, Stefaniuk-Szmukier M, Bieniek A, Wallner B, Ropka-Molik K. Mitochondrial DNA and Y chromosome reveal the genetic structure of the native Polish Konik horse population. PeerJ 2024; 12:e17549. [PMID: 38912049 PMCID: PMC11193968 DOI: 10.7717/peerj.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Polish Konik remains one of the most important horse breeds in Poland. The primitive, native horses with a stocky body and mouse-like coat color are protected by a conservation program, while their Polish population consists of about 3,480 individuals, representing 16 dam and six sire lines. To define the population's genetic structure, mitochondrial DNA and Y chromosome sequence variables were identified. The mtDNA whole hypervariable region analysis was carried out using the Sanger sequencing method on 233 Polish Koniks belonging to all dam lines, while the Y chromosome analysis was performed with the competitive allele-specific PCR genotyping method on 36 horses belonging to all sire lines. The analysis of the mtDNA hypervariable region detected 47 SNPs, which assigned all tested horses to 43 haplotypes. Most dam lines presented more than one haplotype; however, five dam lines were represented by only one haplotype. The haplotypes were classified into six (A, B, E, J, G, R) recognized mtDNA haplogroups, with most horses belonging to haplogroup A, common among Asian horse populations. Y chromosome analysis allocated Polish Koniks in the Crown group, condensing all modern horse breeds, and divided them into three haplotypes clustering with coldblood breeds (28 horses), warmblood breeds (two horses), and Duelmener Pony (six horses). The clustering of all Wicek sire line stallions with Duelmener horses may suggest a historical relationship between the breeds. Additionally, both mtDNA and Y chromosome sequence variability results indicate crossbreeding before the studbooks closure or irregularities in the pedigrees occurred before the DNA testing introduction.
Collapse
Affiliation(s)
- Adrianna Dominika Musiał
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Lara Radović
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Agnieszka Bieniek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
127
|
Rabbani G, Rasool F, Fatima M, Majeed MBB. Morphometric and molecular characterization of Channa marulius from Riverine system of Punjab, Pakistan. Mol Biol Rep 2024; 51:771. [PMID: 38900353 DOI: 10.1007/s11033-024-09689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Channidae family, are major freshwater fish species amongst the local aquatic fauna of Pakistan, while, there is limited availability of local data on their molecular identification and phylogenetic analysis. METHODS Channa species were collected from four different geographical sites in the tertiary of Punjab province on the Indus and Chenab rivers of Pakistan. Morphometric records and molecular techniques were used to determine the intraspecific variations among populations of Channa marulius. Mitochondrial DNA was extracted from the flesh of C. marulius, while, COI gene was used for molecular identification and variation levels were estimated by using Principal Component Analysis. RESULTS Data recorded on the basis of morphometric parameters clearly divided the C. marulius of different locations into two distinct categories, which accounted for a cumulative variability of 97.6%. Non-significance (P < 0.05) among the C. marulius showed that it contains a unique control haplotype localized within the sub-population. The intra-species distance ranged from 0.000 to 0.001 for four different populations, in contrast, the sequences retrieved from the NCBI database exhibited a range span of 0.000-0.003, while, sequence diversity ranged from 0.000 to 0.006 for this intra-specific comparison. The cladogram was also constructed for C. marulius of different geographical locations for observation of phylogenetic relationship. The conclusion drawn from the phylogenetic analysis of C. marulius populations used in this study, contributes significantly to the understanding of genetic variations within populations of this species. The findings provide valuable insight to devise conservation strategies in fisheries management programs in Pakistan.
Collapse
Affiliation(s)
- Ghulam Rabbani
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| | - Fayyaz Rasool
- Department of Zoology, University of Education Lahore, Faisalabad Campus, Lahore, 54600, Pakistan.
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| | - Muhammad Bilal Bin Majeed
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| |
Collapse
|
128
|
Sudmoon R, Kaewdaungdee S, Ho HX, Lee SY, Tanee T, Chaveerach A. The chloroplast genome sequences of Ipomoea alba and I. obscura (Convolvulaceae): genome comparison and phylogenetic analysis. Sci Rep 2024; 14:14078. [PMID: 38890502 PMCID: PMC11189557 DOI: 10.1038/s41598-024-64879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.
Collapse
Affiliation(s)
| | - Sanit Kaewdaungdee
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hao Xuan Ho
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
129
|
Hai Y, Qian Y, Yang M, Zhang Y, Xu H, Yang Y, Xia C. The chloroplast genomes of two medicinal species (Veronica anagallis-aquatica L. and Veronica undulata Wall.) and its comparative analysis with related Veronica species. Sci Rep 2024; 14:13945. [PMID: 38886540 PMCID: PMC11183227 DOI: 10.1038/s41598-024-64896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Veronica anagallis-aquatica L. and Veronica undulata Wall. are widely used ethnomedicinal plants in China. The two species have different clinical efficacies, while their extremely similar morphology and unclear interspecific relationship make it difficult to accurately identify them, leading to increased instances of mixed usage. This article reports on the complete chloroplast genomes sequence of these two species and their related Veronica species to conduct a comparative genomics analysis and phylogenetic construction. The results showed that the chloroplast (cp) genomes of Veronica exhibited typical circular quadripartite structures, with total lengths of 149,386 to 152,319 base pairs (bp), and GC content of 37.9 to 38.1%, and the number of genes was between 129-134. The total number of simple sequence repeats (SSRs) in V. anagallis-aquatica and V. undulata is 37 and 36, while V. arvensis had the highest total number of 56, predominantly characterized by A/T single bases. The vast majority of long repeat sequence types are forward repeats and palindromic repeats. Selective Ka/Ks values showed that three genes were under positive selection. Sequence differences often occur in the non-coding regions of the large single-copy region (LSC) and small single-copy region (SSC), with the lowest sequence variation in the inverted repeat regions (IR). Seven highly variable regions (trnT-GGU-psbD, rps8-rpl16, trnQ-UUG, trnN-GUU-ndhF, petL, ycf3, and ycf1) were detected, which may be potential molecular markers for identifying V. anagallis-aquatica and V. undulata. The phylogenetic tree indicates that there is a close genetic relationship between the genera Veronica and Neopicrorhiza, and V. anagallis-aquatica and V. undulata are sister groups. The molecular clock analysis results indicate that the divergence time of Veronica may occur at ∼ 9.09 Ma, and the divergence time of these two species occurs at ∼ 0.48 Ma. It is speculated that climate change may be the cause of Veronica species diversity and promote the radiation of the genus. The chloroplast genome data of nine Veronica specie provides important insights into the characteristics and evolution of the chloroplast genome of this genus, as well as the phylogenetic relationships of the genus Veronica.
Collapse
Affiliation(s)
- Yonglin Hai
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yan Qian
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Meihua Yang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yue Zhang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Huimei Xu
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yongcheng Yang
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| | - Conglong Xia
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| |
Collapse
|
130
|
Roca-Geronès X, Sala C, Marteles D, Villanueva-Saz S, Riera C, Alcover MM, Fisa R. Genetic Variability in Leishmaniasis-Causing Leishmania infantum in Humans and Dogs from North-East Spain. Animals (Basel) 2024; 14:1796. [PMID: 38929415 PMCID: PMC11200389 DOI: 10.3390/ani14121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Leishmania infantum is the primary cause of visceral and cutaneous leishmaniasis in the European Mediterranean region. Subspecies-level characterization of L. infantum aids epidemiological studies by offering insights into the evolution and geographical distribution of the parasite and reservoir identity. In this study, conducted in north-east Spain, 26 DNA samples of L. infantum were analyzed, comprising 21 from 10 humans and 5 from 5 dogs. Minicircle kinetoplast DNA (kDNA) polymerase chain reaction assays using primers MC1 and MC2, followed by sequencing, were employed to assess intraspecific genetic variability. Single-nucleotide polymorphism (SNP) analysis detected seven genotypes (G1, G2, G12*-G15*, and G17*), with five being reported for the first time (*). The most prevalent was the newly described G13 (54%), while the other currently identified genotypes were predominantly found in single samples. The in silico restriction fragment length polymorphism (RFLP) method revealed five genotypes (B, F, N, P, and W), one of them previously unreported (W). Genotype B was the most prevalent (85%), comprising three SNP genotypes (G1, G2, and G13), whereas the other RFLP genotypes were associated with single SNP genotypes. These kDNA genotyping methods revealed significant intraspecific genetic diversity in L. infantum, demonstrating their suitability for fingerprinting and strain monitoring.
Collapse
Affiliation(s)
- Xavier Roca-Geronès
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Parasitologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Clara Sala
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Parasitologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Diana Marteles
- Animal Pathology Department, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain (S.V.-S.)
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Sergio Villanueva-Saz
- Animal Pathology Department, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain (S.V.-S.)
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza), 50013 Zaragoza, Spain
| | - Cristina Riera
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Parasitologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mª Magdalena Alcover
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Parasitologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roser Fisa
- Departament de Biologia, Sanitat i Medi Ambient, Secció de Parasitologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
131
|
Ma Y, Zhang L, Yang M, Qi Q, Yang Q, López-Pujol J, Wang L, Zhao D. Complete Organelle Genome of the Desiccation-Tolerant (DT) Moss Tortula atrovirens and Comparative Analysis of the Pottiaceae Family. Genes (Basel) 2024; 15:782. [PMID: 38927718 PMCID: PMC11202921 DOI: 10.3390/genes15060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes.
Collapse
Affiliation(s)
- Yang Ma
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China
| | - Lifang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Min Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qin Qi
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Qian Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Spain;
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Lihong Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
| | - Dongping Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Y.M.)
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
132
|
Contreras-Díaz R, Carevic FS, van den Brink L, Huanca-Mamani W, Jung P. Structure, gene composition, divergence time and phylogeny analysis of the woody desert species Neltuma alba, Neltuma chilensis and Strombocarpa strombulifera. Sci Rep 2024; 14:13604. [PMID: 38871769 DOI: 10.1038/s41598-024-64287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Neltuma alba (Algarrobo blanco), Neltuma chilensis (Algarrobo Chileno) and Strombocarpa strombulifera (Fortuna) are some of the few drought resistant trees and shrubs found in small highly fragmented populations, throughout the Atacama Desert. We reconstructed their plastid genomes using de novo assembly of paired-end reads from total genomic DNA. We found that the complete plastid genomes of N. alba and N. chilensis are larger in size compared to species of the Strombocarpa genus. The Strombocarpa species presented slightly more GC content than the Neltuma species. Therefore, we assume that Strombocarpa species have been exposed to stronger natural selection than Neltuma species. We observed high variation values in the number of cpSSRs (chloroplast simple sequence repeats) and repeated elements among Neltuma and Strombocarpa species. The p-distance results showed a low evolutionary divergence within the genus Neltuma, whereas a high evolutionary divergence was observed between Strombocarpa species. The molecular divergence time found in Neltuma and Strombocarpa show that these genera diverged in the late Oligocene. With this study we provide valuable information about tree species that provide important ecosystem services in hostile environments which can be used to determine these species in the geographically isolated communities, and keep the highly fragmented populations genetically healthy.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Centro Regional de Investigación de Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile.
| | - Felipe S Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique, Chile
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile
| | - Liesbeth van den Brink
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Wilson Huanca-Mamani
- Laboratorio de Biología Molecular de Plantas, Facultad de Ciencias Agronómicas, Centro de Genética y Genómica UASARA, Universidad de Tarapacá, 1000000, Arica, Chile
| | - Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| |
Collapse
|
133
|
Wojczulanis-Jakubas K, Hoover B, Jakubas D, Fort J, Grémillet D, Gavrilo M, Zielińska S, Zagalska-Neubauer M. Diversity of major histocompatibility complex of II B gene and mate choice in a monogamous and long-lived seabird, the Little Auk (Alle alle). PLoS One 2024; 19:e0304275. [PMID: 38865310 PMCID: PMC11168636 DOI: 10.1371/journal.pone.0304275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a key role in the adaptive immune system of vertebrates, and is known to influence mate choice in many species. In birds, the MHC has been extensively examined but mainly in galliforms and passerines while other taxa that represent specific ecological and evolutionary life-histories, like seabirds, are underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC variation could be maintained through balancing selection and disassortative mating. We found high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles across 140 individuals from three populations. The alleles frequencies exhibited a similar skewed distribution in both sexes, with the four most commonly occurring alleles representing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection analysis suggest evidence of balancing selection and no direct evidence for MHC-dependent disassortative mating preferences in the Little Auk. The latter result might be attributed to the high overall polymorphism of the examined fragment, which itself may be maintained by the large population size of the species.
Collapse
Affiliation(s)
| | - Brian Hoover
- Farallon Institute, Petaluma, California, United States of America
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle University, 17000 La Rochelle, France
| | - David Grémillet
- Excellence Chair Nouvelle Aquitaine - CEBC UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois, France & FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | | | - Sylwia Zielińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
134
|
Song X, Geng Y, Xu C, Li J, Guo Y, Shi Y, Ma Q, Li Q, Zhang M. The complete mitochondrial genomes of five critical phytopathogenic Bipolaris species: features, evolution, and phylogeny. IMA Fungus 2024; 15:15. [PMID: 38863028 PMCID: PMC11167856 DOI: 10.1186/s43008-024-00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.
Collapse
Affiliation(s)
- Xinzheng Song
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
135
|
Song BN, Liu CK, Ren T, Xiao YL, Chen L, Xie DF, He AG, Xu P, Fan X, Zhou SD, He XJ. Plastid phylogenomics contributes to the taxonomic revision of taxa within the genus Sanicula L. and acceptance of two new members of the genus. FRONTIERS IN PLANT SCIENCE 2024; 15:1351023. [PMID: 38916035 PMCID: PMC11194442 DOI: 10.3389/fpls.2024.1351023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Introduction The genus Sanicula L. is a taxonomically complicated taxa within Apiaceae, as its high variability in morphology. Although taxonomists have performed several taxonomic revisions for this genus, the interspecific relationships and species boundaries have not been satisfactorily resolved, especially for those endemic to China. This study mainly focused on S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S. orthacantha var. stolonifera and also described two new members of the genus. Methods We newly sequenced sixteen plastomes from nine Sanicula species. Combined with eleven plastomes previously reported by us and one plastome downloaded, we performed a comprehensively plastid phylogenomics analysis of 21 Sanicula taxa. Results and Discussion The comparative results showed that 21 Sanicula plastomes in their structure and features were highly conserved and further justified that two new species were indeed members of Sanicula. Nevertheless, eleven mutation hotspot regions were still identified. Phylogenetic analyses based on plastome data and the ITS sequences strongly supported that these three varieties were clearly distant from three type varieties. The results implied that these three varieties should be considered as three independent species, which were further justified by their multiple morphological characters. Therefore, revising these three varieties into three independent species was reasonable and convincing. Moreover, we also identified and described two new Sanicula species (S. hanyuanensis and S. langaoensis) from Sichuan and Shanxi, China, respectively. Based on their distinct morphological characteristics and molecular phylogenetic analysis, two new species were included in Sanicula. In summary, our study impelled the revisions of Sanicula members and improved the taxonomic system of the genus.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chang-Kun Liu
- College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lian Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - An-Guo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Zhejiang, China
| | - Ping Xu
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Xing Fan
- Chengdu Branch of Giant Panda National Park, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
136
|
Kim JE, Kim KM, Kim YS, Chung GY, Che SH, Na CS. Chloroplast Genomes of Vitis flexuosa and Vitis amurensis: Molecular Structure, Phylogenetic, and Comparative Analyses for Wild Plant Conservation. Genes (Basel) 2024; 15:761. [PMID: 38927697 PMCID: PMC11203327 DOI: 10.3390/genes15060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The chloroplast genome plays a crucial role in elucidating genetic diversity and phylogenetic relationships. Vitis vinifera L. (grapevine) is an economically important species, prompting exploration of wild genetic resources to enhance stress resilience. We meticulously assembled the chloroplast genomes of two Korean Vitis L. species, V. flexuosa Thunb. and V. amurensis Rupr., contributing valuable data to the Korea Crop Wild Relatives inventory. Through exhaustive specimen collection spanning diverse ecological niches across South Korea, we ensured comprehensive representation of genetic diversity. Our analysis, which included rigorous codon usage bias assessment and repeat analysis, provides valuable insights into amino acid preferences and facilitates the identification of potential molecular markers. The assembled chloroplast genomes were subjected to meticulous annotation, revealing divergence hotspots enriched with nucleotide diversity, thereby presenting promising candidates for DNA barcodes. Additionally, phylogenetic analysis reaffirmed intra-genus relationships and identified related crops, shedding light on evolutionary patterns within the genus. Comparative examination with chloroplast genomes of other crops uncovered conserved sequences and variable regions, offering critical insights into genetic evolution and adaptation. Our study advances the understanding of chloroplast genomes, genetic diversity, and phylogenetic relationships within Vitis species, thereby laying a foundation for enhancing grapevine genetic diversity and resilience to environmental challenges.
Collapse
Affiliation(s)
- Ji Eun Kim
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| | - Keyong Min Kim
- Arboretum Education Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Yang Su Kim
- Department of General Affairs, General Affairs Team, Gangeung-Wonju National University, Gangeung 25457, Republic of Korea
| | - Gyu Young Chung
- Department of Forest Science, Andong National University, Andong 36729, Republic of Korea
| | - Sang Hoon Che
- Forest Bioresources Department, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Chae Sun Na
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| |
Collapse
|
137
|
Dumidae A, Ardpairin J, Pansri S, Homkaew C, Nichitcharoen M, Thanwisai A, Vitta A. Genetic diversity and population structure of Physella acuta (Gastropoda: Physidae) in Thailand using mitochondrial gene markers: COI and 16S rDNA. Sci Rep 2024; 14:13161. [PMID: 38849440 PMCID: PMC11161527 DOI: 10.1038/s41598-024-64184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
Physella acuta is a freshwater snail native to North America. Understanding the phylogeography and genetic structure of P. acuta will help elucidate its evolution. In this study, we used mitochondrial (COI and 16S rDNA) and nuclear (ITS1) markers to identify the species and examine its genetic diversity, population structure, and demographic history of P. acuta in Thailand. Phylogenetic and network analyses of P. acuta in Thailand pertained to clade A, which exhibits a global distribution. Analysis of the genetic structure of the population revealed that the majority of pairwise comparisons showed no genetic dissimilarity. An isolation-by-distance test indicates no significant correlation between genetic and geographical distances among P. acuta populations, suggesting that gene flow is not restricted by distance. Demographic history and haplotype network analyses suggest a population expansion of P. acuta, as evidenced by the star-like structure detected in the median-joining network. Based on these results, we concluded that P. acuta in Thailand showed gene flow and recent population expansion. Our findings provide fundamental insights into the genetic variation of P. acuta in Thailand.
Collapse
Affiliation(s)
- Abdulhakam Dumidae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawan Pansri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chanatinat Homkaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Mayura Nichitcharoen
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
138
|
Giannì M, Antinucci M, Bertoncini S, Taglioli L, Giuliani C, Luiselli D, Risso D, Marini E, Morini G, Tofanelli S. Association between Variants of the TRPV1 Gene and Body Composition in Sub-Saharan Africans. Genes (Basel) 2024; 15:752. [PMID: 38927688 PMCID: PMC11202968 DOI: 10.3390/genes15060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In humans, the transient receptor potential vanilloid 1 (TRPV1) gene is activated by exogenous (e.g., high temperatures, irritating compounds such as capsaicin) and endogenous (e.g., endocannabinoids, inflammatory factors, fatty acid metabolites, low pH) stimuli. It has been shown to be involved in several processes including nociception, thermosensation, and energy homeostasis. In this study, we investigated the association between TRPV1 gene variants, sensory perception (to capsaicin and PROP), and body composition (BMI and bioimpedance variables) in human populations. By comparing sequences deposited in worldwide databases, we identified two haplotype blocks (herein referred to as H1 and H2) that show strong stabilizing selection signals (MAF approaching 0.50, Tajima's D > +4.5) only in individuals with sub-Saharan African ancestry. We therefore studied the genetic variants of these two regions in 46 volunteers of sub-Saharan descent and 45 Italian volunteers (both sexes). Linear regression analyses showed significant associations between TRPV1 diplotypes and body composition, but not with capsaicin perception. Specifically, in African women carrying the H1-b and H2-b haplotypes, a higher percentage of fat mass and lower extracellular fluid retention was observed, whereas no significant association was found in men. Our results suggest the possible action of sex-driven balancing selection at the non-coding sequences of the TRPV1 gene, with adaptive effects on water balance and lipid deposition.
Collapse
Affiliation(s)
- Maddalena Giannì
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Marco Antinucci
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Stefania Bertoncini
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Luca Taglioli
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Cristina Giuliani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126 Bologna, Italy;
| | - Donata Luiselli
- Dipartimento di Beni Culturali (DBC), Università di Bologna, 48121 Ravenna, Italy;
| | - Davide Risso
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Elisabetta Marini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy;
| | | | - Sergio Tofanelli
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| |
Collapse
|
139
|
Wang T, Liu Y, Zou K, Guan M, Wu Y, Hu Y, Yu H, Du J, Wu D. The Analysis, Description, and Examination of the Maize LAC Gene Family's Reaction to Abiotic and Biotic Stress. Genes (Basel) 2024; 15:749. [PMID: 38927685 PMCID: PMC11202975 DOI: 10.3390/genes15060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Laccase (LAC) is a diverse group of genes found throughout the plant genome essential for plant growth and the response to stress by converting monolignin into intricate lignin formations. However, a comprehensive investigation of maize laccase has not yet been documented. A bioinformatics approach was utilized in this research to conduct a thorough examination of maize (Zea mays L.), resulting in the identification and categorization of 22 laccase genes (ZmLAC) into six subfamilies. The gene structure and motifs of each subgroup were largely consistent. The distribution of the 22 LAC genes was uneven among the maize chromosomes, with the exception of chromosome 9. The differentiation of the genes was based on fragment replication, and the differentiation time was about 33.37 million years ago. ZmLAC proteins are primarily acidic proteins. There are 18 cis-acting elements in the promoter sequences of the maize LAC gene family associated with growth and development, stress, hormones, light response, and stress response. The analysis of tissue-specific expression revealed a high expression of the maize LAC gene family prior to the V9 stage, with minimal expression at post-V9. Upon reviewing the RNA-seq information from the publicly available transcriptome, it was discovered that ZmLAC5, ZmLAC10, and ZmLAC17 exhibited significant expression levels when exposed to various biotic and abiotic stress factors, suggesting their crucial involvement in stress responses and potential value for further research. This study offers an understanding of the functions of the LAC genes in maize's response to biotic and abiotic stress, along with a theoretical basis for comprehending the molecular processes at play.
Collapse
Affiliation(s)
- Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Yang Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Minhui Guan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China; (Y.L.); (M.G.)
| | - Yutong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Ying Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (T.W.); (K.Z.); (Y.W.); (Y.H.); (H.Y.); (J.D.)
| |
Collapse
|
140
|
Vences M, Patmanidis S, Schmidt JC, Matschiner M, Miralles A, Renner SS. Hapsolutely: a user-friendly tool integrating haplotype phasing, network construction, and haploweb calculation. BIOINFORMATICS ADVANCES 2024; 4:vbae083. [PMID: 38895561 PMCID: PMC11184345 DOI: 10.1093/bioadv/vbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Motivation Haplotype networks are a routine approach to visualize relationships among alleles. Such visual analysis of single-locus data is still of importance, especially in species diagnosis and delimitation, where a limited amount of sequence data usually are available and sufficient, along with other datasets in the framework of integrative taxonomy. In diploid organisms, this often requires separating (phasing) sequences with heterozygotic positions, and typically separate programs are required for phasing, reformatting of input files, and haplotype network construction. We therefore developed Hapsolutely, a user-friendly program with an ergonomic graphical user interface that integrates haplotype phasing from single-locus sequences with five approaches for network/genealogy reconstruction. Results Among the novel options implemented, Hapsolutely integrates phasing and graphical reconstruction steps of haplotype networks, supports input of species partition data in the common SPART and SPART-XML formats, and calculates and visualizes haplowebs and fields for recombination, thus allowing graphical comparison of allele distribution and allele sharing among subsets for the purpose of species delimitation. The new tool has been specifically developed with a focus on the workflow in alpha-taxonomy, where exploring fields for recombination across alternative species partitions may help species delimitation. Availability and implementation Hapsolutely is written in Python, and integrates code from Phase, SeqPHASE, and PopART in C++ and Haxe. Compiled stand-alone executables for MS Windows and Mac OS along with a detailed manual can be downloaded from https://www.itaxotools.org; the source code is openly available on GitHub (https://github.com/iTaxoTools/Hapsolutely).
Collapse
Affiliation(s)
- Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefanos Patmanidis
- Department of Computer Science, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Jan-Christopher Schmidt
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | - Aurélien Miralles
- Division of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 75005 Paris, France
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, United States
| |
Collapse
|
141
|
Sahu K, Gopi GV, Gupta SK. Unveiling the genetic structure of pig population in a Himalayan state Uttarakhand through microsatellite and mitochondrial DNA analyses. Trop Anim Health Prod 2024; 56:183. [PMID: 38831031 DOI: 10.1007/s11250-024-04035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
This study traced the maternal lineage of the domestic swine populations using mitochondrial DNA control region markers and genetic diversity using microsatellite markers in Uttarakhand, an Indian state situated at the foothills of the world's youngest (geo-dynamically sensitive) mountain system, "the Himalayas". Analysis of 68 maternally unrelated individuals revealed 20 haplotypes. The maternal signature of the Pacific, Southeast Asian, European, and ubiquitously distributed Chinese haplotypes was present in Uttarakhand's domestic pig population. The D3 haplotype reported in wild pigs from North India was also identified in 47 domestic samples. A unique gene pool, UKD (Uttarakhand Domestic), as another lineage specific to this region has been proposed. Genotypes were analyzed, using 13 sets of microsatellite markers. The observed (Ho) and expected (He) heterozygosities were 0.83 ± 0.02 and 0.84 ± 0.01, respectively. The average polymorphic information content value of 0.83 ± 0.01 indicated the high informativeness of the marker. The overall mean FIS value for all the microsatellite markers was low (F = 0.04, P < 0.01). Seven loci deviated from Hardy-Weinberg equilibrium (HWE) at a significant level (p < 0.05). Two clusters were identified, indicating overlapping populations. These results suggested that though belonging to different maternal lineages, the traditional management practices in Uttarakhand have allowed for genetic mixing and the sharing of genetic material among pig populations. It could contribute to increased genetic diversity but might also result in the loss of distinct genetic characteristics or breed purity of the local breeds if not carefully managed.
Collapse
Affiliation(s)
- Khusbu Sahu
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | | | |
Collapse
|
142
|
Pang S, Zhang Q, Liang L, Qin Y, Li S, Bian X. Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). INSECTS 2024; 15:413. [PMID: 38921128 PMCID: PMC11204050 DOI: 10.3390/insects15060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported.
Collapse
Affiliation(s)
- Siyu Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Qianwen Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Lili Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Yanting Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Shan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Xun Bian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
143
|
Zhou B, Zhang Z, Zhang H, Li Y, Ma Y, Zhang S, Niu S, Li Y. "Point by point" source: The Chinese pine plantations in North China by evidence from mtDNA. Ecol Evol 2024; 14:e11570. [PMID: 38898930 PMCID: PMC11185947 DOI: 10.1002/ece3.11570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The geographical variation and domestication of tree species are an important part of the theory of forest introduction, and the tracing of the germplasm is the theoretical basis for the establishment of high-quality plantations. Chinese pine (Pinus tabuliformis Carr.) is an important native timber tree species widely distributed in northern China, but it is unclear exactly where germplasm of the main Chinese pine plantation populations originated. Here, using two mtDNA markers, we analyzed 796 individuals representing 35 populations (matR marker), and 873 individuals representing 38 populations (nad5-1 marker) of the major natural and artificial populations in northern China, respectively (Shanxi, Hebei and Liaoning provinces). The results confirmed that the core position of natural SX* populations ("*" means natural population) in the Chinese pine populations of northern China, the genetic diversity of HB and LN plantations was higher than that of natural SX* populations, and there was a large difference in genetic background within the groups of SX* and LN, HB showed the opposite. More importantly, we completed the "point by point" tracing of the HB and LN plantings. The results indicated that almost all HB populations originated from SX* (GDS*, ZTS*, GCS*, and THS*), which resulted in homogeneity of the genetic background of HB populations. Most of germplasm of the LN plantations originated from LN* (ZJS* and WF*), and the other part originated from GDS* (SX*), resulting in the large differences in the genetic background within the LN group. Our results provided a reliable theoretical basis for the scientific allocation, management, and utilization of Chinese pine populations in northern China, and for promoting the high-quality establishment of Chinese pine plantations.
Collapse
Affiliation(s)
- Biao Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Zijie Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hongjing Zhang
- Hebei Academy of Forestry and Grassland ScienceShijiazhuangChina
| | - Yupeng Li
- Wucheng Seed Orchard, Guandishan State‐Owned Forest Administration of ShanxiLüliangChina
| | - Yanguang Ma
- The Pinus tabuliformis Seed OrchardLüliangshan State‐Owned Forest Administration of ShanxiLüliangChina
| | - Shubin Zhang
- Yixian Forestry Development Service CenterJinzhouChina
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
144
|
Bassini-Silva R, Chagas MEMD, Mello-Oliveira VDS, Calchi AC, Castro-Santiago AC, Andrade LDO, Benedet GC, Pereira FMAM, Soares-Neto LL, Hippólito AG, Hoppe EGL, Werther K, André MR, Quadros RMD, Barros-Battesti DM, Muñoz-Leal S, Jacinavicius FDC. Eutrichophilus cordiceps Mjöberg, 1910 (Ischnocera: Trichodectidae) in Spiny Tree Porcupines (Coendou villosus): New locality records and the first molecular evidence of association with Bartonella sp. Parasitol Int 2024; 100:102876. [PMID: 38438077 DOI: 10.1016/j.parint.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The chewing louse genus Eutrichophilus Mjöberg has 19 species only associated with porcupines (Rodentia: Erethizontidae). Of these species, E. cercolabes, E. cordiceps, E. emersoni, E. minor, E. moojeni, and E. paraguayensis have been recorded in Brazil. In the present study, we report E. cordiceps for the first time in the São Paulo State (Bauru Municipality) and for the second time in the Santa Catarina State (Lages Municipality), providing scanning electron images and light microscopy for the eggs, as well as the first molecular data (18S rRNA) for the genus. Additionally, Bartonella sp. was detected for the first time in this chewing lice species.
Collapse
Affiliation(s)
- Ricardo Bassini-Silva
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Maria Eduarda Moraes das Chagas
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Victor de Souza Mello-Oliveira
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | | | - Lívia de Oliveira Andrade
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Gabriela Coelho Benedet
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (Cav Udesc), Lages, SC, Brazil.
| | | | | | | | - Estevam Guilherme Lux Hoppe
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Karin Werther
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Rosiléia Marinho de Quadros
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (Cav Udesc), Lages, SC, Brazil; Laboratório de Zoologia e Parasitologia, Universidade do Planalto Catarinense da (Uniplac), Lages, SC, Brazil.
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
| | | |
Collapse
|
145
|
Hu Y, Jia F, Hu L, Wu C, Tian T, Li T, Chen B. Comparative mitogenome research revealed the phylogenetics and evolution of the superfamily Tenebrionoidea (Coleoptera: Polyphage). Ecol Evol 2024; 14:e11520. [PMID: 38932962 PMCID: PMC11199344 DOI: 10.1002/ece3.11520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the worldwide distribution and rich diversity of the superfamily Tenebrionoidea, the knowledge of the mitochondrial genomes (mtgenome) characteristics of the superfamily is still very limited, and its phylogenetics and evolution remain unresolved. In the present study, we newly sequenced mtgenomes from 19 species belonging to Tenebrionoidea, and a total of 90 mitochondrial genomes from 16 families of Tenebrionoidea were used for phylogenetic analysis. There exist 37 genes for all 82 species of complete mtgenomes of 16 families investigated, and their characteristics are identical as reported mtgenomes of other Tenebrionoids. The Ka/Ks analysis suggests that all 13 PCGs have undergone a strong purifying selection. The phylogenetic analysis suggests the monophyly of Mordellidae, Meloidae, Oedemeridae, Pyrochroidae, Salpingidae, Scraptiidae, Lagriidae, and Tenebrionidae, and the Mordellidae is close to the Ripiphoridae. The "Tenebrionidae clade" and "Meloidae clade" are monophyletic, and both of them are sister groups. In the "Meloidae clade," Meloidae is close to Anthicidae. In the "Tenebrionidae clade," the family Lagriidae and Tenebrionidae are sister groups. The divergence time analysis suggests that Tenebrionoidea originated in the late Jurassic, Meloidae Mordellidae, Lagriidae, and Tenebrionidae in the Cretaceous, Oedemeridae in Paleogene. The work lays a base for the study of mtgenome, phylogenetics, and evolution of the superfamily Tenebrionoidea.
Collapse
Affiliation(s)
- Yun‐Jian Hu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Feng‐Fan Jia
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Li Hu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Chuan Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Tian Tian
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Ting‐Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
146
|
de Oliveira Battisti L, Mongruel ACB, Fagundes-Moreira R, Baggio-Souza V, de Souza VK, de Amorim DB, Wagner PGC, Souza UA, Gonçalves AP, Girotto-Soares A, de Faria Valle S, André MR, Soares JF. Post-mortem detection of hemoplasmas (hemotropic Mycoplasma spp.) in South American fur seal (Arctocephalus australis) sampled in Rio Grande do Sul State, southern Brazil. Comp Immunol Microbiol Infect Dis 2024; 109:102187. [PMID: 38703540 DOI: 10.1016/j.cimid.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Hemotropic mycoplasmas are bacteria that attaches to erythrocytes surface, which some species presents zoonotic concerns. In the suborder Pinnipedia, genera Otaria and Arctocephalus are prominent in Brazil. This study investigated the occurrence of hemoplasmas in Arctocephalus sp. and Otaria flavescens found dead along the coast of a Southern Brazilian State. DNA from 135 spleen samples were extracted and subjected to conventional PCR protocols, targeting the 16 S rRNA and 23 S rRNA gene. Three (2.22 %) Arctocephalus australis were positive in the 16 S rRNA gene, and no samples amplified in the 23 S rRNA gene. Samples from this study clustered with Zalophus californianus and Arctocephalus tropicalis mycoplasmas on a Bayesian phylogenetic analysis. Genetic diversity analysis suggested distinct genotypes, indicating A. australis as a new host for hemoplasma, and also a potential putative novel hemoplasma genotype. These findings raises future awareness for pinnipeds conservation, and adds Mycoplasma spp. to be taken into consideration when clinically evaluating rescued animals.
Collapse
Affiliation(s)
- Luciano de Oliveira Battisti
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Renata Fagundes-Moreira
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius Baggio-Souza
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Viviane Kelin de Souza
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Blaese de Amorim
- Center for Coastal Studies, Limnology and Marine, Institute of Biosciences, Federal University of Rio Grande do Sul, Av. Tramandaí, 976, CEP 95625-000, Imbé, RS, Brazil
| | - Paulo Guilherme C Wagner
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Centro de Triagem de Animais Silvestres, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Porto Alegre, Brazil
| | - Ugo A Souza
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Gonçalves
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Girotto-Soares
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stella de Faria Valle
- Laboratório de Análises Clínicas Veterinárias, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcos Rogério André
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil
| | - João Fabio Soares
- Laboratório de Protozoologia e Rickettsioses Vetoriais, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
147
|
Lima RC, de Lima SR, Rocha MS, Dos Anjos HDB, Dantas YCA, Benites IDN, Queiroz CDCS, Fraga EDC, Batista JDS. Identification of fish specimens of the Tocantins River, Brazil, using DNA barcoding. JOURNAL OF FISH BIOLOGY 2024; 104:1924-1939. [PMID: 38551122 DOI: 10.1111/jfb.15721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 02/25/2024] [Indexed: 06/27/2024]
Abstract
The fish fauna of the Tocantins River possesses many endemic species; however, it is little studied in molecular terms and is quite threatened by the construction of several hydroelectric dams. Therefore, the objective of this study was to identify the ichthyofauna of the Tocantins River using DNA barcoding. For this, collections were carried out in five points of this river, which resulted in the capture of 725 individuals from which partial sequences of the cytochrome oxidase subunit I (COI) gene were obtained for genetic analysis. A total of 443 haplotypes were recovered with the mean intraspecific K2P genetic distance of 1.82%. Altogether, 138 species were identified based on morphological criteria, which was a quantity that was much lower than that indicated by the four molecular methods (assemble species by automatic partitioning [ASAP], barcode index number [BIN], generalized mixed Yule coalescent (GMYC), and Bayesian Poisson tree processes [bPTP]) through which 152-157 molecular entities were identified. In all, 41 unique BINs were obtained based on the data generated in the BOLDSystems platform. According to the result indicated by ASAP (species delimitation approach considered the most appropriate in the present study), there was an increase of 17 molecular entities (12.32%), when compared to the number of species identified through their morphological criteria, as it can show cryptic diversity, candidates for new species, and misidentifications. There were 21 incongruities indicated between the different identification approaches for species. Therefore, it is suggested that these taxonomic problems be cautiously evaluated by experts to solve such taxonomic issues.
Collapse
Affiliation(s)
- Renato Corrêia Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Sabrina Rufino de Lima
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Laboratório Temático de Biologia Molecular (LTBM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Marcelo Salles Rocha
- Coordenação de Ciências Biológicas, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | | | | | | | | | - Elmary da Costa Fraga
- Departamento de Química e Biologia, Universidade Estadual do Maranhão (UEMA), Caxias, Brazil
| | - Jacqueline da Silva Batista
- Coordenação de Biodiversidade (COBIO), Laboratório Temático de Biologia Molecular (LTBM), Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG-GCBEv), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| |
Collapse
|
148
|
Bursali F, Simsek FM. Population Genetics of Culex tritaeniorhynchus (Diptera: Culicidae) in Türkiye. Acta Parasitol 2024; 69:1157-1171. [PMID: 38592372 PMCID: PMC11182820 DOI: 10.1007/s11686-024-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Mosquitoes are important vectors of pathogens that can affect humans and animals. Culex tritaeniorhynchus is an important vector of arboviruses such as Japanese encephalitis virus, West Nile virus among various human and animal communities. These diseases are of major public health concern and can have huge economic and health burdens in prevalent countries. Although populations of this important mosquito species have been detected in the Mediterranean and Aegean regions of Türkiye; little is known about its population structure. Our study is to examine the population genetics and genetic composition of Cx. tritaeniorhynchus mosquitoes collected from several localities using cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 5 genes (ND5). This is the first extensive study of Cx. tritaeniorhynchus in the mainland Türkiye with sampling spanning many of provinces. METHODS In this study, DNA extraction, amplification of mitochondrial COI and ND5 genes and population genetic analyses were performed on ten geographic populations of Culex tritaeniorhynchus in the Aegean and Mediterranean region of Türkiye. RESULTS Between 2019 and 2020, 96 samples were collected from 10 geographic populations in the Aegean and Mediterranean regions; they were molecularly analyzed and 139 sequences (50 sequence for COI and 89 sequence for ND5) were used to determine the population structure and genetic diversity. For ND5 gene region, the samples produced 24 haplotypes derived from 15 variable sites and for COI gene region, 43 haplotypes were derived from 17 variable sites. The haplotype for both gene regions was higher than nucleotide diversity. Haplotype phylogeny revealed two groups present in all populations. AMOVA test results show that the geographical populations were the same for all gene regions. Results suggest that Cx. tritaeniorhynchus is a native population in Türkiye, the species is progressing towards speciation and there is no genetic differentiation between provinces and regions. CONCLUSION This study provides useful information on the molecular identifcation and genetic diversity of Cx. tritaeniorhynchus; these results are important to improve mosquito control programs.
Collapse
Affiliation(s)
- Fatma Bursali
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye.
| | - Fatih Mehmet Simsek
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye
| |
Collapse
|
149
|
Trujillo M, Conan A, Calchi AC, Mertens-Scholz K, Becker A, Gallagher C, Mau A, Marchi S, Machado M, André MR, Chapwanya A, Müller A. Bacterial burden and molecular characterization of Coxiella burnetii in shedding pregnant and postpartum ewes from Saint Kitts. Comp Immunol Microbiol Infect Dis 2024; 109:102188. [PMID: 38691873 DOI: 10.1016/j.cimid.2024.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to evaluate the bacterial burden and perform molecular characterization of Coxiella burnetii during shedding in pregnant (vaginal, mucus and feces) and postpartum (vaginal mucus, feces and milk) ewes from Saint Kitts. Positive IS1111 DNA (n=250) for C. burnetii samples from pregnant (n=87) and postpartum (n=74) Barbados Blackbelly ewes in a previous investigation were used for this study. Vaginal mucus (n=118), feces (n=100), and milk (n=32) positive IS1111 C. burnetii-DNA were analysed by real time qPCR (icd gene). For molecular characterization of C. burnetii, selected (n=10) IS1111 qPCR positive samples were sequenced for fragments of the IS1111 element and the 16 S rRNA gene. nBLAST, phylogenetic and haplotype analyses were performed. Vaginal mucus, feces and milk had estimated equal amounts of bacterial DNA (icd copies), and super spreaders were detected within the fecal samples. C. burnetii haplotypes had moderate to high diversity, were ubiquitous worldwide and similar to previously described in ruminants and ticks and humans.
Collapse
Affiliation(s)
- Mayra Trujillo
- Graduate Program, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Anne Conan
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Katja Mertens-Scholz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, Jena 07747, Germany
| | - Anna Becker
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Christa Gallagher
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Alex Mau
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Silvia Marchi
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Marcus Machado
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Aspinas Chapwanya
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Ananda Müller
- Biomedical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| |
Collapse
|
150
|
Yuhara T, Ohtsuki H, Hirota SK, Suyama Y, Urabe J. Contrasting population genetic structure of three semi-terrestrial brachyuran crabs on the coast of the Japanese archipelago. Ecol Evol 2024; 14:e11484. [PMID: 38846710 PMCID: PMC11154805 DOI: 10.1002/ece3.11484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Anthropogenic activities have reduced ecotones between the ocean and land, which is likely to threaten the population of brackish-water brachyuran crabs. To assess the current status of these crabs, we examine the population genetic structures of three semi-terrestrial brachyuran crabs widely distributed along the coast of the Japan and to clarify factors determining their genetic structures. We collected 184 Orisarma dehaani, 252 Chiromantes haematocheir, and 151 Helice tridens crabs from 36 localities of the Japanese archipelago. Genome-wide SNP data from these crabs were analyzed using MIG-seq. Bayesian clustering of STRUCTURE and DAPC analysis were used to identify genetically disturbed populations and to visualize genetic differentiation between local populations. Genetic population structure showed clear differentiation between populations on the Pacific coast of the Tohoku region and on other Japanese coasts in O. dehaani, but not in C. haematocheir or H. tridens. The inbreeding coefficient of O. dehaani was significantly higher on the Pacific coast of the Tohoku region compared to other Japanese coasts. C. haematocheir and H. tridens had homogeneous genetic structures along the Japanese coast, but showed genetic differentiation of a local population at their range limits. Thus, O. dehaani showed little gene flow and clear genetic differentiation between populations in the Tohoku Pacific region and those on other Japanese coasts due to ocean currents. Although such a regional differentiation was not found in C. haematocheir and H. tridens, one population of C. haematocheir was genetically isolated at the edge of its distribution range and likely vulnerable to environmental changes.
Collapse
Affiliation(s)
- Takeshi Yuhara
- Graduate School of Life SciencesTohoku UniversitySendaiMiyagiJapan
- Present address:
National Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Hajime Ohtsuki
- Graduate School of Life SciencesTohoku UniversitySendaiMiyagiJapan
| | - Shun K. Hirota
- Graduate School of Agricultural SciencesTohoku UniversityOsakiMiyagiJapan
- Botanical GardensOsaka Metropolitan UniversityKatanoOsakaJapan
| | - Yoshihisa Suyama
- Graduate School of Agricultural SciencesTohoku UniversityOsakiMiyagiJapan
| | - Jotaro Urabe
- Graduate School of Life SciencesTohoku UniversitySendaiMiyagiJapan
| |
Collapse
|