101
|
Pfeuffer S, Rolfes L, Ingwersen J, Pul R, Kleinschnitz K, Korsen M, Räuber S, Ruck T, Schieferdecker S, Willison AG, Aktas O, Kleinschnitz C, Hartung HP, Kappos L, Meuth SG. Effect of Previous Disease-Modifying Therapy on Treatment Effectiveness for Patients Treated With Ocrelizumab. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200104. [PMID: 37041077 PMCID: PMC10091366 DOI: 10.1212/nxi.0000000000200104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/27/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND AND OBJECTIVES B cell-depleting antibodies were proven as effective strategy for the treatment of relapsing multiple sclerosis (RMS). The monoclonal antibody ocrelizumab was approved in 2017 in the United States and in 2018 in the European Union, but despite proven efficacy in randomized, controlled clinical trials, its effectiveness in the real-world setting remains to be fully elucidated. In particular, most study patients were treatment naive or switched from injectable therapies, whereas oral substances or monoclonal antibodies made up >1% of previous treatments. METHODS We evaluated ocrelizumab-treated patients with RMS enrolled in the prospective cohorts at the University Hospitals Duesseldorf and Essen, Germany. Epidemiologic data at baseline were compared, and Cox proportional hazard models were applied to evaluate outcomes. RESULTS Two hundred eighty patients were included (median age: 37 years, 35% male patients). Compared with using ocrelizumab as a first-line treatment, its use as a third-line therapy increased hazard ratios (HRs) for relapse and disability progression, whereas differences between first- vs second-line and second- vs third-line remained smaller. We stratified patients according to their last previous disease-modifying treatment and here identified fingolimod (FTY) (45 patients, median age 40 years, 33% male patients) as a relevant risk factor for ongoing relapse activity despite 2nd-line (HR: 3.417 [1.007-11.600]) or 3rd-line (HR: 5.903 [2.489-13.999]) ocrelizumab treatment, disability worsening (2nd line: HR: 3.571 [1.013-12.589]; 3rd line: HR: 4.502 [1.728-11.729]), and occurrence of new/enlarging MRI lesions (2nd line: HR: 1.939 [0.604-6.228]; 3rd line: HR: 4.627 [1.982-10.802]). Effects were persistent throughout the whole follow-up. Neither peripheral B-cell repopulation nor immunoglobulin G levels were associated with rekindling disease activity. DISCUSSION Our prospectively collected observational data suggest suboptimal effectiveness of ocrelizumab in patients switching from FTY compared with those switching from other substances or having been treatment naive. These findings support previous studies indicating abated effectiveness of immune cell-depleting therapies following FTY treatment in patients with RMS. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for patients with RMS, previous treatment with FTY compared with previous treatment with other immunomodulating therapies decreases the effectiveness of ocrelizumab.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland.
| | - Leoni Rolfes
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Jens Ingwersen
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Refik Pul
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Konstanze Kleinschnitz
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Melanie Korsen
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Saskia Räuber
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Tobias Ruck
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Simon Schieferdecker
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Alice Grizzel Willison
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Orhan Aktas
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Christoph Kleinschnitz
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Hans-Peter Hartung
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Ludwig Kappos
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Sven G Meuth
- From the Department of Neurology (S.P.), University Hospital Giessen and Marburg, Justus-Liebig-University Giessen; Department of Neurology (L.R., J.I., M.K., S.R., T.R., S.S., A.G.W., O.A., H.-P.H., S.G.M.), University Hospital Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; Department of Neurology (H.-P.H.), Palacky University, Olomouc, Czech Republic; Department of Neurology (H.-P.H.), Medical University of Vienna, Austria; Department of Neurology and Centre for Translational Neuro- and Behavioural Sciences (C-TNBS) (R.P., K.K., C.K.), University Hospital Essen, Germany; and Neurologic Clinic and Policlinic (L.K.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
102
|
Monschein T, Dekany S, Zrzavy T, Ponleitner M, Altmann P, Bsteh G, Kornek B, Rommer P, Enzinger C, Di Pauli F, Kraus J, Berger T, Leutmezer F, Guger M. Real-world use of natalizumab in Austria: data from the Austrian Multiple Sclerosis Treatment Registry (AMSTR). J Neurol 2023:10.1007/s00415-023-11686-2. [PMID: 37074388 DOI: 10.1007/s00415-023-11686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION With the approval of natalizumab in Europe in 2006, the Austrian Multiple Sclerosis Therapy Registry (AMSTR) was established. Here, we present data from this registry about effectiveness and safety of natalizumab in patients treated up to 14 years. PATIENTS/METHODS Data retrieved from the AMSTR contained baseline characteristics and biannual documentation of annualised relapse rate (ARR) and Expanded Disability Status Scale (EDSS) score as well as adverse events and reasons for discontinuation on follow-up visits. RESULTS A total of 1596 natalizumab patients (71% women, n = 1133) were included in the analysis and the observed treatment duration ranged from 0 to 164 months (13.6 years). The mean ARR was 2.0 (SD = 1.13) at baseline, decreasing to 0.16 after 1 year and 0.01 after 10 years. A total of 325 patients (21.6%) converted to secondary progressive multiple sclerosis (SPMS) during the observational period. Of 1502 patients, 1297 (86.4%) reported no adverse events (AE) during follow-up visits. The most common reported AEs were infections and infusion-related reactions. John Cunningham virus (JCV) seropositivity was the most common specified reason for treatment discontinuation (53.7%, n = 607). There were five confirmed cases of Progressive Multifocal Leukoencephalopathy (PML) with 1 death. CONCLUSION The effectiveness of natalizumab in patients with active relapsing-remitting multiple sclerosis (RRMS) could be confirmed in our real-world cohort even after follow-up of up to 14 years, though after year 10, there were less than 100 remaining patients. A low number of AE were reported in this nationwide registry study, establishing Natalizumab's favourable safety profile during long-term use.
Collapse
Affiliation(s)
- Tobias Monschein
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sarinah Dekany
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jörg Kraus
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Michael Guger
- Clinic for Neurology 2, Kepler University Clinic, Linz, Austria
| |
Collapse
|
103
|
Bose G, Healy BC, Saxena S, Saleh F, Paul A, Barro C, Lokhande HA, Polgar-Turcsanyi M, Anderson M, Glanz BI, Guttmann CRG, Bakshi R, Weiner HL, Chitnis T. Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes. Mult Scler Relat Disord 2023; 74:104695. [PMID: 37060852 DOI: 10.1016/j.msard.2023.104695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Early risk-stratification in multiple sclerosis (MS) may impact treatment decisions. Current predictive models have identified that clinical and imaging characteristics of aggressive disease are associated with worse long-term outcomes. Serum biomarkers, neurofilament (sNfL) and glial fibrillary acidic protein (sGFAP), reflect subclinical disease activity through separate pathological processes and may contribute to predictive models of clinical and MRI outcomes. METHODS We conducted a retrospective analysis of the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB study), where patients with multiple sclerosis are seen every 6 months and undergo Expanded Disability Status Scale (EDSS) assessment, have annual brain MRI scans where volumetric analysis is conducted to calculate T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and donate a yearly blood sample for subsequent analysis. We included patients with newly diagnosed relapsing-remitting MS and serum samples obtained at baseline visit and 1-year follow-up (both within 3 years of onset), and were assessed at 10-year follow-up. We measured sNfL and sGFAP by single molecule array at baseline visit and at 1-year follow-up. A predictive clinical model was developed using age, sex, Expanded Disability Status Scale (EDSS), pyramidal signs, relapse rate, and spinal cord lesions at first visit. The main outcome was odds of developing of secondary progressive (SP)MS at year 10. Secondary outcomes included 10-year EDSS, brain T2LV and BPF. We compared the goodness-of-fit of the predictive clinical model with and without sNfL and sGFAP at baseline and 1-year follow-up, for each outcome by area under the receiver operating characteristic curve (AUC) or R-squared. RESULTS A total 144 patients with median MS onset at age 37.4 years (interquartile range: 29.4-45.4), 64% female, were included. SPMS developed in 25 (17.4%) patients. The AUC for the predictive clinical model without biomarker data was 0.73, which improved to 0.77 when both sNfL and sGFAP were included in the model (P = 0.021). In this model, higher baseline sGFAP associated with developing SPMS (OR=3.3 [95%CI:1.1,10.6], P = 0.04). Adding 1-year follow-up biomarker levels further improved the model fit (AUC = 0.79) but this change was not statistically significant (P = 0.15). Adding baseline biomarker data also improved the R-squared of clinical models for 10-year EDSS from 0.24 to 0.28 (P = 0.032), while additional 1-year follow-up levels did not. Baseline sGFAP was associated with 10-year EDSS (ß=0.58 [95%CI:0.00,1.16], P = 0.05). For MRI outcomes, baseline biomarker levels improved R-squared for T2LV from 0.12 to 0.27 (P<0.001), and BPF from 0.15 to 0.20 (P = 0.042). Adding 1-year follow-up biomarker data further improved T2LV to 0.33 (P = 0.0065) and BPF to 0.23 (P = 0.048). Baseline sNfL was associated with T2LV (ß=0.34 [95%CI:0.21,0.48], P<0.001) and 1-year follow-up sNfL with BPF (ß=-2.53% [95%CI:-4.18,-0.89], P = 0.003). CONCLUSIONS Early biomarker levels modestly improve predictive models containing clinical and MRI variables. Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP levels and worse MRI outcomes, T2LV and BPF, are associated with higher sNfL levels. Prospective study implementing these predictive models into clinical practice are needed to determine if early biomarker levels meaningfully impact clinical practice.
Collapse
Affiliation(s)
- Gauruv Bose
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brian C Healy
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shrishti Saxena
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fermisk Saleh
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anu Paul
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christian Barro
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hrishikesh A Lokhande
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mariann Polgar-Turcsanyi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark Anderson
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie I Glanz
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Charles R G Guttmann
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rohit Bakshi
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Howard L Weiner
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanuja Chitnis
- Harvard Medical School, 60 Fenwood Road, 9002 K, Boston, MA 02115, USA; Brigham MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
104
|
Houzen H, Kano T, Kondo K, Takahashi T, Niino M. The prevalence and incidence of multiple sclerosis over the past 20 years in northern Japan. Mult Scler Relat Disord 2023; 73:104696. [PMID: 37028125 DOI: 10.1016/j.msard.2023.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES The prevalence of multiple sclerosis (MS) in East Asia is thought to be lower than in Western countries. Globally, there is a trend of increasing MS prevalence. We investigated the changes in the prevalence and clinical phenotype of MS in the Tokachi province of Hokkaido in northern Japan, from 2001 to 2021. METHODS Data processing sheets were sent to all related institutions inside and outside the Tokachi area of Hokkaido island in Japan and were collected from April to May 2021. The prevalence according to the Poser's diagnostic criteria for MS was determined on March 31, 2021. RESULTS In 2021, the crude MS prevalence in northern Japan was 22.4/100,000 (95% confidence interval, 17.6-28.0). The prevalences of MS standardized by the Japanese national population in 2001, 2006, 2011, 2016, and 2021 were 6.9, 11.5, 15.3, 18.5, and 23.3, respectively. The female/male ratio was 4.0 in 2021, increased from 2.6 in 2001. We checked the prevalence using the 2017 revised McDonald criteria, and found only additional male patient who had not fulfilled Poser's criteria. The age- and sex-adjusted incidence of MS per 100,000 individuals increased from 0.09 in 1980-1984 to 0.99 in 2005-2009; since then, it has remained stable. The proportions of primary-progressive, relapsing-remitting, and secondary-progressive MS types in 2021 were 3%, 82%, and 15%, respectively. CONCLUSION Our results demonstrated a consistent increase in the prevalence of MS among the northern Japanese over 20 years, particularly in females, and consistently lower rates of progressive MS in northern Japan than elsewhere in the world.
Collapse
|
105
|
Harding KE, Ingram G, Tallantyre EC, Joseph F, Wardle M, Pickersgill TP, Willis MD, Tomassini V, Pearson OR, Robertson NP. Contemporary study of multiple sclerosis disability in South East Wales. J Neurol Neurosurg Psychiatry 2023; 94:272-279. [PMID: 36328420 DOI: 10.1136/jnnp-2022-330013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND A contemporary understanding of disability evolution in multiple sclerosis (MS) is an essential tool for individual disease management and planning of interventional studies. We have used prospectively collected longitudinal data to analyse disability progression and variation in a British MS cohort. METHODS Cox proportional hazards regression was used to estimate hazard of Expanded Disability Status Scale (EDSS) 4.0 and 6.0. A continuous Markov model was used to estimate transitional probabilities for individual EDSS scores. Models were adjusted for age at MS onset, sex and disease-modifying treatments (DMTs) exposure. RESULTS 2135 patients were included (1487 (70%) female, 1922 (89%) relapsing onset). 865 (41%) had used DMTs. Median time to EDSS 4.0 and 6.0 was 18.2 years (95% CI 16.3 to 20.2) and 22.1 years (95% CI 20.5 to 24.5). In the Markov model, the median time spent at EDSS scores of <6 (0.40-0.98 year) was shorter than the time spent at EDSS scores of ≥6 (0.87-4.11 year). Hazard of change in EDSS was greatest at EDSS scores <6 (HR for increasing EDSS: 1.02-1.33; decreasing EDSS: 0.34-1.27) compared with EDSS scores ≥6 (HR for increasing EDSS: 0.08-0.61; decreasing EDSS: 0.18-0.54). CONCLUSIONS These data provide a detailed contemporary model of disability outcomes in a representative population-based MS cohort. They support a trend of increasing time to disability milestones compared with historical reference populations, and document disability variation with the use of transitional matrices. In addition, they provide essential information for patient counselling, clinical trial design, service planning and offer a comparative baseline for assessment of therapeutic interventions.
Collapse
Affiliation(s)
| | - Gillian Ingram
- Neurology Department, Swansea Bay University Health Board, Swansea, UK
| | - Emma Clare Tallantyre
- Helen Durham Centre for Neuroinflammatory Disease, Cardiff and Vale University Health Board, Cardiff, UK.,Institute of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK
| | - Fady Joseph
- Department of Neurology, Aneurin Bevan University Health Board, Newport, UK
| | - Mark Wardle
- Helen Durham Centre for Neuroinflammatory Disease, Cardiff and Vale University Health Board, Cardiff, UK
| | - Trevor P Pickersgill
- Helen Durham Centre for Neuroinflammatory Disease, Cardiff and Vale University Health Board, Cardiff, UK
| | - Mark D Willis
- Helen Durham Centre for Neuroinflammatory Disease, Cardiff and Vale University Health Board, Cardiff, UK
| | - Valentina Tomassini
- Institute of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK.,Institute of Advanced Biomedical Technologies (ITAB), Department of Neuroscience and Imaging and Clinical Sciences, Multiple Sclerosis Center, Neurological Clinic, SS Annunziata Hospital, Università degli Studi Gabriele d'Annunzio Chieti Pescara, Chieti, Italy
| | - Owen Rhys Pearson
- Neurology Department, Swansea Bay University Health Board, Swansea, UK
| | - Neil P Robertson
- Helen Durham Centre for Neuroinflammatory Disease, Cardiff and Vale University Health Board, Cardiff, UK.,Institute of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK
| |
Collapse
|
106
|
Boffa G, Signori A, Massacesi L, Mariottini A, Sbragia E, Cottone S, Amato MP, Gasperini C, Moiola L, Meletti S, Repice AM, Brescia Morra V, Salemi G, Patti F, Filippi M, De Luca G, Lus G, Zaffaroni M, Sola P, Conte A, Nistri R, Aguglia U, Granella F, Galgani S, Caniatti LM, Lugaresi A, Romano S, Iaffaldano P, Cocco E, Saccardi R, Angelucci E, Trojano M, Mancardi GL, Sormani MP, Inglese M. Hematopoietic Stem Cell Transplantation in People With Active Secondary Progressive Multiple Sclerosis. Neurology 2023; 100:e1109-e1122. [PMID: 36543569 PMCID: PMC10074454 DOI: 10.1212/wnl.0000000000206750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Uncontrolled evidence suggests that autologous hematopoietic stem cell transplantation (AHSCT) can be effective in people with active secondary progressive multiple sclerosis (SPMS). In this study, we compared the effect of AHSCT with that of other anti-inflammatory disease-modifying therapies (DMTs) on long-term disability worsening in active SPMS. METHODS We collected data from the Italian Bone Marrow Transplantation Study Group and the Italian Multiple Sclerosis Register. Patients were considered eligible if treatment had been started after the diagnosis of SPMS. Disability worsening was assessed by the cumulative proportion of patients with a 6-month confirmed disability progression (CDP) according to the Expanded Disability Status Scale (EDSS) score. Key secondary endpoints were the EDSS time trend after treatment start and the prevalence of disability improvement over time. Time to first CDP was assessed by means of proportional hazard Cox regression models. A linear mixed model with a time × treatment group interaction was used to assess the longitudinal EDSS time trends. Prevalence of improvement was estimated using a modified Kaplan-Meier estimator and compared between groups by bootstrapping the area under the curve. RESULTS Seventy-nine AHSCT-treated patients and 1975 patients treated with other DMTs (beta interferons, azathioprine, glatiramer-acetate, mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab) were matched to reduce treatment selection bias using propensity score and overlap weighting approaches. Time to first CDP was significantly longer in transplanted patients (hazard ratio [HR] = 0.50; 95% CI = 0.31-0.81; p = 0.005), with 61.7% of transplanted patients free from CPD at 5 years. Accordingly, EDSS time trend over 10 years was higher in patients treated with other DMTs than in AHSCT-treated patients (+0.157 EDSS points per year compared with -0.013 EDSS points per year; interaction p < 0.001). Patients who underwent AHSCT were more likely to experience a sustained disability improvement: 34.7% of patients maintained an improvement (a lower EDSS than baseline) 3 years after transplant vs 4.6% of patients treated by other DMTs (p < 0.001). DISCUSSION The use of AHSCT in people with active SPMS is associated with a slowing of disability progression and a higher likelihood of disability improvement compared with standard immunotherapy. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that autologous hematopoietic stem cell transplants prolonged the time to CDP compared with other DMTs.
Collapse
Affiliation(s)
- Giacomo Boffa
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alessio Signori
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Luca Massacesi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alice Mariottini
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Elvira Sbragia
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Salvatore Cottone
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Pia Amato
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Claudio Gasperini
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Lucia Moiola
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Stefano Meletti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Anna Maria Repice
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Vincenzo Brescia Morra
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giuseppe Salemi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Francesco Patti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Massimo Filippi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giovanna De Luca
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giacomo Lus
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Mauro Zaffaroni
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Patrizia Sola
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Antonella Conte
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Riccardo Nistri
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Umberto Aguglia
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Franco Granella
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Simonetta Galgani
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Luisa Maria Caniatti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alessandra Lugaresi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Silvia Romano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Pietro Iaffaldano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Eleonora Cocco
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Riccardo Saccardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Emanuele Angelucci
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Trojano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giovanni Luigi Mancardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Pia Sormani
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Matilde Inglese
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy.
| |
Collapse
|
107
|
Baione V, Canevelli M, Belvisi D, Buscarinu MC, Bellucci G, Fantozzi R, Nicoletti CG, Malatuni G, Cortese A, De Giglio L, Tartaglia M, Ferrazzano G, Malimpensa L, Leodori G, Bruno G, Ferraro E, Marfia GA, Centonze D, Salvetti M, Conte A. Frailty and relapse activity in multiple sclerosis: A longitudinal observation. Mult Scler Relat Disord 2023; 72:104603. [PMID: 36905818 DOI: 10.1016/j.msard.2023.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Recent cross-sectional investigations suggest a relationship between frailty, as measured by Frailty Index (FI), and multiple sclerosis (MS). However, if and how frailty is associated with relapse activity in MS is still unknown. To explore this issue, a one-year follow-up study involving 471 patients was conducted. A univariate regression model showed an inverse association between baseline FI score and the presence of relapse, which was also confirmed in the multivariate model. These results suggest that frailty may reflect pathophysiological mechanisms involved in MS disease activity and that the FI may be used as an enrichment criterion in clinical trials.
Collapse
Affiliation(s)
- Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Canevelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza, University of Rome, Rome, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza, University of Rome, Rome, Italy
| | | | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Giorgia Malatuni
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | | | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Girolama Alessandra Marfia
- IRCCS Neuromed, Pozzilli, IS, Italy; Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy; Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Marco Salvetti
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza, University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
108
|
Cerri S, Greve DN, Hoopes A, Lundell H, Siebner HR, Mühlau M, Van Leemput K. An open-source tool for longitudinal whole-brain and white matter lesion segmentation. Neuroimage Clin 2023; 38:103354. [PMID: 36907041 PMCID: PMC10024238 DOI: 10.1016/j.nicl.2023.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.
Collapse
Affiliation(s)
- Stefano Cerri
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Radiology, Harvard Medical School, USA
| | - Andrew Hoopes
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark
| | - Mark Mühlau
- Department of Neurology and TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Germany
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Health Technology, Technical University of Denmark, Denmark
| |
Collapse
|
109
|
Sá MJ, Basílio C, Capela C, Cerqueira JJ, Mendes I, Morganho A, Correia de Sá J, Salgado V, Martins Silva A, Vale J, Sousa L. Consensus for the Early Identification of Secondary Progressive Multiple Sclerosis in Portugal: a Delphi Panel. ACTA MEDICA PORT 2023; 36:167-173. [PMID: 36735763 DOI: 10.20344/amp.18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Multiple sclerosis is a disease with a heterogeneous evolution. The early identification of secondary progressive multiple sclerosis is a clinical challenge, which would benefit from the definition of biomarkers and diagnostic tools applicable in the transition phase from relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis. We aimed to reach a Portuguese national consensus on the monitoring of patients with multiple sclerosis and on the more relevant clinical variables for the early identification of its progression. MATERIAL AND METHODS A Delphi panel which included eleven Portuguese Neurologists participated in two rounds of questions between July and August of 2021. In the first round, 39 questions which belonged to the functional, cognitive, imaging, biomarkers and additional evaluations were included. Questions for which no consensus was obtained in the first round (less than 80% of agreement), were appraised by the panel during the second round. RESULTS The response rate was 100% in both rounds and consensus was reached for a total of 33 questions (84.6%). Consensus was reached for monitoring time, evaluation scales and clinical variables such as the degree of brain atrophy and mobility reduction, changes suggestive of secondary progressive multiple sclerosis. Additionally, digital devices were considered tools with potential to identify disease progression. Most questions for which no consensus was obtained referred to the cognitive assessment and the remaining referred to both functional and imaging domains. CONCLUSION Consensus was obtained for the determination of the monitorization interval and for most of the clinical variables. Most questions that did not reach consensus were related with the confirmation of progression taking into account only one test/domain, reinforcing the multifactorial nature of multiple sclerosis.
Collapse
Affiliation(s)
- Maria José Sá
- Serviço de Neurologia. Centro Hospitalar e Universitário de São João. Porto. Portugal
| | - Carlos Basílio
- Serviço de Neurologia. Centro Hospitalar Universitário do Algarve. Faro. Portugal
| | - Carlos Capela
- Serviço de Neurologia. Centro Hospitalar Universitário de Lisboa Central. Lisboa. Portugal
| | | | - Irene Mendes
- Serviço de Neurologia. Hospital Garcia de Orta. Almada. Portugal
| | - Armando Morganho
- Serviço de Neurologia. Hospital Dr. Nélio Mendonça. Funchal. Portugal
| | - João Correia de Sá
- Serviço de Neurologia. Hospital de Santa Maria. Centro Hospitalar Universitário de Lisboa Norte. Lisboa. Portugal
| | - Vasco Salgado
- Serviço de Neurologia. Hospital Professor Doutor Fernando Fonseca. Amadora. Portugal
| | - Ana Martins Silva
- Serviço de Neurologia. Centro Hospitalar Universitário do Porto. Porto. Portugal
| | - José Vale
- Serviço de Neurologia. Hospital Beatriz Ângelo. Loures. Portugal
| | - Lívia Sousa
- Serviço de Neurologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| |
Collapse
|
110
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
111
|
Forsberg L, Spelman T, Klyve P, Manouchehrinia A, Ramanujam R, Mouresan E, Drahota J, Horakova D, Joensen H, Pontieri L, Magyari M, Ellenberger D, Stahmann A, Rodgers J, Witts J, Middleton R, Nicholas R, Bezlyak V, Adlard N, Hach T, Lines C, Vukusic S, Soilu-Hänninen M, van der Walt A, Butzkueven H, Iaffaldano P, Trojano M, Glaser A, Hillert J. Proportion and characteristics of secondary progressive multiple sclerosis in five European registries using objective classifiers. Mult Scler J Exp Transl Clin 2023; 9:20552173231153557. [PMID: 36816812 PMCID: PMC9936396 DOI: 10.1177/20552173231153557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Background To assign a course of secondary progressive multiple sclerosis (MS) (SPMS) may be difficult and the proportion of persons with SPMS varies between reports. An objective method for disease course classification may give a better estimation of the relative proportions of relapsing-remitting MS (RRMS) and SPMS and may identify situations where SPMS is under reported. Materials and methods Data were obtained for 61,900 MS patients from MS registries in the Czech Republic, Denmark, Germany, Sweden, and the United Kingdom (UK), including date of birth, sex, SP conversion year, visits with an Expanded Disability Status Scale (EDSS) score, MS onset and diagnosis date, relapses, and disease-modifying treatment (DMT) use. We included RRMS or SPMS patients with at least one visit between January 2017 and December 2019 if ≥ 18 years of age. We applied three objective methods: A set of SPMS clinical trial inclusion criteria ("EXPAND criteria") modified for a real-world evidence setting, a modified version of the MSBase algorithm, and a decision tree-based algorithm recently published. Results The clinically assigned proportion of SPMS varied from 8.7% (Czechia) to 34.3% (UK). Objective classifiers estimated the proportion of SPMS from 15.1% (Germany by the EXPAND criteria) to 58.0% (UK by the decision tree method). Due to different requirements of number of EDSS scores, classifiers varied in the proportion they were able to classify; from 18% (UK by the MSBase algorithm) to 100% (the decision tree algorithm for all registries). Objectively classified SPMS patients were older, converted to SPMS later, had higher EDSS at index date and higher EDSS at conversion. More objectively classified SPMS were on DMTs compared to the clinically assigned. Conclusion SPMS appears to be systematically underdiagnosed in MS registries. Reclassified patients were more commonly on DMTs.
Collapse
Affiliation(s)
- Lars Forsberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tim Spelman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Klyve
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ryan Ramanujam
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden
| | - Elena Mouresan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiri Drahota
- Czech National Multiple Sclerosis ReMuS, IMPULS Endowment Fund, Prague, Czech Republic
- First Faculty of Medicine and General University Hospital, Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Prague, Czech Republic
| | - Dana Horakova
- First Faculty of Medicine and General University Hospital, Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Prague, Czech Republic
| | - Hanna Joensen
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Luigi Pontieri
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Melinda Magyari
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Copenhagen, Denmark
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | - James Witts
- Swansea University Medical School, Swansea, UK
| | | | - Richard Nicholas
- Swansea University Medical School, Swansea, UK
- Department of Cellular and Molecular Neuroscience, Imperial College London, London, UK
| | | | | | | | | | - Sandra Vukusic
- Hôpital Neurologique, Service de Neurologie A, the European Database for Multiple Sclerosis (EDMUS), Coordinating Center and INSERM U 433, Lyon, France
| | - Merja Soilu-Hänninen
- Division of Clinical Neurosciences, University Hospital and University of Turku, Turku, Finland
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Glaser
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
112
|
The uncertainty period preceding the clinical defined SPMS diagnosis and the applicability of objective classifiers - A Danish single center study. Mult Scler Relat Disord 2023; 71:104546. [PMID: 36764284 DOI: 10.1016/j.msard.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The clinical transition from relapsing-remitting multiple sclerosis (RRMS) to secondary progressive MS (SPMS) is often related to a period of diagnostic uncertainty delaying diagnosis. With emerging treatment options for SPMS how to identify RRMS patients at risk of SPMS and when to assign a SPMS diagnosis has become a matter of growing clinical concern. This study aimed to determine the period of diagnostic uncertainty among Danish MS patients. Secondly, this study examined the performance of two objective classifiers in a longitudinal setting regarding their ability to shorten the period of diagnostic uncertainty. METHODS By using the Danish Multiple Sclerosis Registry, we identified all patients linked to Rigshospitalet with clinically assigned SPMS from 2010 to 2021. We reviewed all patient records and identified the first mentioned sign of progression (FMP). The time between the dates of FMP and clinically assigned SPMS was defined as the period of diagnostic uncertainty. Secondly, we applied two objective classifiers (the Karolinska Decision tree and the MSBase criteria) to generate suggested transition dates and compared them to the ones obtain from the patient records. Detailed descriptions of the population were made at all mentioned timepoints. RESULTS In total 138 patients were included. We found a median period of diagnostic uncertainty of 2.12 years. The objective classifiers generated a median suggested transition date 3.44 and 4.48 years earlier than the date of clinically assigned SPMS, but they only provided an earlier SPMS transition date in 50.72% and 55.80% of cases. CONCLUSIONS Our findings emphasize the uncertainty related to the transition from RRMS to SPMS illustrating the need of an improved diagnostic approach. Objective classifiers might have the potential to help reduce the period of diagnostic uncertainty in the future, but in their current form they do not perform satisfactorily enough to solve all difficulties related to detecting SPMS-transition.
Collapse
|
113
|
Barro C, Healy BC, Saxena S, Glanz BI, Paul A, Polgar-Turcsanyi M, Guttmann CR, Bakshi R, Weiner HL, Chitnis T. Serum NfL but not GFAP predicts cognitive decline in active progressive multiple sclerosis patients. Mult Scler 2023; 29:206-211. [PMID: 36448331 DOI: 10.1177/13524585221137697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cognitive decline is inadequately captured by the standard neurological examination. Serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are biomarkers of neuronal damage and astrocytic reactivity that may offer an accessible measure of the multiple sclerosis (MS) pathology linked to cognitive decline. OBJECTIVE To investigate the association of sNfL and sGFAP with cognitive decline in MS patients at high risk for progressive pathology. METHODS We included 94 MS patients with sustained Expanded Disability Status Score (EDSS) ⩾ 3, available serum samples and cognitive assessment performed by symbol digit modalities test (SDMT) over a median of 3.1 years. The visit for sGFAP/sNfL quantification was at confirmed EDSS ⩾ 3. Linear regression analysis on log-transformed sGFAP/sNfL assessed the association with current and future SDMT. Analyses were adjusted for age, sex, EDSS, treatment group, and recent relapse. RESULTS sNfL was significantly associated with concurrent SDMT (adjusted change in mean SDMT = -4.5; 95% confidence interval (CI): -8.7, -0.2; p = 0.039) and predicted decline in SDMT (adjusted change in slope: -1.14; 95% CI: -1.83, -0.44; p = 0.001), particularly in active patients. sGFAP was not associated with concurrent or future SDMT. CONCLUSIONS Higher levels of sNfL were associated with cognitive impairment and predicted cognitive decline in MS patients at high risk for having an underlying progressive pathology.
Collapse
Affiliation(s)
- Christian Barro
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian C Healy
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bonnie I Glanz
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Rg Guttmann
- Harvard Medical School, Boston, MA, USA/Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Bakshi
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard L Weiner
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, USA/Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
114
|
Tur C, Carbonell-Mirabent P, Cobo-Calvo Á, Otero-Romero S, Arrambide G, Midaglia L, Castilló J, Vidal-Jordana Á, Rodríguez-Acevedo B, Zabalza A, Galán I, Nos C, Salerno A, Auger C, Pareto D, Comabella M, Río J, Sastre-Garriga J, Rovira À, Tintoré M, Montalban X. Association of Early Progression Independent of Relapse Activity With Long-term Disability After a First Demyelinating Event in Multiple Sclerosis. JAMA Neurol 2023; 80:151-160. [PMID: 36534392 PMCID: PMC9856884 DOI: 10.1001/jamaneurol.2022.4655] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance Progression independent of relapse activity (PIRA) is the main event responsible for irreversible disability accumulation in relapsing multiple sclerosis (MS). Objective To investigate clinical and neuroimaging predictors of PIRA at the time of the first demyelinating attack and factors associated with long-term clinical outcomes of people who present with PIRA. Design, Setting, and Participants This cohort study, conducted from January 1, 1994, to July 31, 2021, included patients with a first demyelinating attack from multiple sclerosis; patients were recruited from 1 study center in Spain. Patients were excluded if they refused to participate, had alternative diagnoses, did not meet protocol requirements, had inconsistent demographic information, or had less than 3 clinical assessments. Exposures Exposures included (1) clinical and neuroimaging features at the first demyelinating attack and (2) presenting PIRA, ie, confirmed disability accumulation (CDA) in a free-relapse period at any time after symptom onset, within (vs after) the first 5 years of the disease (ie, early/late PIRA), and in the presence (vs absence) of new T2 lesions in the previous 2 years (ie, active/nonactive PIRA). Main Outcomes and Measures Expanded Disability Status Scale (EDSS) yearly increase rates since the first attack and adjusted hazard ratios (HRs) for predictors of time to PIRA and time to EDSS 6.0. Results Of the 1128 patients (mean [SD] age, 32.1 [8.3] years; 781 female individuals [69.2%]) included in the study, 277 (25%) developed 1 or more PIRA events at a median (IQR) follow-up time of 7.2 (4.6-12.4) years (for first PIRA). Of all patients with PIRA, 86 of 277 (31%) developed early PIRA, and 73 of 144 (51%) developed active PIRA. Patients with PIRA were slightly older, had more brain lesions, and were more likely to have oligoclonal bands than those without PIRA. Older age at the first attack was the only predictor of PIRA (HR, 1.43; 95% CI, 1.23-1.65; P < .001 for each older decade). Patients with PIRA had steeper EDSS yearly increase rates (0.18; 95% CI, 0.16-0.20 vs 0.04; 95% CI, 0.02-0.05; P < .001) and an 8-fold greater risk of reaching EDSS 6.0 (HR, 7.93; 95% CI, 2.25-27.96; P = .001) than those without PIRA. Early PIRA had steeper EDSS yearly increase rates than late PIRA (0.31; 95% CI, 0.26-0.35 vs 0.13; 95% CI, 0.10-0.16; P < .001) and a 26-fold greater risk of reaching EDSS 6.0 from the first attack (HR, 26.21; 95% CI, 2.26-303.95; P = .009). Conclusions and Relevance Results of this cohort study suggest that for patients with multiple sclerosis, presenting with PIRA after a first demyelinating event was not uncommon and suggests an unfavorable long-term prognosis, especially if it occurs early in the disease course.
Collapse
Affiliation(s)
- Carmen Tur
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Carbonell-Mirabent
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Álvaro Cobo-Calvo
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Otero-Romero
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Georgina Arrambide
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquín Castilló
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ángela Vidal-Jordana
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Breogán Rodríguez-Acevedo
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Zabalza
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ingrid Galán
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Nos
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Annalaura Salerno
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Río
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
115
|
Bayas A, Christ M, Faissner S, Klehmet J, Pul R, Skripuletz T, Meuth SG. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis - a review of population-specific evidence from randomized clinical trials. Ther Adv Neurol Disord 2023; 16:17562864221146836. [PMID: 36710720 PMCID: PMC9880589 DOI: 10.1177/17562864221146836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Although the understanding of secondary progressive multiple sclerosis (SPMS) is evolving, early detection of relapse-independent progression remains difficult. This is further complicated by superimposed relapses and compensatory mechanisms that allow for silent progression. The term relapsing multiple sclerosis (RMS) subsumes relapsing-remitting multiple sclerosis (RRMS) and SPMS with relapses. The latter is termed 'active' SPMS, for which disease-modifying therapies (DMTs) approved for either RMS or active SPMS can be used. However, the level of evidence supporting efficacy and safety in SPMS differs between drugs approved for RMS and SPMS. Our review aims to identify current evidence from published clinical trials and European public assessment reports from the marketing authorization procedure on the efficacy, especially on progression, of DMTs approved for RMS and SPMS. To identify relevant evidence, a literature search has been conducted and European public assessment reports of DMTs approved for RMS have been screened for unpublished data specific to SPMS. Only two clinical trials demonstrated a significant reduction in disability progression in SPMS study populations: the EXPAND study for siponimod, which included a typical SPMS population, and the European study for interferon (IFN)-beta 1b s.c., which included patients with very early and active SPMS. Both DMTs also achieved significant reductions in relapse rates. Ocrelizumab, cladribine, ofatumumab, and ponesimod are all approved for RMS - ocrelizumab, ofatumumab, and ponesimod based on an RMS study, cladribine based on an RRMS study. Data on efficacy in SPMS are only available from post hoc analyses of very small subgroups, representing only up to 15% of the total study population. For these DMTs, approval for RMS, including active SPMS, was mainly based on the assumption that the reduction in relapse rate observed in patients with RRMS can also be applied to SPMS. Based on that, the potential of these drugs to reduce relapse-independent progression remains unclear.
Collapse
Affiliation(s)
- Antonios Bayas
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Monika Christ
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital,
Ruhr-University Bochum, Bochum, Germany
| | - Juliane Klehmet
- Department of Neurology, Jüdisches Krankenhaus
Berlin, Berlin, Germany
| | - Refik Pul
- Department of Neurology and Center for
Translational and Behavioral Neurosciences (C-TNBS), University Medicine
Essen, Essen, Germany
| | | | | |
Collapse
|
116
|
Signori A, Lorscheider J, Vukusic S, Trojano M, Iaffaldano P, Hillert J, Hyde R, Pellegrini F, Magyari M, Koch-Henriksen N, Sørensen PS, Spelman T, van der Walt A, Horakova D, Havrdova E, Girard M, Eichau S, Grand'Maison F, Gerlach O, Terzi M, Ozakbas S, Skibina O, Van Pesch V, Sa MJ, Prevost J, Alroughani R, McCombe PA, Gouider R, Mrabet S, Castillo-Trivino T, Zhu C, de Gans K, Sánchez-Menoyo JL, Yamout B, Khoury S, Sormani MP, Kalincik T, Butzkueven H. Heterogeneity on long-term disability trajectories in patients with secondary progressive MS: a latent class analysis from Big MS Data network. J Neurol Neurosurg Psychiatry 2023; 94:23-30. [PMID: 36171104 DOI: 10.1136/jnnp-2022-329987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Over the decades, several natural history studies on patients with primary (PPMS) or secondary progressive multiple sclerosis (SPMS) were reported from international registries. In PPMS, a consistent heterogeneity on long-term disability trajectories was demonstrated. The aim of this study was to identify subgroups of patients with SPMS with similar longitudinal trajectories of disability over time. METHODS All patients with MS collected within Big MS registries who received an SPMS diagnosis from physicians (cohort 1) or satisfied the Lorscheider criteria (cohort 2) were considered. Longitudinal Expanded Disability Status Scale (EDSS) scores were modelled by a latent class growth analysis (LCGA), using a non-linear function of time from the first EDSS visit in the range 3-4. RESULTS A total of 3613 patients with SPMS were included in the cohort 1. LCGA detected three different subgroups of patients with a mild (n=1297; 35.9%), a moderate (n=1936; 53.6%) and a severe (n=380; 10.5%) disability trajectory. Median time to EDSS 6 was 12.1, 5.0 and 1.7 years, for the three groups, respectively; the probability to reach EDSS 6 at 8 years was 14.4%, 78.4% and 98.3%, respectively. Similar results were found among 7613 patients satisfying the Lorscheider criteria. CONCLUSIONS Contrary to previous interpretations, patients with SPMS progress at greatly different rates. Our identification of distinct trajectories can guide better patient selection in future phase 3 SPMS clinical trials. Additionally, distinct trajectories could reflect heterogeneous pathological mechanisms of progression.
Collapse
Affiliation(s)
- Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Johannes Lorscheider
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de Neurologie A, Hopital Neurologique, Hospices Civils de Lyon, Lyon Bron, France
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Jan Hillert
- Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center, Rigshospitalet, Copenhagen, Denmark
| | - Nils Koch-Henriksen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, Rigshospitalet, Copenhagen, Denmark
| | - Tim Spelman
- Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
| | | | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Marc Girard
- CHUM and Universite de Montreal, Montreal, Quebec, Canada
| | - Sara Eichau
- Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Oliver Gerlach
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | - Olga Skibina
- Neurology, Box Hill Hospital, Melbourne, Victoria, Australia.,Department of Neuroscience, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | | | - Maria Jose Sa
- Neurology, Centro Hospitalar de São João, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Julie Prevost
- Centre integre de sante et de services sociaux des Laurentides point de service de Saint-Jerome, Saint-Jerome, Quebec, Canada
| | | | - Pamela A McCombe
- UQCCR, The University of Queensland, Brisbane, Queensland, Australia
| | - Riadh Gouider
- Department of Neurology, Razi Hospital, Manouba, Tunisia
| | - Saloua Mrabet
- Department of Neurology, Razi University Hospital, Manouba, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Chao Zhu
- Neuroscience, Centre Clinical School, Monash University, Victoria, Australia
| | | | | | - Bassem Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Tomas Kalincik
- CORe, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Neuroscience, Centre Clinical School, Monash University, Victoria, Australia.,Managing Director, MSBase Foundation, Melbourne, Victoria, Australia
| | | |
Collapse
|
117
|
Barro C, Healy BC, Liu Y, Saxena S, Paul A, Polgar-Turcsanyi M, Guttmann CR, Bakshi R, Kropshofer H, Weiner HL, Chitnis T. Serum GFAP and NfL Levels Differentiate Subsequent Progression and Disease Activity in Patients With Progressive Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200052. [DOI: 10.1212/nxi.0000000000200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesNeurodegeneration and astrocytic activation are pathologic hallmarks of progressive multiple sclerosis (MS) and can be quantified by serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP). We investigated sNfL and sGFAP as tools for stratifying patients with progressive MS based on progression and disease activity status.MethodsWe leveraged our Comprehensive Longitudinal Investigation of MS at the Brigham and Women's Hospital (CLIMB) natural history study, which includes clinical, MRI data and serum samples collected over more than 20 years. We included patients with MS with a confirmed Expanded Disability Status Scale (EDSS) score ≥3 that corresponds with our classifier for patients at high risk of underlying progressive pathology. We analyzed sNfL and sGFAP within 6 months from the confirmed EDSS score ≥3 corresponding with our baseline visit. Patients who further developed 6-month confirmed disability progression (6mCDP) were classified as progressors. We further stratified our patients into active/nonactive based on new brain/spinal cord lesions or relapses in the 2 years before baseline or during follow-up. Statistical analysis on log-transformed sGFAP/sNfL assessed the baseline association with demographic, clinical, and MRI features and associations with future disability.ResultsWe included 257 patients with MS who had an average EDSS score of 4.0 and a median follow-up after baseline of 7.6 years. sNfL was higher in patients with disease activity in the 2 years before baseline (adjusted β = 1.21; 95% CI 1.04–1.42;p= 0.016), during the first 2 years of follow-up (adjusted β = 1.17; 95% CI = 1.01–1.36;p= 0.042). sGFAP was not increased in the presence of disease activity. Higher sGFAP levels, but not sNfL levels, were associated with higher risk of 6mCDP (adjusted hazard ratio [HR] = 1.71; 95% CI = 1.19–2.45;p= 0.004). The association was stronger in patients with low sNfL (adjusted HR = 2.44; 95% CI 1.32–4.52;p= 0.005) and patients who were nonactive in the 2 years prior or after the sample.DiscussionHigher levels of sGFAP correlated with subsequent progression, particularly in nonactive patients, whereas sNfL reflected acute disease activity in patients with MS at high risk of underlying progressive pathology. Thus, sGFAP and sNfL levels may be used to stratify patients with progressive MS for clinical research studies and clinical trials and may inform clinical care.
Collapse
|
118
|
Pozzilli C, Pugliatti M, Vermersch P, Grigoriadis N, Alkhawajah M, Airas L, Oreja-Guevara C. Diagnosis and treatment of progressive multiple sclerosis: A position paper. Eur J Neurol 2023; 30:9-21. [PMID: 36209464 PMCID: PMC10092602 DOI: 10.1111/ene.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is an unpredictable disease characterised by a highly variable disease onset and clinical course. Three main clinical phenotypes have been described. However, distinguishing between the two progressive forms of MS can be challenging for clinicians. This article examines how the diagnostic definitions of progressive MS impact clinical research, the design of clinical trials and, ultimately, treatment decisions. METHODS We carried out an extensive review of the literature highlighting differences in the definition of progressive forms of MS, and the importance of assessing the extent of the ongoing inflammatory component in MS when making treatment decisions. RESULTS Inconsistent results in phase III clinical studies of treatments for progressive MS, may be attributable to differences in patient characteristics (e.g., age, clinical and radiological activity at baseline) and endpoint definitions. In both primary and secondary progressive MS, patients who are younger and have more active disease will derive the greatest benefit from the available treatments. CONCLUSIONS We recommend making treatment decisions based on the individual patient's pattern of disease progression, as well as functional, clinical and imaging parameters, rather than on their clinical phenotype. Because the definition of progressive MS differs across clinical studies, careful selection of eligibility criteria and study endpoints is needed for future studies in patients with progressive MS.
Collapse
Affiliation(s)
- Carlo Pozzilli
- Multiple Sclerosis Center, Sant'Andrea Hospital, Rome, Italy.,Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Interdepartmental Center of Research for Multiple Sclerosis and Neuro-inflammatory and Degenerative Diseases, University of Ferrara, Ferrara, Italy
| | - Patrick Vermersch
- Inserm U1172 LilNCog, CHU Lille, FHU Precise, University of Lille, Lille, France
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Section of Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, College of Medicine, Al Faisal University, Riyadh, Kingdom of Saudi Arabia
| | - Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter of Turku University Hospital, Turku, Finland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
119
|
Has Silemek AC, Nolte G, Pöttgen J, Engel AK, Heesen C, Gold SM, Stellmann JP. Topological reorganization of brain network might contribute to the resilience of cognitive functioning in mildly disabled relapsing remitting multiple sclerosis. J Neurosci Res 2023; 101:143-161. [PMID: 36263462 DOI: 10.1002/jnr.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease which leads to impairment in several functional systems including cognition. Alteration of brain networks is linked to disability and its progression. However, results are mostly cross-sectional and yet contradictory as putative adaptive and maladaptive mechanisms were found. Here, we aimed to explore longitudinal reorganization of brain networks over 2-years by combining diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), magnetoencephalography (MEG), and a comprehensive neuropsychological-battery. In 37 relapsing-remitting MS (RRMS) and 39 healthy-controls, cognition remained stable over-time. We reconstructed network models based on the three modalities and analyzed connectivity in relation to the hierarchical topology and functional subnetworks. Network models were compared across modalities and in their association with cognition using linear-mixed-effect-regression models. Loss of hub connectivity and global reduction was observed on a structural level over-years (p < .010), which was similar for functional MEG-networks but not for fMRI-networks. Structural hub connectivity increased in controls (p = .044), suggesting a physiological mechanism of healthy aging. Despite a general loss in structural connectivity in RRMS, hub connectivity was preserved (p = .002) over-time in default-mode-network (DMN). MEG-networks were similar to DTI and weakly correlated with fMRI in MS (p < .050). Lower structural (β between .23-.33) and both lower (β between .40-.59) and higher functional connectivity (β = -.54) in DMN was associated with poorer performance in attention and memory in RRMS (p < .001). MEG-networks involved no association with cognition. Here, cognitive stability despite ongoing neurodegeneration might indicate a resilience mechanism of DMN hubs mimicking a physiological reorganization observed in healthy aging.
Collapse
Affiliation(s)
- Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|
120
|
Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T. Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs 2023; 37:69-92. [PMID: 36598730 PMCID: PMC9829585 DOI: 10.1007/s40263-022-00977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating and neurodegenerative disease of the central nervous system with a wide variety of clinical phenotypes. In spite of the phenotypic classification of MS patients, current data provide evidence that diffuse neuroinflammation and neurodegeneration coexist in all MS forms, the latter gaining increasing clinical relevance in progressive phases. Given that the transition phase of relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is not well defined, and widely accepted criteria for SPMS are lacking, randomised controlled trials (RCTs) specifically designed for the transition phase have not been conducted. This review summarizes primary and secondary analyses and reports derived from phase III prospective clinical RCTs listed in PubMed of compounds authorised through the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of MS. The best data are available for interferon beta-1a (IFNb-1a) subcutaneous (s.c.), IFNb-1b s.c., mitoxantrone and siponimod, the latter being the most modern compound with likely the best risk-to-effect ratio. Moreover, there is a labels discrepancy for many disease-modifying treatments (DMTs) between the FDA and EMA, which have to be taken into consideration when opting for a specific DMT.
Collapse
Affiliation(s)
- Nikolaos G. Dimitriou
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena H. Martinez-Lapiscina
- grid.10403.360000000091771775Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain ,grid.452397.eOffice of Therapies for Neurological and Psychiatric Disorders, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany. .,Department of Neurology, Maria Hilf Clinic, Mönchengladbach, Germany.
| | - Til Menge
- grid.411327.20000 0001 2176 9917Department of Neurology, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
121
|
Specific Aspects of Immunotherapy for Multiple Sclerosis in Switzerland—A Structured Commentary, Update 2022. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn7010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS), particularly relapsing MS (RMS), has become a treatable disease in recent decades, and immunotherapies are now able to influence long-term disease course. A wide range of disease-modifying drugs are available, which makes the choice of therapy in individual cases considerably more complex. Due to specific regulatory aspects (partly diverging approvals by Swissmedic compared to the European Medicines Agency (EMA), and an independent evaluation process for the Federal Office of Public Health (FOPH) specialities list (SL)), we issued a consensus recommendation regarding specific aspects of immunotherapy for MS in Switzerland in 2019. Here, we present revised recommendations with an update on newly approved drugs and new safety aspects, also in reference to the risk of COVID-19 infection and vaccination.
Collapse
|
122
|
Bayas A, Schuh K, Christ M. Self-assessment of people with relapsing-remitting and progressive multiple sclerosis towards burden of disease, progression, and treatment utilization-Results of a large-scale cross-sectional online survey (MS Perspectives). Mult Scler Relat Disord 2022; 68:104166. [PMID: 36115289 DOI: 10.1016/j.msard.2022.104166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Assessment of the disease course by people with multiple sclerosis (pwMS) themselves is important for a better understanding of the complex disease, patient counseling and treatment decisions. This may also facilitate identifying the often-unnoticed transition from relapsing-remitting (RRMS) to secondary progressive multiple sclerosis (SPMS). OBJECTIVE MS Perspectives was designed to collect data on patients' self-assessment of multiple sclerosis (MS) symptoms, relapse-independent progression, and impact on everyday life. METHODS MS Perspectives is a cross-sectional online survey conducted among adult pwMS in Germany. The questionnaire included 36 items on sociodemographic and clinical characteristics as well as pharmacological and non-pharmacological treatment. RESULTS In total, 4555 pwMS completed the survey between December 2021 and February 2022, 69.2% had RRMS, 15.1% had SPMS. Relapse-independent worsening of symptoms was reported by 88.9% of RRMS patients with marked to severe and by 61.8% with no or mild to moderate disability. Problems with walking were most frequently (32.1%) mentioned as most bothersome by RRMS patients with marked to severe disability, fatigue, and cognitive impairment by RRMS patients with no or mild to moderate disability. CONCLUSION MS Perspectives gives an important insight in the self-assessed disease course and impact on daily life in a large-scale cohort of pwMS.
Collapse
Affiliation(s)
- A Bayas
- Department of Neurology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - K Schuh
- Novartis Pharma GmbH, Nuremberg, Germany
| | - M Christ
- Department of Neurology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
123
|
Different doses of Rituximab for the therapy of Neuromyelitis optica spectrum disorder: A systematic review and meta-analysis. Mult Scler Relat Disord 2022; 68:104127. [PMID: 36044828 DOI: 10.1016/j.msard.2022.104127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disease(NMOSD) is an autoimmune neurological disease that primarily affects the spinal cord, optic nerve, and periventricular organs. Rituximab plays an important role in the prevention of relapse in NMOSD. In this study, we evaluated the efficacy and safety of different doses of the anti-monoclonal antibody rituximab in NMOSD. OBJECTS Our study aimed to implement a meta-analysis to systematically assess the efficacy and safety of different doses of rituximab in the treatment of NMOSD. METHODS We searched Pubmed, Embase, the Cochrane Library, and Clinicaltrials.gov for relevant studies evaluating rituximab for NMOSD up to March 2022. Data were assessed using Review Manager 5.3 and Stata 14 softwares. Means and standard deviations(SD) were analyzed using random effects models with continuous outcomes. Risk radio was analyzed using random effects models with dichotomous outcomes. RESULTS We collected 576 patients from 17 studies. The endpoint of efficacy was the change in annual recurrence rate(ARR), expanded disability status scale (EDSS), and the number of patients free of relapse between pre-treatment and post-treatment of rituximab. We found that rituximab reduced ARR and EDSS, with a significant reduction in ARR(MD= -1.79, 95% CI: -3.18 ∼ -0.39, P= 0.01) and EDSS(MD= -1.35, 95% CI: -1.5 ∼ -1.19, P < 0.00001) at 100 mg intravenous infusion per week for 3 consecutive weeks, meanwhile making the number of patients free of relapse increased (RR= 24.61 [5.11, 118.55], P<0.0001) and being relatively safe and without serious adverse events(SAEs). In terms of safety, we compared and summarised the adverse events(AEs) and SAEs from 17 studies. CONCLUSION In this study, we found rituximab to be relatively safe and efficacious in the treatment of NMOSD, particularly at a dose of 100mg intravenous infusion per week for 3 consecutive weeks.
Collapse
|
124
|
Manchon E, Laplaud D, Vukusic S, Labauge P, Moreau T, Kobelt G, Grouin JM, Lotz M, Pau D, Christine LF. Efficacy, safety and patient reported outcomes in patients with active relapsing multiple sclerosis treated with ocrelizumab: Final results from the PRO-MSACTIVE study. Mult Scler Relat Disord 2022; 68:104109. [PMID: 36007299 DOI: 10.1016/j.msard.2022.104109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ocrelizumab, a humanized anti-CD20 monoclonal antibody, has been approved in Europe for the treatment of adult patients with active relapsing multiple sclerosis (RMS) and primary progressive multiple sclerosis (PPMS), on the basis of previous phase III studies. However, limited data were available on ocrelizumab efficacy in RMS according to the Lublin definition of activity (clinical and/or imaging features) used in the current drug label. The PRO-MSACTIVE study was thus designed to provide additional data on ocrelizumab efficacy according to this definition, and also on safety and patient reported outcomes (PROs). METHODS PRO-MSACTIVE is a national, multicenter, open-label, single-arm phase IV French study, conducted in patients with active RMS (relapsing-remitting multiple sclerosis, RRMS, or secondary progressive multiple sclerosis, SPMS). The primary endpoint, which was assessed at week (W) 48, was defined as the proportion of patients free of disease activity (defined by no relapses and no T1 gadolinium-enhancing nor new and/or enlarging T2 lesions using brain MRI). Disease activity, disability and PROs using 6 questionnaires for disease severity, quality of life, impact on work productivity, and treatment satisfaction were described at W24 and W48. Adverse events were described until W72. RESULTS Among the 422 analyzed patients (RRMS: 376, SPMS: 46), 63.3% (95% CI [58.5%; 67.9%]) were free of disease activity at W48 (RRMS: 62.2% [57.1%; 67.2%], SPMS: 71.7% [56.5%; 84.0%]). A total of 358 patients (84.8%; RRMS: 84.6%, SPMS: 87.0%) were relapse-free up to W48, and the overall adjusted annualized relapse rate was 0.14 (RRMS: 0.15, SPMS: 0.09). Overall, 67.8% of patients (RRMS: 66.8%, SPMS: 76.1%) had no evidence of MRI activity (no T1 gadolinium-enhancing lesions [83.4%] and no new/enlarging T2 lesions [75.1%]); 58.5% of patients (RRMS: 57.7%, SPMS: 65.2%) achieved No Evidence of Disease Activity (NEDA: no relapses, no confirmed disability progression, and no MRI activity) at W48. All PRO scores were stable between the first dose of ocrelizumab and W48 and better outcomes were seen for patients having an EDSS score ≥4. Overall, 89.3% of patients reported adverse events, 62.3% adverse events assessed as related to ocrelizumab, and 8.5% serious adverse events. No serious infusion-related reactions, opportunistic infections, progressive multifocal leukoencephalopathy, nor deaths were reported. No new safety signal was identified. CONCLUSION These data confirm the efficacy of ocrelizumab in a pragmatic setting and its favorable benefit-risk profile in patients with RMS. (ClinicalTrials.gov identifier: NCT03589105; EudraCT identifier: 2018-000780-91).
Collapse
Affiliation(s)
- Eric Manchon
- Centre Hospitalier de Gonesse, Service de Neurologie, Gonesse, France.
| | - David Laplaud
- Nantes Université, Service de Neurologie, Centre Hospitalier Universitaire de Nantes, CIC INSERM 1413, Center for Research in Transplantation and Translational Immunology, INSERM UMR 1064, Nantes, France
| | - Sandra Vukusic
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie, Centre de Recherche en Neurosciences de Lyon, OFSEP, INSERM 1028 et CNRS UMR 5292, Université Claude Bernard de Lyon, Eugène Devic EDMUS Foundation, Bron, France
| | - Pierre Labauge
- Centre Hospitalier Universitaire de Montpellier, Hôpital Gui de Chauliac, Service de Neurologie, Montpellier, France
| | - Thibault Moreau
- Centre Hospitalier Universitaire de Dijon Bourgogne, Hôpital François Mitterrand, Maladies Inflammatoires du Système Nerveux et Neurologie Générale, Service de Neurologie, Dijon, France
| | | | | | | | - David Pau
- Roche SAS, Boulogne-Billancourt, France
| | - Lebrun Frenay Christine
- Centre Hospitalier Universitaire Pasteur 2, Service de Neurologie, CRCSEP, Unitéde Recherche Clinique Côte d'Azur (UR2CA-URRIS), Nice, France
| |
Collapse
|
125
|
Ciron J, Gueguen A, Al Khedr A, Bourre B, Clavelou P, Defer G, Durand-Dubief F, Labauge P, Ouallet JC, Pittion Vouyovitch S, Tourbah A, Vermersch P. Secondary progressive multiple sclerosis: A national consensus paper on diagnostic criteria. Rev Neurol (Paris) 2022; 178:1098-1104. [PMID: 36180289 DOI: 10.1016/j.neurol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND In clinical practice, the diagnosis of secondary progressive multiple sclerosis (SPMS) is often delayed, retrospective and non-reproducible, as there are no consensus criteria that define the advent of SPMS. Early identification of SPMS is essential to improve patient care. METHODS Eight regional board meetings in France involving 56 multiple sclerosis (MS) experts (neurologists) were convened to discuss diagnostic criteria for SPMS. Subsequently, a national board meeting of 13 neurologists (with an expert representing each geographical region) was held to review points of convergence or divergence between regions and to develop a national consensus document. RESULTS Based on the discussions from the regional boards, the MS experts at the national board retained the worsening of the EDSS score, with compatible clinical features, as the only consensus criterion for the diagnosis of SPMS in clinical practice. The patient should have experienced during at least the previous 6 months and in the absence of any relapse, a worsening in the EDSS score of +1.0 point (if the previous EDSS was≤5.0) or of +0.5 point (if the previous EDSS was≥5.5), with a pyramidal or cerebellar functional system score≥2 and without setting a minimum EDSS score; or, in case of a stable EDSS score≥4.0, a worsening of a functional score. This worsening should be confirmed within 3 to 6 months. According to the MS experts, the patient's age, duration of illness and a minimal threshold EDSS score are only risk factors for transition to SPMS. Patient reports during consultation and cognitive impairment are important warning signs, which should trigger an objective assessment with specific tests or closer monitoring. Clinical relapse and/or MRI activities are non-discriminatory for making the diagnosis of SPMS. CONCLUSIONS The experts defined precise diagnostic criteria adapted to clinical practice for earlier identification of SPMS, paving the way for better management of this stage of the disease.
Collapse
Affiliation(s)
- J Ciron
- Département de neurologie, CRC-SEP, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 9, France.
| | - A Gueguen
- Fondation ophtalmologique Adolphe de Rothschild, 29, rue Manin, Paris, France
| | - A Al Khedr
- CHU d'Amiens, 2, place Victor-Pauchet, Amiens, France
| | - B Bourre
- CHU de Rouen, 76000 Rouen, France
| | - P Clavelou
- CHU de Clermont-Ferrand, 58, rue Montalembert, Clermont-Ferrand, France
| | - G Defer
- CRC-SEP, service de neurologie, CHU de Caen, avenue de la Côte-de-Nacre, 14033 Caen, France
| | - F Durand-Dubief
- Service de sclérose en plaques, pathologies de la myéline et neuro-inflammation, hôpital neurologique, GHE, 59, boulevard Pinel, 69677 Bron Lyon cedex, France
| | - P Labauge
- CRC-SEP, département de neurologie, CHU de Montpellier, 80, avenue G.-Fliche, 34295 Montpellier cedex 5, France
| | - J-C Ouallet
- Service de neurologie et maladies inflammatoires du système nerveux central, CHU de Bordeaux, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | | | - A Tourbah
- UFR Simone Veil, UVSQ, Inserm U 1195, service de neurologie, hôpital Raymond Poincaré, université Paris Saclay, AP-HP, Garches, France
| | - P Vermersch
- Inserm U1172 - Lille neuroscience et cognition, FHU Imminent, université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
126
|
Steffen F, Uphaus T, Ripfel N, Fleischer V, Schraad M, Gonzalez-Escamilla G, Engel S, Groppa S, Zipp F, Bittner S. Serum Neurofilament Identifies Patients With Multiple Sclerosis With Severe Focal Axonal Damage in a 6-Year Longitudinal Cohort. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200055. [PMID: 36411080 PMCID: PMC9679887 DOI: 10.1212/nxi.0000000000200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Immunomodulatory therapies reduce the relapse rate but only marginally control disability progression in patients with MS. Although serum neurofilament light chain (sNfL) levels correlate best with acute signs of inflammation (e.g., relapses and gadolinium-enhancing [Gd+] lesions), their role in predicting progressive biology and irreversible axonal damage is less clear. We aimed to determine the ability of sNfL to dissect distinct measures of disease severity and predict future (no) evidence of disease activity (EDA/no evidence of disease activity [NEDA]). METHODS One hundred fifty-three of 221 patients with relapsing-remitting MS initially enrolled in the Neurofilament and longterm outcome in MS cohort at the MS outpatient clinic of the University Medical Center Mainz (Germany) met the inclusion criteria for this prospective observational cohort study with a median follow-up of 6 years (interquartile range 4-7 years). Progressive disease forms were excluded. Inclusion criteria consisted of Expanded Disability Status Scale (EDSS) assessment within 3 months and MRI within 12 months around blood sampling at baseline (y0) and follow-up (y6). EDSS progression at y6 had to be confirmed 12 weeks later. sNfL was measured by single-molecule array, and the following additional variables were recorded: therapy, medical history, and detailed MRI parameters (T2 hyperintense lesions, Gd+ lesions, and new persistent T1 hypointense lesions). RESULTS Patients experiencing EDSS progression or new persistent T1 lesions at y6 showed increased sNfL levels at y0 compared with stable patients or patients with inflammatory activity only. As a potential readily accessible marker of neurodegeneration, we incorporated the absence of persistent T1 lesions to the NEDA-3 concept (NEDA-3T1: n = 54, 35.3%; EDAT1: n = 99, 64.7%) and then evaluated a risk score with factors that distinguish patients with and without NEDA-3T1 status. Adding sNfL to this risk score significantly improved NEDA-3T1 prediction (0.697 95% CI 0.616-0.770 vs 0.819 95% CI 0.747-0.878, p < 0.001). Patients with sNfL values ≤8.6 pg/mL showed a 76% risk reduction for EDAT1 at y6 (hazard ratio 0.244, 95% CI 0.142-0.419, p < 0.001). DISCUSSION sNfL levels associate with severe focal axonal damage as reflected by development of persistent T1 lesions. Baseline sNfL values predicted NEDA-3T1 status at 6-year follow-up.
Collapse
Affiliation(s)
- Falk Steffen
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Timo Uphaus
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nina Ripfel
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muriel Schraad
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sinah Engel
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
127
|
Regner-Nelke L, Pawlitzki M, Willison A, Rolfes L, Oezalp SH, Nelke C, Kölsche T, Korsen M, Grothe M, Groppa S, Luessi F, Engel S, Nelles G, Bonmann E, Roick H, Friedrich A, Knorn P, Landefeld H, Biro Z, Ernst M, Bayas A, Menacher M, Akgün K, Kleinschnitz C, Ruck T, Ziemssen T, Pul R, Meuth SG. Real-world evidence on siponimod treatment in patients with secondary progressive multiple sclerosis. Neurol Res Pract 2022; 4:55. [PMID: 36336685 PMCID: PMC9639325 DOI: 10.1186/s42466-022-00219-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Background Therapeutic options targeting inflammation in multiple sclerosis (MS) have evolved rapidly for relapsing–remitting MS, whereas few therapies are available for progressive forms of MS, in particular secondary progressive MS (SPMS). The approval of siponimod for SPMS has allowed for optimism in the otherwise discouraging therapeutic landscape.
Methods We conducted a retrospective, multicenter, non-interventional study analyzing the efficacy and safety of siponimod under real-world conditions in 227 SPMS patients. According to the retrospective study framework, data was acquired at prespecified time points. Clinical readouts were assessed every three months. Disease progression was determined as increase in expanded disability status scale (EDSS), radiological progression, or the occurrence of new relapses under treatment. For safety analyses, adverse events (AE) and reasons for discontinuation were documented. The collected data points were analyzed at baseline and after 6, 12 and 18 months. However, data were predominately collected at the 6- and 12-month time points as many patients were lost to follow-up. In a group consisting of 41 patients, a more detailed investigation regarding disease progression was conducted, including data from measurement of cognitive and motoric functions. Results Under siponimod therapy, 64.8% of patients experienced sustained clinical disease stability at 12 months. Out of the stable patients 21.4% of patients improved. Of the remaining patients, 31.5% experienced EDSS progression, 3.7% worsened without meeting the threshold for progression. Relapses occurred in 7.4%. Radiological disease activity was detected in 24.1% of patients after six months of treatment and in 29.6% of patients at 12 months follow-up. The in-depth cohort consisting of 41 patients demonstrated no substantial changes in cognitive abilities measured by Paced Auditory Serial Addition Test and Symbol Digit Modalities Test or motoric functions measured with Timed 25-Foot Walk, 100-m timed test, and 9-Hole Peg Test throughout the 12-month study period. Radiological assessment showed a stable volume of white and grey matter, as well as a stable lesion count at 12 months follow-up. AE were observed in nearly half of the included patients, with lymphopenia being the most common. Due to disease progression or AE, 31.2% of patients discontinued therapy. Conclusion Treatment with siponimod had an overall stabilizing effect regarding clinical and radiological outcome measures. However, there is a need for more intensive treatment management and monitoring to identify disease progression and AE. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-022-00219-3.
Collapse
Affiliation(s)
- Liesa Regner-Nelke
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Leoni Rolfes
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sinem-Hilal Oezalp
- Department of Neurology, University Medicine Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tristan Kölsche
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Grothe
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sinah Engel
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Holger Roick
- E/M/S/A Center for Neurology / Psychiatry / Neuroradiology, Singen, Germany
| | | | | | | | - Zoltan Biro
- Clinic for Neurology Selzer, Baiersbronn, Germany
| | - Michael Ernst
- Center for Neurology, Psychiatry and Psychotherapy, Sinsheim, Germany
| | - Antonios Bayas
- Department of Neurology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Menacher
- Department of Neurology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Katja Akgün
- Center of Clinical Neurosciences, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neurosciences, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Essen, Germany.,Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany. .,Department of Neurology, Heinrich-Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
128
|
N-Acetyl Cysteine as a Neuroprotective Agent in Progressive Multiple Sclerosis (NACPMS) trial: Study protocol for a randomized, double-blind, placebo-controlled add-on phase 2 trial. Contemp Clin Trials 2022; 122:106941. [PMID: 36182028 DOI: 10.1016/j.cct.2022.106941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Patients with progressive multiple sclerosis (PMS) experience relentless disability worsening. Current approved therapies have very modest effects on disability progression and purely focus on immunomodulation. While some inflammatory processes exist in non-active PMS, other biological processes such as neuronal injury from oxidative stress are likely more critical. N-acetyl cysteine (NAC) directly scavenges free radicals and restores neuronal glutathione, a major endogenous antioxidant. Our group has recently evaluated the safety of high dose NAC in a pilot trial in PMS with no tolerability concerns. We aim now to assess the safety, tolerability, and effect of NAC on progression of several MRI, clinical and biological markers in PMS patients. METHODS The NACPMS trial is a multi-site, randomized, double-blind, parallel-group, placebo-controlled add-on phase 2 trial. Ninety-eight PMS patients with EDSS 3.0-7.0 and aged 40-70 years will be randomized to NAC 1200 mg TID or matching placebo (1:1) as an add-on to the standard of care stratified by site and disease type during a 15-month intervention period. It is hypothesized that a reduction in oxidative stress injury will lessen brain atrophy estimated by MRI. The primary outcome analysis will compare the percent change over 12 months (Month 15 vs Month 3) between treatment and control arms using multivariable linear regression adjusted by age, sex, and disease duration. ETHICS This study was approved by the Institutional Review Board at the University of California, San Francisco (IRB21-34143), and an Investigational New Drug approval was obtained from the FDA (IND127184). TRIAL REGISTRATION NCT05122559.
Collapse
|
129
|
Alcalá Vicente C, Lacruz L, Gascón F, Carratalà S, Quintanilla-Bordás C, Sanz MT, Carcelén-Gadea M, Mallada J, Carreres J, Gabaldón Torres L, Dominguez JA, Cañizares E, Gil-Perotin S, Cubas L, Gasqué Rubio R, Castillo-Villalba J, Pérez-Miralles FC, Casanova B. Oligoclonal M bands and cervical spinal cord lesions predict early secondary progressive multiple sclerosis. Front Neurol 2022; 13:991596. [DOI: 10.3389/fneur.2022.991596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo determine baseline cerebrospinal fluid and magnetic resonance imaging (MRI) variables at the onset of a clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS) that predict evolution to secondary progressive MS (SPMS).Methods276 CIS patients with a minimum follow-up of 10 years were studied. Baseline presence of oligoclonal IgG and IgM bands (OCGB and OCMB respectively); number of brain T2 lesions (B-T2L), brain gadolinium enhancement lesions (brain-GEL), cervical spinal cord T2 lesions (cSC-T2L); and fulfillment of 2017 McDonald criteria among other variables were collected.Results14 patients ended up with a non-MS condition. 138/276 CIS patients fulfilled 2017 McDonald criteria. Mean age was 32.4 years, 185 female. 227 received treatment, 95 as CIS. After a mean follow-up of 12 years, 36 patients developed SPMS. Conversion to SPMS was associated with OCGB (p = 0.02), OCMB (p = 0.0001); ≥ 9 B-T2L (p = 0.03), brain-GEL (p = 0.03), and cSC-T2L (p = 0.03). However, after adjusting for sex, age, BT2L, brain-GEL, SC-T2, and OCMB status, only OCMB (HR 4.4, 1.9–10.6) and cSC-T2L (HR 2.2, 1.0–6.2) suggested an independent association with risk of conversion to SPMS. Patients with both risk factors had a HR of 6.12 (2.8–12.9).DiscussionOCMB and SC-T2 lesions are potential independent predictors of conversion to SPMS.
Collapse
|
130
|
El Ayoubi NK, Sabbagh HM, Bou Rjeily N, Hannoun S, Khoury SJ. Rate of Retinal Layer Thinning as a Biomarker for Conversion to Progressive Disease in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200030. [PMID: 36229190 PMCID: PMC9562042 DOI: 10.1212/nxi.0000000000200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
Abstract
Background and Objectives The diagnosis of secondary progressive multiple sclerosis (SPMS) is often delayed because of the lack of objective clinical tools, which increases the diagnostic uncertainty and hampers the therapeutic development in progressive multiple sclerosis (MS). Optical coherence tomography (OCT) has been proposed as a promising biomarker of progressive neurodegeneration. To explore longitudinal changes in the thicknesses of retinal layers on OCT in individuals with relapsing-remitting MS (RRMS) who converted to SPMS vs matched patients with RRMS who did not convert to SPMS. Our hypothesis is that the 2 cohorts exhibit different rates of retinal thinning. Methods From our prospective observational cohort of patients with MS at the American University of Beirut, we selected patients with RRMS who converted to SPMS during the observation period and patients with RRMS, matched by age, disease duration, and Expanded Disability Status Scale (EDSS) at the first visit. Baseline retinal measurements were obtained using spectral domain OCT, and all patients underwent clinical and OCT evaluation every 6–12 months on average throughout the study period (mean = 4 years). Mixed-effect regression models were used to assess the annualized rates of retinal changes and the differences between the 2 groups and between converters to SPMS before and after their conversion. Results A total of 61 participants were selected (21 SPMS and 40 RRMS). There were no differences in baseline characteristics and retinal measurements between the 2 groups. The annualized rates of thinning of all retinal layers, except for macular volume, were greater in converters before conversion compared with nonconverters by 112% for peripapillary retinal nerve fiber layer (p = 0.008), 344% for tRNFL (p < 0.0001), and 82% for cell-inner plexiform layer (GCIPL) (p = 0.002). When comparing the annualized rate of thinning for the same patients with SPMS before and after conversion, no significant differences were found except for tRNFL and GCIPL with slower thinning rates postconversion (46% and 68%, respectively). Discussion Patients who converted to SPMS exhibited faster retinal thinning as reflected on OCT. Longitudinal assessment of retinal thinning could confirm the transition to SPMS and help with the therapeutic decision making for patients with MS with clinical suspicion of disease progression.
Collapse
|
131
|
Auer M, Bauer A, Oftring A, Rudzki D, Hegen H, Bsteh G, Di Pauli F, Berek K, Zinganell A, Berger T, Reindl M, Deisenhammer F. Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1) and Natalizumab Serum Concentration as Potential Biomarkers for Pharmacodynamics and Treatment Response of Patients with Multiple Sclerosis Receiving Natalizumab. CNS Drugs 2022; 36:1121-1131. [PMID: 36173556 DOI: 10.1007/s40263-022-00953-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Natalizumab (NTZ) is an established treatment for highly active, relapsing-remitting multiple sclerosis. In the context of rare progressive multifocal leukoencephalopathy and extended interval dosing as a treatment option, biomarkers for treatment monitoring are required. Natalizumab serum concentration (NTZ SC) and soluble vascular cell adhesion molecule 1 (sVCAM-1) concentration were shown to change on treatment with NTZ. We aimed to investigate whether NTZ SC and sVCAM-1 could be suitable pharmacodynamic markers and whether they could predict disease activity on NTZ, improving the concept of personalized multiple sclerosis treatment. METHODS In a retrospective study at the Medical University of Innsbruck, Austria, we identified patients treated with NTZ and chose samples longitudinally collected during routine follow-ups for the measurement of NTZ SC and sVCAM-1 by an enzyme-linked immunosorbent assay. We correlated these with clinical and demographic variables and clinical outcomes. Furthermore, we analyzed the stability of NTZ SC and sVCAM-1 during treatment. RESULTS One hundred and thirty-seven patients were included. We found a strong negative correlation between NTZ SC and sVCAM-1. Both showed significant associations with body mass index, infusion interval, sample age, and anti-drug-antibodies. Natalizumab serum concentration was reduced in extended interval dosing, but not sVCAM-1. Only sVCAM-1 showed a weak association with relapses during treatment, while there was no association with disease progression. Both NTZ SC and sVCAM-1 showed a wide inter-individual distribution while levels in single patients were stable on treatment. CONCLUSIONS Soluble vascular cell adhesion molecule 1 is a suitable pharmacodynamic marker during treatment with NTZ, which is significantly reduced already after the first dose, remains stable in individual patients even on extended interval dosing, and strongly correlates with NTZ SC. Because of the high inter-individual range, absolute levels of sVCAM-1 and NTZ SC are difficult to introduce as treatment monitoring biomarkers in order to predict disease activity in single patients.
Collapse
Affiliation(s)
- Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Antonia Oftring
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
132
|
Filippi M, Amato MP, Centonze D, Gallo P, Gasperini C, Inglese M, Patti F, Pozzilli C, Preziosa P, Trojano M. Early use of high-efficacy disease‑modifying therapies makes the difference in people with multiple sclerosis: an expert opinion. J Neurol 2022; 269:5382-5394. [PMID: 35608658 PMCID: PMC9489547 DOI: 10.1007/s00415-022-11193-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
Multiple sclerosis (MS) is a chronic and progressive neurological disease that is characterized by neuroinflammation, demyelination and neurodegeneration occurring from the earliest phases of the disease and that may be underestimated. MS patients accumulate disability through relapse-associated worsening or progression independent of relapse activity. Early intervention with high-efficacy disease-modifying therapies (HE-DMTs) may represent the best window of opportunity to delay irreversible central nervous system damage and MS-related disability progression by hindering underlying heterogeneous pathophysiological processes contributing to disability progression. In line with this, growing evidence suggests that early use of HE-DMTs is associated with a significant greater reduction not only of inflammatory activity (clinical relapses and new lesion formation at magnetic resonance imaging) but also of disease progression, in terms of accumulation of irreversible clinical disability and neurodegeneration compared to delayed HE-DMT use or escalation strategy. These beneficial effects seem to be associated with acceptable long-term safety risks, thus configuring this treatment approach as that with the most positive benefit/risk profile. Accordingly, it should be mandatory to treat people with MS early with HE-DMTs in case of prognostic factors suggestive of aggressive disease, and it may be advisable to offer an HE-DMT to MS patients early after diagnosis, taking into account drug safety profile, disease severity, clinical and/or radiological activity, and patient-related factors, including possible comorbidities, family planning, and patients' preference in agreement with the EAN/ECTRIMS and AAN guidelines. Barriers for an early use of HE-DMTs include concerns for long-term safety, challenges in the management of treatment initiation and monitoring, negative MS patients' preferences, restricted access to HE-DMTs according to guidelines and regulatory rules, and sustainability. However, these barriers do not apply to each HE-DMT and none of these appear insuperable.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Paolo Gallo
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Patti
- Department GF Ingrassia, Medical, Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
- Center for Multiple Sclerosis, Policlinico "G Rodolico", University of Catania, Catania, Italy
| | | | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
133
|
Kelter BM, Wolfe AE, Kazis LE, Ryan CM, Acton A, Slavin MD, Schneider JC. Trajectory Curves for Purposes of Benchmarking and Predicting Clinical Outcomes: A Scoping Review. J Burn Care Res 2022; 43:1095-1104. [PMID: 34986488 PMCID: PMC9255662 DOI: 10.1093/jbcr/irab245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trajectory curves are valuable tools to benchmark patient health status and predict future outcomes. A longitudinal study is underway to examine social participation after burn injury using the Life Impact Burn Recovery Evaluation (LIBRE) Profile with the goal of developing trajectory curves for specific domains that focus on social reintegration. We conducted a scoping review to inform and understand trajectory curves applied in clinical settings to compare outcomes for an individual to a matched cohort of comparable patients or predicted expected outcomes over time. This scoping review utilized a PubMed search from January 2014 to August 2019 for the following terms: "trajectory curves" or "trajectory models" and "clinic" or "clinical." Only articles that specifically referenced longitudinal and clinical research designs were included in the scoping review. Articles were assessed using standard scoping review methods and categorized based on clinical application of trajectory curves for either benchmarking or prediction. The initial literature review identified 141 manuscripts and 34 met initial inclusion criteria. The reviewed articles support the clinical use of trajectory curves. Findings provide insight into several key determinants involved with the successful development and implementation of trajectory curves in clinical settings. These findings will inform efforts to use the LIBRE Profile to model social participation recovery and assist in developing effective strategies using trajectory curves to promote social reintegration after burn injury.
Collapse
Affiliation(s)
- Brian M Kelter
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Audrey E Wolfe
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lewis E Kazis
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Massachusetts, USA
| | - Colleen M Ryan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Surgery, Shriners Hospitals for Children—Boston®, Massachusetts, USA
| | - Amy Acton
- Phoenix Society for Burn Survivors, Grand Rapids, Michigan, USA
| | - Mary D Slavin
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Massachusetts, USA
| | - Jeffrey C Schneider
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
134
|
Lifestyle factors in multiple sclerosis disability progression and silent brain damage: A cross-sectional study. Mult Scler Relat Disord 2022; 65:104016. [DOI: 10.1016/j.msard.2022.104016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
135
|
Iaffaldano P, Lucisano G, Guerra T, Patti F, Onofrj M, Brescia Morra V, Zaffaroni M, Pozzilli C, Cocco E, Sola P, Salemi G, Inglese M, Bergamaschi R, Gasperini C, Conte A, Salvetti M, Lus G, Maniscalco GT, Totaro R, Vianello M, Granella F, Ferraro E, Aguglia U, Gatto M, Sangalli F, Chisari CG, De Luca G, Carotenuto A, Baroncini D, Colombo D, Nica M, Paolicelli D, Comi G, Filippi M, Amato MP, Trojano M. Towards a validated definition of the clinical transition to secondary progressive multiple sclerosis: A study from the Italian MS Register. Mult Scler 2022; 28:2243-2252. [PMID: 35971322 DOI: 10.1177/13524585221114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Definitions for reliable identification of transition from relapsing-remitting multiple sclerosis (MS) to secondary progressive (SP)MS in clinical cohorts are not available. OBJECTIVES To compare diagnostic performances of two different data-driven SPMS definitions. METHODS Data-driven SPMS definitions based on a version of Lorscheider's algorithm (DDA) and on the EXPAND trial inclusion criteria were compared, using the neurologist's definition (ND) as gold standard, in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), Akaike information criterion (AIC) and area under the curve (AUC). RESULTS A cohort of 10,240 MS patients with ⩾5 years of follow-up was extracted from the Italian MS Registry; 880 (8.5%) patients were classified as SPMS according to the neurologist definition, 1806 (17.6%) applying the DDA and 1134 (11.0%) with the EXPAND definition. The DDA showed greater discrimination power (AUC: 0.8 vs 0.6) and a higher sensitivity (77.1% vs 38.0%) than the EXPAND definition, with similar specificity (88.0% vs 91.5%). PPV and NPV were higher using the DDA than considering EXPAND definition (37.5% vs 29.5%; 97.6% vs 94.0%). CONCLUSION Data-driven definitions demonstrated greater ability to capture SP transition than neurologist's definition and the global accuracy of DDA seems to be higher than the EXPAND definition.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Lucisano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy/Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Tommaso Guerra
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Patti
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi Multipla, Università di Catania, Catania, Italy
| | - Marco Onofrj
- Centro Sclerosi Multipla, Clinica Neurologica, Policlinico SS Annunziata, Università 'G. d'Annunzio', Chieti-Pescara, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Mauro Zaffaroni
- Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Carlo Pozzilli
- Multiple Sclerosis Center, Sant' Andrea Hospital, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Cocco
- Department Medical Science and Public health, University of Cagliari, Cagliari, Italy/Centro Sclerosi Multipla, ATS Sardegna, Cagliari, Italy
| | - Patrizia Sola
- Neurology Unit, Department of Neurosciences, University of Modena and Reggio Emilia, Nuovo Ospedale Civile S. Agostino/Estense, Modena, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Matilde Inglese
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno - Infantili (DINOGMI), Universita' di Genova, Genova, Italy/Ospedale Policlinico San Martino, IRCCS, Genova, Italy
| | | | - Claudio Gasperini
- Centro Sclerosi Multipla, Azienda Ospedaliera S. Camillo Forlanini, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy/IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marco Salvetti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy/Centro Neurologico Terapie Sperimentali (CENTERS), Sapienza Universita' Di Roma, Azienda Ospedaliera Sant' Andrea, Rome, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Rocco Totaro
- Centro Malattie Demielinizzanti, Clinica Neurologica, Ospedale San Salvatore, L'Aquila, Italy
| | - Marika Vianello
- MS Unit, O.U. Neurology 'Ca' Foncello' Hospital, Treviso, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maurizia Gatto
- Centro Malattie Demielinizzanti, Ospedale Generale Regionale F. Miulli, Acquaviva delle Fonti, Italy
| | - Francesca Sangalli
- Neurology, Neurorehabilitation and Neuroimaging Research Units, Neurophysiology Service, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Clara Grazia Chisari
- Dipartimento di Scienze Mediche e Chirurgiche e Tecnologie Avanzate, GF Ingrassia, Sez. Neuroscienze, Centro Sclerosi Multipla, Università di Catania, Catania, Italy
| | - Giovanna De Luca
- Centro Sclerosi Multipla, Clinica Neurologica, Policlinico SS Annunziata, Università 'G. d'Annunzio', Chieti-Pescara, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Clinical Care and Research Center, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Damiano Baroncini
- Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | | | | | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Comi
- Università Vita Salute San Raffaele, Milano, Italy/Casa di Cura del Policlinico, Milano, Italy
| | - Massimo Filippi
- Neurology, Neurorehabilitation and Neuroimaging Research Units, Neurophysiology Service, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro' Bari, Piazza G. Cesare, 11, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
136
|
Braune S, Bergmann A, Bezlyak V, Adlard N. How do patients with secondary progressive multiple sclerosis enrolled in the EXPAND randomized controlled trial compare with those seen in German clinical practice in the NeuroTransData multiple sclerosis registry? J Cent Nerv Syst Dis 2022; 14:11795735221115912. [PMID: 35958354 PMCID: PMC9358581 DOI: 10.1177/11795735221115912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background In EXPAND (NCT01665144), a phase 3 randomized clinical trial, siponimod reduced disability progression versus placebo in patients with secondary progressive multiple sclerosis (SPMS). Aim To understand how a real-world population with SPMS relates to that in EXPAND, we conducted a retrospective, observational cohort study using the German NeuroTransData (NTD) multiple sclerosis (MS) registry. Methods The NTD MS registry is run by a Germany-wide network of physicians. Two cross-sectional analyses were performed using the NTD MS registry. The first included patients with SPMS, as recorded in the registry, and compared their characteristics between 1 January 2018 and 31 December 2018 with patients in EXPAND. The second described the characteristics of patients in the registry at the time of diagnosis of SPMS between 1 January 2010 and 31 December 2018. Results The first analysis included 773 patients: patients were older in the NTD MS registry than in EXPAND (mean age, 57.9 vs 48.0 years) and had a longer duration of SPMS (mean, 6.2 vs 3.8 years). In the NTD MS registry, median Expanded Disability Status Scale (EDSS) scores were comparable to EXPAND (6.0 versus 6.0), although fewer patients had relapses in the previous 24 months (16% vs 36% [siponimod] and 37% [placebo]). Data on gadolinium-enhancing lesions were only available for 5.8% of patients in the NTD MS registry. The second analysis included 916 patients: at the time of SPMS diagnosis, the mean age was 53.2 years and the median EDSS score was 5.0. Conclusion The population in the NTD MS registry was older to that in EXPAND, but were similar in terms of disability. Differences likely reflect the inclusion criteria of EXPAND but also highlight that real-world populations encompass a wider range of patient characteristics.
Collapse
|
137
|
Bose G, Healy BC, Barro C, Glanz BI, Lokhande HA, Polgar-Turcsanyi M, Guttmann CR, Bakshi R, Weiner HL, Chitnis T. Younger age at multiple sclerosis onset is associated with worse outcomes at age 50. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329353. [PMID: 35953266 DOI: 10.1136/jnnp-2022-329353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Older age at multiple sclerosis (MS) onset has been associated with worse 10-year outcomes. However, disease duration often exceeds 10 years and age-related comorbidities may also contribute to disability. We investigated patients with>10 years disease duration to determine how age at MS onset is associated with clinical, MRI and occupational outcomes at age 50. METHODS We included patients enrolled in the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital with disease duration>10 years. Outcomes at age 50 included the Expanded Disability Status Scale (EDSS), development of secondary-progressive multiple sclerosis (SPMS), brain T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and occupational status. We assessed how onset age was independently associated with each outcome when adjusting for the date of visit closest to age 50, sex, time to first treatment, number of treatments by age 50 and exposure to high-efficacy treatments by age 50. RESULTS We included 661 patients with median onset at 31.4 years. The outcomes at age 50 were worse the younger first symptoms developed: for every 5 years earlier, the EDSS was 0.22 points worse (95% CI: 0.04 to 0.40; p=0.015), odds of SPMS 1.33 times higher (95% CI: 1.08 to 1.64; p=0.008), T2LV 1.86 mL higher (95% CI: 1.02 to 2.70; p<0.001), BPF 0.97% worse (95% CI: 0.52 to 1.42; p<0.001) and odds of unemployment from MS 1.24 times higher (95% CI: 1.01 to 1.53; p=0.037). CONCLUSIONS All outcomes at age 50 were worse in patients with younger age at onset. Decisions to provide high-efficacy treatments should consider younger age at onset, equating to a longer expected disease duration, as a poor prognostic factor.
Collapse
Affiliation(s)
- Gauruv Bose
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Christian Barro
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Bonnie I Glanz
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mariann Polgar-Turcsanyi
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rohit Bakshi
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
138
|
Meca-Lallana JE, Casanova B, Rodríguez-Antigüedad A, Eichau S, Izquierdo G, Durán C, Río J, Hernández MÁ, Calles C, Prieto-González JM, Ara JR, Uría DF, Costa-Frossard L, García-Merino A, Oreja-Guevara C. Consensus on early detection of disease progression in patients with multiple sclerosis. Front Neurol 2022; 13:931014. [PMID: 35968319 PMCID: PMC9366521 DOI: 10.3389/fneur.2022.931014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Early identification of the transition from relapsing-remitting multiple sclerosis (RRMS) to secondary progressive MS (SPMS) can be challenging for clinicians, as diagnostic criteria for SPMS are primarily based on physical disability and a holistic interpretation. Objective To establish a consensus on patient monitoring to identify promptly disease progression and the most useful clinical and paraclinical variables for early identification of disease progression in MS. Methods A RAND/UCLA Appropriateness Method was used to establish the level of agreement among a panel of 15 medical experts in MS. Eighty-three items were circulated to the experts for confidential rating of the grade of agreement and recommendation. Consensus was defined when ≥66% agreement or disagreement was achieved. Results Consensus was reached in 72 out of 83 items (86.7%). The items addressed frequency of follow-up visits, definition of progression, identification of clinical, cognitive, and radiological assessments as variables of suspected or confirmed SPMS diagnosis, the need for more accurate assessment tools, and the use of promising molecular and imaging biomarkers to predict disease progression and/or diagnose SPMS. Conclusion Consensus achieved on these topics could guide neurologists to identify earlier disease progression and to plan targeted clinical and therapeutic interventions during the earliest stages of SPMS.
Collapse
Affiliation(s)
- José E. Meca-Lallana
- CSUR Multiple Sclerosis and Clinical Neuroimmunology Unit, Neurology Department, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
- *Correspondence: José E. Meca-Lallana
| | - Bonaventura Casanova
- Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Sara Eichau
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Carmen Durán
- Department of Neurology, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Jordi Río
- CEMCAT, Hospital Universitario Vall d'Hebrón, Barcelona, Spain
| | - Miguel Ángel Hernández
- Department of Neurology, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Calles
- Department of Neurology, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - José M. Prieto-González
- Department of Neurology, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - José Ramón Ara
- Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Dionisio F. Uría
- Department of Neurology, Hospital Universitario de Cabueñes, Gijón, Spain
| | | | | | - Celia Oreja-Guevara
- Department of Neurology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| |
Collapse
|
139
|
Margoni M, Preziosa P, Tortorella P, Filippi M, Rocca MA. Does Ocrelizumab Limit Multiple Sclerosis Progression? Current Evidence from Clinical, MRI, and Fluid Biomarkers. Neurotherapeutics 2022; 19:1216-1228. [PMID: 35668317 PMCID: PMC9587174 DOI: 10.1007/s13311-022-01252-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease affecting the central nervous system, often characterized by the accumulation of irreversible clinical disability over time. In recent years, there has been a dramatic evolution in several key concepts of MS treatment. The demonstration of the effects of ocrelizumab, a selective monoclonal antibody against CD20+ B cells, has significantly modified our knowledge of the immune-pathophysiology of MS and has provided a new therapeutic target for relapsing and progressive MS patients. Emerging findings suggest that, besides its strong anti-inflammatory activity, ocrelizumab may limit disability progression and may exert beneficial effects on cognitive function, fatigue, and quality of life of MS patients. The significant reductions of the rate of global and regional brain atrophy and of serum neurofilament light chain levels, which were found to be partially independent of overt inflammatory activity, suggest that this treatment may also limit neuro-axonal damage. By discussing the most recent evidence regarding the effects of ocrelizumab on clinical measures as well as on magnetic resonance imaging and fluid biomarkers, this review summarizes current knowledge on the possible mechanisms underlying the effects of ocrelizumab in limiting MS progression and neurodegeneration.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurosciences, Multiple Sclerosis Center of the Veneto Region, University Hospital-School of Medicine, Padua, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
140
|
Ford CC, Cohen JA, Goodman AD, Lindsey JW, Lisak RP, Luzzio C, Pruitt A, Rose J, Rus H, Wolinsky JS, Kadosh SE, Bernstein-Hanlon E, Stark Y, Alexander JK. Early versus delayed treatment with glatiramer acetate: Analysis of up to 27 years of continuous follow-up in a US open-label extension study. Mult Scler 2022; 28:1729-1743. [PMID: 35768939 PMCID: PMC9442630 DOI: 10.1177/13524585221094239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Glatiramer acetate (GA) is US-approved for relapsing multiple sclerosis. Objectives: To describe GA long-term clinical profile. To compare effectiveness of early start (ES) versus delayed start (DS; up to 3 years) with GA. Methods: Phase 3 trial participants entered a randomized placebo-controlled period then an open-label extension (OLE) with GA. Results: Overall, 208 out of 251 (82.9%) randomized participants entered the OLE; 24 out of 101 (23.8%, ES) and 28 out of 107 (26.2%, DS) participants completed the OLE. Median GA treatment was 9.8 (0.1–26.3) years. Annualized change in Expanded Disability Status Scale (EDSS) score was lower with ES versus DS (p = 0.0858: full study; p = 0.002; Year 5). Participants with improved/stable EDSS was consistently higher with ES versus DS: 40.3% versus 31.6% (p = 0.1590; full study); 70.8% versus 55.6% (p = 0.015; Year 5). ES prolonged time-to-6-month confirmed disease worsening (CDW) versus DS (9.8 vs 6.7 years), time-to-12-month CDW (18.9 vs 11.6 years), and significantly reduced time-to-second-6-month CDW (p = 0.0441). No new safety concerns arose. Conclusion: GA long-term treatment maintained clinical benefit with a similar safety profile to phase 3 results; a key limitation was that only 25% of participants completed the OLE. Early initiation of GA had sustained benefits versus delayed treatment.
Collapse
Affiliation(s)
- Corey C Ford
- Department of Neurology, University of New Mexico Health Sciences Center, The University of New Mexico, Albuquerque, NM, USA
| | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrew D Goodman
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W Lindsey
- Department of Neurology, University of Texas Health Science Center at Houston (UTHouston), Houston, TX, USA
| | - Robert P Lisak
- Department of Neurology and Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Christopher Luzzio
- Departments of Neurology and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy Pruitt
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - John Rose
- Imaging and Neuroscience Center, School of Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jerry S Wolinsky
- Department of Neurology, University of Texas Health Science Center at Houston (UTHouston), Houston, TX, USA
| | - Shaul E Kadosh
- Innovative Research and Development, Teva Pharmaceuticals, Netanya, Israel
| | | | - Yafit Stark
- Global Clinical Development, Teva Pharmaceuticals, Netanya, Israel
| | - Jessica K Alexander
- Global Medical Affairs, Teva Pharmaceuticals, West Chester, PA, USA/Jazz Pharmaceuticals, Palo Alto, CA, USA
| |
Collapse
|
141
|
Interrogating large multiple sclerosis registries and databases: what information can be gained? Curr Opin Neurol 2022; 35:271-277. [PMID: 35674068 DOI: 10.1097/wco.0000000000001057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Although substantial progress has been made in understanding the natural history of multiple sclerosis (MS) and the development of new therapies, many questions concerning disease behavior and therapeutics remain to be answered. Data generated from real-world observational studies, based on large MS registries and databases and analyzed with advanced statistical methods, are offering the scientific community answers to some of these questions that are otherwise difficult or impossible to address. This review focuses on observational studies published in the last 2 years designed to compare the effectiveness of escalation vs. induction treatment strategies, to assess the effectiveness of treatment in pediatric-onset and late-onset MS, and to identify the clinical phenotype of secondary progressive (SP)MS. RECENT FINDINGS The main findings originating from real-world studies suggest that MS patients who will qualify for high-efficacy disease-modifying therapies (DMTs) should be offered these as early as possible to prevent irreversible accumulation of neurological disability. Especially pediatric patients derive substantial benefits from early treatment. In patients with late-onset MS, sustained exposure to DMTs may result in more favorable outcomes. Data-driven definitions are more accurate in defining transition to SPMS than diagnosis based solely on neurologists' judgment. SUMMARY Patients, physicians, industry, and policy-makers have all benefited from real-world evidence based on registry data, in answering questions of diagnostics, choice of treatment, and timing of treatment decisions.
Collapse
|
142
|
Stopping Interferon Beta 1b Does Not Influence the Risk of Disability Accrual in Non-Active SPMS: Results from an Italian Real-World Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106069. [PMID: 35627605 PMCID: PMC9140489 DOI: 10.3390/ijerph19106069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022]
Abstract
Background: No consensus exists on the possibility to stop disease modifying therapies (DMTs) in Secondary Progressive Multiple Sclerosis (SPMS). Methods: The primary outcome was the time to reach 24-weeks confirmed Expanded Disability Status Scale (EDSS) 7.0. We enrolled all patients with a confirmed diagnosis of non-active SPMS (here, absence of clinical or radiological activity for at least 24 months before the conversion) between 1 January 2010 and 31 December 2015, at MS centers of Catania and Foggia, Italy. Patients were divided into two groups, according to the shared decision to stop DMTs (group A) or to maintain/switch to licensed interferon beta 1b for SPMS (group B). A Cox model adjusted with an inverse probability weighted propensity score (IPTW-PS) was employed. Results: A cohort of 311 patients was enrolled, 165 were in group A and 146 were in group B. Patients in the two groups were similar for baseline characteristics. The IPTW-PS adjusted Cox model for the event time to 24-weeks confirmed EDSS 7.0 did not show differences between the two groups (ExpB 0.96, CI 0.739–1.271, p = 0.819). Conclusions: In a real-world setting, in patients with non-active SPMS, the maintaining or switching to the licensed interferon beta 1b did not reduce the risk of reaching confirmed EDSS 7.0.
Collapse
|
143
|
Kokas Z, Sandi D, Fricska-Nagy Z, Füvesi J, Biernacki T, Köves Á, Fazekas F, Birkás AJ, Katona G, Kovács K, Milanovich D, Dobos E, Kapás I, Jakab G, Csépány T, Bense E, Mátyás K, Rum G, Szolnoki Z, Deme I, Jobbágy Z, Kriston D, Gerócs Z, Diószeghy P, Bors L, Varga A, Kerényi L, Molnár G, Kristóf P, Nagy ZÁ, Sátori M, Imre P, Péntek S, Klivényi P, Kincses ZT, Vécsei L, Bencsik K. Do Hungarian multiple sclerosis care units fulfil international criteria? PLoS One 2022; 17:e0264328. [PMID: 35239686 PMCID: PMC8893632 DOI: 10.1371/journal.pone.0264328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
A patients Because of the past 3 decades’ extensive research, several disease modifying therapies became available, thus a paradigm change is multiple sclerosis care was necessary. In 2018 a therapeutic guideline was created recommending that treatment of persons with multiple sclerosis should take place in specified care units where the entire spectrum of disease modifying therapies is available, patient monitoring is ensured, and therapy side effects are detected and treated promptly. In 2019 multiple sclerosis care unit criteria were developed, emphasizing personnel and instrumental requirements to provide most professional care. However, no survey was conducted assessing the real-world adaptation of these criteria. Objective To assess whether Hungarian care units fulfil international criteria. Methods A self-report questionnaire was assembled based on international guidelines and sent to Hungarian care units focusing on 3 main aspects: personnel and instrumental background, disease-modifying therapy use, number of people living with multiple sclerosis receiving care in care units. Data on number of persons with multiple sclerosis were compared to Hungarian prevalence estimates. Descriptive statistics were used to analyse data. Results Out of 27 respondent care units, 3 fulfilled minimum requirements and 7 fulfilled minimum and recommended requirements. The least prevalent neighbouring specialties were spasticity and pain specialist, and neuro-ophthalmologist and oto-neurologist. Only 15 centres used all available disease modifying therapies. A total number of 7213 people with multiple sclerosis received care in 27 respondent centres. Compared to prevalence estimates, 2500 persons with multiple sclerosis did not receive multiple sclerosis specific care in Hungary. Conclusion Less than half of Hungarian care units provided sufficient care for people living with multiple sclerosis. Care units employing fewer neighbouring specialties, might have difficulties diagnosing and providing appropriate care for persons with multiple sclerosis, especially for people with progressive disease course, contributing to the reported low number of persons living with multiple sclerosis.
Collapse
Affiliation(s)
- Zsófia Kokas
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsanett Fricska-Nagy
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Judit Füvesi
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Tamás Biernacki
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Ágnes Köves
- Department of Neurology, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
| | - Ferenc Fazekas
- Department of Neurology, Gyula Nyírő Hospital and National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Adrienne Jóri Birkás
- Department of Neurology, National Institute of Clinical Nerosciences, Budapest, Hungary
| | - Gabriella Katona
- Department of Neurology, National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
| | | | | | - Enikő Dobos
- Department of Neurology, Saint Imre Hospital and University Teaching Hospital, Budapest, Hungary
| | - István Kapás
- Department of Neurology, Saint János Hospital, Budapest, Hungary
| | - Gábor Jakab
- Department of Neurology, Uzsoki Hospital, Budapest, Hungary
| | - Tünde Csépány
- Division of Neurology, University of Debrecen Clinical Center, Debrecen, Hungary
| | - Erzsébet Bense
- Department of Neurology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Klotild Mátyás
- Department of Neurology, Ferenc Markhot Teaching Hospital, Eger, Hungary
| | - Gábor Rum
- Department of Neurology, Aladár Petz University Teaching Hospital, Győr, Hungary
| | - Zoltán Szolnoki
- Department of Neurology, Kálmán Pándy County Hospital, Gyula, Hungary
| | - István Deme
- Department of Neuology, Mór Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Zita Jobbágy
- Department of Neurology, Kecskemét County Hospital, Kecskemét, Hungary
| | - Dávid Kriston
- Department of Neurology, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gerócs
- Department of Neurology, Dorottya Kanizsai Hospital, Nagykanizsa, Hungary
| | - Péter Diószeghy
- Department of Neurology, Aladár Jósa Teaching Hospital, Nyíregyháza, Hungary
| | - László Bors
- Department of Neurology, University of Pécs Clinical Center Pécs, Pécs, Hungary
| | - Adrián Varga
- Department of Neurology, Saint Lázár County Hospital, Salgótarján, Hungary
| | - Levente Kerényi
- Department of Neurology, Fejér County Saint György University Teaching Hospital, Székesfehérvár, Hungary
| | - Gabriella Molnár
- Department of Neurology, János Balassa Hospital, Szekszárd, Hungary
| | - Piroska Kristóf
- Department of Neurology, Jász-Nagykun-Szolnok County Géza Hetényi Hospital, Szolnok, Hungary
| | - Zsuzsanna Ágnes Nagy
- Department of Neurology, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Mária Sátori
- Department of Neurology, Saint Borbála Hospital, Tatabánya, Hungary
| | - Piroska Imre
- Department of Neurology, Ferenc Csolnoky Hospital, Veszprém, Hungary
| | - Szilvia Péntek
- Department of Neurology, Zala County Saint Rafael Hospital, Zalaegerszeg, Hungary
| | - Péter Klivényi
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- Faculty of General Medicine, Department of Radiology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Krisztina Bencsik
- Faculty of General Medicine, Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
144
|
Biernacki T, Sandi D, Füvesi J, Fricska-Nagy Z, Kincses TZ, Ács P, Rózsa C, Dobos E, Cseh B, Horváth L, Nagy Z, Csányi A, Kovács K, Csépány T, Vécsei L, Bencsik K, on the behalf of the study investigators. The safety and efficacy of fingolimod: Real-world data from a long-term, non-interventional study on the treatment of RRMS patients spanning up to 5 years from Hungary. PLoS One 2022; 17:e0267346. [PMID: 35452476 PMCID: PMC9032373 DOI: 10.1371/journal.pone.0267346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fingolimod was approved and reimbursed by the healthcare provider in Hungary for the treatment of highly active relapsing-remitting multiple sclerosis (RRMS) in 2012. The present study aimed to assess the effectiveness, safety profile, and persistence to fingolimod in a real-life setting in Hungary in RRMS patients who were either therapy naïve before enrollment or have changed to fingolimod from another disease-modifying therapy (DMT) for any reason. METHODS This cross-sectional, observational study with prospective data collection was performed nationwide at 21 sites across Hungary. To avoid selection bias, sites were asked to document eligible patients in consecutive chronological order. Demographic, clinical, safety and efficacy data were analysed for up to 5 years from 570 consenting adult patients with RRMS who had received treatment with fingolimod for at least one year. RESULTS 69.6% of patients remained free from relapses for the whole study duration; in the first year, 85.1% of patients did not experience a relapse, which rose to 94.6% seen in the 5th year. Compared to baseline at study end, 28.2% had higher, and 9.1% had lower, meanwhile, 62.7% of the patients had stable EDSS scores. Overall, the annualized relapse rate decreased from 0.804 observed at baseline to 0.185, 0.149, 0.122, 0.091, and 0.097 (77.0%, 82.1%, 85.2%, 89.7%, and 89.0% relative reduction, respectively) after 1, 2, 3, 4, and 5 years of treatment. The greatest reduction rate was seen in the group of therapy naïve patients. Treatment persistence on fingolimod after 60 months was 73.4%. CONCLUSION In this nationwide Hungarian cohort, most patients under fingolimod treatment were free from relapses and disability progression. In addition, fingolimod has proven to be a well-tolerated DMT that has sustained its manageable safety profile, high efficacy, and positive benefit/risk ratio for up to 5 years in a real-life setting.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Judit Füvesi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Zsanett Fricska-Nagy
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Péter Ács
- Department of Neurology, Faculty of General Medicine, University of Pécs, Pécs, Hungary
| | - Csilla Rózsa
- Jahn Ferenc South-Pest Hospital and Clinic, Budapest, Hungary
| | | | - Botond Cseh
- Borsod-Abaúj-Zemplén County Hospital, Miskolc, Hungary
| | | | - Zsuzsanna Nagy
- Szent Rafael Zala County Hospital, Zalaegerszeg, Hungary
| | | | | | - Tünde Csépány
- Department of Neurology, Faculty of General Medicine, University of Debrecen, Deberecen, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
145
|
Bose G, Healy BC, Lokhande HA, Sotiropoulos MG, Polgar‐Turcsanyi M, Anderson M, Glanz BI, Guttman CRG, Bakshi R, Weiner HL, Chitnis T. Early predictors of clinical and MRI outcomes using LASSO in multiple sclerosis. Ann Neurol 2022; 92:87-96. [DOI: 10.1002/ana.26370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gauruv Bose
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Brian C. Healy
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Hrishikesh A. Lokhande
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Marinos G. Sotiropoulos
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Mariann Polgar‐Turcsanyi
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Mark Anderson
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Bonnie I. Glanz
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Charles R. G. Guttman
- Harvard Medical School Boston MA US
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital Boston MA US
| | - Rohit Bakshi
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Howard L. Weiner
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Tanuja Chitnis
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| |
Collapse
|
146
|
Brieva L, Estruch BC, Merino JAG, Meca-Lallana V, Río J, Rodríguez-Antigüedad A, Agüera E, Ara JR, Luque AA, Garcia CA, Blanco Y, Castillo-Triviño T, Costa-Frossard L, Platas MG, Pascual LL, Llaneza-González M, Ginés MLM, Matías-Guiu J, Meca-Lallana JE, Bilbao MM, Sempere AP, Romero-Pinel L, Saiz A, Moral E. DISEASE MODIFYING THERAPY SWITCHING IN RELAPSING MULTIPLE SCLEROSIS: A Delphi consensus of the demyelinating expert group of the Spanish Society of Neurology. Mult Scler Relat Disord 2022; 63:103805. [DOI: 10.1016/j.msard.2022.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
147
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
148
|
Portaccio E, Bellinvia A, Fonderico M, Pastò L, Razzolini L, Totaro R, Spitaleri D, Lugaresi A, Cocco E, Onofrj M, Di Palma F, Patti F, Maimone D, Valentino P, Confalonieri P, Protti A, Sola P, Lus G, Maniscalco GT, Brescia Morra V, Salemi G, Granella F, Pesci I, Bergamaschi R, Aguglia U, Vianello M, Simone M, Lepore V, Iaffaldano P, Filippi M, Trojano M, Amato MP. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain 2022; 145:2796-2805. [PMID: 35325059 DOI: 10.1093/brain/awac111] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Disability accrual in multiple sclerosis may occur as relapse-associated worsening or progression independent of relapse activity. The role of progression independent of relapse activity in early MS is yet to be established. The objective of this multicentre, observational, retrospective cohort study was to investigate the contribution of relapse-associated worsening and progression independent of relapse activity to confirmed disability accumulation in patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis, assessed within one year from onset and with follow-up >/= 5 years (n = 5169). Data were extracted from the Italian Multiple Sclerosis Register. Confirmed disability accumulation was defined by an increase in Expanded Disability Status Scale score confirmed at 6 months, and classified per temporal association with relapses. Factors associated with progression independent of relapse activity and relapse-associated worsening were assessed using multivariable Cox regression models. Over a follow-up period of 11.5 ± 5.5 years, progression independent of relapse activity occurred in 1427 (27.6%) and relapse-associated worsening in 922 (17.8%) patients. Progression independent of relapse activity was associated with older age at baseline (HR = 1.19; 95CI 1.13-1.25, p < 0.001), having a relapsing-remitting course at baseline (HR = 1.44; 95CI 1.28-1.61, p < 0.001), longer disease duration at baseline (HR = 1.56; 95%CI 1.28-1.90, p < 0.001), lower Expanded Disability Status Scale at baseline (HR = 0.92; 95CI 0.88-0.96, p < 0.001), lower number of relapses before the event (HR = 0.76; 95CI 0.73-0.80, p < 0.001). Relapse-associated worsening was associated with younger age at baseline (HR = 0.87; 95CI 0.81-0.93, p < 0.001), having a relapsing-remitting course at baseline (HR = 1.55; 95CI 1.35-1.79, p < 0.001), lower Expanded Disability Status Scale at baseline (HR = 0.94; 95CI 0.89-0.99, p = 0.017), higher number of relapses before the event (HR = 1.04; 95CI 1.01-1.07, p < 0.001). Longer exposure to disease modifying drugs was associated with a lower risk of both progression independent of relapse activity and relapse-associated worsening (p < 0.001). This study provides evidence that in early relapsing-onset multiple sclerosis cohort, progression independent of relapse activity was an important contributor to confirmed disability accumulation. Our findings indicate that insidious progression appears even in the earliest phases of the disease, suggesting that inflammation and neurodegeneration can represent a single disease continuum, in which age is one of the main determinants of disease phenomenology.
Collapse
Affiliation(s)
- Emilio Portaccio
- University of Florence, Department of NEUROFARBA, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Department of Neurology, Florence, Italy
| | - Angelo Bellinvia
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | - Mattia Fonderico
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | - Luisa Pastò
- University of Florence, Department of NEUROFARBA, Florence, Italy
| | | | - Rocco Totaro
- San Salvatore Hospital, Demyelinating Disease Center, L'Aquila, Italy
| | - Daniele Spitaleri
- AORN San G. Moscati di Avellino, Department of Neurology, Avellino, Italy
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Riabilitazione Sclerosi Multipla, Bologna, Italy.,Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie, Bologna, Italy
| | - Eleonora Cocco
- University of Cagliari, Department of Medical Science and Public health, Centro Sclerosi Multipla, Cagliari, Italy
| | - Marco Onofrj
- University G. d'Annunzio di Chieti-Pescara, Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
| | - Franco Di Palma
- ASST Lariana Ospedale S. Anna, Department of Neurology, Como, Italy
| | - Francesco Patti
- University of Catania, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Davide Maimone
- Ospedale Garibaldi Centro, Department of Neurology, Catania, Italy
| | - Paola Valentino
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Paolo Confalonieri
- Fondazione IRCCS Istituto Neurologico C. Besta, Neuroimmunology Unit, Milan, Italy
| | | | - Patrizia Sola
- University of Modena and Reggio Emilia, Department of Neurology, Modena, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Vincenzo Brescia Morra
- Federico II University, Naples, Multiple Sclerosis Clinical Care and Research Center, Department of Neuroscience (NSRO), Naples, Italy
| | - Giuseppe Salemi
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Palermo, Italy
| | - Franco Granella
- University of Parma, Unit of Neurosciences, Department of Medicine and Surgery, Parma, Italy
| | - Ilaria Pesci
- Ospedale VAIO di Fidenza AUSL PR, Department of Neurology, Fidenza, Italy
| | | | - Umberto Aguglia
- Magna Graecia University of Catanzaro, Department of Medical and Surgical Sciences, Catanzaro, Italy
| | - Marika Vianello
- Unit of Neurology, Ca' Fancello Hospital, AULSS2, Treviso, Italy
| | - Marta Simone
- University 'Aldo Moro' of Bari, Child Neuropsychiatric Unit, Department of Biomedical Sciences and Human Oncology, Bari, Italy
| | - Vito Lepore
- Public Health Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pietro Iaffaldano
- University of Bari Aldo Moro, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Bari, Italy
| | - Massimo Filippi
- San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit and MS Center, IRCCS San Raffaele Scientific Institute; Neuroimaging Research Unit, Division of Neuroscience; Neurorehabilitation Unit and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Trojano
- University of Bari Aldo Moro, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Bari, Italy
| | - Maria Pia Amato
- University of Florence, Department of NEUROFARBA, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Department of Neurology, Florence, Italy
| | | |
Collapse
|
149
|
Theodorsdottir A, Larsen PV, Nielsen HH, Illes Z, Ravnborg MH. Multiple sclerosis impairment scale and brain MRI in secondary progressive multiple sclerosis. Acta Neurol Scand 2022; 145:332-347. [PMID: 34799851 DOI: 10.1111/ane.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the Multiple Sclerosis Impairment Scale (MSIS) in secondary progressive MS (SPMS) in relation to the Expanded Disability Status Scale (EDSS), magnetic resonance imaging (MRI) outcomes, and mobility. METHODS In this observational single-center study, 68 secondary progressive multiple sclerosis (SPMS) patients were examined by MSIS, EDSS, functional mobility tests of upper/lower extremities, and multimodal MRI. Participants had EDSS ≥3.5, a decline in daily activities over the last year unrelated to relapses, and/or 6-month confirmed disability progression. RESULTS Mean disease duration was 23.1 ± 8.3 years and mean age 54.4 ± 8.1 years. MSIS, EDSS, and their corresponding motor, cerebellar, and sensory subscores correlated (p < .0001). Motor subscores of MSIS correlated stronger with Timed-25-Foot-Walk (T25FW) than pyramidal functional system score (FSS) (p = .03), but EDSS had a stronger correlation to T25FW than the total MSIS score (p = .01). MSIS cerebellar subscore correlated stronger with 9-Hole Peg Test (9-HPT) than cerebellar FSS (p = .04). The sensory MSIS subscore also showed correlation with 9-HPT in contrast to sensory FSS (p = .006). MSIS subscores had stronger correlations with MRI volumetry measures than FSS scores (lesion volume and putamen, thalamus, corpus callosum volumetry, p = .0001-0.0017). CONCLUSION In patients with SPMS, MSIS correlated with functional motor tests. MSIS showed stronger correlations with atrophy of central nervous system areas, and may be more sensitive to scale cerebellar and sensory function than EDSS.
Collapse
Affiliation(s)
- Asta Theodorsdottir
- Department of Neurology Odense University Hospital Odense Denmark
- OPEN Odense Patient Data Explorative Network Odense University Hospital Odense Denmark
| | - Pia Veldt Larsen
- Mental Health Services at the Region of Southern Denmark Odense Denmark
| | - Helle Hvilsted Nielsen
- Department of Neurology Odense University Hospital Odense Denmark
- Department of Neurobiology Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
- Department of Clinical Research BRIDGE ‐ Brain Research – Inter Disciplinary Guided Excellence University of Southern Denmark Odense Denmark
| | - Zsolt Illes
- Department of Neurology Odense University Hospital Odense Denmark
- Department of Neurobiology Research Institute of Molecular Medicine University of Southern Denmark Odense Denmark
- Department of Clinical Research BRIDGE ‐ Brain Research – Inter Disciplinary Guided Excellence University of Southern Denmark Odense Denmark
| | | |
Collapse
|
150
|
Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA. Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis Disease Progression. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1139. [PMID: 35105685 PMCID: PMC8808355 DOI: 10.1212/nxi.0000000000001139] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives Chronic active lesions contribute to multiple sclerosis (MS) severity, but their association with long-term disease progression has not been evaluated yet. White matter (WM) lesions showing linear expansion over time on serial T1- and T2-weighted scans (i.e., slowly expanding lesions [SELs]) have been proposed as a marker of chronic inflammation. In this study, we assessed whether SEL burden and microstructural abnormalities were associated with Expanded Disability Status Scale (EDSS) score worsening and secondary progressive (SP) conversion at 9.1-year follow-up in patients with relapsing-remitting (RR) MS. Methods In 52 patients with RRMS, SELs were identified among WM lesions by linearly fitting the Jacobian of the nonlinear deformation field between time points obtained combining 3T brain T1- and T2-weighted scans acquired at baseline and months 6, 12, and 24. Logistic regression analysis was applied to investigate the associations of SEL number, volume, magnetization transfer ratio (MTR), and T1-weighted signal intensity with disability worsening (i.e., EDSS score increase) and SP conversion after a median follow-up of 9.1 years. Results At follow-up, 20/52 (38%) patients with MS showed EDSS score worsening; 13/52 (25%) showed SP conversion. A higher baseline EDSS score (for each point higher: OR = 3.15 [95% CI = 1.61; 8.38], p = 0.003), a higher proportion of SELs among baseline lesions (for each % increase: OR = 1.22 [1.04; 1.58], p = 0.04), and lower baseline MTR values of SELs (for each % higher: OR = 0.66 [0.41; 0.92], p = 0.033) were significant independent predictors of EDSS score worsening at follow-up (C-index = 0.892). A higher baseline EDSS score (for each point higher: OR = 6.37 [1.98; 20.53], p = 0.002) and lower baseline MTR values of SELs (for each % higher: OR = 0.48 [0.25; 0.89], p = 0.02) independently predicted SPMS conversion (C-index = 0.947). Discussion The proportion of SELs is associated with MS progression after 9 years. More severe SEL microstructural abnormalities independently predict EDSS score worsening and SPMS conversion. The quantification of SEL burden and damage using T1-, T2-weighted, and MTR sequences may identify patients with RRMS at a higher risk of long-term disability progression and SPMS conversion. Classification of Evidence This study provides Class III evidence that in patients with RRMS starting treatment with natalizumab or fingolimod, the proportion of SELs on brain MRI was associated with EDSS score worsening and SPMS conversion at 9-year follow-up.
Collapse
Affiliation(s)
- Paolo Preziosa
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Lucia Moiola
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Mariaemma Rodegher
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy.
| |
Collapse
|