101
|
Influence of benzene exposure, fat content, and their interactions on erythroid-related hematologic parameters in petrochemical workers: a cross-sectional study. BMC Public Health 2020; 20:382. [PMID: 32293364 PMCID: PMC7092548 DOI: 10.1186/s12889-020-08493-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ubiquitously distributed benzene is a known hematotoxin. Increasing evidence has suggested that erythroid-related hematologic parameters may be sensitive to benzene exposure. Fat content, which is also closely associated with erythroid-related hematologic parameters, may affect the distribution and/or metabolism of benzene, and eventually benzene-induced toxicity. METHODS To explore the influence of benzene exposure, fat content, and their interactions on erythroid-related hematologic parameters, we recruited 1669 petrochemical workers and measured their urinary S-phenylmercapturic acid (SPMA) concentration and erythroid-related hematological parameters. Indices for fat content included body fat percentage (BF%), plasma total cholesterol (TC) and triglycerides (TG), and occurrence of fatty liver. RESULTS The dose-response curve revealed U-shaped nonlinear relationships of SPMA with hematocrit (HCT) and mean corpuscular hemoglobin concentration (MCHC) (P-overall < 0.001, and P-nonlinear < 0.015), as well as positive linear associations and r-shaped nonlinear relationships of continuous fat content indices with erythroid-related hematological parameters (P-overall ≤0.005). We also observed modification effects of fat content on the associations between benzene exposure and erythroid-related hematological parameters, with workers of lower or higher BF% and TG more sensitive to benzene-induced elevation of MCHC (Pinteraction = 0.021) and benzene-induced decrease of HCT (Pinteraction = 0.050), respectively. We also found that some erythroid-related hematologic parameters differed between subgroups of workers with different SPMA levels and fat content combination. CONCLUSIONS Our study suggested that benzene exposure, fat content, and their interactions may affect erythroid-related hematological parameters in petrochemical workers in a complex manner that are worthy of further investigation.
Collapse
|
102
|
Lin CK, Hsu YT, Brown KD, Pokharel B, Wei Y, Chen ST. Residential exposure to petrochemical industrial complexes and the risk of leukemia: A systematic review and exposure-response meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113476. [PMID: 31902537 DOI: 10.1016/j.envpol.2019.113476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Exposure to chemicals produced by petrochemical industrial complexes (PICs), such as benzene, ionizing radiation, and particulate matters, may contribute to the development of leukemia. However, epidemiological studies showed controversial results. This systematic review and meta-analysis aimed to summarize the association between residential exposure to PICs and the risk of leukemia incidence, focusing on exposure-response effects. We searched PubMed, Embase, Web of Science, and Cochrane Library databases for studies published before September 1st, 2019. Observational studies investigating residential exposure to PICs and the risk of leukemia were included. The outcome of interest was the incidence of leukemia comparing to reference groups. Relative risk (RR) was used as the summary effect measure, synthesized by characteristics of populations, distance to PICs, and calendar time in meta-regression. We identified 7 observational studies, including 2322 leukemia cases and substantial reference groups, in this meta-analysis. Residential exposure to PICs within a maximal 8-km distance had a 36% increased risk of leukemia (pooled RR = 1.36, 95% CI = 1.14-1.62) compared to controls, regardless of sex and age. In terms of leukemia subtypes, residential exposure to PICs was associated with the risks of acute myeloid leukemia (AML, pooled RR = 1.61, 95% CI = 1.12-2.31) and chronic lymphocytic leukemia (CLL, pooled RR = 1.85, 95% CI = 1.11-6.42). In meta-regression, the positive association occurred after 10 years of follow-up with a pooled RRs of 1.21 (95% CI = 1.02-1.44) and then slightly increased to 1.77 (95% CI = 1.35-2.33) at 30 years after follow-up. No effect modification was found by sex, age, and geographic locations.
Collapse
Affiliation(s)
- Cheng-Kuan Lin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yu-Tien Hsu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kristen D Brown
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Behavioral Neuroscience Program, Northeastern University, Boston, MA, USA
| | - Bibhaw Pokharel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Szu-Ta Chen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
103
|
Lu PCW, Shahbaz S, Winn LM. Benzene and its effects on cell signaling pathways related to hematopoiesis and leukemia. J Appl Toxicol 2020; 40:1018-1032. [PMID: 32112456 DOI: 10.1002/jat.3961] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Benzene is an environmental toxicant found in many consumer products. It is an established human carcinogen and is known to cause acute myeloid leukemia in adults. Epidemiological evidence has since shown that benzene can cross the placenta and affect the fetal liver. Animal studies have shown that in utero exposure to benzene can increase tumor incidence in offspring. Although there have been risk factors established for acute myeloid leukemia, they still do not account for many of the cases. Clearly then, current efforts to elucidate the mechanism by which benzene exerts its carcinogenic properties have been superficial. Owing to the critical role of cell signaling pathways in the development of an organism and its various organ systems, it seems plausible to suspect that these pathways may have a role in leukemogenesis. This review article assesses current evidence of the effects of benzene on critical hematopoietic signaling pathways. Pathways discussed included Hedgehog, Notch/Delta, Wingless/Integrated, nuclear factor-kappaB and others. Following a review of the literature, it seems that current evidence about the effects of benzene on these critical signaling pathways remains limited. Given the important role of these pathways in hematopoiesis, more attention should be given to them.
Collapse
Affiliation(s)
- Peter C W Lu
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Shahbaz
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,School of Environmental Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
104
|
PTP4A3, A Novel Target Gene of HIF-1alpha, Participates in Benzene-Induced Cell Proliferation Inhibition and Apoptosis through PI3K/AKT Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030910. [PMID: 32024182 PMCID: PMC7037067 DOI: 10.3390/ijerph17030910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.
Collapse
|
105
|
Luijten M, Ball NS, Dearfield KL, Gollapudi BB, Johnson GE, Madia F, Peel L, Pfuhler S, Settivari RS, ter Burg W, White PA, van Benthem J. Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:94-113. [PMID: 31709603 PMCID: PMC6972600 DOI: 10.1002/em.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/22/2023]
Abstract
We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | | | | | - George E. Johnson
- Swansea University Medical School, Swansea UniversitySwanseaUnited Kingdom
| | - Federica Madia
- European Commission, Joint Research Centre (JRC)IspraItaly
| | - Lauren Peel
- Health and Environmental Sciences InstituteWashingtonDistrict of Columbia
| | | | | | - Wouter ter Burg
- Centre for Safety of Substances and ProductsNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Jan van Benthem
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
106
|
Aerobic Degradation of Benzene by Escherichia spp. from Petroleum-contaminated Sites in Kolkata, West Bengal, India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
107
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
108
|
Shapiro MZ, Wallenstein SR, Dasaro CR, Lucchini RG, Sacks HS, Teitelbaum SL, Thanik ES, Crane MA, Harrison DJ, Luft BJ, Moline JM, Udasin IG, Todd AC. Cancer in General Responders Participating in World Trade Center Health Programs, 2003-2013. JNCI Cancer Spectr 2019; 4:pkz090. [PMID: 32337498 PMCID: PMC7050150 DOI: 10.1093/jncics/pkz090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023] Open
Abstract
Background Following the September 11, 2001, attacks on the World Trade Center (WTC), thousands of workers were exposed to an array of toxins known to cause adverse health effects, including cancer. This study evaluates cancer incidence in the WTC Health Program General Responder Cohort occurring within 12 years post exposure. Methods The study population consisted of 28 729 members of the General Responder Cohort enrolled from cohort inception, July 2002 to December 31, 2013. Standardized incidence ratios (SIRs) were calculated with cancer case inclusion and follow-up starting post September 11, 2001 (unrestricted) and, alternatively, to account for selection bias, with case inclusion and follow-up starting 6 months after enrollment in the WTC Health Program (restricted). Case ascertainment was based on linkage with six state cancer registries. Under the restricted criterion, hazard ratios were estimated using multivariable Cox proportional hazards models for all cancer sites combined and for prostate cancer. Results Restricted analyses identified 1072 cancers in 999 responders, with elevations in cancer incidence for all cancer sites combined (SIR = 1.09, 95% confidence interval [CI] = 1.02 to 1.16), prostate cancer (SIR = 1.25, 95% CI = 1.11 to 1.40), thyroid cancer (SIR = 2.19, 95% CI = 1.71 to 2.75), and leukemia (SIR = 1.41, 95% CI = 1.01 to 1.92). Cancer incidence was not associated with any WTC exposure index (composite or individual) for all cancer sites combined or for prostate cancer. Conclusion Our analyses show statistically significant elevations in cancer incidence for all cancer sites combined and for prostate and thyroid cancers and leukemia. Multivariable analyses show no association with magnitude or type of exposure.
Collapse
Affiliation(s)
- Moshe Z Shapiro
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sylvan R Wallenstein
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher R Dasaro
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roberto G Lucchini
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Henry S Sacks
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susan L Teitelbaum
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erin S Thanik
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael A Crane
- World Trade Center Health Program Clinical Center of Excellence at Mount Sinai, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Denise J Harrison
- World Trade Center Health Program Clinical Center of Excellence, NYU Langone Medical Center, New York University School of Medicine, New York, NY
| | - Benjamin J Luft
- World Trade Center Health Program Clinical Center of Excellence, Department of Medicine, Stony Brook University Medical Center, Stony Brook, NY
| | - Jacqueline M Moline
- World Trade Center Health Program Clinical Center of Excellence, Department of Occupational Medicine, Epidemiology and Prevention, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Iris G Udasin
- World Trade Center Health Program Clinical Center of Excellence, Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical Center, Piscataway, NJ
| | - Andrew C Todd
- World Trade Center Health Program General Responder Data Center, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
109
|
Adamowicz J, Juszczak K, Poletajew S, Van Breda SV, Pokrywczynska M, Drewa T. Scented Candles as an Unrecognized Factor that Increases the Risk of Bladder Cancer; Is There Enough Evidence to Raise a Red Flag? Cancer Prev Res (Phila) 2019; 12:645-652. [PMID: 31399420 DOI: 10.1158/1940-6207.capr-19-0093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
The causes of bladder cancer are not yet fully uncovered, however the research has identified a number of factors that may increase the risk of developing this cancer. The chemical carcinogenesis of bladder cancer due to chronic exposure to aromatic hydrocarbons has been well-established. The identification of this correlation led to an improvement of safety measures in chemical industry and a gradual decrease of bladder cancer cases among workers. Nevertheless, in the majority of bladder cancer cases, the specific cause of the disease still can't be specified. It makes the question of unrecognized factors associated with bladder cancer development even more relevant. Taking under consideration known chemical carcinogenesis of bladder cancer, this minireview takes under investigation the possible link between using scented candles and a risk of bladder cancer development. Burning scented candles contain many of the substances that are associated with a bladder cancer. Furthermore the scented candles are not only very popular but also widely available on the market, with limited quality regulations and unspecified raw materials determining a spectrum of potentially dangerous substances emitted during burning.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | | | | | | | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
110
|
Ren J, Cui JP, Luo M, Liu H, Hao P, Wang X, Zhang GH. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019; 14:e0220500. [PMID: 31381583 PMCID: PMC6681966 DOI: 10.1371/journal.pone.0220500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.
Collapse
Affiliation(s)
- Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jun-peng Cui
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mengkai Luo
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Hao
- Xinxiang Center for Disease Control and Prevention, Xinxiang, China
| | - Xiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| | - Guang-hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| |
Collapse
|
111
|
Hopf NB, Bolognesi C, Danuser B, Wild P. Biological monitoring of workers exposed to carcinogens using the buccal micronucleus approach: A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:11-29. [DOI: 10.1016/j.mrrev.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 01/22/2023]
|
112
|
Environmental Assessment and Evaluation of Oxidative Stress and Genotoxicity Biomarkers Related to Chronic Occupational Exposure to Benzene. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122240. [PMID: 31242656 PMCID: PMC6617122 DOI: 10.3390/ijerph16122240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Environmental and occupational exposure to benzene from fuels is a major cause for concern for national and international authorities, as benzene is a known carcinogen in humans and there is no safe limit for exposure to carcinogens. The objective of this study was to evaluate the genotoxic effects of chronic occupational exposure to benzene among two groups of workers: filling station workers (Group I) and security guards working at vehicles entrances (Group II), both on the same busy highway in Rio de Janeiro, Brazil. Sociodemographic data on the workers were evaluated; the concentration of benzene/toluene (B/T) in atmospheric air and individual trans,trans-muconic acid (ttMA) and S-phenylmercapturic acid (S-PMA) were measured; oxidative stress was analyzed by catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), thiol groups (THIOL) and malondialdehyde (MDA); genotoxicity was measured by metaphases with chromosomal abnormalities (MCA) and nuclear abnormalities, comet assay using the enzyme formamidopyrimidine DNA glycosylase (C-FPG), and methylation of repetitive element LINE-1, CDKN2B and KLF6 genes. Eighty-six workers participated: 51 from Group I and 35 from Group II. The B/T ratio was similar for both groups, but Group I had greater oscillation of benzene concentrations because of their work activities. No differences in ttMA and S-PMA, and no clinical changes were found between both groups, but linearity was observed between leukocyte count and ttMA; and 15% of workers had leukocyte counts less than 4.5 × 109 cells L-1, demanding close worker's attention. No differences were observed between the two groups for THIOL, MDA, MCA, or nuclear abnormalities. A multiple linear relationship was obtained for the biomarkers MCA and C-FPG. A significant correlation was found between length of time in current job and the biomarkers C-FPG, MCA, GST, and MDA. Although both populations had chronic exposure to benzene, the filling station workers were exposed to higher concentrations of benzene during their work activities, indicating an increased risk of DNA damage.
Collapse
|
113
|
Ganguly BB. Exposure index of methyl isocyanate (MIC) gas disaster and a comprehensive spectrum of cytogenetic analysis after 30 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18208-18229. [PMID: 31041706 DOI: 10.1007/s11356-019-04439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Severity of clinical expression and high mortality could not facilitate establishing exposure index/association following MIC disaster in Bhopal. Mortality-based exposure stratification was critiqued by the International Medical Commission on Bhopal (IMCB). IMCB stratified exposure considering distance as surrogate at 2 km intervals after 10 years. The first follow-up cytogenetic screening of the pre-screened survivors after 30 years has demonstrated chromosome abnormalities (CA). Exposure stratification was attempted considering cytogenetic screening conducted during 1986-1988. Elevation of CA appeared proportional to exposure status and authenticated the initial mortality-based stratification. The one-on-one comparison of the previous and present cytogenetics has described the individual response to MIC exposure over 30 years. Chi-square test has been carried out for checking the cytogenetic changes at the individual level statistically, which revealed that differences of chromosomal aberrations collected immediately post-disaster and 30 years later are nonsignificant. The prominence of interindividual variation was noticed in general. The impact of overall exposure was higher in males. Constitutional abnormalities in 8.5% of the study population, including translocation, inversion, deletion, fragile sites, etc., necessitate screening of blood-linked members. The incidence of acrocentric association was prominent in the study population. Normal karyotype in children born to severely exposed parents with congenital anomalies indicates necessity of molecular karyotyping and/or screening of mutations. The study highlights follow-up of the health of the index cases at shorter (3-6 months) intervals. This comprehensive spectrum of cytogenetic report highlights immediate post-disaster chromosomal aberrations, the changes that occurred over 30 years in conjunction with other environmental factors at the individual level, constitutive genomic aberrations, polymorphic variations, and chromosomal patterns in congenitally malformed children of the survivors, which collectively indicate the possibility of acquisition/persistence of stable aberrations in MIC-exposed lymphocytes through interaction with environmental/biological confounders.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Vashi Sector 3, Navi Mumbai, 400703, India.
| |
Collapse
|
114
|
Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev 2019; 36:70-87. [PMID: 31101526 DOI: 10.1016/j.blre.2019.04.005] [Citation(s) in RCA: 471] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disorder of the bone marrow which is characterized by the clonal expansion and differentiation arrest of myeloid progenitor cells. The age-adjusted incidence of AML is 4.3 per 100,000 annually in the United States (US). Incidence increases with age with a median age at diagnosis of 68 years in the US. The etiology of AML is heterogeneous. In some patients, prior exposure to therapeutic, occupational or environmental DNA-damaging agents is implicated, but most cases of AML remain without a clear etiology. AML is the most common form of acute leukemia in adults and has the shortest survival (5-year survival = 24%). Curative therapies, including intensive chemotherapy and allogeneic stem cell transplantation, are generally applicable to a minority of patients who are younger and fit, while most older individuals exhibit poor prognosis and survival. Differences in patient outcomes are influenced by disease characteristics, access to care including active therapies and supportive care, and other factors. After many years without therapeutic advances, several new therapies have been approved and are expected to impact patient outcomes, especially for older patients and those with refractory disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Rong Wang
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amy Davidoff
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Health Policy and Management, School of Public Health, Yale University, New Haven, USA
| | - Xiaomei Ma
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA.
| |
Collapse
|
115
|
Chen Q, Sun H, Zhang J, Xu Y, Ding Z. The hematologic effects of BTEX exposure among elderly residents in Nanjing: a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10552-10561. [PMID: 30761498 DOI: 10.1007/s11356-019-04492-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Few studies have examined the effects of environmental concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) on the hematologic system of residents near a petrochemical complex. This study evaluated the potential effects of blood BTEX concentrations on the hematologic parameters of residents in a community near a petrochemical complex (contaminated group) and another community free of known petrochemical pollution (control group). Volunteer residents were randomly recruited. Each participant completed a questionnaire and donated blood samples to evaluate blood BTEX concentrations and hematologic parameters. We found the mean concentrations of blood BTEX of the contaminated group were 1.2 to 6.7 times higher than the control group. Multiple hematologic parameters of participants were significantly different between the two study groups. Inverse associations were found for ln-transformed blood benzene concentrations with mean corpuscular hemoglobin concentration (MCHC) (β = - 2.75) and platelet counts (β = -8.18). Several weaker associations were also observed between other compounds and multiple hematologic parameters. Our results suggest that the residents living near petrochemical complexes have higher blood BTEX concentrations. Furthermore, the increased blood BTEX levels in residents are associated with the reduction in RBC counts, hemoglobin concentration, hematocrit, MCHC, and platelet counts. This study provided particularly important information for the health risk assessment of residents living near petrochemical complexes.
Collapse
Affiliation(s)
- Qi Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, Road 172, 210009, Nanjing, People's Republic of China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, Road 172, 210009, Nanjing, People's Republic of China
| | - Jiayao Zhang
- Nanjing Medical University, Longmian Road 101, Jiangning District, 210029, Nanjing, People's Republic of China
| | - Yan Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, Road 172, 210009, Nanjing, People's Republic of China
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, Road 172, 210009, Nanjing, People's Republic of China.
| |
Collapse
|
116
|
Zhang A, Wu M, Tan J, Yu N, Xu M, Yu X, Liu W, Zhang Y. Establishment of a zebrafish hematological disease model induced by 1,4-benzoquinone. Dis Model Mech 2019; 12:dmm.037903. [PMID: 30898970 PMCID: PMC6451425 DOI: 10.1242/dmm.037903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Benzene exposure is associated with various hematological disorders, in particular leukemia. The reactive metabolite of benzene, 1,4-benzoquinone (BQ), generated in bone marrow, is suggested to be a key molecule in mediating benzene-induced hematotoxicity and carcinogenicity. However, its pathogenic role remains largely unknown due to a lack of suitable vertebrate whole-organism models. Here, we present an in vivo study to reveal the effect of BQ exposure on hematotoxicity in zebrafish. From embryonic stages to adulthood, BQ exposure suppressed erythroid and lymphoid hematopoiesis but led to abnormal accumulation of myeloid cells and precursors, which resembles benzene-induced cytopenia and myeloid dysplasia in humans. This myeloid expansion is caused by granulocyte, but not macrophage, lineage, emphasizing the significant role of lineage specificity in BQ-mediated hematopoietic toxicity. Analysis of the c-myb (also known as myb)-deficient mutant cmybhkz3 revealed that BQ induced neutrophilia in a c-myb-dependent manner, demonstrating that c-myb is a key intrinsic mediator of BQ hematotoxicity. Our study reveals that BQ causes lineage-specific hematotoxicity in zebrafish from embryonic stages to adulthood. Since c-myb is indispensable for BQ to induce neutrophilia, c-myb could serve as a potential drug target for reversing BQ hematotoxicity. Summary: Acute exposure to 1,4-benzoquinone leads to lineage-specific hematotoxicity in zebrafish from embryonic stages to adulthood, resembling benzene-induced cytopenia and myeloid dysplasia in humans.
Collapse
Affiliation(s)
- Ao Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Junliang Tan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengchang Xu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xutong Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
117
|
Vianna ADS, Matos EPD, Jesus IMD, Asmus CIRF, Câmara VDM. Human exposure to mercury and its hematological effects: a systematic review. CAD SAUDE PUBLICA 2019; 35:e00091618. [PMID: 30758455 DOI: 10.1590/0102-311x00091618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Mercury is a metal found in the environment from natural and anthropogenic sources. It is highly toxic to ecosystems and living beings. Most human exposures come from ingestion of contaminated seafood, outgassing from dental amalgam or occupational exposure (e.g. gold mining), among other cases. Large populations are exposed to mercury, making it a very important issue from the public health perspective. Adverse health effects are commonly seen in the nervous system, but every organ is a potential target, such as the bone marrow. The main goal of this study was to assess the available evidence on human exposure to mercury and its hematological effects. A search strategy was constructed, including key terms (MeSH, text word and equivalents) for querying 2 repositories of master dissertation and PhD thesis (Fiocruz/ARCA and University of São Paulo) and 4 different electronic databases: BVS/LILACS, MEDLINE/PubMed, Scopus and TOXLINE/NIH, for articles published from 1950 to February 2018. There was no language restriction and a tool (EPHPP) was used to assess the quality of included studies. According to pre-established criteria, 80 studies were retrieved, all of them observational (48 case reports, 24 cross-sectional, 6 case series and 2 cohorts), comprising 9,284 people. Despite the fact that most exposed ones (6,012) had normal blood cell count and mercury hematological effects did not seem very usual (1,914 cases: 14 severe and 29 deaths), three studies reported association (β) for anemia, lymphopenia, neutrophilia and basophilia. We concluded that the gathered information pointed to mercury hematotoxic effects, some of them may be serious and even fatal.
Collapse
Affiliation(s)
| | | | | | - Carmen Ildes Rodrigues Fróes Asmus
- Instituto de Estudos de Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Volney de Magalhães Câmara
- Instituto de Estudos de Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
118
|
Grigoryan H, Edmands WMB, Lan Q, Carlsson H, Vermeulen R, Zhang L, Yin SN, Li GL, Smith MT, Rothman N, Rappaport SM. Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis 2019. [PMID: 29538615 DOI: 10.1093/carcin/bgy042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although benzene has long been recognized as a cause of human leukemia, the mechanism by which this simple molecule causes cancer has been problematic. A complicating factor is benzene metabolism, which produces many reactive intermediates, some specific to benzene and others derived from redox processes. Using archived serum from 20 nonsmoking Chinese workers, 10 with and 10 without occupational exposure to benzene (exposed: 3.2-88.9 ppm, controls: 0.002-0.020 ppm), we employed an adductomic pipeline to characterize protein modifications at Cys34 of human serum albumin, a nucleophilic hotspot in extracellular fluids. Of the 47 measured human serum albumin modifications, 39 were present at higher concentrations in benzene-exposed workers than in controls and many of the exposed-control differences were statistically significant. Correlation analysis identified three prominent clusters of adducts, namely putative modifications by benzene oxide and a benzene diolepoxide that grouped with other measures of benzene exposure, adducts of reactive oxygen and carbonyl species, and Cys34 disulfides of small thiols that are formed following oxidation of Cys34. Benzene diolepoxides are potent mutagens and carcinogens that have received little attention as potential causes of human leukemia. Reactive oxygen and carbonyl species-generated by redox processes involving polyphenolic benzene metabolites and by Cyp2E1 regulation following benzene exposure-can modify DNA and proteins in ways that contribute to cancer. The fact that these diverse human serum albumin modifications differed between benzene-exposed and control workers suggests that benzene can increase leukemia risks via multiple pathways involving a constellation of reactive molecules.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - William M B Edmands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Service, Rockville, MD, USA
| | - Henrik Carlsson
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, TD Utrecht, The Netherlands
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Song-Nian Yin
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gui-Lan Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Service, Rockville, MD, USA
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
119
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
120
|
Affiliation(s)
- Geoffrey K. Maiyoh
- Department of Medical Biochemistry, School of Medicine, Moi University, Eldoret, Kenya
- Johannesburg Institute for Advanced Study, University of Johannesburg, Johannesburg, South Africa
| | - Vivian C. Tuei
- Department of Chemistry and Biochemistry, School of Science, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
121
|
Akanni O, Shehu O, Shehu M, Adedokun K, Kamorudeen R. Antioxidant and chemotherapeutic effects of trèvo ®supplement on benzene-induced leukaemia in murine models. ADVANCES IN HUMAN BIOLOGY 2019. [DOI: 10.4103/aihb.aihb_17_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
122
|
Li D, Tolleson WH, Yu D, Chen S, Guo L, Xiao W, Tong W, Ning B. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:180-214. [PMID: 31305208 PMCID: PMC6737535 DOI: 10.1080/10590501.2019.1639481] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Environmental exposures to hazardous chemicals are associated with a variety of human diseases and disorders, including cancers. Phase I metabolic activation and detoxification reactions catalyzed by cytochrome P450 enzymes (CYPs) affect the toxicities of many xenobiotic compounds. Proper regulation of CYP expression influences their biological effects. Noncoding RNAs (ncRNAs) are involved in regulating CYP expression, and ncRNA expression is regulated in response to environmental chemicals. The mechanistic interactions between ncRNAs and CYPs associated with the toxicity and carcinogenicity of environmental chemicals are described in this review, focusing on microRNA-dependent CYP regulation. The role of long noncoding RNAs in regulating CYP expression is also presented and new avenues of research concerning this regulatory mechanism are described.
Collapse
Affiliation(s)
- Dongying Li
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - William H Tolleson
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Dianke Yu
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Si Chen
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Lei Guo
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Wenming Xiao
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Weida Tong
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| | - Baitang Ning
- a National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA) , Jefferson , AR , USA
| |
Collapse
|
123
|
Kononevich YN, Sazhnikov VA, Belova AS, Korlyukov AA, Volodin AD, Safonov AA, Yurasik GA, Ionov DS, Muzafarov AM. Turn-on exciplex fluorescence induced by complexation of nonfluorescent pentafluorinated dibenzoylmethanatoboron difluoride with benzene and its derivatives. NEW J CHEM 2019. [DOI: 10.1039/c9nj03722e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new pentafluorinated derivative of (dibenzoylmethanato)boron difluoride (5F-DBMBF2) was synthesized and studied as an “off–on” fluorescent probe for benzene derivatives with a reversible detection capability.
Collapse
Affiliation(s)
- Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Viacheslav A. Sazhnikov
- Photochemistry Center
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences
- 119421 Moscow
- Russian Federation
- Moscow Institute of Physics and Technology (State University)
| | - Anastasia S. Belova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- Pirogov Russian National Research Medical University
| | - Alexander D. Volodin
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Andrey A. Safonov
- Photochemistry Center
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences
- 119421 Moscow
- Russian Federation
| | - Georgy A. Yurasik
- Photochemistry Center
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences
- 119421 Moscow
- Russian Federation
| | - Dmitriy S. Ionov
- Photochemistry Center
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences
- 119421 Moscow
- Russian Federation
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
| |
Collapse
|
124
|
Tualeka AR, Jalaludin J, Salesman F, Wahyu A, Tukiran T, Setiawan S, Wibrata DA, Hasyim HN. Risk Analysis Characterization of Benzene and Demographic Factors toward Immunoglobulin A. Open Access Maced J Med Sci 2018; 6:2381-2385. [PMID: 30607197 PMCID: PMC6311471 DOI: 10.3889/oamjms.2018.488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Research on risk assessment at industrial sites has experienced growth during the end of this year. But in Indonesia, there is still limited research on risk assessment, especially regarding the importance of measuring non-carcinogenic risk assessment in the workplace. Benzene exposure is believed to reduce levels of immunoglobulin A (IgA) in workers. AIM The purpose of this study was to analyse the relationship between risk quotient (RQ) of non-carcinogenic risk assessment of benzene and demographic factors on IgA levels. MATERIAL AND METHODS The subjects of the study were shoe craftsmen who were at risk of benzene exposure. The study design was cross-sectional with a total population of 20 workers. Measurement of IgA levels by Immunoturbidimetric Assay with a normal standard of 2-3 mg/ml. Calculation of non-carcinogenic (RQ) risk characteristics with a comparison between risk agent non-carcinogenic intake with RfD or RfC benzene. RESULTS The majority of the study subjects aged over 45 years and had a working period of ≥ 25 years. There were 2 location points that had a threshold value exceeding the benzene standard (> 0.05 ppm), and 40% of the subjects had decreased IgA levels. Age and working periods had a significant relationship to IgA levels (p = 0.027; p = 0.047), while benzene and RQ levels did not have a significant relationship with IgA levels (p = 0.179; p = 0.436). CONCLUSION Increasing age and working period can reduce IgA levels in the body. Further research is needed on risk assessment, especially on the safe limits of benzene concentration in the workplace to find out how long benzene exposure forms a non-carcinogenic or carcinogenic risk in workers' bodies exposed to benzene.
Collapse
Affiliation(s)
- Abdul Rohim Tualeka
- Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, Indonesia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Frans Salesman
- Citra Husada Mandiri Kupang, Institute of Health Sciences, Manafe Street No. 17, Kayu Putih Village, Oebobo Subdistrict, Kupang, Indonesia
| | - Atjo Wahyu
- Department of Occupational Health and Safety, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Tukiran Tukiran
- Department of Chemical, Faculty of Science and Mathematics, University of Negeri Surabaya, Surabaya, Indonesia
| | - Sabar Setiawan
- Faculty of Public Health, University of West Nusa Tenggara, Mataram City, Nusa Tenggara, Indonesia
| | - Dwi Ananto Wibrata
- Department of Nursing, Health Polytechnics of Ministry Health, Surabaya, Indonesia
| | - Herlina Novita Hasyim
- Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
125
|
Tamayo-Uria I, Boldo E, García-Pérez J, Gómez-Barroso D, Romaguera EP, Cirach M, Ramis R. Childhood leukaemia risk and residential proximity to busy roads. ENVIRONMENT INTERNATIONAL 2018; 121:332-339. [PMID: 30241021 DOI: 10.1016/j.envint.2018.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Current evidence suggests that childhood leukaemia can be associated with residential traffic exposure; nevertheless, more results are needed to support this conclusion. OBJECTIVES To ascertain the possible effects of residential proximity to road traffic on childhood leukaemia, taking into account traffic density, road proximity and the type of leukaemia (acute lymphoid leukaemia or acute myeloid leukaemia). METHODS We conducted a population-based case-control study of childhood leukaemia in Spain, covering the period 1990-2011. It included 1061 incidence cases gathered from the Spanish National Childhood Cancer Registry and those Autonomous Regions with 100% coverage, and 6447 controls, individually matched by year of birth, sex and autonomous region of residence. Distances were computed from the respective participant's residential locations to the different types of roads and four different buffers. Using logistic regression, odds ratios (ORs) and 95% confidence intervals (95%CIs), were calculated for four different categories of distance to roads. RESULTS Cases of childhood leukaemia had more than three-fold increased odds of living at <50 m of the busiest motorways compared to controls (OR = 2.90; 95%CI = 1.30-6.49). The estimates for acute lymphoid leukaemia (ALL) were slightly higher (OR = 2.95; 95%CI = 1.22-7.14), while estimates for cases with the same address at birth and at diagnosis were lower (OR = 2.40; 95%CI = 0.70-8.30). CONCLUSIONS Our study agrees with the literature and furnishes some evidence that living near a busy motorway could be a risk factor for childhood leukaemia.
Collapse
Affiliation(s)
- Ibon Tamayo-Uria
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, 02138, MA, USA
| | - Elena Boldo
- Cancer and Environmental Epidemiology Unit, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain; Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Spain
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain; Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Spain
| | - Diana Gómez-Barroso
- Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Spain
| | - Elena Pardo Romaguera
- Spanish Registry of Childhood Tumours (RETI-SEHOP), University of Valencia, Valencia, Spain
| | - Marta Cirach
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Rebeca Ramis
- Cancer and Environmental Epidemiology Unit, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain; Centre for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
126
|
Liang B, Zhong Y, Chen K, Zeng L, Li G, Zheng J, Jiang L, Xie Z, Que B, Lai G, Wu B, Yang X, Wu J, Xiao Y, Chen W, Huang Z. Serum plasminogen as a potential biomarker for the effects of low-dose benzene exposure. Toxicology 2018; 410:59-64. [DOI: 10.1016/j.tox.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/29/2022]
|
127
|
Man Z, Meng X, Sun F, Pu Y, Xu K, Sun R, Zhang J, Yin L, Pu Y. Global Identification of HIF-1α Target Genes in Benzene Poisoning Mouse Bone Marrow Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112531. [PMID: 30424520 PMCID: PMC6266356 DOI: 10.3390/ijerph15112531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
Benzene is a hematopoietic toxicant, and hematopoietic cells in bone marrow (BM) are one of the main targets for its action, especially hematopoietic stem cells (HSCs). Hypoxia-inducible factor-1α (HIF-1α) is associated with the metabolism and physiological functions of HSCs. We previously found that the mechanism of regulation of HIF-1α is involved in benzene-induced hematopoietic toxicity. In this study, chromatin immunoprecipitation sequencing (ChIP-Seq) technologies were used to analyze the genome-wide binding spectrum of HIF-1α in mouse BM cells, and specific HIF-1α target genes and pathways associated with benzene toxicity were screened and validated. By application of the ChIP-Seq technique, we identified target genes HIF-1α directly binds to and regulates. Forty-two differentially down-regulated genes containing the HIF-1α specific binding site hypoxia response element (HRE) were found, of which 25 genes were with biological function. Moreover, the enrichment analysis of signal pathways indicated that these genes were significantly enriched in the Jak-STAT signaling pathway, Natural killer cell mediated cytotoxicity, the Fc epsilon RI signaling pathway, Pyrimidine metabolism, the T cell receptor signaling pathway, and Transcriptional misregulation in cancer. After verification, 11 genes involved in HSC self-renewal, cell cycle, differentiation, and apoptosis pathways were found to be significantly reduced, and may participate in benzene-induced hematotoxicity. Our study provides a new academic clue for the mechanism of benzene hematotoxicity.
Collapse
Affiliation(s)
- Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Xing Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Fengxia Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
128
|
The effects of Nrf2 knockout on regulation of benzene-induced mouse hematotoxicity. Toxicol Appl Pharmacol 2018; 358:56-67. [DOI: 10.1016/j.taap.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 01/29/2023]
|
129
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
130
|
D'Andrea MA, Reddy GK. Health Risks Associated With Benzene Exposure in Children: A Systematic Review. Glob Pediatr Health 2018; 5:2333794X18789275. [PMID: 30148190 PMCID: PMC6100118 DOI: 10.1177/2333794x18789275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Currently, there is a paucity of studies evaluating the adverse health effects of benzene exposure in children or clinical findings of those children who have been exposed. However, emerging studies show that benzene exposure can cause deleterious health effects in children. The objective of this study was to evaluate and summarize published studies on the adverse health effects of benzene exposure in children. More than 77 articles were examined and only the articles that dealt with adverse health effects on pediatric populations were included in the study. The evaluation of those studies provided current understanding of the health effects of benzene exposure in children. Findings from the currently available studies reveal that benzene exposure is associated with abnormalities in hematologic, hepatic, respiratory, and pulmonary functions in children. Published studies clearly support the need for further assessment of the potential adverse effects of benzene exposure in children, and clinical and laboratory findings of these children.
Collapse
Affiliation(s)
| | - G Kesava Reddy
- University Cancer and Diagnostic Centers, Houston, TX, USA
| |
Collapse
|
131
|
Xue H, Song D, Liu C, Lyu G, Yuan D, Jiang F, Chen Q, Hong M. A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkyl-Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry 2018; 24:11033-11041. [DOI: 10.1002/chem.201802502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Xue
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
| | - Danhua Song
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
| | - Guangxun Lyu
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou; Fuzhou Fujian 350002 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
132
|
Tate MJ, Walmsley RM. The influence of exogenous metabolism on the specificity of in vitro mammalian genotoxicity tests. Mutagenesis 2018; 32:491-499. [PMID: 28992092 DOI: 10.1093/mutage/gex017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A two-part study was designed to determine whether the inclusion of the rodent liver 'S9' exogenous metabolic activating system contributes to the generation of misleading positive results by the regulator-required in vitro mammalian genotoxicity tests. The mono-oxygenase enzymes in S9 produce direct-acting DNA-reactive electrophiles, and are included in in vitro genotoxicity tests to enhance the detection of substances which only become genotoxic following metabolism. However, as the S9 system lacks 'detoxifying' phase 2 factors it was hypothesised that increased chemical metabolism per se may lead to an increase in irrelevant S9 test outcomes in safety assessment. To test this, 89 compounds with positive or negative carcinogenicity data were identified, which produced negative Ames test data (+/- S9), and only produced positive in vitro mammalian test data in the presence of S9. This allowed a determination of whether or not misleading predictions of carcinogenicity by the in vitro mammalian tests were more or less prevalent in the presence of S9. A subset of these compounds was then tested with and without S9 in the GADD45a-GFP genotoxicity test, in order to determine whether misleading in vitro mammalian positive results were generally more prevalent with S9, or reflected particular tests' liabilities. This study suggests that the use of S9 metabolic activation in in vitro genotoxicity tests does not increase the prevalence of misleading positive results in in vitro mammalian genotoxicity assays, at least amongst Ames negative compounds.
Collapse
Affiliation(s)
| | - Richard M Walmsley
- Gentronix Ltd, Alderley Edge, Cheshire SK10 4TG, UK.,University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
133
|
Chen T, Zhang J, Zeng H, Zhang Y, Zhang Y, Zhou X, Zhao D, Feng Y, Zhou H. The impact of inflammation and cytokine expression of PM2.5 in AML. Oncol Lett 2018; 16:2732-2740. [PMID: 30013668 DOI: 10.3892/ol.2018.8965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Environmental and health issues have become a major focus of research worldwide in recent years. Particulate matter with diameter ≤2.5 µm (PM2.5) is a common air pollutant that has been demonstrated to be associated with various diseases, including acute myeloid leukemia (AML). In the present study, the effects of PM2.5 on the proliferation and inflammation were assessed using three human acute myeloid cell lines (U937, HL-60 and KG-1a) in vitro. Additionally, the levels of several cytokines [interleukin (IL)-2, IL-10, IL-17A and tumor necrosis factor (TNF)α] in AML cells and Sprague Dawley rats were evaluated to investigate the effects of PM2.5 on cytokine expression in AML. The results revealed that PM2.5 was capable of enhancing inflammatory responses in AML cells, and increasing IL-2, IL-10, IL-17A and TNFα mRNA expression in AML cells to different degrees. Furthermore, PM2.5 increased IL-2 and IL-10 contents in rats following 12 weeks of exposure. These results suggested that PM2.5 may serve a role in promoting the occurrence and progression of leukemia by affecting cytokine expression, and that there may be various mechanisms active in different AML subtypes.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Juan Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Hui Zeng
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yong Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yingmei Feng
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Hebing Zhou
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| |
Collapse
|
134
|
Yoon JH, Kwak WS, Ahn YS. A brief review of relationship between occupational benzene exposure and hematopoietic cancer. Ann Occup Environ Med 2018; 30:33. [PMID: 29760933 PMCID: PMC5946455 DOI: 10.1186/s40557-018-0245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
We reviewed articles to clarify the current evidence status for 1) types of cancer which related to benzene exposure, and 2) certain benzene exposure level which might cause the hematopoietic cancers. Hematopoietic function of the bone marrow is involved in the production of all blood cells types. The benzene metabolites including benzoquinone and mucoaldehyde affect hematopoietic stem cells as well as differentiation steps of progenitor cells for each blood cell. Hence, we concluded that benzene was associated with all lymphohematic carcinogenesis. First, it is supported by biological plausibility. Second, it is supported by meta-analysis although sing study did not show relationship due to lack of sample size or statistical power. More recent studies show lesser exposed level related to risk of cancer, compare to past studies did. Actually, early studies show the risk of malignancies in workers who exposed more than 200 ppm-years. However, only 0.5 to 1 ppm-year benzene exposed show significant linking to risk of malignancies in recent study. As reviewed research articles, we concluded that the relatively lower exposure level, such as 0.5–1 ppm-year, will be considering at risk of hematopoietic cancer. However, more research needs to be done on dose-response analysis.
Collapse
Affiliation(s)
- Jin-Ha Yoon
- 1Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,2The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Seok Kwak
- 2The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon-Soon Ahn
- 3Department of Preventive Medicine, Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, 162, Ilsan-dong, Wonju, South Korea, Wonju, 26426 Korea
| |
Collapse
|
135
|
Zhang C, Yu X, Gao J, Zhang Q, Sun S, Zhu H, Yang X, Yan H. PINK1/Parkin-mediated mitophagy was activated against 1,4-Benzoquinone-induced apoptosis in HL-60 cells. Toxicol In Vitro 2018; 50:217-224. [PMID: 29567065 DOI: 10.1016/j.tiv.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Hematotoxicity of benzene is derived mainly from its active metabolite, 1,4-Benzoquinone (1,4-BQ), which induces cell apoptosis and mitochondrial damage. Damaged mitochondria are degraded through a specialized autophagy pathway, called mitophagy, which is driven by PINK1/Parkin signaling. However, whether mitophagy is involved in 1,4-BQ-induced toxicity remains unclear. This study was designed to investigate whether PINK1/Parkin-mediated mitophagy is activated in 1,4-BQ-treated HL-60 cells, and the roles mitophagy plays in 1,4-BQ-induced apoptosis. Our results demonstrated that 1,4-BQ induced autophagy in HL-60 cells, characterized by increased LC3-II/LC3-I ratio and Beclin1 expression, as well as decreased expression of p62. We confirmed the presence of mitophagosomes using electron microscopy, and found that 1,4-BQ-induced autophagy was blocked by pretreatment with the mitophagy inhibitor Cyclosporine A (CsA). In addition, we found that 1,4-BQ induced mitochondrial stress through decreased mitochondrial membrane potential (MMP) and increasedproduction of reactive oxygen species (ROS). We also confirmed that 1,4-BQ-induced mitophagy was mediated by the PINK1/Parkin pathway, illustrated by increased expression of PINK1 and Parkin mRNA and protein. Finally, we examined 1,4-BQ-induced apoptosis with or without CsA, which demonstrated that apoptosis increased after mitophagy inhibition, suggesting that mitophagy has a protective effect in this context. In conclusion, this study demonstrates that the activated PINK1/Parkin-mediated mitophagy exerts a significantly protective effect against 1,4-BQ-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Chunxiao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiuyuan Yu
- Clinical Laboratory, Traditional Chinese Medicine Hospital of Jimo City, Shandong Province 266200, PR China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiahao Gao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shuqiang Sun
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hua Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
136
|
Sun S, Zhang C, Gao J, Qin Q, Zhang Y, Zhu H, Yang X, Yang D, Yan H. Benzoquinone induces ROS-dependent mitochondria-mediated apoptosis in HL-60 cells. Toxicol Ind Health 2018; 34:270-281. [PMID: 29506454 DOI: 10.1177/0748233717750983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Benzene exposure affects the hematopoietic system and leads to the occurrence of various types of leukemia and hematotoxicity. It has been confirmed that active metabolites of benzene, including 1,4-benzoquinone (1,4-BQ), can induce reactive oxygen species (ROS) and apoptosis in the bone marrow, and recent studies have also suggested that benzene exposure can affect mitochondrial function in both experimental animals and cell lines. However, the potential relationship among ROS production, mitochondrial damages, and subsequent apoptosis following benzene exposure has not been well studied in detail. In the present study, we utilized HL-60 cells, a well-characterized human myeloid cell line, as an in vitro model and examined the effects of 1,4-BQ on intracellular ROS formation, mitochondria damage, and the occurrence of apoptotic events with or without using the ROS scavenger N-acetyl-l-cysteine (NAC). The results demonstrated that 1,4-BQ could dose-dependently induce production of ROS and mitochondrial damage as characterized by mitochondrial membrane potential disruption, mitochondrial ultrastructure alteration, and induced apoptosis and activated caspase-3 and caspase-9. Preincubation of HL-60 cells with NAC prior to 1,4-BQ treatment could block 1,4-BQ-induced production of ROS and the occurrence of apoptosis. These results demonstrated that 1,4-BQ induced apoptosis in HL-60 cells through a ROS-dependent mitochondrial-mediated pathway.
Collapse
Affiliation(s)
- Shuqiang Sun
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunxiao Zhang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiahao Gao
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiongyu Qin
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yaya Zhang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hua Zhu
- 2 School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinjun Yang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dongren Yang
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongtao Yan
- 1 Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
137
|
Li J, Xing X, Zhang X, Liang B, He Z, Gao C, Wang S, Wang F, Zhang H, Zeng S, Fan J, Chen L, Zhang Z, Zhang B, Liu C, Wang Q, Lin W, Dong G, Tang H, Chen W, Xiao Y, Li D. Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:127-135. [PMID: 29175474 DOI: 10.1016/j.envpol.2017.11.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = -0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinjie Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Boxuan Liang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Gao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shan Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangping Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shan Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junling Fan
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengbao Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Caixia Liu
- Shantou Medical College, Shantou University, Guangdong, China
| | - Qing Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Lin
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huanwen Tang
- Department of Toxicology, School of Public Health, Guangdong Medical University, Guangdong, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
138
|
Sun P, Guo X, Chen Y, Zhang W, Duan H, Gao A. VNN3, a potential novel biomarker for benzene toxicity, is involved in 1, 4-benzoquinone induced cell proliferation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:323-330. [PMID: 29096305 DOI: 10.1016/j.envpol.2017.10.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Benzene is widely employed in the field of production, and its toxicity on biological systems has received increasing attention. Cell proliferation is a major life characteristic of living organisms. KLF15 and NOTCH1 are mature and classical genes in cell proliferation studies, particularly in the area of tumor investigation. The aim of this study was to investigate the effect and mechanism of VNN3 on cell proliferation induced by 1,4-benzoquinone (1,4-BQ), an important metabolite of benzene, and obtain a sensitive biomarker for the hazard screening and health care of benzene exposure. Normally growing AHH-1 cells were cultured in vitro and were incubated with different concentrations of 1,4-BQ (0, 10, 20, and 40 μM) for 24 h. A CCK-8 assay was used to assess the cell viability, whereas EdU was used to detect the cell proliferation of AHH-1 cells. The expression of VNN3, KLF15 and NOTCH1 was detected by real-time PCR. Moreover, a lentiviral model was constructed in AHH-1 cells to interfere with VNN3 expression. The results showed that 1,4-BQ clearly increased the expression of VNN3. Moreover, 1,4-BQ dose-dependently inhibited cell proliferation and caused increased KLF15 expression; in contrast, the NOTCH1 expression decreased in AHH-1 cells. Furthermore, following interference with the VNN3 expression, the cell proliferation inhibition and the expression of KLF15 and NOTCH1 were rescued. To further investigate the action of VNN3 in benzene hematotoxicity, we assessed it in benzene-exposed workers. The results showed that there was a remarkable correlation between the VNN3 expression and hemogram, which included RBC, NEUT and HGB. In addition, analysis of the KLF15 and NOTCH1 expression showed that the VNN3 expression was related to cell proliferation, which was consistent with the in vitro results. In conclusion, VNN3 influences cell proliferation induced by 1,4-BQ by regulating the expression of KLF15 and NOTCH1. VNN3 may represent a potential biomarker of benzene toxicity.
Collapse
Affiliation(s)
- Pengling Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
139
|
Chow PW, Rajab NF, Chua KH, Chan KM, Abd Hamid Z. Differential responses of lineages-committed hematopoietic progenitors and altered expression of self-renewal and differentiation-related genes in 1,4-benzoquinone (1,4-BQ) exposure. Toxicol In Vitro 2018; 46:122-128. [DOI: 10.1016/j.tiv.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/12/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
|
140
|
Boogaard PJ. The low-dose benzene debate needs a sharp blade. Chem Biol Interact 2017; 278:239-241. [PMID: 28655485 DOI: 10.1016/j.cbi.2017.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Peter J Boogaard
- Shell Health, Shell International bv, Wageningen University & Research, The Netherlands
| |
Collapse
|
141
|
Moshammer H, Poteser M. Comment on Zheng et al. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity. Int. J. Environ. Res. Public Health 2017, 14, 921. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1393. [PMID: 29144381 PMCID: PMC5708032 DOI: 10.3390/ijerph14111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
Benzene is an established carcinogenic substance [1,2].[...].
Collapse
Affiliation(s)
- Hanns Moshammer
- Department of Environmental Health, Medical University of Vienna, ZPH, Kinderspitalgasse 15, 1090 Vienna, Austria.
| | - Michael Poteser
- Department of Environmental Health, Medical University of Vienna, ZPH, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
142
|
Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. J Toxicol 2017; 2017:3574840. [PMID: 29129974 PMCID: PMC5654340 DOI: 10.1155/2017/3574840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 01/28/2023] Open
Abstract
A study was realized to ascertain whether eight selected pesticides would induce double strand breaks (DSB) in lymphocyte cultures and whether this damage would induce greater levels of proteins Rad51 participating in homologous recombination or of p-Ku80 participating in nonhomologous end joining. Only five pesticides were found to induce DSB of which only glyphosate and paraoxon induced a significant increase of p-Ku80 protein, indicating that nonhomologous end joining recombinational DNA repair system would be activated. The type of gamma-H2AX foci observed was comparable to that induced by etoposide at similar concentrations. These results are of importance since these effects occurred at low concentrations in the micromolar range, in acute treatments to the cells. Effects over longer exposures in actual environmental settings are expected to produce cumulative damage if repeated events of recombination take place over time.
Collapse
|
143
|
Janitz AE, Campbell JE, Magzamen S, Pate A, Stoner JA, Peck JD. Benzene and childhood acute leukemia in Oklahoma. ENVIRONMENTAL RESEARCH 2017; 158. [PMID: 28645022 PMCID: PMC5554454 DOI: 10.1016/j.envres.2017.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Although childhood cancer is a leading cause of childhood mortality in the US, evidence regarding the etiology is lacking. The goal of this study was to evaluate the association between benzene, a known carcinogen, and childhood acute leukemia. METHODS We conducted a case-control study including cases diagnosed with acute leukemia between 1997 and 2012 (n = 307) from the Oklahoma Central Cancer Registry and controls matched on week of birth from birth certificates (n = 1013). We used conditional logistic regression to evaluate the association between benzene, measured with the 2005 National-Scale Air Toxics Assessment (NATA) at census tract of the birth residence, and childhood acute leukemia. RESULTS We observed no differences in benzene exposure overall between cases and controls. However, when stratified by year of birth, cases born from 2005 to 2010 had a three-fold increased unadjusted odds of elevated exposure compared to controls born in this same time period (4th Quartile OR: 3.53, 95% CI: 1.35, 9.27). Furthermore, the estimates for children with acute myeloid leukemia (AML) were stronger than those with acute lymphoid leukemia, though not statistically significant. CONCLUSIONS While we did not observe an association between benzene and childhood leukemia overall, our results suggest that acute leukemia is associated with increased benzene exposure among more recent births, and children with AML may have increased benzene exposure at birth. Using the NATA estimates allowed us to assess a specific pollutant at the census tract level, providing an advantage over monitor or point source data. Our study, however, cannot rule out the possibility that benzene may be a marker of other traffic-related exposures and temporal misclassification may explain the lack of an association among earlier births.
Collapse
Affiliation(s)
- Amanda E Janitz
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St., CHB 309, Oklahoma City, OK 73104, USA.
| | - Janis E Campbell
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St., CHB 309, Oklahoma City, OK 73104, USA.
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Anne Pate
- School of Nursing and Allied Health Sciences, Southwestern Oklahoma State University, 100 E Campus Dr, Weatherford, OK 73096, USA.
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St., CHB 309, Oklahoma City, OK 73104, USA.
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, 801 NE 13th St., CHB 309, Oklahoma City, OK 73104, USA.
| |
Collapse
|
144
|
Fortunati N, Guaraldi F, Zunino V, Penner F, D'Angelo V, Zenga F, Pecori Giraldi F, Catalano MG, Arvat E. Effects of environmental pollutants on signaling pathways in rat pituitary GH3 adenoma cells. ENVIRONMENTAL RESEARCH 2017; 158:660-668. [PMID: 28732322 DOI: 10.1016/j.envres.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
An increased rate of acromegaly was reported in industrialized areas, suggesting an involvement of environmental pollutants in the pathogenesis and behavior of GH-secreting pituitary adenomas. Based on these premises, the aim of the study was to evaluate the effects of some widely diffused pollutants (i.e. benzene, BZ; bis(2-ethylhexyl) phthalate, DEHP and polychlorinated biphenyls, PCB) on growth hormone secretion, the somatostatin and estrogenic pathways, viability and proliferation of rat GH-producing pituitary adenoma (GH3) cells. All the pollutants induced a statistically significant increase in GH secretion and interfered with cell signaling. They all modulated the expression of SSTR2 and ZAC1, involved in the somatostatin signaling, and the expression of the transcription factor FOXA1, involved in the estrogen receptor signaling. Moreover, all the pollutants increased the expression of the CYP1A1, suggesting AHR pathway activation. None of the pollutants impacted on cell proliferation or viability. Present data demonstrate that exposure to different pollutants, used at in vivo relevant concentrations, plays an important role in the behavior of GH3 pituitary adenoma cells, by increasing GH secretion and modulating several cellular signaling pathways. These observations support a possible influence of different pollutants in vivo on the GH-adenoma aggressiveness and biological behavior.
Collapse
Affiliation(s)
- Nicoletta Fortunati
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Federica Guaraldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Valentina Zunino
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Federica Penner
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Valentina D'Angelo
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Francesco Zenga
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy
| | - Francesca Pecori Giraldi
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano IRCCS, Cusano Milanino, (MI), Italy and Department of Clinical Sciences and Community Health, University of Milan, I-20149 Milan, Italy
| | | | - Emanuela Arvat
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126 Turin, Italy; Department of Medical Sciences, University of Turin, I-10126 Turin, Italy.
| |
Collapse
|
145
|
Kerzic PJ, Irons RD. Distribution of chromosome breakpoints in benzene-exposed and unexposed AML patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:212-216. [PMID: 28926803 DOI: 10.1016/j.etap.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Results of laboratory studies and investigations of occupationally exposed healthy individuals have been used to develop a mode of action for benzene-induced leukemia that mirrors disease following treatment with chemotherapeutic agents. Recently we have described series of AML and MDS cases with benzene exposure history, and have provided cytogenetic, molecular, and pathologic evidence that these cases differ significantly in many features from therapy-related disease. Here we have extended this work, and describe chromosome breakpoints across 441 identifiable regions, in terms of gains or losses, in 710 AML cases collected during the Shanghai Health Study, which include 75 with a history of benzene exposure. Using FISH and cytogenetic analysis, we developed prevalence information and risk ratios for benzene exposure across all regions with a lesion in at least one exposed and unexposed case. These results indicate that AML following benzene exposure mirrors de novo disease, and supports a mechanism for development of hematopoietic disease that bears no resemblance to therapy-related disease.
Collapse
Affiliation(s)
- Patrick J Kerzic
- California Environmental Protection Agency, 9211 Oakdale Ave, Chatsworth, CA, 91311, USA.
| | - Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
146
|
Liu J, Yuan Q, Ling X, Tan Q, Liang H, Chen J, Lin L, Xiao Y, Chen W, Liu L, Tang H. PARP‑1 may be involved in hydroquinone‑induced apoptosis by poly ADP‑ribosylation of ZO‑2. Mol Med Rep 2017; 16:8076-8084. [PMID: 28983606 PMCID: PMC5779892 DOI: 10.3892/mmr.2017.7643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in the PAR polymerase (PARP) family and mediates different biological processes, including apoptosis. Zona occludens 2 (ZO-2) is a tight junction scaffold protein, which is involved in cell proliferation and apoptosis. The present study investigated the activity and mechanisms regulated by PARP-1 during HQ-induced apoptosis using TK6 lymphoblastoid cells and PARP-1-silenced TK6 cells. The results revealed that exposure to 10 µM HQ for 72 h induced apoptosis in TK6 cells and that apoptosis was attenuated in PARP-1-silenced TK6 cells. In cells treated with HQ, inhibition of PARP-1 increased the expression of B cell leukemia/lymphoma 2 (Bcl-2), increased ATP production and reduced reactive oxygen species (ROS) production relative to the levels observed in cells treated with HQ alone. Co-localization of ZO-2 and PAR (or PARP-1 protein) was determined using immunofluorescence confocal microscopy. The findings of the present study revealed that ZO-2 was PARylated via an interaction with PARP-1, which was consistent with an analysis of protein expression that was performed using western blot analysis, which determined that ZO-2 protein expression was upregulated in HQ-treated control cells and downregulated in HQ-treated PARP-1-silenced TK6 cells. These findings indicated that prolonged exposure to a low dose of HQ induced TK6 cells to undergo apoptosis, whereas inhibiting PARP-1 attenuates cellular apoptosis by activating Bcl-2 and energy-saving processes and reducing ROS. The present study determined that PARP-1 was involved in HQ-induced apoptosis by PARylation of ZO-2.
Collapse
Affiliation(s)
- Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qian Yuan
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiaoxuan Ling
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qiang Tan
- General Office, Foshan Institute of Occupational Disease Prevention and Control, Foshan, Guangdong 528000, P.R. China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lianzai Lin
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yongmei Xiao
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
147
|
Adverse Health Complaints of Adults Exposed to Benzene After a Flaring Disaster at the BP Refinery Facility in Texas City, Texas. Disaster Med Public Health Prep 2017; 12:232-240. [PMID: 28877779 DOI: 10.1017/dmp.2017.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to assess the adverse health symptoms experienced by adult subjects who were exposed to benzene after a flaring disaster at the BP refinery in Texas City, Texas. METHODS A total of 2162 adults aged 18 years or older and exposed to benzene were included. Using the patients' medical charts, we collected and analyzed data on health complaints as well as the patients' serum levels of beta-2-microglobulin and urinary excretion of phenol. RESULTS A total of 11,368 health symptom complaints were reported in 2162 adults exposed to benzene. Neurological symptoms occurred most frequently (174%), followed upper respiratory symptoms (115%), cough (31%), painful joints (30%), cardiac symptoms (28%), dermatological symptoms (28%), gastrointestinal symptoms (27%), diarrhea (25%), vision symptoms (21%), and nausea/vomiting (19%). Logistic regression analysis indicated that urinary symptoms (R2=0.65) and painful joints (R2=0.44) were positively associated with increasing age in benzene-exposed subjects. CONCLUSION Adult subjects exposed to benzene experience a range of adverse health symptoms and an altered profile of urinary phenol, thus indicating they are at high risk of developing serious future health complications. (Disaster Med Public Health Preparedness. 2018;12:232-240).
Collapse
|
148
|
Becker RA, Dreier DA, Manibusan MK, Cox LAT, Simon TW, Bus JS. How well can carcinogenicity be predicted by high throughput "characteristics of carcinogens" mechanistic data? Regul Toxicol Pharmacol 2017; 90:185-196. [PMID: 28866267 DOI: 10.1016/j.yrtph.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
IARC has begun using ToxCast/Tox21 data in efforts to represent key characteristics of carcinogens to organize and weigh mechanistic evidence in cancer hazard determinations and this implicit inference approach also is being considered by USEPA. To determine how well ToxCast/Tox21 data can explicitly predict cancer hazard, this approach was evaluated with statistical analyses and machine learning prediction algorithms. Substances USEPA previously classified as having cancer hazard potential were designated as positives and substances not posing a carcinogenic hazard were designated as negatives. Then ToxCast/Tox21 data were analyzed both with and without adjusting for the cytotoxicity burst effect commonly observed in such assays. Using the same assignments as IARC of ToxCast/Tox21 assays to the seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic, alone or in combination, was found to be no better than chance. Hence, we have little scientific confidence in IARC's inference models derived from current ToxCast/Tox21 assays for key characteristics to predict cancer. This finding supports the need for a more rigorous mode-of-action pathway-based framework to organize, evaluate, and integrate mechanistic evidence with animal toxicity, epidemiological investigations, and knowledge of exposure and dosimetry to evaluate potential carcinogenic hazards and risks to humans.
Collapse
Affiliation(s)
- Richard A Becker
- American Chemistry Council, 700 Second St., NE, Washington DC 20002, USA.
| | - David A Dreier
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
149
|
Costa DF, Goldbaum M. Contaminação química, precarização, adoecimento e morte no trabalho: benzeno no Brasil. CIENCIA & SAUDE COLETIVA 2017; 22:2681-2692. [DOI: 10.1590/1413-81232017228.31042016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 11/22/2022] Open
Abstract
Resumo A toxicidade do benzeno é conhecida e os tipos de doenças a ele ligadas vêm se ampliando. Foi recuperada a trajetória e as descobertas relacionadas às doenças combinadas com o deslocamento das atividades dos países centrais para os periféricos. Neste processo há correlações na prevenção da exposição ao benzeno. No Brasil foram analisadas as aplicações das regulações para identificar seu impacto, pois as informações sobre contaminação ambiental e doenças é bastante precária. Prevaleceram legislações formais sem registro de sua aplicação. Somente quando houve mobilização de trabalhadores e técnicos ocorreram avanços.
Collapse
|
150
|
Liang B, Chen Y, Yuan W, Qin F, Zhang Q, Deng N, Liu X, Ma X, Zhang X, Zhang B, Deng Q, Huang M, Tang H, Liu L, Chen W, Xiao Y. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch Toxicol 2017; 92:259-272. [DOI: 10.1007/s00204-017-2033-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
|