101
|
Parker AF, Smart CM, Scarapicchia V, Gawryluk JR. Identification of Earlier Biomarkers for Alzheimer’s Disease: A Multimodal Neuroimaging Study of Individuals with Subjective Cognitive Decline. J Alzheimers Dis 2020; 77:1067-1076. [DOI: 10.3233/jad-200299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Individuals with subjective cognitive decline (SCD) are thought to be the earliest along the cognitive continuum between healthy aging and Alzheimer’s disease (AD). Objective: The current study used a multi-modal neuroimaging approach to examine differences in brain structure and function between individuals with SCD and healthy controls (HC). Methods: 3T high-resolution anatomical images and resting-state functional MRI scans were retrieved for 23 individuals with SCD and 23 HC from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Results: The SCD and HC groups were not significantly different in age or education level. Voxel-based morphometry results did not show significant differences in grey matter volume between the groups. Functional MRI results revealed significantly greater functional connectivity in the default mode network in regions including the bilateral precuneus cortex, bilateral thalamus, and right hippocampal regions in individuals with SCD relative to controls. Conversely, those with SCD showed decreased functional connectivity in the bilateral frontal pole, caudate, angular gyrus, and lingual gyrus, compared to HC. Conclusion: Findings revealed differences in brain function but not structure between individuals with SCD and HC. Overall, this study represents a crucial step in characterizing individuals with SCD, a group recognized to be at increased risk for AD. It is imperative to identify biomarkers of AD prior to significant decline on clinical assessment, so that disease-delaying interventions may be delivered at the earliest possible time point.
Collapse
Affiliation(s)
- Ashleigh F. Parker
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Colette M. Smart
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
| | - Jodie R. Gawryluk
- Department of Psychology, University of Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, BC, Canada
| | | |
Collapse
|
102
|
Zhang D, Qi F, Gao J, Yan X, Wang Y, Tang M, Zhe X, Cheng M, Wang M, Xie Q, Su Y, Zhang X. Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus. Front Neurosci 2020; 14:571210. [PMID: 33071743 PMCID: PMC7541847 DOI: 10.3389/fnins.2020.571210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The role of the cerebellum in type 2 diabetes mellitus (T2DM) has been receiving increased attention. However, the functional connectivity (FC) between the cerebellar subregions and the cerebral cortex has not been investigated in T2DM. Therefore, the purpose of this study was to investigate cerebellar-cerebral FC and the relationship between FC and clinical/cognitive variables in patients with T2DM. A total of 34 patients with T2DM and 30 healthy controls were recruited for this study to receive a neuropsychological assessment and undergo resting-state FC. We selected four subregions of the cerebellum (bilateral lobules IX, right and left Crus I/II, and left lobule VI) as regions of interest (ROIs) to examine the differences in cerebellar-cerebral circuits in patients with T2DM compared to healthy controls. Correlation analysis was performed to examine the relationship between FC and clinical/cognitive variables in the patients. Compared to healthy controls, patients with T2DM showed significantly decreased cerebellar-cerebral FC in the default-mode network (DMN), executive control network (ECN), and visuospatial network (VSN). In the T2DM group, the FC between the left cerebellar lobule VI and the right precuneus was negatively correlated with the Trail Making Test A (TMT-A) score (r = −0.430, P = 0.013), after a Bonferroni correction. In conclusion, patients with T2DM have altered FC between the cerebellar subregions and the cerebral networks involved in cognitive and emotional processing. This suggests that a range of cerebellar-cerebral circuits may be involved in the neuropathology of T2DM cognitive dysfunction.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yarong Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Qingming Xie
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
103
|
Hampton OL, Buckley RF, Manning LK, Scott MR, Properzi MJ, Peña-Gómez C, Jacobs HIL, Chhatwal JP, Johnson KA, Sperling RA, Schultz AP. Resting-state functional connectivity and amyloid burden influence longitudinal cortical thinning in the default mode network in preclinical Alzheimer's disease. Neuroimage Clin 2020; 28:102407. [PMID: 32942175 PMCID: PMC7498941 DOI: 10.1016/j.nicl.2020.102407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/11/2023]
Abstract
Proteinopathies are key elements in the pathogenesis of age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), with the nature and location of the proteinopathy characterizing much of the disease phenotype. Susceptibility of brain regions to pathology may partly be determined by intrinsic network structure and connectivity. It remains unknown, however, how these networks inform the disease cascade in the context of AD biomarkers, such as beta-amyloid (Aβ), in clinically-normal older adults.The default-mode network (DMN), a prominent intrinsic network, is heavily implicated in AD due to its spatial overlap with AD atrophy patterns and tau deposition. We investigated the influence of baseline Aβ positron emission tomography (PET) signal and intrinsic DMN connectivity on DMN-specific cortical thinning in 120 clinically-normal older adults from the Harvard Aging Brain Study (73 ± 6 years, 58% Female, CDR = 0). Participants underwent11C Pittsburgh Compound-B (PiB) PET, 18F flortaucipir (FTP) PET, and resting-state MRI scans at baselineand longitudinal MRI (3.6 ± 0.96 scans; 5.04 ± 0.8 years). Linear mixed models tested relationships between baseline PiB and DMN connectivity on cortical thinning in a composite of DMN regions. Lower DMN connectivity was associated with faster cortical thinning, but only in those with elevated baseline PiB-PET signal. This relationship was network specific, in that the frontoparietal control network did not account for the observed association. Additionally, the relationship was independent of inferior temporal lobe FTP-PET signal. Our findings provide evidence that compromised DMN connectivity, in the context of preclinical AD, foreshadows neurodegeneration in DMN regions.
Collapse
Affiliation(s)
- Olivia L Hampton
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Melbourne School of Psychological Science, University of Melbourne, VIC 3010, Australia; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lyssa K Manning
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew R Scott
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cleofé Peña-Gómez
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Heidi I L Jacobs
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston 02114, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht 6200, The Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston 02114, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston 02114, MA, USA.
| |
Collapse
|
104
|
Burke SN, Mormino EC, Rogalski EJ, Kawas CH, Willis RJ, Park DC. What are the later life contributions to reserve, resilience, and compensation? Neurobiol Aging 2020; 83:140-144. [PMID: 31732017 DOI: 10.1016/j.neurobiolaging.2019.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 11/26/2022]
Abstract
Many studies have shown that early-life experiences can contribute to later life cognitive reserve and resilience. However, there is evidence to suggest that later life experiences and lifestyle choices can also play a vital role in the brain's ability to respond to and compensate for neural insults associated with aging. Engaging in a diversity of behaviorally, socially, and cognitively rich activities may forge new neural pathways that can perhaps provide greater flexibility in confronting the challenges associated with accumulating brain pathology. Studies of cognitively normal individuals with pathology and of individuals who have aged exceptionally well may provide insights that are generalizable to the overall elderly population.
Collapse
Affiliation(s)
- Sara N Burke
- McKnight Brain Institute and Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurosciences, Stanford School of Medicine, Stanford, CA, USA
| | - Emily J Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Claudia H Kawas
- Departments of Neurology and Neurobiology & Behavior, University of California, Irvine, CA, USA
| | - Robert J Willis
- Department of Economics and Research Professor, Institute for Social Research at the University of Michigan, Ann Arbor MI, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
105
|
Hahn A, Strandberg TO, Stomrud E, Nilsson M, van Westen D, Palmqvist S, Ossenkoppele R, Hansson O. Association Between Earliest Amyloid Uptake and Functional Connectivity in Cognitively Unimpaired Elderly. Cereb Cortex 2020; 29:2173-2182. [PMID: 30877785 PMCID: PMC6458901 DOI: 10.1093/cercor/bhz020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β (Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that exhibited normal global Aβ PET levels. [18F]Flutemetamol uptake in regions known to accumulate Aβ fibrils early in preclinical AD (i.e., mainly certain parts of the default-mode network) was positively associated with dynamic but not static functional connectivity (r = 0.77). Dynamic functional connectivity was further related to better cognitive performance (r = 0.21–0.72). No significant associations were found for Aβ uptake with gray matter volume or white matter diffusivity. The findings demonstrate that the earliest accumulation of Aβ fibrils is associated with increased functional connectivity, which occurs before any structural alterations. The enhanced functional connectivity may reflect a compensatory mechanism to maintain high cognitive performance in the presence of increasing amyloid accumulation during the earliest phases of AD.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Tor O Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Markus Nilsson
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Sweden.,Imaging and Function, Skåne University Health Care, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden.,Department of Neurology, Skåne University Hospital, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden.,Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, HV, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| |
Collapse
|
106
|
Cassady K, Gagnon H, Freiburger E, Lalwani P, Simmonite M, Park DC, Peltier SJ, Taylor SF, Weissman DH, Seidler RD, Polk TA. Network segregation varies with neural distinctiveness in sensorimotor cortex. Neuroimage 2020; 212:116663. [PMID: 32109601 PMCID: PMC7723993 DOI: 10.1016/j.neuroimage.2020.116663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 11/26/2022] Open
Abstract
Normal aging is associated with declines in sensorimotor function. Previous studies have linked age-related behavioral declines to decreases in neural differentiation (i.e., dedifferentiation), including decreases in the distinctiveness of neural activation patterns and in the segregation of large-scale neural networks at rest. However, no studies to date have explored the relationship between these two neural measures and whether they explain the same aspects of behavior. To investigate these issues, we collected a battery of sensorimotor behavioral measures in older and younger adults and estimated (a) the distinctiveness of neural representations in sensorimotor cortex and (b) sensorimotor network segregation in the same participants. Consistent with prior findings, sensorimotor representations were less distinct and sensorimotor resting state networks were less segregated in older compared to younger adults. We also found that participants with the most distinct sensorimotor representations exhibited the most segregated sensorimotor networks. However, only sensorimotor network segregation was associated with individual differences in sensorimotor performance, particularly in older adults. These novel findings link network segregation to neural distinctiveness, but also suggest that network segregation may play a larger role in maintaining sensorimotor performance with age.
Collapse
Affiliation(s)
- Kaitlin Cassady
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Holly Gagnon
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Erin Freiburger
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Poortata Lalwani
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Denise C Park
- Research of the Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA
| | - Scott J Peltier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephan F Taylor
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Daniel H Weissman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
107
|
Khan W, Amad A, Giampietro V, Werden E, De Simoni S, O'Muircheartaigh J, Westman E, O'Daly O, Williams SCR, Brodtmann A. The heterogeneous functional architecture of the posteromedial cortex is associated with selective functional connectivity differences in Alzheimer's disease. Hum Brain Mapp 2020; 41:1557-1572. [PMID: 31854490 PMCID: PMC7268042 DOI: 10.1002/hbm.24894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/29/2019] [Indexed: 11/11/2022] Open
Abstract
The posteromedial cortex (PMC) is a key region involved in the development and progression of Alzheimer's disease (AD). Previous studies have demonstrated a heterogenous functional architecture of the region that is composed of discrete functional modules reflecting a complex pattern of functional connectivity. However, little is understood about the mechanisms underpinning this complex network architecture in neurodegenerative disease, and the differential vulnerability of connectivity-based subdivisions in the PMC to AD pathogenesis. Using a data-driven approach, we applied a constrained independent component analysis (ICA) on healthy adults from the Human Connectome Project to characterise the local functional connectivity patterns within the PMC, and its unique whole-brain functional connectivity. These distinct connectivity profiles were subsequently quantified in the Alzheimer's Disease Neuroimaging Initiative study, to examine functional connectivity differences in AD patients and cognitively normal (CN) participants, as well as the entire AD pathological spectrum. Our findings revealed decreased functional connectivity in the anterior precuneus, dorsal posterior cingulate cortex (PCC), and the central precuneus in AD patients compared to CN participants. Functional abnormalities in the dorsal PCC and central precuneus were also related to amyloid burden and volumetric hippocampal loss. Across the entire AD spectrum, functional connectivity of the central precuneus was associated with disease severity and specific deficits in memory and executive function. These findings provide new evidence showing that the PMC is selectively impacted in AD, with prominent network failures of the dorsal PCC and central precuneus underpinning the neurodegenerative and cognitive dysfunctions associated with the disease.
Collapse
Affiliation(s)
- Wasim Khan
- The Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
| | - Ali Amad
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
- Univ Lille Nord de France, CHRU de LilleLilleFrance
| | - Vincent Giampietro
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
| | - Emilio Werden
- The Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging LaboratoryImperial College London, Division of Brain Sciences, Hammersmith HospitalLondonUK
| | - Jonathan O'Muircheartaigh
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
- Department of Perinatal Imaging and HealthSt. Thomas' Hospital, King's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Eric Westman
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
- Department of NeurobiologyCare Sciences and Society, Karolinska InstituteStockholmSweden
| | - Owen O'Daly
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
| | - Steve C. R. Williams
- Department of NeuroimagingInstitute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental HealthKing's College LondonLondonUK
- NIHR Biomedical Research Unit for DementiaKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Amy Brodtmann
- Austin Health, HeidelbergMelbourneVictoriaAustralia
- Eastern Clinical Research UnitMonash University, Box Hill HospitalMelbourneVictoriaAustralia
| | | |
Collapse
|
108
|
Chiesa PA, Houot M, Vergallo A, Cavedo E, Lista S, Potier MC, Zetterberg H, Blennow K, Vanmechelen E, De Vos A, Dubois B, Hampel H. Association of brain network dynamics with plasma biomarkers in subjective memory complainers. Neurobiol Aging 2020; 88:83-90. [DOI: 10.1016/j.neurobiolaging.2019.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022]
|
109
|
Aganj I, Frau-Pascual A, Iglesias JE, Yendiki A, Augustinack JC, Salat DH, Fischl B. COMPENSATORY BRAIN CONNECTION DISCOVERY IN ALZHEIMER'S DISEASE. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2020; 2020:283-287. [PMID: 32587665 PMCID: PMC7316404 DOI: 10.1109/isbi45749.2020.9098440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Identification of the specific brain networks that are vulnerable or resilient in neurodegenerative diseases can help to better understand the disease effects and derive new connectomic imaging biomarkers. In this work, we use brain connectivity to find pairs of structural connections that are negatively correlated with each other across Alzheimer's disease (AD) and healthy populations. Such anti-correlated brain connections can be informative for identification of compensatory neuronal pathways and the mechanism of brain networks' resilience to AD. We find significantly anti-correlated connections in a public diffusion-MRI database, and then validate the results on other databases.
Collapse
Affiliation(s)
- Iman Aganj
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
| | - Aina Frau-Pascual
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - Juan E Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
- Center for Medical Image Computing (CMIC), University College London, London, UK
| | - Anastasia Yendiki
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - Jean C Augustinack
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - David H Salat
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
| |
Collapse
|
110
|
Quevenco FC, van Bergen JM, Treyer V, Studer ST, Kagerer SM, Meyer R, Gietl AF, Kaufmann PA, Nitsch RM, Hock C, Unschuld PG. Functional Brain Network Connectivity Patterns Associated With Normal Cognition at Old-Age, Local β-amyloid, Tau, and APOE4. Front Aging Neurosci 2020; 12:46. [PMID: 32210782 PMCID: PMC7075450 DOI: 10.3389/fnagi.2020.00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Integrity of functional brain networks is closely associated with maintained cognitive performance at old age. Consistently, both carrier status of Apolipoprotein E ε4 allele (APOE4), and age-related aggregation of Alzheimer’s disease (AD) pathology result in altered brain network connectivity. The posterior cingulate and precuneus (PCP) is a node of particular interest due to its role in crucial memory processes. Moreover, the PCP is subject to the early aggregation of AD pathology. The current study aimed at characterizing brain network properties associated with unimpaired cognition in old aged adults. To determine the effects of age-related brain change and genetic risk for AD, pathological proteins β-amyloid and tau were measured by Positron-emission tomography (PET), PCP connectivity as a proxy of cognitive network integrity, and genetic risk by APOE4 carrier status. Methods: Fifty-seven cognitively unimpaired old-aged adults (MMSE = 29.20 ± 1.11; 73 ± 8.32 years) were administered 11C Pittsburgh Compound B and 18F Flutemetamol PET for assessing β-amyloid, and 18F AV-1451 PET for tau. Individual functional connectivity seed maps of the PCP were obtained by resting-state multiband BOLD functional MRI at 3-Tesla for increased temporal resolution. Voxelwise correlations between functional connectivity, β-amyloid- and tau-PET were explored by Biological Parametric Mapping (BPM). Results: Local β-amyloid was associated with increased connectivity in frontal and parietal regions of the brain. Tau was linked to increased connectivity in more spatially distributed clusters in frontal, parietal, occipital, temporal, and cerebellar regions. A positive interaction was observable for APOE4 carrier status and functional connectivity with brain regions characterized by increased local β-amyloid and tau tracer retention. Conclusions: Our data suggest an association between spatially differing connectivity systems and local β-amyloid, and tau aggregates in cognitively normal, old-aged adults, which is moderated by APOE4. Additional longitudinal studies may determine protective connectivity patterns associated with healthy aging trajectories of AD-pathology aggregation.
Collapse
Affiliation(s)
- Frances C Quevenco
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Jiri M van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Sandro T Studer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sonja M Kagerer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
111
|
Shumbayawonda E, López-Sanz D, Bruña R, Serrano N, Fernández A, Maestú F, Abasolo D. Complexity changes in preclinical Alzheimer’s disease: An MEG study of subjective cognitive decline and mild cognitive impairment. Clin Neurophysiol 2020; 131:437-445. [DOI: 10.1016/j.clinph.2019.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
|
112
|
Zhao T, Quan M, Jia J. Functional Connectivity of Default Mode Network Subsystems in the Presymptomatic Stage of Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2020; 73:1435-1444. [PMID: 31929167 DOI: 10.3233/jad-191065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The default mode network (DMN) could be divided into subsystems, the functional connectivity of which are different across the Alzheimer's disease (AD) spectrum. However, the functional connectivity patterns within the subsystems are unknown in presymptomatic autosomal dominant AD (ADAD). OBJECTIVE To investigate functional connectivity patterns within the subsystems of the DMN in presymptomatic subjects carrying PSEN1, PSEN2, or APP gene mutations. METHODS Twenty-six presymptomatic mutation carriers (PMC) and twenty-nine cognitively normal non-carriers as normal controls (NC) from the same families underwent resting state functional MRI and structural MRI. Seed-based analyses were done to obtain functional connectivity of posterior and anterior DMN. For the regions that showed significant connectivity difference between PMC and NC, volumes were extracted and compared between the two groups. Connectivity measures were then correlated with cognitive tests scores. RESULTS The posterior DMN showed connectivity decrease in the PMC group as compared with the NC group, which was primarily the connectivity of left precuneus with right precuneus and superior frontal gyrus; the anterior DMN showed significant connectivity decrease in the PMC group, which was the connectivity of medial frontal gyrus with middle frontal gyrus. In the brain regions showing connectivity changes in the PMC group, there was no group difference in volume. A positive correlation was observed between the precuneus connectivity value and Mini-Mental State Examination total score. CONCLUSION Functional connectivity within both posterior and anterior DMN were disrupted in the presymptomatic stage of ADAD. Connectivity disruption within the posterior DMN may be useful for early identification of general cognitive decline and a potential imaging biomarker for early diagnosis.
Collapse
Affiliation(s)
- Tan Zhao
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meina Quan
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
113
|
Lin C, Ly M, Karim HT, Wei W, Snitz BE, Klunk WE, Aizenstein HJ. The effect of amyloid deposition on longitudinal resting-state functional connectivity in cognitively normal older adults. Alzheimers Res Ther 2020; 12:7. [PMID: 31907079 PMCID: PMC6945413 DOI: 10.1186/s13195-019-0573-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pathological processes contributing to Alzheimer's disease begin decades prior to the onset of clinical symptoms. There is significant variation in cognitive changes in the presence of pathology, functional connectivity may be a marker of compensation to amyloid; however, this is not well understood. METHODS We recruited 64 cognitively normal older adults who underwent neuropsychological testing and biannual magnetic resonance imaging (MRI), amyloid imaging with Pittsburgh compound B (PiB)-PET, and glucose metabolism (FDG)-PET imaging for up to 6 years. Resting-state MRI was used to estimate connectivity of seven canonical neural networks using template-based rotation. Using voxel-wise paired t-tests, we identified neural networks that displayed significant changes in connectivity across time. We investigated associations among amyloid and longitudinal changes in connectivity and cognitive function by domains. RESULTS Left middle frontal gyrus connectivity within the memory encoding network increased over time, but the rate of change was lower with greater amyloid. This was no longer significant in an analysis where we limited the sample to only those with two time points. We found limited decline in cognitive domains overall. Greater functional connectivity was associated with better attention/processing speed and executive function (independent of time) in those with lower amyloid but was associated with worse function with greater amyloid. CONCLUSIONS Increased functional connectivity serves to preserve cognitive function in normal aging and may fail in the presence of pathology consistent with compensatory models.
Collapse
Affiliation(s)
- Chemin Lin
- Department of Psychiatry, Keelung Chang Chung Memorial Hospital, Keelung, Taiwan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Ly
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenjing Wei
- The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
114
|
Wisch JK, Roe CM, Babulal GM, Schindler SE, Fagan AM, Benzinger TL, Morris JC, Ances BM. Resting State Functional Connectivity Signature Differentiates Cognitively Normal from Individuals Who Convert to Symptomatic Alzheimer's Disease. J Alzheimers Dis 2020; 74:1085-1095. [PMID: 32144983 PMCID: PMC7183885 DOI: 10.3233/jad-191039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Changes in resting state functional connectivity (rs-fc) occur in Alzheimer's disease (AD), but few longitudinal rs-fc studies have been performed. Most studies focus on single networks and not a global measure of rs-fc. Although the amyloid tau neurodegeneration (AT(N)) framework is increasingly utilized by the AD community, few studies investigated when global rs-fc signature changes occur within this model. OBJECTIVE 1) Identify a global rs-fc signature that differentiates cognitively normal (CN) individuals from symptomatic AD. 2) Assess when longitudinal changes in rs-fc occur relative to conversion to symptomatic AD. 3) Compare rs-fc with amyloid, tau, and neurodegeneration biomarkers. METHODS A global rs-fc signature composed of intra-network connections was longitudinally evaluated in a cohort of cognitively normal participants at baseline (n = 335). Biomarkers, including cerebrospinal fluid (Aβ42 and tau), structural magnetic resonance imaging, and positron emission tomography were obtained. RESULTS Global rs-fc signature distinguished CN individuals from individuals who developed symptomatic AD. Changes occurred nearly four years before conversion to symptomatic AD. The global rs-fc signature most strongly correlated with markers of neurodegeneration. CONCLUSION The global rs-fc signature changes near symptomatic onset and is likely a neurodegenerative biomarker. Rs-fc changes could serve as a biomarker for evaluating potential therapies for symptomatic conversion to AD.
Collapse
Affiliation(s)
- Julie K Wisch
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Catherine M Roe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ganesh M Babulal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- Hope Center, Washington University in Saint Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L Benzinger
- Department of Radiology, Washington University in St. Louis St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis St. Louis, MO, USA
- Hope Center, Washington University in Saint Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
115
|
Pereira JB, Ossenkoppele R, Palmqvist S, Strandberg TO, Smith R, Westman E, Hansson O. Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity. eLife 2019; 8:50830. [PMID: 31815669 PMCID: PMC6938400 DOI: 10.7554/elife.50830] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
The abnormal accumulation of amyloid-β and tau targets specific spatial networks in Alzheimer's disease. However, the relationship between these networks across different disease stages and their association with brain connectivity has not been explored. In this study, we applied a joint independent component analysis to 18F- Flutemetamol (amyloid-β) and 18F-Flortaucipir (tau) PET images to identify amyloid-β and tau networks across different stages of Alzheimer's disease. We then assessed whether these patterns were associated with resting-state functional networks and white matter tracts. Our analyses revealed nine patterns that were linked across tau and amyloid-β data. The amyloid-β and tau patterns showed a fair to moderate overlap with distinct functional networks but only tau was associated with white matter integrity loss and multiple cognitive functions. These findings show that amyloid-β and tau have different spatial affinities, which can be used to understand how they accumulate in the brain and potentially damage the brain's connections.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Tor Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
116
|
Karim HT, Tudorascu DL, Cohen A, Price JC, Lopresti B, Mathis C, Klunk W, Snitz BE, Aizenstein HJ. Relationships Between Executive Control Circuit Activity, Amyloid Burden, and Education in Cognitively Healthy Older Adults. Am J Geriatr Psychiatry 2019; 27:1360-1371. [PMID: 31402087 PMCID: PMC7047647 DOI: 10.1016/j.jagp.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In cognitively healthy older adults, amyloid-beta (Aβ) burden is associated with greater activity on task-based functional magnetic resonance imaging. Higher levels of functional activation are associated with other factors along with amyloid and the authors investigated these relationships as well as how they relate to Aβ in cognitively healthy older adults. METHODS The authors recruited cognitive healthy older adults (N = 50) from the Pittsburgh community that underwent extensive cognitive batteries, activation during a working memory (digit symbol substitution task, DSST), positron emission tomography scan for Pittsburgh Compound B (PiB, measuring amyloid), and other demographic measures. The authors tested the association between DSST activation and global PiB, neurocognitive batteries, and education. RESULTS The authors found that the DSST robustly activated expected structures involved in working memory. The authors found that greater global Aβ deposition was associated with greater DSST activation in the right calcarine, precuneus, middle temporal as well as the left insula and inferior frontal gyrus. The authors also found that greater education was associated with lower DSST activation - however this was not significant after adjusting for Aβ. DISCUSSION Greater amyloid was associated with greater activation, which may represent compensatory activation. Greater education was associated with lower activation, which may represent more efficient activation (i.e., less activation for the same task). After adjusting for amyloid, education was not significantly associated with activation suggesting that during the preclinical stage amyloid is the primary determinant of activation. Further, activation was not associated with cognitive function. Compensatory activation in the preclinical stage may help maintain cognitive function.
Collapse
Affiliation(s)
| | | | - Ann Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Julie C. Price
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Brian Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - Chester Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | - William Klunk
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Beth E. Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
117
|
Tau deposition is associated with functional isolation of the hippocampus in aging. Nat Commun 2019; 10:4900. [PMID: 31653847 PMCID: PMC6814780 DOI: 10.1038/s41467-019-12921-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023] Open
Abstract
The tau protein aggregates in aging and Alzheimer disease and may lead to memory loss through disruption of medial temporal lobe (MTL)-dependent memory systems. Here, we investigated tau-mediated mechanisms of hippocampal dysfunction that underlie the expression of episodic memory decline using fMRI measures of hippocampal local coherence (regional homogeneity; ReHo), distant functional connectivity and tau-PET. We show that age and tau pathology are related to higher hippocampal ReHo. Functional disconnection between the hippocampus and other components of the MTL memory system, particularly an anterior-temporal network specialized for object memory, is also associated with higher hippocampal ReHo and greater tau burden in anterior-temporal regions. These associations are not observed in the posteromedial network, specialized for context/spatial information. Higher hippocampal ReHo predicts worse memory performance. These findings suggest that tau pathology plays a role in disconnecting the hippocampus from specific MTL memory systems leading to increased local coherence and memory decline. Deposition of tau protein aggregates occurs during aging and Alzheimer disease. Here, the authors show that tau burden in the anterior-temporal memory network is associated with disrupted fMRI connectivity and functional isolation of the hippocampus from other memory network components.
Collapse
|
118
|
Santos-Santos MA, Rabinovici GD, Iaccarino L, Ayakta N, Tammewar G, Lobach I, Henry ML, Hubbard I, Mandelli ML, Spinelli E, Miller ZA, Pressman PS, O'Neil JP, Ghosh P, Lazaris A, Meyer M, Watson C, Yoon SJ, Rosen HJ, Grinberg L, Seeley WW, Miller BL, Jagust WJ, Gorno-Tempini ML. Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia. JAMA Neurol 2019; 75:342-352. [PMID: 29309493 DOI: 10.1001/jamaneurol.2017.4309] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Importance The ability to predict the pathology underlying different neurodegenerative syndromes is of critical importance owing to the advent of molecule-specific therapies. Objective To determine the rates of positron emission tomography (PET) amyloid positivity in the main clinical variants of primary progressive aphasia (PPA). Design, Setting, and Participants This prospective clinical-pathologic case series was conducted at a tertiary research clinic specialized in cognitive disorders. Patients were evaluated as part of a prospective, longitudinal research study between January 2002 and December 2015. Inclusion criteria included clinical diagnosis of PPA; availability of complete speech, language, and cognitive testing; magnetic resonance imaging performed within 6 months of the cognitive evaluation; and PET carbon 11-labeled Pittsburgh Compound-B or florbetapir F 18 brain scan results. Of 109 patients referred for evaluation of language symptoms who underwent amyloid brain imaging, 3 were excluded because of incomplete language evaluations, 5 for absence of significant aphasia, and 12 for presenting with significant initial symptoms outside of the language domain, leaving a cohort of 89 patients with PPA. Main Outcomes and Measures Clinical, cognitive, neuroimaging, and pathology results. Results Twenty-eight cases were classified as imaging-supported semantic variant PPA (11 women [39.3%]; mean [SD] age, 64 [7] years), 31 nonfluent/agrammatic variant PPA (22 women [71.0%]; mean [SD] age, 68 [7] years), 26 logopenic variant PPA (17 women [65.4%]; mean [SD] age, 63 [8] years), and 4 mixed PPA cases. Twenty-four of 28 patients with semantic variant PPA (86%) and 28 of 31 patients with nonfluent/agrammatic variant PPA (90%) had negative amyloid PET scan results, while 25 of 26 patients with logopenic variant PPA (96%) and 3 of 4 mixed PPA cases (75%) had positive scan results. The amyloid positive semantic variant PPA and nonfluent/agrammatic variant PPA cases with available autopsy data (2 of 4 and 2 of 3, respectively) all had a primary frontotemporal lobar degeneration and secondary Alzheimer disease pathologic diagnoses, whereas autopsy of 2 patients with amyloid PET-positive logopenic variant PPA confirmed Alzheimer disease. One mixed PPA patient with a negative amyloid PET scan had Pick disease at autopsy. Conclusions and Relevance Primary progressive aphasia variant diagnosis according to the current classification scheme is associated with Alzheimer disease biomarker status, with the logopenic variant being associated with carbon 11-labeled Pittsburgh Compound-B positivity in more than 95% of cases. Furthermore, in the presence of a clinical syndrome highly predictive of frontotemporal lobar degeneration pathology, biomarker positivity for Alzheimer disease may be associated more with mixed pathology rather than primary Alzheimer disease.
Collapse
Affiliation(s)
- Miguel A Santos-Santos
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Autonomous University of Barcelona, Cerdanyola del Valles, Spain.,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.,Fundació Alzheimer Memory Clinic and Research Center, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Leonardo Iaccarino
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nagehan Ayakta
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Gautam Tammewar
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin
| | - Isabel Hubbard
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Edoardo Spinelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Vita-Salute San Raffaele University, Milan, Italy
| | - Zachary A Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Peter S Pressman
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,University of Colorado Denver, Denver
| | - James P O'Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Pia Ghosh
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Andreas Lazaris
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Marita Meyer
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Soo Jin Yoon
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Lea Grinberg
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Pathology, University of California San Francisco, California
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Pathology, University of California San Francisco, California
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | |
Collapse
|
119
|
Kang DW, Lim HK, Joo SH, Lee NR, Lee CU. Differential Associations Between Volumes of Atrophic Cortical Brain Regions and Memory Performances in Early and Late Mild Cognitive Impairment. Front Aging Neurosci 2019; 11:245. [PMID: 31551759 PMCID: PMC6738351 DOI: 10.3389/fnagi.2019.00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background Early and late mild cognitive impairment (MCI) patients have been reported to have a distinctive prognosis of converting to Alzheimer’s disease. Objective To evaluate the difference in gray matter volume and assess the association between cognitive function evaluated by comprehensive cognitive function test, and cortical thickness across healthy controls (HCs) (n = 37), early (n = 30), and late MCI patients (n = 35). Methods Differences in gray matter volume were evaluated by whole brain voxel-based morphometry across the groups. Multiple regression analysis was used to analyze group by memory performance interactions for the normalized gray matter volume. Results The early MCI group showed reduced gray matter volume in the right middle temporal gyrus in comparison to the HC group. The late MCI group displayed atrophy in the left parahippocampal gyrus in comparison to the HC group. Late MCI patients exhibited a decreased gray matter volume in the left fusiform gyrus in comparison to patients in the early MCI group (Monte Carlo simulation corrected p < 0.01, Tukey post hoc tests). Furthermore, there was a significant group (HC vs. early MCI) by memory performance interaction for the normalized cortical volume of the right middle temporal gyrus. Additionally, a significant group (early MCI vs. late MCI) by memory performance interaction was found for the normalized gray matter volume of the left fusiform gyrus (p < 0.001). Conclusion Early and late MCI patients showed distinctive associations of gray matter volumes in compensatory brain regions with memory performances. The findings can contribute to a better understanding of the structural changes in compensatory brain regions to elucidate memory decline in the trajectory of the subdivided prodromal stages of the Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soo-Hyun Joo
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na Rae Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
120
|
Abstract
Technologies for imaging the pathophysiology of Alzheimer disease (AD) now permit studies of the relationships between the two major proteins deposited in this disease - amyloid-β (Aβ) and tau - and their effects on measures of neurodegeneration and cognition in humans. Deposition of Aβ in the medial parietal cortex appears to be the first stage in the development of AD, although tau aggregates in the medial temporal lobe (MTL) precede Aβ deposition in cognitively healthy older people. Whether aggregation of tau in the MTL is the first stage in AD or a fairly benign phenomenon that may be transformed and spread in the presence of Aβ is a major unresolved question. Despite a strong link between Aβ and tau, the relationship between Aβ and neurodegeneration is weak; rather, it is tau that is associated with brain atrophy and hypometabolism, which, in turn, are related to cognition. Although there is support for an interaction between Aβ and tau resulting in neurodegeneration that leads to dementia, the unknown nature of this interaction, the strikingly different patterns of brain Aβ and tau deposition and the appearance of neurodegeneration in the absence of Aβ and tau are challenges to this model that ultimately must be explained.
Collapse
|
121
|
Subcortical amyloid relates to cortical morphology in cognitively normal individuals. Eur J Nucl Med Mol Imaging 2019; 46:2358-2369. [DOI: 10.1007/s00259-019-04446-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022]
|
122
|
Nakamura A, Cuesta P, Fernández A, Arahata Y, Iwata K, Kuratsubo I, Bundo M, Hattori H, Sakurai T, Fukuda K, Washimi Y, Endo H, Takeda A, Diers K, Bajo R, Maestú F, Ito K, Kato T. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease. Brain 2019. [PMID: 29522156 PMCID: PMC5920328 DOI: 10.1093/brain/awy044] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biomarkers useful for the predementia stages of Alzheimer’s disease are needed. Electroencephalography and magnetoencephalography (MEG) are expected to provide potential biomarker candidates for evaluating the predementia stages of Alzheimer’s disease. However, the physiological relevance of EEG/MEG signal changes and their role in pathophysiological processes such as amyloid-β deposition and neurodegeneration need to be elucidated. We evaluated 28 individuals with mild cognitive impairment and 38 cognitively normal individuals, all of whom were further classified into amyloid-β-positive mild cognitive impairment (n = 17, mean age 74.7 ± 5.4 years, nine males), amyloid-β-negative mild cognitive impairment (n = 11, mean age 73.8 ± 8.8 years, eight males), amyloid-β-positive cognitively normal (n = 13, mean age 71.8 ± 4.4 years, seven males), and amyloid-β-negative cognitively normal (n = 25, mean age 72.5 ± 3.4 years, 11 males) individuals using Pittsburgh compound B-PET. We measured resting state MEG for 5 min with the eyes closed, and investigated regional spectral patterns of MEG signals using atlas-based region of interest analysis. Then, the relevance of the regional spectral patterns and their associations with pathophysiological backgrounds were analysed by integrating information from Pittsburgh compound B-PET, fluorodeoxyglucose-PET, structural MRI, and cognitive tests. The results demonstrated that regional spectral patterns of resting state activity could be separated into several types of MEG signatures as follows: (i) the effects of amyloid-β deposition were expressed as the alpha band power augmentation in medial frontal areas; (ii) the delta band power increase in the same region was associated with disease progression within the Alzheimer’s disease continuum and was correlated with entorhinal atrophy and an Alzheimer’s disease-like regional decrease in glucose metabolism; and (iii) the global theta power augmentation, which was previously considered to be an Alzheimer’s disease-related EEG/MEG signature, was associated with general cognitive decline and hippocampal atrophy, but was not specific to Alzheimer’s disease because these changes could be observed in the absence of amyloid-β deposition. The results suggest that these MEG signatures may be useful as unique biomarkers for the predementia stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Pablo Cuesta
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Madrid, 28223, Spain.,Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering, University of La Laguna, Tenerife, 38200, Spain
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Madrid, 28223, Spain.,Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Yutaka Arahata
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Izumi Kuratsubo
- Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Masahiko Bundo
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Hideyuki Hattori
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Takashi Sakurai
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Koji Fukuda
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Yukihiko Washimi
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Hidetoshi Endo
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Akinori Takeda
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kersten Diers
- Department of Psychology, Technische Universität Dresden, Dresden, 01069, Germany
| | - Ricardo Bajo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Madrid, 28223, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Madrid, 28223, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Madrid, 28223, Spain
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| |
Collapse
|
123
|
Gaubert S, Raimondo F, Houot M, Corsi MC, Naccache L, Diego Sitt J, Hermann B, Oudiette D, Gagliardi G, Habert MO, Dubois B, De Vico Fallani F, Bakardjian H, Epelbaum S. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019; 142:2096-2112. [DOI: 10.1093/brain/awz150] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Early biomarkers are needed to identify individuals at high risk of preclinical Alzheimer’s disease and to better understand the pathophysiological processes of disease progression. Preclinical Alzheimer’s disease EEG changes would be non-invasive and cheap screening tools and could also help to predict future progression to clinical Alzheimer’s disease. However, the impact of amyloid-β deposition and neurodegeneration on EEG biomarkers needs to be elucidated. We included participants from the INSIGHT-preAD cohort, which is an ongoing single-centre multimodal observational study that was designed to identify risk factors and markers of progression to clinical Alzheimer’s disease in 318 cognitively normal individuals aged 70–85 years with a subjective memory complaint. We divided the subjects into four groups, according to their amyloid status (based on 18F-florbetapir PET) and neurodegeneration status (evidenced by 18F-fluorodeoxyglucose PET brain metabolism in Alzheimer’s disease signature regions). The first group was amyloid-positive and neurodegeneration-positive, which corresponds to stage 2 of preclinical Alzheimer’s disease. The second group was amyloid-positive and neurodegeneration-negative, which corresponds to stage 1 of preclinical Alzheimer’s disease. The third group was amyloid-negative and neurodegeneration-positive, which corresponds to ‘suspected non-Alzheimer’s pathophysiology’. The last group was the control group, defined by amyloid-negative and neurodegeneration-negative subjects. We analysed 314 baseline 256-channel high-density eyes closed 1-min resting state EEG recordings. EEG biomarkers included spectral measures, algorithmic complexity and functional connectivity assessed with a novel information-theoretic measure, weighted symbolic mutual information. The most prominent effects of neurodegeneration on EEG metrics were localized in frontocentral regions with an increase in high frequency oscillations (higher beta and gamma power) and a decrease in low frequency oscillations (lower delta power), higher spectral entropy, higher complexity and increased functional connectivity measured by weighted symbolic mutual information in theta band. Neurodegeneration was associated with a widespread increase of median spectral frequency. We found a non-linear relationship between amyloid burden and EEG metrics in neurodegeneration-positive subjects, either following a U-shape curve for delta power or an inverted U-shape curve for the other metrics, meaning that EEG patterns are modulated differently depending on the degree of amyloid burden. This finding suggests initial compensatory mechanisms that are overwhelmed for the highest amyloid load. Together, these results indicate that EEG metrics are useful biomarkers for the preclinical stage of Alzheimer’s disease.
Collapse
Affiliation(s)
- Sinead Gaubert
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Federico Raimondo
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Laboratorio de Inteligencia Artificial Aplicada, Departamento de computación, FCEyN, Universidad de Buenos Aires, Argentina
- GIGA Consciousness, University of Liège, Liège, Belgium
- Coma Science Group, University Hospital of Liège, Liège, Belgium
| | - Marion Houot
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
- Center for Clinical Investigation (CIC) Neurosciences, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France
| | - Marie-Constance Corsi
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Bertrand Hermann
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Delphine Oudiette
- AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil (Département ‘R3S’), Paris, France
- Sorbonne Université, IHU@ICM, INSERM, CNRS UMR 7225, équipe MOV’IT, Paris, France
| | - Geoffroy Gagliardi
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Marie-Odile Habert
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1146, CNRS UMR 7371, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France
- Centre d’Acquisition et de Traitement des Images, CATI neuroimaging platform, France (www.cati-neuroimaging.com)
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Fabrizio De Vico Fallani
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Hovagim Bakardjian
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | - Stéphane Epelbaum
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN), National Reference Center for Rare or Early Dementias, Department of Neurology, Paris, France
| | | |
Collapse
|
124
|
Mormino EC, Papp KV. Amyloid Accumulation and Cognitive Decline in Clinically Normal Older Individuals: Implications for Aging and Early Alzheimer's Disease. J Alzheimers Dis 2019; 64:S633-S646. [PMID: 29782318 DOI: 10.3233/jad-179928] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aberrant accumulation of the amyloid protein is a critical and early event in the Alzheimer's disease (AD) cascade. Given the early involvement of this pathological process, it is not surprising that many clinically normal (CN) older individuals demonstrate evidence of abnormal Aβ at postmortem examination and in vivo using either CSF or PET imaging. Converging evidence across multiple research groups suggests that the presence of abnormal Aβ among CN individuals is associated with elevated risk of future clinical impairment and cognitive decline. Amyloid positivity in conjunction with biomarkers of neuronal injury offers further insight into which CN are most at risk for short-term decline. Although in its infancy, tau PET has demonstrated early increases among Aβ+ that will likely be an important indicator of risk among CN. Overall, the detection of early Aβ among CN individuals has provided an important opportunity to understand the contributions of this pathology to age-related cognitive decline and to explore early intervention with disease modifying strategies.
Collapse
Affiliation(s)
- Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Kathryn V Papp
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
125
|
Meyer PF, McSweeney M, Gonneaud J, Villeneuve S. AD molecular: PET amyloid imaging across the Alzheimer's disease spectrum: From disease mechanisms to prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:63-106. [PMID: 31481172 DOI: 10.1016/bs.pmbts.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of amyloid-beta (Aβ) positron emission tomography (PET) imaging has transformed the field of Alzheimer's disease (AD) by enabling the quantification of cortical Aβ accumulation and propagation in vivo. This revolutionary tool has made it possible to measure direct associations between Aβ and other AD biomarkers, to identify factors that influence Aβ accumulation and to redefine entry criteria into clinical trials as well as measure drug target engagement. This chapter summarizes the main findings on the associations of Aβ with other biomarkers of disease progression across the AD spectrum. It discusses investigations of the timing at which Aβ pathology starts to accumulate, demonstrates the clinical utility of Aβ PET imaging and discusses some ethical implications. Finally, it presents genetic and potentially modifiable lifestyle factors that might influence Aβ accumulation and therefore be targets for AD prevention.
Collapse
Affiliation(s)
- Pierre-François Meyer
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Melissa McSweeney
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Julie Gonneaud
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|
126
|
Tahmi M, Bou-Zeid W, Razlighi QR. A Fully Automatic Technique for Precise Localization and Quantification of Amyloid-β PET Scans. J Nucl Med 2019; 60:1771-1779. [PMID: 31171596 DOI: 10.2967/jnumed.119.228510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
Spatial heterogeneity in the accumulation of amyloid-β plaques throughout the brain during asymptomatic as well as clinical stages of Alzheimer disease calls for precise localization and quantification of this protein using PET imaging. To address this need, we have developed and evaluated a technique that quantifies the extent of amyloid-β pathology on a millimeter-by-millimeter scale in the brain with unprecedented precision using data from PET scans. Methods: An intermodal and intrasubject registration with normalized mutual information as the cost function was used to transform all FreeSurfer neuroanatomic labels into PET image space, which were subsequently used to compute regional SUV ratio (SUVR). We have evaluated our technique using postmortem histopathologic staining data from 52 older participants as the standard-of-truth measurement. Results: Our method resulted in consistently and significantly higher SUVRs in comparison to the conventional method in almost all regions of interest. A 2-way ANOVA revealed a significant main effect of method as well as a significant interaction effect of method on the relationship between computed SUVR and histopathologic staining score. Conclusion: These findings suggest that processing the amyloid-β PET data in subjects' native space can improve the accuracy of the computed SUVRs, as they are more closely associated with the histopathologic staining data than are the results of the conventional approach.
Collapse
Affiliation(s)
- Mouna Tahmi
- Department of Neurology, Columbia University Medical Center, New York, New York; and
| | - Wassim Bou-Zeid
- Department of Neurology, Columbia University Medical Center, New York, New York; and
| | - Qolamreza R Razlighi
- Department of Neurology, Columbia University Medical Center, New York, New York; and.,Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
127
|
López-Sanz D, Bruña R, de Frutos-Lucas J, Maestú F. Magnetoencephalography applied to the study of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:25-61. [PMID: 31481165 DOI: 10.1016/bs.pmbts.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetoencephalography (MEG) is a relatively modern neuroimaging technique able to study normal and pathological brain functioning with temporal resolution in the order of milliseconds and adequate spatial resolution. Although its clinical applications are still relatively limited, great advances have been made in recent years in the field of dementia and Alzheimer's disease (AD) in particular. In this chapter, we briefly describe the physiological phenomena underlying MEG brain signals and the different metrics that can be computed from these data in order to study the alterations disrupting brain activity not only in demented patients, but also in the preclinical and prodromal stages of the disease. Changes in non-linear brain dynamics, power spectral properties, functional connectivity and network topological changes observed in AD are narratively summarized in the context of the pathophysiology of the disease. Furthermore, the potential of MEG as a potential biomarker to identify AD pathology before dementia onset is discussed in the light of current knowledge and the relationship between potential MEG biomarkers and current established hallmarks of the disease is also reviewed. To this aim, findings from different approaches such as resting state or during the performance of different cognitive paradigms are discussed.Lastly, there is an increasing interest in current scientific literature in promoting interventions aimed at modifying certain lifestyles, such as nutrition or physical activity among others, thought to reduce or delay AD risk. We discuss the utility of MEG as a potential marker of the success of such interventions from the available literature.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Biological and Health Psychology Department, Universidad Autonoma de Madrid, Madrid, Spain; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
128
|
Sanguinetti E, Guzzardi MA, Panetta D, Tripodi M, De Sena V, Quaglierini M, Burchielli S, Salvadori PA, Iozzo P. Combined Effect of Fatty Diet and Cognitive Decline on Brain Metabolism, Food Intake, Body Weight, and Counteraction by Intranasal Insulin Therapy in 3×Tg Mice. Front Cell Neurosci 2019; 13:188. [PMID: 31130848 PMCID: PMC6509878 DOI: 10.3389/fncel.2019.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Obesity and cognitive decline can occur in association. Brain dysmetabolism and insulin resistance might be common underlying traits. We aimed to examine the effect of high-fat diet (HFD) on cognitive decline, and of cognitive impairment on food intake and body-weight, and explore efficacy of chronic intranasal insulin (INI) therapy. We used control (C) and triple transgenic mice (3×Tg, a model of Alzheimer's pathology) to measure cerebral mass, glucose metabolism, and the metabolic response to acute INI administration (cerebral insulin sensitivity). Y-Maze, positron emission-computed tomography, and histology were employed in 8 and 14-month-old mice, receiving normal diet (ND) or HFD. Chronic INI therapy was tested in an additional 3×Tg-HFD group. The 3×Tg groups overate, and had lower body-weight, but similar BMI, than diet-matched controls. Cognitive decline was progressive from HFD to 3×Tg-ND to 3×Tg-HFD. At 8 months, brain fasting glucose uptake (GU) was increased by C-HFD, and this effect was blunted in 3×Tg-HFD mice, also showing brain insulin resistance. Brain mass was reduced in 3×Tg mice at 14 months. Dentate gyrus dimensions paralleled cognitive findings. Chronic INI preserved cognition, dentate gyrus and metabolism, reducing food intake, and body weight in 3×Tg-HFD mice. Peripherally, leptin was suppressed and PAI-1 elevated in 3×Tg mice, correlating inversely with cerebral GU. In conclusion, 3×Tg background and HFD exert additive (genes*lifestyle) detriment to the brain, and cognitive dysfunction is accompanied by increased food intake in 3×Tg mice. PAI-1 levels and leptin deficiency were identified as potential peripheral contributors. Chronic INI improved peripheral and central outcomes.
Collapse
Affiliation(s)
- Elena Sanguinetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.,Scuola Superiore di Studi Universitari Sant'Anna, Pisa, Italy
| | | | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Maria Tripodi
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Vincenzo De Sena
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Mauro Quaglierini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | - Piero A Salvadori
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
129
|
Adams JN, Lockhart SN, Li L, Jagust WJ. Relationships Between Tau and Glucose Metabolism Reflect Alzheimer's Disease Pathology in Cognitively Normal Older Adults. Cereb Cortex 2019; 29:1997-2009. [PMID: 29912295 PMCID: PMC6458898 DOI: 10.1093/cercor/bhy078] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Tau is associated with hypometabolism in patients with Alzheimer's disease. In normal aging, the association between tau and glucose metabolism is not fully characterized. We used [18F] AV-1451, [18F] Fluorodeoxyglucose, and [11C] Pittsburgh Compound-B (PiB) PET to measure associations between tau and glucose metabolism in cognitively normal older adults (N = 49). Participants were divided into amyloid-negative (PiB-, n = 28) and amyloid-positive (PiB+, n = 21) groups to determine effects of amyloid-β. We assessed both local and across-brain regional tau-glucose metabolism associations separately in PiB-/PiB+ groups using correlation matrices and sparse canonical correlations. Relationships between tau and glucose metabolism differed by amyloid status, and were primarily spatially distinct. In PiB- subjects, tau was associated with broad regions of increased glucose metabolism. In PiB+ subjects, medial temporal lobe tau was associated with widespread hypometabolism, while tau outside of the medial temporal lobe was associated with decreased and increased glucose metabolism. We further found that regions with earlier tau spread were associated with stronger negative correlations with glucose metabolism. Our findings indicate that in normal aging, low levels of tau are associated with a phase of increased metabolism, while high levels of tau in the presence of amyloid-β are associated with hypometabolism at downstream sites.
Collapse
Affiliation(s)
- Jenna N Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lexin Li
- Department of Biostatistics, University of California, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
130
|
Wu M, Thurston RC, Tudorascu DL, Karim HT, Mathis CA, Lopresti BJ, Kamboh MI, Cohen AD, Snitz BE, Klunk WE, Aizenstein HJ. Amyloid deposition is associated with different patterns of hippocampal connectivity in men versus women. Neurobiol Aging 2019; 76:141-150. [PMID: 30711677 PMCID: PMC6584958 DOI: 10.1016/j.neurobiolaging.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/04/2018] [Accepted: 11/18/2018] [Indexed: 01/26/2023]
Abstract
Compared to men, women are disproportionally affected by Alzheimer's disease (AD) and have an accelerated trajectory of cognitive decline and disease progression. Neurobiological factors underlying gender differences in AD remain unclear. This study investigated brain beta-amyloid (Aβ)-related neural system differences in cognitively normal older men and women (N = 61; 41 females, 65-93 years old). We found that men and women showed different associations between Aβ load and hippocampal functional connectivity. During associative memory encoding, in men greater Aβ burden was accompanied by greater hippocampus-prefrontal connectivity (i.e., more synchronized activities), whereas in women hippocampal connectivity did not vary by Aβ burden. For resting-state data, the interaction of gender × Aβ on hippocampal connectivity did not survive multiple comparison in the whole-brain analyses. In the region of interest-based analyses, resting-state hippocampal-prefrontal connectivity was positively correlated with Aβ load in men and was negatively correlated with Aβ load in women. The observed Aβ-related neural differences may explain the accelerated trajectory of cognitive decline and AD progression in women.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Departments of Epidemiology and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Departments of Medicine and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
131
|
Quevenco FC, Schreiner SJ, Preti MG, van Bergen JMG, Kirchner T, Wyss M, Steininger SC, Gietl A, Leh SE, Buck A, Pruessmann KP, Hock C, Nitsch RM, Henning A, Van De Ville D, Unschuld PG. GABA and glutamate moderate beta-amyloid related functional connectivity in cognitively unimpaired old-aged adults. NEUROIMAGE-CLINICAL 2019; 22:101776. [PMID: 30927605 PMCID: PMC6439267 DOI: 10.1016/j.nicl.2019.101776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/03/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Background Effects of beta-amyloid accumulation on neuronal function precede the clinical manifestation of Alzheimer's disease (AD) by years and affect distinct cognitive brain networks. As previous studies suggest a link between beta-amyloid and dysregulation of excitatory and inhibitory neurotransmitters, we aimed to investigate the impact of GABA and glutamate on beta-amyloid related functional connectivity. Methods 29 cognitively unimpaired old-aged adults (age = 70.03 ± 5.77 years) were administered 11C-Pittsburgh Compound B (PiB) positron-emission tomography (PET), and MRI at 7 Tesla (7T) including blood oxygen level dependent (BOLD) functional MRI (fMRI) at rest for measuring static and dynamic functional connectivity. An advanced 7T MR spectroscopic imaging (MRSI) sequence based on the free induction decay acquisition localized by outer volume suppression’ (FIDLOVS) technology was used for gray matter specific measures of GABA and glutamate in the posterior cingulate and precuneus (PCP) region. Results GABA and glutamate MR-spectra indicated significantly higher levels in gray matter than in white matter. A global effect of beta-amyloid on functional connectivity in the frontal, occipital and inferior temporal lobes was observable. Interactive effects of beta-amyloid with gray matter GABA displayed positive PCP connectivity to the frontomedial regions, and the interaction of beta-amyloid with gray matter glutamate indicated positive PCP connectivity to frontal and cerebellar regions. Furthermore, decreased whole-brain but increased fronto-occipital and temporo-parietal dynamic connectivity was found, when GABA interacted with regional beta-amyloid deposits in the amygdala, frontal lobe, hippocampus, insula and striatum. Conclusions GABA, and less so glutamate, may moderate beta-amyloid related functional connectivity. Additional research is needed to better characterize their interaction and potential impact on AD. Combined ultra-high fieldstrength FIDLOVS MRSI at 7 Tesla with 11C-PIB PET. Assessment of gray matter specific levels of GABA and glutamate. Identification of interactive effects of GABA, glutamate and beta-Amyloid. GABA may moderate dysfunctional beta-Amyloid effects on pre-clinical brain pathology.
Collapse
Affiliation(s)
- F C Quevenco
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - S J Schreiner
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| | - M G Preti
- Department of Radiology and Medical Informatics, Université de Genève, Switzerland; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Switzerland
| | - J M G van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - T Kirchner
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - M Wyss
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - S C Steininger
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| | - A Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - S E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| | - A Buck
- Division of Nuclear Medicine, University Hospital Zurich (USZ), Zurich, Switzerland
| | - K P Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - C Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - R M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - A Henning
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - D Van De Ville
- Department of Radiology and Medical Informatics, Université de Genève, Switzerland; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Switzerland
| | - P G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland; Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.
| |
Collapse
|
132
|
Amyloid PET and cognitive decline in cognitively normal individuals: the SCIENCe project. Neurobiol Aging 2019; 79:50-58. [PMID: 31026622 DOI: 10.1016/j.neurobiolaging.2019.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/08/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
We examined the relationships between amyloid-β PET and concurrent and longitudinal cognitive performance in 107 cognitively normal individuals with subjective cognitive decline (age: 64 ± 8 years, 44% female, Mini-Mental State Examination score 29 ± 1). All underwent 90-minute dynamic [18F]florbetapir PET scanning and longitudinal neuropsychological tests with a mean follow-up of 3.4 ± 3.0 years. Receptor parametric mapping was used to calculate [18F]florbetapir binding potential (BPND), and we performed linear mixed models to assess the relationships between global [18F]florbetapir BPND and neuropsychological performance. Higher [18F]florbetapir BPND was related to lower concurrent Mini-Mental State Examination (β ± SE: -1.69 ± 0.63 p < 0.01) and to steeper rate of decline on tasks capturing memory (Rey Auditory Verbal Learning Task immediate [β ± SE -1.81 ± 0.81, p < 0.05] and delayed recall [β ± SE -1.19 ± 0.34, p < 0.01]), attention/executive functions (Stroop II [color] [β ± SE -0.02 ± 0.01, p < 0.05], Stroop III [word-color] [β ± SE -0.03 ± 0.02, p < 0.05]), and language (category fluency [β ± SE -0.04 ± 0.01, p < 0.01]). These findings suggest that higher amyloid-β load in cognitively normal individuals with subjective cognitive decline from a memory clinic is associated with lower concurrent global cognition and with faster rate of decline in a variety of cognitive domains.
Collapse
|
133
|
Pietzuch M, King AE, Ward DD, Vickers JC. The Influence of Genetic Factors and Cognitive Reserve on Structural and Functional Resting-State Brain Networks in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:30. [PMID: 30894813 PMCID: PMC6414800 DOI: 10.3389/fnagi.2019.00030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI) offers significant insight into the complex organization of neural networks within the human brain. Using resting-state functional MRI data, topological maps can be created to visualize changes in brain activity, as well as to represent and assess the structural and functional connections between different brain regions. Crucially, Alzheimer's disease (AD) is associated with progressive loss in this connectivity, which is particularly evident within the default mode network. In this paper, we review the recent literature on how factors that are associated with risk of dementia may influence the organization of the brain network structures. In particular, we focus on cognitive reserve and the common genetic polymorphisms of APOE and BDNF Val66Met.
Collapse
Affiliation(s)
- Manuela Pietzuch
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David D. Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
134
|
Cherbuin N, Shaw ME, Walsh E, Sachdev P, Anstey KJ. Validated Alzheimer's Disease Risk Index (ANU-ADRI) is associated with smaller volumes in the default mode network in the early 60s. Brain Imaging Behav 2019; 13:65-74. [PMID: 29243120 PMCID: PMC6409311 DOI: 10.1007/s11682-017-9789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strong evidence is available suggesting that effective reduction of exposure to demonstrated modifiable risk factors in mid-life or before could significantly decrease the incidence of Alzheimer's disease (AD) and delay its onset. A key ingredient to achieving this goal is the reliable identification of individuals at risk well before they develop clinical symptoms. The aim of this study was to provide further neuroimaging evidence of the effectiveness of a validated tool, the ANU Alzheimer's Disease Risk Index, for the assessment of future risk of cognitive decline. Participants were 461 (60-64 years, 48% female) community-living individuals free of dementia at baseline. Associations between risk estimates obtained with the ANU-ADRI, total and regional brain volumes including in the default mode network (DMN) measured at the same assessment and diagnosis of MCI/dementia over a 12-year follow-up were tested in a large sample of community-living individuals free of dementia at baseline. Higher risk estimates on the ANU-ADRI were associated with lower cortical gray matter and particularly in the DMN. Importantly, difference in participants with high and low risk scores explained 7-9% of the observed difference in gray matter volume. In this sample, every one additional risk point on the ANU-ADRI was associated with an 8% increased risk of developing MCI/dementia over a 12-year follow-up and this association was partly mediated by a sub-region of the DMN. Risk of cognitive decline assessed with a validated instrument is associated with gray matter volume, particularly in the DMN, a region known to be implicated in the pathological process of the disease.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.
| | - Marnie E Shaw
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Erin Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Perminder Sachdev
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
135
|
Patterns of functional connectivity in an aging population: The Rotterdam Study. Neuroimage 2019; 189:432-444. [PMID: 30659958 DOI: 10.1016/j.neuroimage.2019.01.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Structural brain markers are studied extensively in the field of neurodegeneration, but are thought to occur rather late in the process. Functional measures such as functional connectivity are gaining interest as potentially more subtle markers of neurodegeneration. However, brain structure and function are also affected by 'normal' brain ageing. More information is needed on how functional connectivity relates to aging, particularly in the absence of overt neurodegenerative disease. We investigated the association of age with resting-state functional connectivity in 2878 non-demented persons between 50 and 95 years of age (54.1% women) from the population-based Rotterdam Study. We obtained nine well-known resting state networks using data-driven methodology. Within the anterior default mode network, ventral attention network, and sensorimotor network, functional connectivity was significantly lower with older age. In contrast, functional connectivity was higher with older age within the visual network. Between resting state networks, we found patterns of both increases and decreases in connectivity in approximate equal proportions. Our results reinforce the notion that the aging brain undergoes a reorganization process, and serves as a solid basis for exploring functional connectivity as a preclinical marker of neurodegenerative disease.
Collapse
|
136
|
Arakaki X, Lee R, King KS, Fonteh AN, Harrington MG. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS One 2019; 14:e0208517. [PMID: 30601822 PMCID: PMC6314588 DOI: 10.1371/journal.pone.0208517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Our aim is to explore if cognitive challenge combined with objective physiology can reveal abnormal frontal alpha event-related desynchronization (ERD), in early Alzheimer's disease (AD). We used quantitative electroencephalography (qEEG) to investigate brain activities during N-back working memory (WM) processing at two different load conditions (N = 0 or 2) in an aging cohort. We studied 60-100 year old participants, with normal cognition, and who fits one of two subgroups from cerebrospinal fluid (CSF) proteins: cognitively healthy (CH) with normal amyloid/tau ratio (CH-NAT, n = 10) or pathological amyloid/tau ratio (CH-PAT, n = 14). We recorded behavioral performances, and analyzed alpha power and alpha spectral entropy (SE) at three occasions: during the resting state, and at event-related desynchronization (ERD) [250 ~ 750 ms] during 0-back and 2-back. During 0-back WM testing, the behavioral performance was similar between the two groups, however, qEEG notably differentiated CH-PATs from CH-NATs on the simple, 0-back testing: Alpha ERD decreased from baseline only in the parietal region in CH-NATs, while it decreased in all brain regions in CH-PATs. Alpha SE did not change in CH-NATs, but was increased from baseline in the CH-PATs in frontal and left lateral regions (p<0.01), and was higher in the frontal region (p<0.01) of CH-PATs compared to CH-NATs. The alpha ERD and SE analyses suggest there is frontal lobe dysfunction during WM processing in the CH-PAT stage. Additional power and correlations with behavioral performance were also explored. This study provide pilot information to further evaluate whether this biomarker has clinical significance.
Collapse
Affiliation(s)
- Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Ryan Lee
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Kevin S. King
- Imaging Research, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Alfred N. Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Michael G. Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| |
Collapse
|
137
|
Li L, Kang J, Lockhart SN, Adams J, Jagust WJ. Spatially Adaptive Varying Correlation Analysis for Multimodal Neuroimaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:113-123. [PMID: 30028695 PMCID: PMC6324929 DOI: 10.1109/tmi.2018.2857221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we study a central problem in multimodal neuroimaging analysis, i.e., identification of significantly correlated brain regions between multiple imaging modalities. We propose a spatially varying correlation model and the associated inference procedure, which improves substantially over the common alternative solutions of voxel-wise and region-wise analysis. Compared with voxel-wise analysis, our method aggregates voxels with similar correlations into regions, takes into account spatial continuity of correlations at nearby voxels, and enjoys a much higher detection power. Compared with region-wise analysis, our method does not rely on any pre-specified brain region map, but instead finds homogenous correlation regions adaptively given the data. We applied our method to a multimodal positron emission tomography study, and found brain regions with significant correlation between tau and glucose metabolism that voxel-wise or region-wise analysis failed to identify. Our findings conform and lend additional support to prior hypotheses about how the two pathological proteins of Alzheimer's disease, tau and amyloid, interact with glucose metabolism in the aging human brain.
Collapse
|
138
|
Tau Accumulation and Network Breakdown in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:231-240. [PMID: 32096042 DOI: 10.1007/978-981-32-9358-8_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Misfolded and aggregated tau and amyloid β (Aβ) proteins are the pathological hallmarks of Alzheimer's disease (AD). These aberrant proteins lose their physiological roles, acquire neurotoxicity, and propagate across neural systems. Despite the growing understanding of the molecular pathophysiology, the relationship among molecular alterations, pathological changes, and dementia onset and progression remain to be elucidated. Connectivity is an exclusive characteristic of the brain, and the integrity and segregation of the functional and anatomical networks are crucial for normal functioning. Interestingly, a lot of magnetic resonance imaging (MRI) studies have demonstrated successive structural and functional disconnection among brain regions supporting the idea that AD is a disconnection syndrome. Recent several studies using the combination of cutting-edge Aβ and tau PET tracers integrated by data-driven statistical methods, resting-state functional MRI, and diffusion tensor imaging have shed light on the spatial distribution pattern of tau retention as well the relationship between tau retention and functional/structural network disruption in AD. Regional retention of tau PET traces is associated with gray matter changes, structural network disruption, and cognitive function tests. The tau retention will mainly spread along with cognition-related resting state networks and be more common in the network hubs which exhibit many strong interconnections with other regions within the network as well as without the networks. Mainly, precuneus and posterior cingulate gyrus are commonly involved and can be the critical nodes associated with clinically manifested dementia from the normal cognitive state.
Collapse
|
139
|
Chee MW, Zhou J. Functional connectivity and the sleep-deprived brain. PROGRESS IN BRAIN RESEARCH 2019; 246:159-176. [DOI: 10.1016/bs.pbr.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
140
|
Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer's disease. Mol Cell Neurosci 2018; 97:3-17. [PMID: 30537535 DOI: 10.1016/j.mcn.2018.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and tau pathology (neurofibrillary tangles and neuropil threads). Amyloid plaques are primarily composed of aggregated and oligomeric β-amyloid (Aβ) peptides ending at position 42 (Aβ42). The development of fluid and PET biomarkers for Alzheimer's disease (AD), has allowed for detection of Aβ pathology in vivo and marks a major advancement in understanding the role of Aβ in Alzheimer's disease (AD). In the recent National Institute on Aging and Alzheimer's Association (NIA-AA) Research Framework, AD is defined by the underlying pathology as measured in patients during life by biomarkers (Jack et al., 2018), while clinical symptoms are used for staging of the disease. Therefore, sensitive, specific and robust biomarkers to identify brain amyloidosis are central in AD research. Here, we discuss fluid and PET biomarkers for Aβ and their application.
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States of America.
| | - Susan M Landau
- Neurology Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America; Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Functional Imaging Department, Life Sciences Division, United States of America
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh School of Medicine, United States of America
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, United States of America
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, University College, London, United Kingdom of Great Britain and Northern Ireland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, University College, London, United Kingdom of Great Britain and Northern Ireland; Department of Molecular Neuroscience, UCL Institute of Neurology, United Kingdom of Great Britain and Northern Ireland; UK Dementia Research Institute at UCL, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
141
|
Whitesell JD, Buckley AR, Knox JE, Kuan L, Graddis N, Pelos A, Mukora A, Wakeman W, Bohn P, Ho A, Hirokawa KE, Harris JA. Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer's disease. J Comp Neurol 2018; 527:2122-2145. [PMID: 30311654 DOI: 10.1002/cne.24555] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
A variety of Alzheimer's disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid β (Aβ) and forming plaques. However, the degree to which these models mimic spatiotemporal patterns of Aβ deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aβ plaques across age in three APP-overexpression mouse lines (APP/PS1, Tg2576, and hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline. Images were acquired with high resolution serial two-photon tomography and labeled plaques were detected using custom-built segmentation algorithms. Image series were registered to the Allen Mouse Brain Common Coordinate Framework, a 3D reference atlas, enabling automated brain-wide quantification of plaque density, number, and location. In both APP/PS1 and Tg2576 mice, plaques were identified first in isocortex, followed by olfactory, hippocampal, and cortical subplate areas. In hAPP-J20 mice, plaque density was highest in hippocampal areas, followed by isocortex, with little to no involvement of olfactory or cortical subplate areas. Within the major brain divisions, distinct regions were identified with high (or low) plaque accumulation; for example, the lateral visual area within the isocortex of APP/PS1 mice had relatively higher plaque density compared with other cortical areas, while in hAPP-J20 mice, plaques were densest in the ventral retrosplenial cortex. In summary, we show how whole brain imaging of amyloid pathology in mice reveals the extent to which a given model recapitulates the regional Aβ deposition patterns described in AD.
Collapse
Affiliation(s)
| | | | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, Washington
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, Washington
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, Washington
| | - Andrew Pelos
- Allen Institute for Brain Science, Seattle, Washington.,Department of Neuroscience, Pomona College, Claremont, California
| | - Alice Mukora
- Allen Institute for Brain Science, Seattle, Washington
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, Washington
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, Washington
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, Washington
| | | | | |
Collapse
|
142
|
Fredericks CA, Brown JA, Deng J, Kramer A, Ossenkoppele R, Rankin K, Kramer JH, Miller BL, Rabinovici GD, Seeley WW. Intrinsic connectivity networks in posterior cortical atrophy: A role for the pulvinar? Neuroimage Clin 2018; 21:101628. [PMID: 30528957 PMCID: PMC6411779 DOI: 10.1016/j.nicl.2018.101628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Posterior cortical atrophy (PCA) is a clinical variant of Alzheimer's disease (AD) that presents with progressive visuospatial symptoms. While amnestic AD is characterized by disrupted default mode network (DMN) connectivity with corresponding increases in salience network (SN) connectivity, a visuospatial network appears to be disrupted early in PCA. Based on PCA patients' clinical features, we hypothesized that, in addition to early decreased integrity within the visuospatial network, patients with PCA would show increases in SN connectivity despite relative preservation of DMN. As the lateral pulvinar nucleus of the thalamus has direct anatomical connections with striate and extrastriate cortex and DMN, and the medial pulvinar is anatomically interconnected with SN, we further hypothesized that lateral and medial pulvinar nuclei might be implicated in intrinsic connectivity changes in PCA. METHODS 26 patients with PCA and 64 matched controls were recruited through UCSF Memory and Aging Center research programs. Each completed a standardized neuropsychological battery, structural MRI, and task-free fMRI. Seed-based functional correlations were used to probe networks of interest, including those seeded by the medial and lateral pulvinar thalamic nuclei, across the whole brain, and functional data analyses were adjusted for brain atrophy. RESULTS Patients with PCA showed disproportionate deficits in the visuospatial domain; they also showed preserved social sensitivity and endorsed more depressive symptoms than HCs. PCA patients had significant parietooccipital atrophy accompanied by widespread connectivity decreases within the visuospatial network, enhanced connectivity between some structures in SN, and enhanced connectivity between key nodes of the DMN compared to controls. Increased SN connectivity correlated with a measure of social sensitivity, and increased DMN connectivity correlated with short-term memory performance. Medial pulvinar connectivity increases in PCA were topographically similar to SN (anterior insula) connectivity increases, while lateral pulvinar connectivity increases were similar to DMN (posterior cingulate) connectivity increases. CONCLUSIONS PCA is characterized by preserved to heightened connectivity in the SN and DMN despite decreased visuospatial network connectivity. The spatial similarity of medial and lateral pulvinar connectivity changes to those seen in the SN and DMN suggests a role for the pulvinar in intrinsic connectivity network changes in PCA.
Collapse
Affiliation(s)
- Carolyn A Fredericks
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Jesse A Brown
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Jersey Deng
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
| | - Abigail Kramer
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Rik Ossenkoppele
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Katherine Rankin
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Joel H Kramer
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Bruce L Miller
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| | - William W Seeley
- Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA.
| |
Collapse
|
143
|
Altered Functional Network Affects Amyloid and Structural Covariance in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8565620. [PMID: 30627575 PMCID: PMC6304529 DOI: 10.1155/2018/8565620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Background We aimed to investigate how altered intrinsic connectivity networks (ICNs) affect pathologic changes of Alzheimer's disease (AD) at a network-based level. Methods Thirty normal controls (NCs), 23 patients with AD-mild cognitive impairment (MCI), and 20 patients with AD-dementia were enrolled. We compared the organization of grey matter structural covariance and functional connectivity in ICNs between NCs and all AD patients who were amyloid β (Aβ)-positive. We further used seed-based interregional covariance analysis to compare structural and Aβ plaque covariance in default mode network (DMN) between AD-MCI and AD-dementia groups. Results The patients with AD had increased functional interregional covariance among the regions of the ICN anchored to dorsal caudate (DC) seeds compared to the NCs. The increased connectivity was associated with extended patterns of reduced Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group within the striatal network anchored to DC seeds. Patterns of lower Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group were more extended within the network anchored to DC seeds than within the DMN, which was undergoing functional failure in the patients with AD. Significant decreased structural covariance in the AD-dementia group compared to the AD-MCI group was more extended in the DMN during functional failure. Conclusions Functional connectivity in ICNs affects the topographic spread of molecular pathologies. The temporal trajectory of pathologic alterations can be well demonstrated by pathologic covariance comparisons between different clinical stages. Pathologic covariance can provide critical support to pathologic interactions at network and molecular levels.
Collapse
|
144
|
ten Kate M, Ingala S, Schwarz AJ, Fox NC, Chételat G, van Berckel BNM, Ewers M, Foley C, Gispert JD, Hill D, Irizarry MC, Lammertsma AA, Molinuevo JL, Ritchie C, Scheltens P, Schmidt ME, Visser PJ, Waldman A, Wardlaw J, Haller S, Barkhof F. Secondary prevention of Alzheimer's dementia: neuroimaging contributions. Alzheimers Res Ther 2018; 10:112. [PMID: 30376881 PMCID: PMC6208183 DOI: 10.1186/s13195-018-0438-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), pathological changes may arise up to 20 years before the onset of dementia. This pre-dementia window provides a unique opportunity for secondary prevention. However, exposing non-demented subjects to putative therapies requires reliable biomarkers for subject selection, stratification, and monitoring of treatment. Neuroimaging allows the detection of early pathological changes, and longitudinal imaging can assess the effect of interventions on markers of molecular pathology and rates of neurodegeneration. This is of particular importance in pre-dementia AD trials, where clinical outcomes have a limited ability to detect treatment effects within the typical time frame of a clinical trial. We review available evidence for the use of neuroimaging in clinical trials in pre-dementia AD. We appraise currently available imaging markers for subject selection, stratification, outcome measures, and safety in the context of such populations. MAIN BODY Amyloid positron emission tomography (PET) is a validated in-vivo marker of fibrillar amyloid plaques. It is appropriate for inclusion in trials targeting the amyloid pathway, as well as to monitor treatment target engagement. Amyloid PET, however, has limited ability to stage the disease and does not perform well as a prognostic marker within the time frame of a pre-dementia AD trial. Structural magnetic resonance imaging (MRI), providing markers of neurodegeneration, can improve the identification of subjects at risk of imminent decline and hence play a role in subject inclusion. Atrophy rates (either hippocampal or whole brain), which can be reliably derived from structural MRI, are useful in tracking disease progression and have the potential to serve as outcome measures. MRI can also be used to assess comorbid vascular pathology and define homogeneous groups for inclusion or for subject stratification. Finally, MRI also plays an important role in trial safety monitoring, particularly the identification of amyloid-related imaging abnormalities (ARIA). Tau PET to measure neurofibrillary tangle burden is currently under development. Evidence to support the use of advanced MRI markers such as resting-state functional MRI, arterial spin labelling, and diffusion tensor imaging in pre-dementia AD is preliminary and requires further validation. CONCLUSION We propose a strategy for longitudinal imaging to track early signs of AD including quantitative amyloid PET and yearly multiparametric MRI.
Collapse
Affiliation(s)
- Mara ten Kate
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Adam J. Schwarz
- Takeda Pharmaceuticals Comparny, Cambridge, MA USA
- Eli Lilly and Company, Indianapolis, Indiana USA
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gaël Chételat
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Bart N. M. van Berckel
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | | | - Adriaan A. Lammertsma
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Craig Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | | | - Pieter Jelle Visser
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Adam Waldman
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sven Haller
- Affidea Centre de Diagnostic Radiologique de Carouge, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Insititutes of Neurology and Healthcare Engineering, University College London, London, UK
| |
Collapse
|
145
|
Delli Pizzi S, Punzi M, Sensi SL. Functional signature of conversion of patients with mild cognitive impairment. Neurobiol Aging 2018; 74:21-37. [PMID: 30408719 DOI: 10.1016/j.neurobiolaging.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023]
Abstract
The entorhinal-hippocampal circuit is a strategic hub for cognition and the first site affected by Alzheimer's disease (AD). We investigated magnetic resonance imaging patterns of brain atrophy and functional connectivity in an Alzheimer's Disease Neuroimaging Initiative data set that included healthy controls, mild cognitive impairment (MCI), and patients with AD. Individuals with MCI were clinically evaluated 24 months after the first magnetic resonance imaging scan, and the cohort subdivided into sets of individuals who either did or did not convert to AD. The MCI group was also divided into patients who did show or not the presence of AD-related alterations in the cerebrospinal fluid. Patients with AD exhibited the collapse of the long-range hippocampal/entorhinal connectivity, pronounced cortical/subcortical atrophy, and a dramatic decline in cognitive performances. Patients with MCI who converted to AD or patients with MCI who showed the presence of AD-related alterations in the cerebrospinal fluid showed memory deficits, entorhinal/hippocampal hypoconnectivity, and concomitant atrophy of the two regions. Patients with MCI who did not convert to AD or patients with MCI who did not show the presence of AD-related alterations in the cerebrospinal fluid had no atrophy but showed hippocampal/entorhinal hyperconnectivity with selected neocortical/subcortical regions involved in memory processing and brain metastability. This hyperconnectivity may represent a compensatory strategy against the progression of cognitive impairment.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy
| | - Miriam Punzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy; Departments of Neurology and Pharmacology, Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
146
|
Yokoi T, Watanabe H, Yamaguchi H, Bagarinao E, Masuda M, Imai K, Ogura A, Ohdake R, Kawabata K, Hara K, Riku Y, Ishigaki S, Katsuno M, Miyao S, Kato K, Naganawa S, Harada R, Okamura N, Yanai K, Yoshida M, Sobue G. Involvement of the Precuneus/Posterior Cingulate Cortex Is Significant for the Development of Alzheimer's Disease: A PET (THK5351, PiB) and Resting fMRI Study. Front Aging Neurosci 2018; 10:304. [PMID: 30344488 PMCID: PMC6182068 DOI: 10.3389/fnagi.2018.00304] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Background: Imaging studies in Alzheimer’s disease (AD) have yet to answer the underlying questions concerning the relationship among tau retention, neuroinflammation, network disruption and cognitive decline. We compared the spatial retention patterns of 18F-THK5351 and resting state network (RSN) disruption in patients with early AD and healthy controls. Methods: We enrolled 23 11C-Pittsburgh compound B (PiB)-positive patients with early AD and 24 11C-PiB-negative participants as healthy controls. All participants underwent resting state functional MRI and 18F-THK5351 PET scans. We used scaled subprofile modeling/principal component analysis (SSM/PCA) to reduce the complexity of multivariate data and to identify patterns that exhibited the largest statistical effects (variances) in THK5351 concentration in AD and healthy controls. Findings: SSM/PCA identified a significant spatial THK5351 pattern composed by mainly three clusters including precuneus/posterior cingulate cortex (PCC), right and left dorsolateral prefrontal cortex (DLPFC) which accounted for 23.6% of the total subject voxel variance of the data and had 82.6% sensitivity and 79.1% specificity in discriminating AD from healthy controls. There was a significant relationship between the intensity of the 18F-THK5351 covariation pattern and cognitive scores in AD. The spatial patterns of 18F-THK5351 uptake showed significant similarity with intrinsic functional connectivity, especially in the PCC network. Seed-based connectivity analysis from the PCC showed significant decrease in connectivity over widespread brain regions in AD patients. An evaluation of an autopsied AD patient with Braak V showed that 18F-THK5351 retention corresponded to tau deposition, monoamine oxidase-B (MAO-B) and astrogliosis in the precuneus/PCC. Interpretation: We identified an AD-specific spatial pattern of 18F-THK5351 retention in the precuneus/PCC, an important connectivity hub region in the brain. Disruption of the functional connections of this important network hub may play an important role in developing dementia in AD.
Collapse
Affiliation(s)
- Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | | | | | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Miyao
- Department of Neurology, Meitetsu Hospital, Nagoya, Japan
| | - Katsuhiko Kato
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
147
|
Van Hooren RWE, Riphagen JM, Jacobs HIL. Inter-network connectivity and amyloid-beta linked to cognitive decline in preclinical Alzheimer's disease: a longitudinal cohort study. Alzheimers Res Ther 2018; 10:88. [PMID: 30153858 PMCID: PMC6114059 DOI: 10.1186/s13195-018-0420-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Amyloid-beta (Aβ) has a dose-response relationship with cognition in healthy adults. Additionally, the levels of functional connectivity within and between brain networks have been associated with cognitive performance in healthy adults. Aiming to explore potential synergistic effects, we investigated the relationship of inter-network functional connectivity, Aβ burden, and memory decline among healthy individuals and individuals with preclinical, prodromal, or clinical Alzheimer's disease. METHODS In this longitudinal cohort study (ADNI2), participants (55-88 years) were followed for a maximum of 5 years. We included cognitively healthy participants and patients with mild cognitive impairment (with or without elevated Aβ) or Alzheimer's disease. Associations between memory decline, Aβ burden, and connectivity between networks across the groups were investigated using linear and curvilinear mixed-effects models. RESULTS We found a synergistic relationships between inter-network functional connectivity and Aβ burden on memory decline. Dose-response relationships between Aβ and memory decline varied as a function of directionality of inter-network connectivity across groups. When inter-network correlations were negative, the curvilinear mixed-effects models revealed that higher Aβ burden was associated with greater memory decline in cognitively normal participants, but when inter-network correlations were positive, there was no association between the magnitude of Aβ burden and memory decline. Opposite patterns were observed in patients with mild cognitive impairment. Combining negative inter-network correlations with Aβ burden can reduce the required sample size by 88% for clinical trials aiming to slow down memory decline. CONCLUSIONS The direction of inter-network connectivity provides additional information about Aβ burden on the rate of expected memory decline, especially in the preclinical phase. These results may be valuable for optimizing patient selection and decreasing study times to assess efficacy in clinical trials.
Collapse
Affiliation(s)
- Roy W. E. Van Hooren
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Dr. Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Joost M. Riphagen
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Dr. Tanslaan 12, 6229 ET Maastricht, the Netherlands
- Department of Anesthesiology, Sankt-Willibrord Spital, Emmerich, Germany
| | - Heidi I. L. Jacobs
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Dr. Tanslaan 12, 6229 ET Maastricht, the Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA USA
| | - For the Alzheimer’s Disease Neuroimaging Initiative
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, Maastricht University, Dr. Tanslaan 12, 6229 ET Maastricht, the Netherlands
- Department of Anesthesiology, Sankt-Willibrord Spital, Emmerich, Germany
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA USA
| |
Collapse
|
148
|
Fredericks CA, Sturm VE, Brown JA, Hua AY, Bilgel M, Wong DF, Resnick SM, Seeley WW. Early affective changes and increased connectivity in preclinical Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:471-479. [PMID: 30302368 PMCID: PMC6174255 DOI: 10.1016/j.dadm.2018.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Affective changes precede cognitive decline in mild Alzheimer's disease and may relate to increased connectivity in a “salience network” attuned to emotionally significant stimuli. The trajectory of affective changes in preclinical Alzheimer's disease, and its relationship to this network, is unknown. Methods One hundred one cognitively normal older adults received longitudinal assessments of affective symptoms, then amyloid-PET. We hypothesized amyloid-positive individuals would show enhanced emotional reactivity associated with salience network connectivity. We tested whether increased global connectivity in key regions significantly related to affective changes. Results In participants later found to be amyloid positive, emotional reactivity increased with age, and interpersonal warmth declined in women. These individuals showed higher global connectivity within the right insula and superior temporal sulcus; higher superior temporal sulcus connectivity predicted increasing emotional reactivity and decreasing interpersonal warmth. Conclusions Affective changes should be considered an early preclinical feature of Alzheimer's disease. These changes may relate to higher functional connectivity in regions critical for social-emotional processing.
Collapse
Affiliation(s)
- Carolyn A. Fredericks
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Corresponding author. Tel.: 650 721 5357; Fax: 650 725 0390.
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jesse A. Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Alice Y. Hua
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Dean F. Wong
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
149
|
Harrison TM, Maass A, Baker SL, Jagust WJ. Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiol Aging 2018; 67:162-170. [PMID: 29665578 PMCID: PMC5955827 DOI: 10.1016/j.neurobiolaging.2018.03.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023]
Abstract
The mechanisms underlying superior cognitive performance in some older adults are poorly understood. We used a multimodal approach to characterize imaging and cognitive features of 26 successful agers (SA; defined by superior episodic memory ability) and 103 typical older adults. Cortical thickness was greater in multiple regions in SA including right anterior cingulate and prefrontal cortex and was related to baseline memory performance. Similarly, hippocampal volume was greater in SA and associated with baseline memory. SA also had lower white matter hypointensity volumes and faster processing speed. While PiB burden did not differ, there was a significant group interaction in the relationship between age and PiB such that older SA individuals were less likely to have high brain β-amyloid. Over time, memory performance in typical older adults declined more rapidly than in SA, although there was limited evidence for different rates of brain atrophy. These findings indicate that superior memory in aging is related to greater cortical and white matter integrity as well as slower decline in memory performance.
Collapse
Affiliation(s)
| | - Anne Maass
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - William J Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
150
|
Cordes D, Zhuang X, Kaleem M, Sreenivasan K, Yang Z, Mishra V, Banks SJ, Bluett B, Cummings JL. Advances in functional magnetic resonance imaging data analysis methods using Empirical Mode Decomposition to investigate temporal changes in early Parkinson's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:372-386. [PMID: 30175232 PMCID: PMC6115608 DOI: 10.1016/j.trci.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction Previous neuroimaging studies of Parkinson's disease (PD) patients have shown changes in whole-brain functional connectivity networks. Whether connectivity changes can be detected in the early stages (first 3 years) of PD by resting-state functional magnetic resonance imaging (fMRI) remains elusive. Research infrastructure including MRI and analytic capabilities is required to investigate this issue. The National Institutes of Health/National Institute of General Medical Sciences Center for Biomedical Research Excellence awards support infrastructure to advance research goals. Methods Static and dynamic functional connectivity analyses were conducted on early stage never-medicated PD subjects (N = 18) and matched healthy controls (N = 18) from the Parkinson's Progression Markers Initiative. Results Altered static and altered dynamic functional connectivity patterns were found in early PD resting-state fMRI data. Most static networks (with the exception of the default mode network) had a reduction in frequency and energy in specific low-frequency bands. Changes in dynamic networks in PD were associated with a decreased switching rate of brain states. Discussion This study demonstrates that in early PD, resting-state fMRI networks show spatial and temporal differences of fMRI signal characteristics. However, the default mode network was not associated with any measurable changes. Furthermore, by incorporating an optimum window size in a dynamic functional connectivity analysis, we found altered whole-brain temporal features in early PD, showing that PD subjects spend significantly more time than healthy controls in a specific brain state. These findings may help in improving diagnosis of early never-medicated PD patients. These key observations emerged in a Center for Biomedical Research Excellence–supported research environment.
Collapse
Affiliation(s)
- Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.,Departments of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Muhammad Kaleem
- Department of Electrical Engineering, School of Engineering, University of Management and Technology, Lahore, Pakistan
| | | | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Brent Bluett
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | |
Collapse
|