101
|
Yoshizawa S, Uto K, Nishikawa T, Hagiwara N, Oda H. Histological features of endomyocardial biopsies in patients undergoing hemodialysis: Comparison with dilated cardiomyopathy and hypertensive heart disease. Cardiovasc Pathol 2020; 49:107256. [PMID: 32721819 DOI: 10.1016/j.carpath.2020.107256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heart failure is a frequently occurring complication in patients on maintenance hemodialysis (HD). However, the histological features of right ventricular endomyocardial biopsy (RVEMB) samples remain unclear. METHODS The clinical characteristics and histological findings of consecutive patients undergoing HD with available RVEMB samples (HD group; n=28) were retrospectively compared with those of patients with dilated cardiomyopathy (n=56) and hypertensive heart disease (n=15). RESULTS The mean myocyte diameter was significantly larger in the HD group than in the other groups (P<.001), whereas the mean percent area of fibrosis did not differ among the three groups. Immunohistochemical analysis revealed that the capillary density was significantly lower in the HD group compared with the other groups (P<.001), and it was positively associated with left ventricular ejection fraction (P=.014). The number of CD68-positive macrophages, which was significantly higher in the HD group compared with the other two groups (P<.001), was associated with cardiovascular mortality (P=.020; log-rank test). CONCLUSIONS Myocyte hypertrophy, macrophage infiltration, and reduced capillary density were characteristic histological features of the RVEMB samples in patients undergoing HD, which may be related to the pathogenesis of cardiac dysfunction.
Collapse
Affiliation(s)
- Saeko Yoshizawa
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kenta Uto
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Nishikawa
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Oda
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
102
|
Baehr A, Umansky KB, Bassat E, Jurisch V, Klett K, Bozoglu T, Hornaschewitz N, Solyanik O, Kain D, Ferraro B, Cohen-Rabi R, Krane M, Cyran C, Soehnlein O, Laugwitz KL, Hinkel R, Kupatt C, Tzahor E. Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation 2020; 142:868-881. [PMID: 32508131 DOI: 10.1161/circulationaha.119.045116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemic heart diseases are leading causes of death and reduced life quality worldwide. Although revascularization strategies significantly reduce mortality after acute myocardial infarction (MI), a large number of patients with MI develop chronic heart failure over time. We previously reported that a fragment of the extracellular matrix protein agrin promotes cardiac regeneration after MI in adult mice. METHODS To test the therapeutic potential of agrin in a preclinical porcine model, we performed ischemia-reperfusion injuries using balloon occlusion for 60 minutes followed by a 3-, 7-, or 28-day reperfusion period. RESULTS We demonstrated that local (antegrade) delivery of recombinant human agrin to the infarcted pig heart can target the affected regions in an efficient and clinically relevant manner. A single dose of recombinant human agrin improved heart function, infarct size, fibrosis, and adverse remodeling parameters 28 days after MI. Short-term MI experiments along with complementary murine studies revealed myocardial protection, improved angiogenesis, inflammatory suppression, and cell cycle reentry as agrin's mechanisms of action. CONCLUSIONS A single dose of agrin is capable of reducing ischemia-reperfusion injury and improving heart function, demonstrating that agrin could serve as a therapy for patients with acute MI and potentially heart failure.
Collapse
Affiliation(s)
- Andrea Baehr
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Kfir Baruch Umansky
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (K.B.U., E.B., D.K., R.C.-R., E.T.)
| | - Elad Bassat
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (K.B.U., E.B., D.K., R.C.-R., E.T.)
| | - Victoria Jurisch
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Katharina Klett
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Tarik Bozoglu
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Nadja Hornaschewitz
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Olga Solyanik
- Department of Radiology, Klinikum Großhadern (O.S., C.C.), LMU Munich, Germany
| | - David Kain
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (K.B.U., E.B., D.K., R.C.-R., E.T.)
| | - Bartolo Ferraro
- Institute for Cardiovascular Prevention (B.F., O.S.), LMU Munich, Germany
| | - Renee Cohen-Rabi
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (K.B.U., E.B., D.K., R.C.-R., E.T.)
| | - Markus Krane
- Department of Surgery, German Heart Center Munich, Germany (M.K.)
| | - Clemens Cyran
- Department of Radiology, Klinikum Großhadern (O.S., C.C.), LMU Munich, Germany
| | - Oliver Soehnlein
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.).,Institute for Cardiovascular Prevention (B.F., O.S.), LMU Munich, Germany
| | - Karl Ludwig Laugwitz
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Rabea Hinkel
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.).,Department of Laboratory Animal Science, Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Göttingen, Germany (R.H.)
| | - Christian Kupatt
- I Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar, Technical University Munich, Germany (A.B., V.J., K.K., T.B., N.H., K.L.L., R.H., C.K.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (A.B., V.J., K.K., T.B., N.H., B.F., O.S., K.L.L., R.H., C.K.)
| | - Eldad Tzahor
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (K.B.U., E.B., D.K., R.C.-R., E.T.)
| |
Collapse
|
103
|
Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, Viola JR, de Jong R, Bongiovanni D, Bozoglu T, Maas SL, D'Amico M, Kessler T, Zeller T, Hristov M, Reutelingsperger C, Sager HB, Döring Y, Nahrendorf M, Kupatt C, Soehnlein O. Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. J Am Coll Cardiol 2020; 73:2990-3002. [PMID: 31196457 DOI: 10.1016/j.jacc.2019.03.503] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Heart failure following myocardial infarction (MI) remains one of the major causes of death worldwide, and its treatment is a crucial challenge of cardiovascular medicine. An attractive therapeutic strategy is to stimulate endogenous mechanisms of myocardial regeneration. OBJECTIVES This study evaluates the potential therapeutic treatment with annexin A1 (AnxA1) to induce cardiac repair after MI. METHODS AnxA1 knockout (AnxA1-/-) and wild-type mice underwent MI induced by ligation of the left anterior descending coronary artery. Cardiac functionality was assessed by longitudinal echocardiographic measurements. Histological, fluorescence-activated cell sorting, dot blot analysis, and in vitro/ex vivo studies were used to assess the myocardial neovascularization, macrophage content, and activity in response to AnxA1. RESULTS AnxA1-/- mice showed a reduced cardiac functionality and an expansion of proinflammatory macrophages in the ischemic area. Cardiac macrophages from AnxA1-/- mice exhibited a dramatically reduced ability to release the proangiogenic mediator vascular endothelial growth factor (VEGF)-A. However, AnxA1 treatment enhanced VEGF-A release from cardiac macrophages, and its delivery in vivo markedly improved cardiac performance. The positive effect of AnxA1 treatment on cardiac performance was abolished in wild-type mice transplanted with bone marrow derived from Cx3cr1creERT2Vegfflox/flox or in mice depleted of macrophages. Similarly, cardioprotective effects of AnxA1 were obtained in pigs in which full-length AnxA1 was overexpressed by use of a cardiotropic adeno-associated virus. CONCLUSIONS AnxA1 has a direct action on cardiac macrophage polarization toward a pro-angiogenic, reparative phenotype. AnxA1 stimulated cardiac macrophages to release high amounts of VEGF-A, thus inducing neovascularization and cardiac repair.
Collapse
Affiliation(s)
- Bartolo Ferraro
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Giovanna Leoni
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Rabea Hinkel
- Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Medizinische Klinik I, TU Munich, Germany; Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Department of Laboratory Animal Science, Göttingen, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Nicole Paulin
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Renske de Jong
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dario Bongiovanni
- Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Medizinische Klinik I, TU Munich, Germany
| | | | - Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania, Campania, Italy
| | - Thorsten Kessler
- Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Cardiology, German Heart Center Munich, Munich, Germany
| | - Tanja Zeller
- DZHK, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Clinic for Cardiology, University Heart Center, Hamburg, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, the Netherlands
| | - Hendrik B Sager
- Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Cardiology, German Heart Center Munich, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christian Kupatt
- Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Medizinische Klinik I, TU Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
104
|
Giannarelli C, Wong CK. Crosstalk Between Inflammatory Cells to Promote Cardioprotective Angiogenesis. J Am Coll Cardiol 2020; 73:3003-3005. [PMID: 31196458 DOI: 10.1016/j.jacc.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Chiara Giannarelli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Christine K Wong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
105
|
Nguyen VD, Min HK, Kim DH, Kim CS, Han J, Park JO, Choi E. Macrophage-Mediated Delivery of Multifunctional Nanotherapeutics for Synergistic Chemo-Photothermal Therapy of Solid Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10130-10141. [PMID: 32041404 DOI: 10.1021/acsami.9b23632] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although great efforts have been undertaken to develop a nanoparticle-based drug delivery system (DDS) for the treatment of solid tumors, the therapeutic outcomes are still limited. Immune cells, which possess an intrinsic ability to phagocytose nanoparticles and are recruited by tumors, can be exploited to deliver nanotherapeutics deep inside the tumors. Photothermal therapy using near-infrared light is a promising noninvasive approach for solid tumor ablation, especially when combined with chemotherapy. In this study, we design and evaluate a macrophage-based, multiple nanotherapeutics DDS, involving the phagocytosis by macrophages of both small-sized gold nanorods and anticancer drug-containing nanoliposomes. The aim is to treat solid tumors, utilizing the tumor-infiltrating properties of macrophages with synergistic photothermal-chemotherapy. Using a 3D cancer spheroid as an in vitro solid tumor model, we show that tumor penetration and coverage of the nanoparticles are both markedly enhanced when the macrophages are used. In addition, in vivo experiments involving both local and systemic administrations in breast tumor-bearing mice demonstrate that the proposed DDS can effectively target and kill the tumors, especially when the synergistic therapy is used. Consequently, this immune cell-based theranostic strategy may represent a potentially important advancement in the treatment of solid tumors.
Collapse
Affiliation(s)
- Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Hyun-Ki Min
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jiwon Han
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| |
Collapse
|
106
|
Gasparini S, Fonfara S, Kitz S, Hetzel U, Kipar A. Canine Dilated Cardiomyopathy: Diffuse Remodeling, Focal Lesions, and the Involvement of Macrophages and New Vessel Formation. Vet Pathol 2020; 57:397-408. [PMID: 32125251 DOI: 10.1177/0300985820906895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dilated cardiomyopathy (DCM) is among the most common cardiac diseases in dogs. Its pathogenesis is not fully understood, but myocardial remodeling and inflammation are suspected to be involved. The present study aimed to characterize the pathological processes in canine DCM, investigating morphological changes in association with the expression of relevant cytokines and remodeling markers. The myocardium of 17 dogs with DCM and 6 dogs without cardiac diseases was histologically evaluated, and selected cases were further examined by immunohistochemistry, morphometry, and reverse transcription quantitative PCR. In DCM, the myocardium exhibited subtle but statistically significant diffuse quantitative changes. These comprised increased interstitial collagen deposition and macrophage numbers, as well as an overall reduced proportion of contractile tissue. This was accompanied by a significant increase in myocardial transcription of intracellular adhesion molecule (ICAM) 1, inflammatory cytokines, and remodeling enzymes. Laser microdissection showed that cardiomyocytes transcribed most relevant markers including ICAM-1, tumor necrosis factor α, transforming growth factor β (TGF-β), matrix metalloproteinase 2 (MMP-2), tissue inhibitor of MMP (TIMP) 1 and TIMP-2. In addition, there were multifocal cell-rich lesions characterized by fibrosis, neovascularization, macrophage infiltration, and cardiomyocyte degeneration. In these, macrophages were often found to express ICAM-1, TGF-β, and vascular endothelial growth factor; the former two were also expressed by cardiomyocytes. These results characterize the diffuse myocardial remodeling processes that occur in DCM. The observed multifocal cell-rich lesions might result from reduced tissue perfusion. Macrophages and cardiomyocytes seem to actively contribute to the remodeling processes, which ultimately lead to cardiac dilation and dysfunction. The precise role of the involved cells and the factors initiating the remodeling process still needs to be identified.
Collapse
Affiliation(s)
- Stefania Gasparini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Sarah Kitz
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
107
|
Simões FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian E, Weinberger M, Mayes S, Lemieux ME, Barnette DN, Gunadasa-Rohling M, Williams RM, Greaves DR, Trinh LA, Fraser SE, Dallas SL, Choudhury RP, Sauka-Spengler T, Riley PR. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 2020; 11:600. [PMID: 32001677 PMCID: PMC6992796 DOI: 10.1038/s41467-019-14263-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Canonical roles for macrophages in mediating the fibrotic response after a heart attack include extracellular matrix turnover and activation of cardiac fibroblasts to initiate collagen deposition. Here we reveal that macrophages directly contribute collagen to the forming post-injury scar. Unbiased transcriptomics shows an upregulation of collagens in both zebrafish and mouse macrophages following heart injury. Adoptive transfer of macrophages, from either collagen-tagged zebrafish or adult mouse GFPtpz-collagen donors, enhances scar formation via cell autonomous production of collagen. In zebrafish, the majority of tagged collagen localises proximal to the injury, within the overlying epicardial region, suggesting a possible distinction between macrophage-deposited collagen and that predominantly laid-down by myofibroblasts. Macrophage-specific targeting of col4a3bpa and cognate col4a1 in zebrafish significantly reduces scarring in cryoinjured hosts. Our findings contrast with the current model of scarring, whereby collagen deposition is exclusively attributed to myofibroblasts, and implicate macrophages as direct contributors to fibrosis during heart repair. Macrophages mediate the fibrotic response after a heart attack by extracellular matrix turnover and cardiac fibroblasts activation. Here the authors identify an evolutionarily-conserved function of macrophages that contributes directly to the forming post-injury scar through cell-autonomous deposition of collagen.
Collapse
Affiliation(s)
- Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Thomas J Cahill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Kenyon
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna, 904-0495, Japan
| | - Joaquim M Vieira
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Xin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Daniela Pezzolla
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Ravaud
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Eva Masmanian
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sarah Mayes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | - Damien N Barnette
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Le A Trinh
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Sarah L Dallas
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
108
|
Liao Y, Li G, Zhang X, Huang W, Xie D, Dai G, Zhu S, Lu D, Zhang Z, Lin J, Wu B, Lin W, Chen Y, Chen Z, Peng C, Wang M, Chen X, Jiang MH, Xiang AP. Cardiac Nestin + Mesenchymal Stromal Cells Enhance Healing of Ischemic Heart through Periostin-Mediated M2 Macrophage Polarization. Mol Ther 2020; 28:855-873. [PMID: 31991111 DOI: 10.1016/j.ymthe.2020.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) show potential for treating cardiovascular diseases, but their therapeutic efficacy exhibits significant heterogeneity depending on the tissue of origin. This study sought to identify an optimal source of MSCs for cardiovascular disease therapy. We demonstrated that Nestin was a suitable marker for cardiac MSCs (Nes+cMSCs), which were identified by their self-renewal ability, tri-lineage differentiation potential, and expression of MSC markers. Furthermore, compared with bone marrow-derived MSCs (Nes+bmMSCs) or saline-treated myocardial infarction (MI) controls, intramyocardial injection of Nes+cMSCs significantly improved cardiac function and decreased infarct size after acute MI (AMI) through paracrine actions, rather than transdifferentiation into cardiac cells in infarcted heart. We further revealed that Nes+cMSC treatment notably reduced pan-macrophage infiltration while inducing macrophages toward an anti-inflammatory M2 phenotype in ischemic myocardium. Interestingly, Periostin, which was highly expressed in Nes+cMSCs, could promote the polarization of M2-subtype macrophages, and knockdown or neutralization of Periostin remarkably reduced the therapeutic effects of Nes+cMSCs by decreasing M2 macrophages at lesion sites. Thus, the present work systemically shows that Nes+cMSCs have greater efficacy than do Nes+bmMSCs for cardiac healing after AMI, and that this occurs at least partly through Periostin-mediated M2 macrophage polarization.
Collapse
Affiliation(s)
- Yan Liao
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiaoran Zhang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weijun Huang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongmei Xie
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China; Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuanghua Zhu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyuan Zhang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junyi Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yang Chen
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhihong Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maosheng Wang
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong 525200, China
| | - Xinxin Chen
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China.
| | - Mei Hua Jiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Andy Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510080, China.
| |
Collapse
|
109
|
Spatiotemporal Dynamics of Immune Cells in Early Left Ventricular Remodeling After Acute Myocardial Infarction in Mice. J Cardiovasc Pharmacol 2019; 75:112-122. [PMID: 31764396 DOI: 10.1097/fjc.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction remains a leading cause of morbidity and death. Insufficient delivery of oxygen to the myocardium sets into play a complicated process of repair that involves the temporal recruitment of different immune cells so as to remove debris and necrotic cells expeditiously and to form effective scar tissue. Clearly defined and overlapping phases have been identified in the process, which transitions from an overall proinflammatory to anti-inflammatory phenotype with time. Variations in the strength of the phases as well as in the co-ordination among them have profound consequences. Too strong of an inflammatory phase can result in left ventricular wall thinning and eventual rupture, whereas too strong of an anti-inflammatory phase can lead to cardiac stiffening, arrhythmias, or ventricular aneurisms. In both cases, heart failure is an intermediate consequence with death being the likely outcome. Here, we summarize the role of key immune cells in the repair process of the heart after left ventricular myocardial infarction, along with the associated cytokines and chemokines. A better understanding of the immune response ought to lead hopefully to improved therapies that exploit the natural repair process for mending the infarcted heart.
Collapse
|
110
|
Lu W, Wang Q, Sun X, He H, Wang Q, Wu Y, Liu Y, Wang Y, Li C. Qishen Granule Improved Cardiac Remodeling via Balancing M1 and M2 Macrophages. Front Pharmacol 2019; 10:1399. [PMID: 31824322 PMCID: PMC6886583 DOI: 10.3389/fphar.2019.01399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages play a pivotal role in myocardial remodeling (MR) process which could eventually lead to heart failure. Splenic monocytes could be mobilized and recruited under inflammatory conditions and differentiated into different types of macrophages in heart tissues. Inflammatory M1 macrophages could aggravate tissue damage whereas M2 macrophages could promote angiogenesis and tissue repair process. Unbalanced ratio of M1/M2 macrophages may eventually lead to adverse remodeling. Therefore, regulating differentiation and activities of macrophages are potential strategies for the management of myocardial remodeling. Qishen Granule (QSG) is an effective Chinese medicine for treating heart failure. Our previous studies demonstrated that QSG could inhibit myocardial fibrosis through regulating secretion of cytokines and activation of macrophages. However, the detailed effects of QSG on had not been elucidated yet. In this study, we aimed to explore the effect of QSG on the release of splenic monocytes, the recruitment of monocytes into heart tissues and the differentiation of macrophages under ischemic conditions. Our results showed that QSG could suppress the release of monocytes from the spleen and recruitment of monocytes to heart tissues via inhibiting splenic angiotensin (Ang) II/AT1-cardiac monocyte chemotactic protein (MCP)-1/CC chemokine receptor 2 (CCR2) pathway. The anti-fibrotic effect of QSG was exerted by inhibiting M1 macrophage-activated transforming growth factor (TGF)-β1/Smad3 pathway. Meanwhile, QSG could promote angiogenesis by promoting differentiation of M1 macrophages into M2 macrophages. Our results suggest that compounds of Chinese medicine have synergistic effects on cardiac and splenic organs through regulating differentiation of monocytes/macrophages in inhibiting myocardial remodeling.
Collapse
Affiliation(s)
- Wenji Lu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hao He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qixin Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Liu
- Cardiovascular Disease Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
111
|
Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ Res 2019; 124:263-278. [PMID: 30582448 DOI: 10.1161/circresaha.118.314028] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Recent advancements have brought to light the origins, complexity, and functions of tissue-resident macrophages. However, in the context of tissue injury or disease, large numbers of monocytes infiltrate the heart and are thought to contribute to adverse remodeling and heart failure pathogenesis. Little is understood about the diversity of monocytes and monocyte-derived macrophages recruited to the heart after myocardial injury, including the mechanisms that regulate monocyte recruitment and fate specification. OBJECTIVE We sought to test the hypothesis that distinct subsets of tissue-resident CCR2- (C-C chemokine receptor 2) and CCR2+ macrophages orchestrate monocyte recruitment and fate specification after myocardial injury. METHODS AND RESULTS We reveal that in numerous mouse models of cardiomyocyte cell death (permanent myocardial infarction, reperfused myocardial infarction, and diphtheria toxin cardiomyocyte ablation), there is a shift in macrophage ontogeny whereby tissue-resident macrophages are predominately replaced by infiltrating monocytes and monocyte-derived macrophages. Using syngeneic cardiac transplantation to model ischemia-reperfusion injury and distinguish tissue-resident from recruited cell populations in combination with intravital 2-photon microscopy, we demonstrate that monocyte recruitment is differentially orchestrated by distinct subsets of tissue-resident cardiac macrophages. Tissue-resident CCR2+ macrophages promote monocyte recruitment through an MYD88 (myeloid differentiation primary response 88)-dependent mechanism that results in release of MCPs (monocyte chemoattractant proteins) and monocyte mobilization. In contrast, tissue-resident CCR2- macrophages inhibit monocyte recruitment. Using CD (cluster of differentiation) 169-DTR (diphtheria toxin receptor) and CCR2-DTR mice, we further show that selective depletion of either tissue-resident CCR2- or CCR2+ macrophages before myocardial infarction results in divergent effects on left ventricular function, myocardial remodeling, and monocyte recruitment. Finally, using single-cell RNA sequencing, we show that tissue-resident cardiac macrophages differentially instruct monocyte fate specification. CONCLUSIONS Collectively, these observations establish the mechanistic basis by which monocytes are initially recruited to the injured heart and provide new insights into the heterogeneity of monocyte-derived macrophages.
Collapse
Affiliation(s)
- Geetika Bajpai
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Andrea Bredemeyer
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Konstantin Zaitsev
- Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Andrew L Koenig
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Inessa Lokshina
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Jayaram Mohan
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Brooke Ivey
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - His-Min Hsiao
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Carla Weinheimer
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Attila Kovacs
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Slava Epelman
- Toronto General Hospital Research Institute, Division of Cardiology, University Health Network, ON, Canada (S.E.)
| | - Maxim Artyomov
- Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Kory J Lavine
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
112
|
Ilatovskaya DV, Halade GV, DeLeon-Pennell KY. Adaptive immunity-driven inflammation and cardiovascular disease. Am J Physiol Heart Circ Physiol 2019; 317:H1254-H1257. [PMID: 31702971 DOI: 10.1152/ajpheart.00642.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptive immune response has recently emerged as an important factor in a wide variety of cardiovascular disorders including atherosclerosis, hypertension, cardiac remodeling, and heart failure; however, its role is not fully understood. Since an assortment of innate responsive cells, e.g., neutrophils and monocytes/macrophages, coordinate with adaptive immunity, e.g., T cells, dendritic cells, and B cells, the temporal response and descriptions pertinent to the cellular phenotype and inflammation processes, in general, need additional investigation, clarification, and consensus particularly in cardiovascular disease. This Perspectives article reviews the contributions of 15 articles (including 7 reviews) published in the American Journal of Physiology-Heart and Circulatory Physiology in response to the Call for Papers: Adaptive Immunity in Cardiovascular Disease. Here, we summarize the crucial reported findings at the cardiac, vascular, immune, and molecular levels and discuss the translational feasibility and benefits of future prospective research into the adaptive immune response. Readers are encouraged to evaluate the data and learn from this collection of novel studies.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
113
|
Serizawa T, Isotani A, Matsumura T, Nakanishi K, Nonaka S, Shibata S, Ikawa M, Okano H. Developmental analyses of mouse embryos and adults using a non-overlapping tracing system for all three germ layers. Development 2019; 146:dev.174938. [PMID: 31597657 DOI: 10.1242/dev.174938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
Genetic lineage-tracing techniques are powerful tools for studying specific cell populations in development and pathogenesis. Previous techniques have mainly involved systems for tracing a single gene, which are limited in their ability to facilitate direct comparisons of the contributions of different cell lineages. We have developed a new combinatorial system for tracing all three germ layers using self-cleaving 2A peptides and multiple site-specific recombinases (SSRs). In the resulting TRiCK (TRiple Coloured germ layer Knock-in) mice, the three germ layers are conditionally and simultaneously labelled with distinct fluorescent proteins via embryogenesis. We show that previously reported ectopic expressions of lineage markers are the outcome of secondary gene expression. The results presented here also indicate that the commitment of caudal axial stem cells to neural or mesodermal fate proceeds without lineage fluctuations, contrary to the notion of their bi-potency. Moreover, we developed IMES, an optimized tissue clearing method that is highly compatible with a variety of fluorescent proteins and immunostaining, and the combined use of TRiCK mice and IMES can facilitate comprehensive analyses of dynamic contributions of all three germ layers.
Collapse
Affiliation(s)
- Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ayako Isotani
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Organ developmental engineering, Division of Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuyuki Nakanishi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, Japan.,Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
114
|
Javaheri A, Bajpai G, Picataggi A, Mani S, Foroughi L, Evie H, Kovacs A, Weinheimer CJ, Hyrc K, Xiao Q, Ballabio A, Lee JM, Matkovich SJ, Razani B, Schilling JD, Lavine KJ, Diwan A. TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight 2019; 4:127312. [PMID: 31672943 DOI: 10.1172/jci.insight.127312] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1β secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1β compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB-mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed "autophagy"). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.
Collapse
Affiliation(s)
- Ali Javaheri
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Geetika Bajpai
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Antonino Picataggi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Smrithi Mani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Layla Foroughi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Hosannah Evie
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Attila Kovacs
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Carla J Weinheimer
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | | | - Qingli Xiao
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Medical and Translational Sciences, Federico II University, Naples, Italy.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jin-Moo Lee
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scot J Matkovich
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Babak Razani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| | - Joel D Schilling
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Kory J Lavine
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Abhinav Diwan
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
115
|
Carotenuto F, Teodori L, Maccari AM, Delbono L, Orlando G, Di Nardo P. Turning regenerative technologies into treatment to repair myocardial injuries. J Cell Mol Med 2019; 24:2704-2716. [PMID: 31568640 PMCID: PMC7077550 DOI: 10.1111/jcmm.14630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell‐free therapies. In this context, biomaterial‐based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell‐based and cell‐free cardiac therapies, their limitations and the possible future developments.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Laura Teodori
- Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Anna Maria Maccari
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | - Luciano Delbono
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Paolo Di Nardo
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
116
|
Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 2019; 72:2213-2230. [PMID: 30360829 DOI: 10.1016/j.jacc.2018.08.2149] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.
Collapse
Affiliation(s)
- Kory J Lavine
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Benjamin J Kopecky
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Godwin
- The Jackson Laboratory, Bar Harbor, Maine; Mt. Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
117
|
Role of Inflammatory Cell Subtypes in Heart Failure. J Immunol Res 2019; 2019:2164017. [PMID: 31565659 PMCID: PMC6745095 DOI: 10.1155/2019/2164017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a well-known feature of heart failure. Studies have shown that while some inflammation is required for repair during injury and is protective, prolonged inflammation leads to myocardial remodeling and apoptosis of cardiac myocytes. Various types of immune cells are implicated in myocardial inflammation and include neutrophils, macrophages, eosinophils, mast cells, natural killer cells, T cells, and B cells. Recent clinical trials have targeted inflammatory cascades as therapy for heart failure with limited success. A better understanding of the temporal course of the infiltration of the different immune cells and their contribution to the inflammatory process may improve the success for therapy. This brief review outlines the major cell types involved in heart failure, and some of their actions are summarized in the supplementary figure.
Collapse
|
118
|
Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol Sin 2019; 40:1168-1183. [PMID: 30858476 PMCID: PMC6786364 DOI: 10.1038/s41401-018-0197-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.
Collapse
|
119
|
Hobby ARH, Sharp TE, Berretta RM, Borghetti G, Feldsott E, Mohsin S, Houser SR. Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. Am J Physiol Heart Circ Physiol 2019; 317:H820-H829. [PMID: 31441690 DOI: 10.1152/ajpheart.00144.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic heart diseases such as myocardial infarction (MI) are the largest contributors to cardiovascular disease worldwide. The resulting cardiac cell death impairs function of the heart and can lead to heart failure and death. Reperfusion of the ischemic tissue is necessary but causes damage to the surrounding tissue by reperfusion injury. Cortical bone stem cells (CBSCs) have been shown to increase pump function and decrease scar size in a large animal swine model of MI. To investigate the potential mechanism for these changes, we hypothesized that CBSCs were altering cardiac cell death after reperfusion. To test this, we performed TUNEL staining for apoptosis and antibody-based immunohistochemistry on tissue from Göttingen miniswine that underwent 90 min of lateral anterior descending coronary artery ischemia followed by 3 or 7 days of reperfusion to assess changes in cardiomyocyte and noncardiomyocyte cell death. Our findings indicate that although myocyte apoptosis is present 3 days after ischemia and is lower in CBSC-treated animals, myocyte apoptosis accounts for <2% of all apoptosis in the reperfused heart. In addition, nonmyocyte apoptosis trends toward decreased in CBSC-treated hearts, and although CBSCs increase macrophage and T-cell populations in the infarct region, the occurrence of apoptosis in CD45+ cells in the myocardium is not different between groups. From these data, we conclude that CBSCs may be influencing cardiomyocyte and noncardiomyocyte cell death and immune cell recruitment dynamics in the heart after MI, and these changes may account for some of the beneficial effects conferred by CBSC treatment.NEW & NOTEWORTHY The following research explores aspects of cell death and inflammation that have not been previously studied in a large animal model. In addition, apoptosis and cell death have not been studied in the context of cell therapy and myocardial infarction. In this article, we describe interactions between cell therapy and inflammation and the potential implications for cardiac wound healing.
Collapse
Affiliation(s)
- Alexander R H Hobby
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Remus M Berretta
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giulia Borghetti
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Feldsott
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Department of Pharmacology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
120
|
Expression of Leukocytes Following Myocardial Infarction in Rats is Modulated by Moderate White Wine Consumption. Nutrients 2019; 11:nu11081890. [PMID: 31416120 PMCID: PMC6722553 DOI: 10.3390/nu11081890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/18/2023] Open
Abstract
How moderate white wine consumption modulates inflammatory cells infiltration of the ischemic myocardium following permanent coronary ligation was the key question addressed in this study. Male Sprague-Dawley rats were given either a combination of different white wines or water only for 28 days. Three peri-infarct/border zones and a control/nonischemic zone were analysed to determine the expression of myeloperoxidase (MPO) and cluster of differentiation 68 (CD68). Smaller expressions for both MPO and CD68 were found in all three peri-infarct zones of wine drinking animals (p < 0.001). There was no difference in the expression of leukocyte markers between animals drinking standard and polyphenol-rich white wine, although for CD68, a nonsignificant attenuation was noticed. In sham animals, a subepicardial MPO/CD68 immunoreactive "inflammatory ring" is described. Standard white wine consumption caused attenuation of the expression of MPO but not of CD68 in these animals. We conclude that white wine consumption positively modulates peri-infarct inflammatory infiltration.
Collapse
|
121
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|
122
|
Wang B, Zhou Q, Bi Y, Zhou W, Zeng Q, Liu Z, Liu X, Zhan Z. Phosphatase PPM1L Prevents Excessive Inflammatory Responses and Cardiac Dysfunction after Myocardial Infarction by Inhibiting IKKβ Activation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1338-1347. [PMID: 31331970 DOI: 10.4049/jimmunol.1900148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Although the inflammatory response triggered by damage-associated molecular patterns (DAMPs) in the infarcted cardiac tissues after acute myocardial infarction (MI) contributes to cardiac repair, the unrestrained inflammation induces excessive matrix degradation and myocardial fibrosis, leading to the development of adverse remodeling and cardiac dysfunction, although the molecular mechanisms that fine tune inflammation post-MI need to be fully elucidated. Protein phosphatase Mg2+/Mn2+-dependent 1L (PPM1L) is a member of the serine/threonine phosphatase family. It is originally identified as a negative regulator of stress-activated protein kinase signaling and involved in the regulation of ceramide trafficking from the endoplasmic reticulum to Golgi apparatus. However, the role of PPM1L in MI remains unknown. In this study, we found that PPM1L transgenic mice exhibited reduced infarct size, attenuated myocardial fibrosis, and improved cardiac function. PPM1L transgenic mice showed significantly lower levels of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and IL-12, in myocardial tissue. In response to DAMPs, such as HMGB1 or HSP60, released in myocardial tissue after MI, macrophages from PPM1L transgenic mice consistently produced fewer inflammatory cytokines. PPM1L-silenced macrophages showed higher levels of inflammatory cytokine production induced by DAMPs. Mechanically, PPM1L overexpression selectively inhibited the activation of NF-κB signaling in myocardial tissue post-MI and DAMP-triggered macrophages. PPM1L directly bound IKKβ and then inhibited its phosphorylation and activation, leading to impaired NF-κB signaling activation and suppressed inflammatory cytokine production. Thus, our data demonstrate that PPM1L prevents excessive inflammation and cardiac dysfunction after MI, which sheds new light on the protective regulatory mechanism underlying MI.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Bi
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China
| | - Wenhui Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiyan Zeng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhongmin Liu
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; and
| | - Zhenzhen Zhan
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; .,Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
123
|
IL33 attenuates ventricular remodeling after myocardial infarction through inducing alternatively activated macrophages ethical standards statement. Eur J Pharmacol 2019; 854:307-319. [DOI: 10.1016/j.ejphar.2019.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
|
124
|
Cowling RT, Kupsky D, Kahn AM, Daniels LB, Greenberg BH. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res 2019; 209:138-155. [PMID: 30986384 PMCID: PMC6996650 DOI: 10.1016/j.trsl.2019.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
The inappropriate deposition of extracellular matrix within the heart (termed cardiac fibrosis) is associated with nearly all types of heart disease, including ischemic, hypertensive, diabetic, and valvular. This alteration in the composition of the myocardium can physically limit cardiomyocyte contractility and relaxation, impede electrical conductivity, and hamper regional nutrient diffusion. Fibrosis can be grossly divided into 2 types, namely reparative (where collagen deposition replaces damaged myocardium) and reactive (where typically diffuse collagen deposition occurs without myocardial damage). Despite the widespread association of fibrosis with heart disease and general understanding of its negative impact on heart physiology, it is still not clear when collagen deposition becomes pathologic and translates into disease symptoms. In this review, we have summarized the current knowledge of cardiac fibrosis in human patients and experimental animal models, discussing the mechanisms that have been deduced from the latter in relation to the former. Because assessment of the extent of fibrosis is paramount both as a research tool to further understanding and as a clinical tool to assess patients, we have also summarized the current state of noninvasive/minimally invasive detection systems for cardiac fibrosis. Albeit not exhaustive, our aim is to provide an overview of the current understanding of cardiac fibrosis, both clinically and experimentally.
Collapse
Affiliation(s)
- Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California.
| | - Daniel Kupsky
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Lori B Daniels
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| |
Collapse
|
125
|
Xu S, Liu C, Xie F, Tian L, Manno SH, Manno FAM, Fallah S, Pelster B, Tse G, Cheng SH. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. FISH & SHELLFISH IMMUNOLOGY 2019; 89:117-126. [PMID: 30928664 DOI: 10.1016/j.fsi.2019.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Inflammation plays a crucial role in cardiac regeneration. Numerous advantages, including a robust regenerative ability, make the zebrafish a popular model to study cardiovascular diseases. The zebrafish breakdance (bre) mutant shares several key features with human long QT syndrome that predisposes to ventricular arrhythmias and sudden death. However, how inflammatory response and tissue regeneration following cardiac damage occur in bre mutant is unknown. Here, we have found that inflammatory response related genes were markedly expressed in the injured heart and excessive leukocyte accumulation occurred in the injured area of the bre mutant zebrafish. Furthermore, bre mutant zebrafish exhibited aberrant apoptosis and impaired heart regenerative ability after ventricular cryoinjury. Mild dosages of anti-inflammatory or prokinetic drugs protected regenerative cells from undergoing aberrant apoptosis and promoted heart regeneration in bre mutant zebrafish. We propose that immune or prokinetic therapy could be a potential therapeutic regimen for patients with genetic long QT syndrome who suffers from myocardial infarction.
Collapse
Affiliation(s)
- Shisan Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chichi Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Fangjing Xie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Sinai Hc Manno
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Francis A M Manno
- Department of Physics, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Samane Fallah
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bernd Pelster
- Institut für Zoologie, Universität Innsbruck, Center for Molecular Biosciences, Universität Innsbruck, Innsbruck, Austria.
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, PR China; Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
126
|
Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129:2619-2628. [PMID: 31107246 DOI: 10.1172/jci124615] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are tissue-resident or infiltrated immune cells critical for innate immunity, normal tissue development, homeostasis, and repair of damaged tissue. Macrophage function is a sum of their ontogeny, the local environment in which they reside, and the type of injuries or pathogen to which they are exposed. In this Review, we discuss the role of macrophages in the restoration of tissue function after injury, highlighting important questions about how they respond to and modify the local microenvironment to restore homeostasis.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Michael Alexander
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
127
|
Yap J, Cabrera-Fuentes HA, Irei J, Hausenloy DJ, Boisvert WA. Role of Macrophages in Cardioprotection. Int J Mol Sci 2019; 20:E2474. [PMID: 31109146 PMCID: PMC6566352 DOI: 10.3390/ijms20102474] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. It is widely known that non-resolving inflammation results in atherosclerotic conditions, which are responsible for a host of downstream pathologies including thrombosis, myocardial infarction (MI), and neurovascular events. Macrophages, as part of the innate immune response, are among the most important cell types in every stage of atherosclerosis. In this review we discuss the principles governing macrophage function in the healthy and infarcted heart. More specifically, how cardiac macrophages participate in myocardial infarction as well as cardiac repair and remodeling. The intricate balance between phenotypically heterogeneous populations of macrophages in the heart have profound and highly orchestrated effects during different phases of myocardial infarction. In the early "inflammatory" stage of MI, resident cardiac macrophages are replaced by classically activated macrophages derived from the bone marrow and spleen. And while the macrophage population shifts towards an alternatively activated phenotype, the inflammatory response subsides giving way to the "reparative/proliferative" phase. Lastly, we describe the therapeutic potential of cardiac macrophages in the context of cell-mediated cardio-protection. Promising results demonstrate innovative concepts; one employing a subset of yolk sac-derived, cardiac macrophages that have complete restorative capacity in the injured myocardium of neonatal mice, and in another example, post-conditioning of cardiac macrophages with cardiosphere-derived cells significantly improved patient's post-MI diagnoses.
Collapse
Affiliation(s)
- Jonathan Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Hector A Cabrera-Fuentes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, NL 264610, Mexico.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia.
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 117597, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia.
| |
Collapse
|
128
|
Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res 2019; 115:844-853. [PMID: 30715247 PMCID: PMC6452432 DOI: 10.1093/cvr/cvz035] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular (CV) disease and cancer are the leading causes of death.1,2 Over the last decades, it has been appreciated that both CV disease and cancer are more common in individuals in whom risk factors for disease development accumulate, and preventative measures have been extremely important in driving down the incidence of disease.3-6 In general, the field of epidemiology, risk reduction, and preventative trials is divided into health care professionals who have an interest in either CV disease or cancer. As a result, the medical literature and medical practice has largely focused on the one disease, or the other. However, human individuals do not behave according to this dogma. Emerging data clearly suggest that identical risk factors may lead to CV disease in the one individual, but may cause cancer in another, or even both diseases in the same individual. This overlap exists between risk factors that are historically classified as 'CV risk factors' as these factors do equally strong predict cancer development. Therefore, we propose that a holistic approach might better estimate actual risks for CV disease and cancer. In this review, we summarize current insights in common behavioural risk factors for heart failure, being the most progressed and lethal form of CV disease, and cancer.
Collapse
Affiliation(s)
- Wouter C Meijers
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Hanzeplein 1, Groningen, The Netherlands
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
129
|
Puhl SL, Steffens S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution? Front Cardiovasc Med 2019; 6:25. [PMID: 30937305 PMCID: PMC6431642 DOI: 10.3389/fcvm.2019.00025] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation not only plays a crucial role in acute ischemic cardiac injury, but also contributes to post-infarction repair and remodeling. Traditionally, neutrophils have been merely considered as detrimental in the setting of an acute myocardial infarction. However, recently published studies demonstrated that neutrophils might also play an important role in cardiac repair by regulating reparative processes. An emerging concept is that different neutrophil subsets exist, which might exhibit separate functional properties. In support of the existence of distinct neutrophil subsets in the ischemic heart, transcriptional changes in cardiac neutrophils have been reported within the first few days after myocardial infarction. In addition, there is an increasing awareness of sex-specific differences in many physiological and pathophysiological responses, including cardiovascular parameters and inflammation. Of particular interest in this context are recent experimental data dissecting sex-specific differences in neutrophil signaling after myocardial infarction. Unraveling the distinct and possibly stage-dependent properties of neutrophils in cardiac repair may provide new therapeutic strategies in order to improve the clinical outcome for myocardial infarction patients. This review will briefly discuss recent advances in our understanding of the neutrophil functional repertoire and emerging insights of sex-specific differences in post-myocardial infarction inflammatory responses.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
130
|
Heo GS, Kopecky B, Sultan D, Ou M, Feng G, Bajpai G, Zhang X, Luehmann H, Detering L, Su Y, Leuschner F, Combadière C, Kreisel D, Gropler RJ, Brody SL, Liu Y, Lavine KJ. Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circ Res 2019; 124:881-890. [PMID: 30661445 PMCID: PMC6435034 DOI: 10.1161/circresaha.118.314030] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
Collapse
Affiliation(s)
- Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Benjamin Kopecky
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Monica Ou
- Department of Biology, Saint Louis University, St. Louis, MO USA
| | - Guoshuai Feng
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Geetika Bajpai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Yi Su
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Florian Leuschner
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, F-75013 Paris, France
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Kory J. Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
131
|
Mora-Ruíz MD, Blanco-Favela F, Chávez Rueda AK, Legorreta-Haquet MV, Chávez-Sánchez L. Role of interleukin-17 in acute myocardial infarction. Mol Immunol 2019; 107:71-78. [DOI: 10.1016/j.molimm.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
132
|
Peng Y, Chen B, Zhao J, Peng Z, Xu W, Yu G. Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice. Biomed Pharmacother 2019; 111:624-630. [DOI: 10.1016/j.biopha.2018.12.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
|
133
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
134
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
135
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
136
|
Almeida Paiva R, Martins-Marques T, Jesus K, Ribeiro-Rodrigues T, Zuzarte M, Silva A, Reis L, da Silva M, Pereira P, Vader P, Petrus Gerardus Sluijter J, Gonçalves L, Cruz MT, Girao H. Ischaemia alters the effects of cardiomyocyte-derived extracellular vesicles on macrophage activation. J Cell Mol Med 2018; 23:1137-1151. [PMID: 30516028 PMCID: PMC6349194 DOI: 10.1111/jcmm.14014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischaemia is associated with an exacerbated inflammatory response, as well as with a deregulation of intercellular communication systems. Macrophages have been implicated in the maintenance of heart homeostasis and in the progression and resolution of the ischaemic injury. Nevertheless, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages remain largely underexplored. Extracellular vesicles (EVs) have emerged as key players of cell‐cell communication in cardiac health and disease. Hence, the main objective of this study was to characterize the impact of cardiomyocyte‐derived EVs upon macrophage activation. Results obtained demonstrate that EVs released by H9c2 cells induced a pro‐inflammatory profile in macrophages, via p38MAPK activation and increased expression of iNOS, IL‐1β and IL‐6, being these effects less pronounced with ischaemic EVs. EVs derived from neonatal cardiomyocytes, maintained either in control or ischaemia, induced a similar pattern of p38MAPK activation, expression of iNOS, IL‐1β, IL‐6, IL‐10 and TNFα. Importantly, adhesion of macrophages to fibronectin was enhanced by EVs released by cardiomyocytes under ischaemia, whereas phagocytic capacity and adhesion to cardiomyocytes were higher in macrophages incubated with control EVs. Additionally, serum‐circulating EVs isolated from human controls or acute myocardial infarction patients induce macrophage activation. According to our model, in basal conditions, cardiomyocyte‐derived EVs maintain a macrophage profile that ensure heart homeostasis, whereas during ischaemia, this crosstalk is affected, likely impacting healing and post‐infarction remodelling.
Collapse
Affiliation(s)
- Rafael Almeida Paiva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Katia Jesus
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Monica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana Reis
- Cardiology Department, CHUC-HG, Coimbra, Portugal
| | | | - Paulo Pereira
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost Petrus Gerardus Sluijter
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,Interuniversity Cardiology Institute Netherlands (ICIN), Utrecht, The Netherlands
| | - Lino Gonçalves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Cardiology Department, CHUC-HG, Coimbra, Portugal
| | - Maria Teresa Cruz
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
137
|
Perbellini F, Watson SA, Bardi I, Terracciano CM. Heterocellularity and Cellular Cross-Talk in the Cardiovascular System. Front Cardiovasc Med 2018; 5:143. [PMID: 30443550 PMCID: PMC6221907 DOI: 10.3389/fcvm.2018.00143] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cellular specialization and interactions with other cell types are the essence of complex multicellular life. The orchestrated function of different cell populations in the heart, in combination with a complex network of intercellular circuits of communication, is essential to maintain a healthy heart and its disruption gives rise to pathological conditions. Over the past few years, the development of new biological research tools has facilitated more accurate identification of the cardiac cell populations and their specific roles. This review aims to provide an overview on the significance and contributions of the various cellular components: cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, pericytes, and inflammatory cells. It also aims to describe their role in cardiac development, physiology and pathology with a particular focus on the importance of heterocellularity and cellular interaction between these different cell types.
Collapse
Affiliation(s)
- Filippo Perbellini
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Cesare M. Terracciano
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
138
|
Lindsey ML. Reg-ulating macrophage infiltration to alter wound healing following myocardial infarction. Cardiovasc Res 2018; 114:1571-1572. [PMID: 29912288 PMCID: PMC6148456 DOI: 10.1093/cvr/cvy146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Ave, Jackson, MS, USA
| |
Collapse
|
139
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
140
|
Bejerano T, Etzion S, Elyagon S, Etzion Y, Cohen S. Nanoparticle Delivery of miRNA-21 Mimic to Cardiac Macrophages Improves Myocardial Remodeling after Myocardial Infarction. NANO LETTERS 2018; 18:5885-5891. [PMID: 30141949 DOI: 10.1021/acs.nanolett.8b02578] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MicroRNA-based therapy that targets cardiac macrophages holds great potential for treatment of myocardial infarction (MI). Here, we explored whether boosting the miRNA-21 transcript level in macrophage-enriched areas of the infarcted heart could switch their phenotype from pro-inflammatory to reparative, thus promoting resolution of inflammation and improving cardiac healing. We employed laser capture microdissection (LCM) to spatially monitor the response to this treatment in the macrophage-enriched zones. MiRNA-21 mimic was delivered to cardiac macrophages post MI by nanoparticles (NPs), spontaneously assembled due to the complexation of hyaluronan-sulfate with the nucleic acid mediated by calcium ion bridges, yielding slightly anionic NPs with a mean diameter of 130 nm. Following intravenous administration, the miRNA-21 NPs were targeted to cardiac macrophages at the infarct zone, elicited their phenotype switch from pro-inflammatory to reparative, promoted angiogenesis, and reduced hypertrophy, fibrosis and cell apoptosis in the remote myocardium. Our work thus presents a new therapeutic strategy to manipulate macrophage phenotype using nanoparticle delivery of miRNA-21 with a potential for use to attenuate post-MI remodeling and heart failure.
Collapse
|
141
|
Kazimierczyk E, Eljaszewicz A, Zembko P, Tarasiuk E, Rusak M, Kulczynska-Przybik A, Lukaszewicz-Zajac M, Kaminski K, Mroczko B, Szmitkowski M, Dabrowska M, Sobkowicz B, Moniuszko M, Tycinska A. The relationships among monocyte subsets, miRNAs and inflammatory cytokines in patients with acute myocardial infarction. Pharmacol Rep 2018; 71:73-81. [PMID: 30481637 DOI: 10.1016/j.pharep.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) causes irreversible myocardial damage and release of inflammatory mediators, including cytokines, chemokines and miRNAs. We aimed to investigate changes in the levels of cytokines (IL-6, TNF-α and IL-10), miRNAs profiles (miR-146 and miR-155) and distribution of different monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) in the acute and post-healing phases of AMI. METHODS In eighteen consecutive AMI patients (mean age 56.78 ± 12.4 years, mean left ventricle ejection fraction - LVEF: 41.9 ± 9.8%), treated invasively, monocyte subsets frequencies were evaluated (flow cytometry), cytokine concentrations were analyzed (ELISA) as well as plasma miRNAs were isolated twice - on admission and after 19.2 ± 5.9 weeks of follow-up. Measurements were also performed among healthy volunteers. RESULTS AMI patients presented significantly decreased frequencies of classical cells in comparison to healthy controls (median 71.22% [IQR: 64.4-79.04] vs. 84.35% [IQR: 81.2-86.7], p = 0.001) and higher percent of both intermediate and non-classical cells, yet without statistical significance (median 6.54% [IQR: 5.14-16.64] vs. 5.87% [IQR: 4.48-8.6], p = 0.37 and median 5.99% [IQR: 3.39-11.5] vs. 5.26% [IQR: 3.62-6.2], p = 0.42, respectively). In AMI patients both, analyzed plasma miRNA concentrations were higher than in healthy subjects (miR-146: median 5.48 [IQR: 2.4-11.27] vs. 1.84 [IQR: 0.87-2.53], p = 0.003; miR-155: median 25.35 [IQR: 8.17-43.15] vs. 8.4 [IQR: 0.08-16.9], p = 0.027, respectively), and returned back to the values found in the control group in follow-up. miR-155/miR-146 ratio correlated with the frequencies of classical monocytes (r=0.6, p = 0.01) and miR-155 correlated positively with the concentration of inflammatory cytokines - IL-6 and TNF-α. CONCLUSIONS These results may suggest cooperation of both pro-inflammatory and anti-inflammatory signals in AMI in order to promote appropriate healing of the infarcted myocardium.
Collapse
Affiliation(s)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Paula Zembko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Malgorzata Rusak
- Department of Hematological Diagnostics, Medical University of Bialystok, Białystok, Poland
| | | | | | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland; Department of Population Medicine and Prevention of Civilization Diseases, Medical University of Bialystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Białystok, Poland; Department of Biochemical Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Maciej Szmitkowski
- Department of Biochemical Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Milena Dabrowska
- Department of Hematological Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Bozena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Agnieszka Tycinska
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
142
|
Dewachter L, Dewachter C. Inflammation in Right Ventricular Failure: Does It Matter? Front Physiol 2018; 9:1056. [PMID: 30177883 PMCID: PMC6109764 DOI: 10.3389/fphys.2018.01056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Right ventricular (RV) failure is a common consequence of acute and chronic RV overload of pressure, such as after pulmonary embolism and pulmonary hypertension. It has been recently realized that symptomatology and survival of patients with pulmonary hypertension are essentially determined by RV function adaptation to increased afterload. Therefore, improvement of RV function and reversal of RV failure are treatment goals. Currently, the pathophysiology and the pathobiology underlying RV failure remain largely unknown. A better understanding of the pathophysiological processes involved in RV failure is needed, as there is no proven treatment for this disease at the moment. The present review aims to summarize the current understanding of the pathogenesis of RV failure, focusing on inflammation. We attempt to formally emphasize the importance of inflammation and associated representative inflammatory molecules and cells in the primum movens and development of RV failure in humans and in experimental models. We present inflammatory biomarkers and immune mediators involved in RV failure. We focus on inflammatory mediators and cells which seem to correlate with the deterioration of RV function and also explain how all these inflammatory mediators and cells might impact RV function adaptation to increased afterload. Finally, we also discuss the evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting of acute and chronic RV failure.
Collapse
Affiliation(s)
- Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasmus Academic Hospital, Brussels, Belgium
| |
Collapse
|
143
|
MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis 2018; 9:769. [PMID: 29991775 PMCID: PMC6039462 DOI: 10.1038/s41419-018-0805-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022]
Abstract
The excessive inflammation triggered by damage-associated molecular patterns (DAMPs) after myocardial infarction (MI) is responsible for the development of cardiac dysfunction and adverse remodeling, while the mechanisms by which inflammation is fine tuned remain to be fully elucidated. MicroRNA-21 (miR-21) has been shown to function in cardiovascular diseases, while its role in inflammatory responses and cardiac function post MI in mice remains unknown. Here, we found that miR-21 expression was markedly increased in border and infarct areas of cardiac tissues during the early inflammatory phase of MI model established by ligating the left-anterior descending coronary artery. MiR-21 knockout mice had decreased survival rates, worse cardiac dysfunction, and increased infarct and scar areas after MI compared with WT mice. MiR-21 knockout mice showed significantly higher levels of inflammatory cytokines including IL-1β, IL-6, and TNF-α in cardiac tissues, as well as infiltration of CD11b+ monocytes/macrophages with higher expression level of inflammatory cytokines. MI induced the great release of high mobility group protein B1 (HMGB1) and heat shock protein 60 (HSP60) in cardiac tissue. MiR-21 deficiency significantly promoted the inflammatory cytokine production triggered by DAMPs in macrophages, whereas, miR-21 overexpression markedly inhibited the inflammatory cytokine production. Mechanistically, miR-21 deficiency enhanced p38 and NF-κB signaling activation in cardiac tissue post MI and macrophages treated with DAMPs. MiR-21 was found to directly target kelch repeat and BTB (POZ) domain containing 7 (KBTBD7), which promoted DAMP-triggered inflammatory responses in macrophages. Furthermore, KBTBD7 interacted with MKK3/6 and promoted their activation, which in turn enhanced the activation of downstream p38 and NF-κB signaling induced by DAMPs. Therefore, our findings demonstrate that miR-21 attenuates inflammation, cardiac dysfunction, and maladaptive remodeling post MI through targeting KBTBD7 and inhibiting p38 and NF-κB signaling activation, suggesting that miR-21 may function as a novel potential therapeutic target for MI.
Collapse
|
144
|
Hofmann U, Frantz S. Role of stromal cell derived factor-1 in myocardial healing-novel insights from comparative studies in the fetal and postnatal myocardium. Transl Pediatr 2018; 7:239-241. [PMID: 30159253 PMCID: PMC6087827 DOI: 10.21037/tp.2018.01.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
145
|
Jadapalli JK, Halade GV. Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB J 2018; 32:5227-5237. [PMID: 29750575 DOI: 10.1096/fj.201800254r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are immune-sensing "big eater" phagocytic cells responsible for an innate, adaptive, and regenerative response. After myocardial infarction, macrophages predominantly clear the deceased cardiomyocyte apoptotic or necrotic neutrophils to develop a regenerative and reparative program with the activation of the lipoxygenase-mediated maresin (MaR) metabolome at the site of ischemic injury. The specialized proresolving molecule and macrophage mediator in resolving inflammation, MaR-1, produced by human macrophages, has potent defining effects that limit polymorphonuclear neutrophil infiltration, enhance uptake of apoptotic PMNs, regulate inflammation resolution and tissue regeneration, and reduce pain. In addition to proresolving and anti-inflammatory actions, MaR-1 displays potent tissue regenerative effects in stroke and is an antinociceptive. Macrophages actively participate in the biosynthesis of bioactive MaR-2, which exhibits anti-inflammatory, proresolving, and atherosclerotic effects. A new class of macrophage-derived molecules, MaR conjugates in tissue regeneration, is identified that regulates phagocytosis and the repair and regeneration of damaged tissue. The presented review provides a current summary of the effect of MaR in resolution pathophysiology, with relevance to a cardiac repair program.-Jadapalli, J. K., Halade, G. V. Unified nexus of macrophages and maresins in cardiac reparative mechanisms.
Collapse
Affiliation(s)
- Jeevan Kumar Jadapalli
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
146
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
147
|
Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc Natl Acad Sci U S A 2018; 115:E4661-E4669. [PMID: 29712858 DOI: 10.1073/pnas.1720065115] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nonischemic cardiomyopathy (NICM) resulting from long-standing hypertension, valvular disease, and genetic mutations is a major cause of heart failure worldwide. Recent observations suggest that myeloid cells can impact cardiac function, but the role of tissue-intrinsic vs. tissue-extrinsic myeloid cells in NICM remains poorly understood. Here, we show that cardiac resident macrophage proliferation occurs within the first week following pressure overload hypertrophy (POH; a model of heart failure) and is requisite for the heart's adaptive response. Mechanistically, we identify Kruppel-like factor 4 (KLF4) as a key transcription factor that regulates cardiac resident macrophage proliferation and angiogenic activities. Finally, we show that blood-borne macrophages recruited in late-phase POH are detrimental, and that blockade of their infiltration improves myocardial angiogenesis and preserves cardiac function. These observations demonstrate previously unappreciated temporal and spatial roles for resident and nonresident macrophages in the development of heart failure.
Collapse
|
148
|
Kimbrough D, Wang SH, Wright LH, Mani SK, Kasiganesan H, LaRue AC, Cheng Q, Nadig SN, Atkinson C, Menick DR. HDAC inhibition helps post-MI healing by modulating macrophage polarization. J Mol Cell Cardiol 2018; 119:51-63. [PMID: 29680681 DOI: 10.1016/j.yjmcc.2018.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022]
Abstract
AIMS Following an acute myocardial infarction (MI) the extracellular matrix (ECM) undergoes remodeling in order to prevent dilation of the infarct area and maintain cardiac output. Excessive and prolonged inflammation following an MI exacerbates adverse ventricular remodeling. Macrophages are an integral part of the inflammatory response that contribute to this remodeling. Treatment with histone deacetylase (HDAC) inhibitors preserves LV function and myocardial remodeling in the post-MI heart. This study tested whether inhibition of HDAC activity resulted in preserving post-MI LV function through the regulation of macrophage phenotype and early resolution of inflammation. METHODS AND RESULTS HDAC inhibition does not affect the recruitment of CD45+ leukocytes, CD45+/CD11b+ inflammatory monocytes or CD45+/CD11b+CD86+ inflammatory macrophages for the first 3 days following infarct. Further, HDAC inhibition does not change the high expression level of the inflammatory cytokines in the first days following MI. However, by day 7, there was a significant reduction in the levels of CD45+/Cd11b+ and CD45+/CD11b+/CD86+ cells with HDAC inhibition. Remarkably, HDAC inhibition resulted in the dramatic increase in the recruitment of CD45+/CD11b+/CD206+ alternatively activated macrophages as early as 1 day which remained significantly elevated until 5 days post-MI. qRT-PCR revealed that HDAC inhibitor treatment shifts the cytokine and chemokine environment towards an M2 phenotype with upregulation of M2 markers at 1 and 5 days post-MI. Importantly, HDAC inhibition correlates with significant preservation of both LV ejection fraction and end-diastolic volume and is associated with a significant increase in micro-vessel density in the border zone at 14 days post-MI. CONCLUSION Inhibition of HDAC activity result in the early recruitment of reparative CD45+/CD11b+/CD206+ macrophages in the post-MI heart and correlates with improved ventricular function and remodeling. This work identifies a very promising therapeutic opportunity to manage macrophage phenotype and enhance resolution of inflammation in the post-MI heart.
Collapse
Affiliation(s)
- Denise Kimbrough
- Department of Medicine, Division of Cardiology, Charleston, SC, United States
| | - Sabina H Wang
- Department of Medicine, Division of Cardiology, Charleston, SC, United States
| | - Lillianne H Wright
- Department of Medicine, Division of Cardiology, Charleston, SC, United States
| | - Santhosh K Mani
- Department of Medicine, Division of Cardiology, Charleston, SC, United States
| | | | - Amanda C LaRue
- Department of Pathology, Charleston, SC, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| | - Qi Cheng
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Satish N Nadig
- Department of Microbiology and Immunology, Charleston, SC, United States; Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Department of Microbiology and Immunology, Charleston, SC, United States; Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Charleston, SC, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
149
|
Mouton AJ, Rivera OJ, Lindsey ML. Myocardial infarction remodeling that progresses to heart failure: a signaling misunderstanding. Am J Physiol Heart Circ Physiol 2018; 315:H71-H79. [PMID: 29600895 PMCID: PMC6087773 DOI: 10.1152/ajpheart.00131.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After myocardial infarction, remodeling of the left ventricle involves a wound-healing orchestra involving a variety of cell types. In order for wound healing to be optimal, appropriate communication must occur; these cells all need to come in at the right time, be activated at the right time in the right amount, and know when to exit at the right time. When this occurs, a new homeostasis is obtained within the infarct, such that infarct scar size and quality are sufficient to maintain left ventricular size and shape. The ideal scenario does not always occur in reality. Often, miscommunication can occur between infarct and remote spaces, across the temporal wound-healing spectrum, and across organs. When miscommunication occurs, adverse remodeling can progress to heart failure. This review discusses current knowledge gaps and recent development of the roles of inflammation and the extracellular matrix in myocardial infarction remodeling. In particular, the macrophage is one cell type that provides direct and indirect regulation of both the inflammatory and scar-forming responses. We summarize current research efforts focused on identifying biomarker indicators that reflect the status of each component of the wound-healing process to better predict outcomes.
Collapse
Affiliation(s)
- Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Osvaldo J Rivera
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|
150
|
Zhou X, Li Z, Wang Z, Chen E, Wang J, Chen F, Jones O, Tan T, Chen S, Takeshima H, Bryant J, Ma J, Xu X. Syncytium calcium signaling and macrophage function in the heart. Cell Biosci 2018; 8:24. [PMID: 29599964 PMCID: PMC5870344 DOI: 10.1186/s13578-018-0222-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are traditionally viewed as a key component of the immunity defense system. Recent studies have identified resident macrophages in multiple organs including the heart, in which the cells perform their crucial role on tissue repair after myocardial infarction (MI). The cardiac-specific macrophages interdigitate with cardiomyocytes particularly at the atrioventricular node region. The integrative communication between macrophage and cardiomyocytes can modulate the contractile function of the heart. Coordinated control of intracellular calcium signaling and intercellular electrical conduction via the syncytium network underlie the synchronized beating of the heart. In this review article, we introduce the concept the syncytium calcium signaling in the cardiomyocytes can modulate gene expression in the resident macrophages and their integration with the cardiomyocytes. The cardiac macrophages originate from bone marrow stem cells, migrate to local via vessel, and settle down as a naturalization process in heart. As the macrophages perform on regulating electrical conduction, and accomplish post MI non-scared completed regeneration or partial regeneration with fibrotic scar at different stage of postnatal development, we understand that multiple functions of cardiac macrophage should carry on with diverse linages. The naturalization process in heart of macrophages to the cardiomyocytes serves important roles to control of electrical signaling and calcium-dependent contractile function of the heart.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Zhongguang Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | - Zefan Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | - Eda Chen
- Virginia Commonwealth University College of Medicine, Richmond, VA 23284 USA
| | - Juan Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | | | - Odell Jones
- University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Tao Tan
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Shawn Chen
- Chen Wellness Clinics, Wichita, KS 67219 USA
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501 Japan
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21287 USA
| | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| |
Collapse
|