101
|
Extracellular ligation-dependent CD45RB enzymatic activity negatively regulates lipid raft signal transduction. Blood 2008; 113:594-603. [PMID: 18840711 DOI: 10.1182/blood-2008-04-150987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD45 is the most prominent membrane protein on lymphocytes. The function and regulation of this protein tyrosine phosphatase remain largely obscure, mainly because of the lack of a known ligand, and it still remains unknown whether such tyrosine phosphatases are subject to extracellular control at all. We report that an anti-CD45RB antibody (Ab) that prevents rejection and induces tolerance activates CD45RB tyrosine phosphatase enzymatic activity in T lymphocytes, allowing us to directly monitor the effects of increased CD45RB activity on signal transduction. Using both kinase substrate peptide arrays as well as conventional biochemistry, we also provide evidence of the various kinases involved in bringing about the inhibitory effect of this Ab on CD3-induced T-cell receptor signaling. Furthermore, we report that activated CD45RB translocates to lipid rafts and interferes with lipid raft localization and activation state of CD45 substrate Lck. Thus, these findings indeed prove that CD45 is subject to extracellular control and also define a novel mechanism by which receptor tyrosine phosphatases control lymphocyte biology and provide further insight into the intracellular signaling pathways effected by anti-CD45RB monoclonal Ab treatment.
Collapse
|
102
|
|
103
|
He HT, Marguet D. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 2008; 9:525-30. [PMID: 18516087 DOI: 10.1038/embor.2008.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/21/2008] [Indexed: 11/09/2022] Open
Abstract
T-cell antigen receptor triggering mechanisms and lipid rafts are of broad interest, but are also controversial topics. Here, we review some recent progress in these two research fields, which has been accomplished mostly in live cells and with the use of advanced technologies. We then discuss the potential relationship between membrane-domain organization and T-cell antigen receptor-triggering mechanisms. On the basis of the relevant experimental observations, we argue that the key to achieving a better understanding of both processes is the ability to monitor the molecular dynamics and interactions taking place in the membrane of T cells at a spatial scale of tens to hundreds of nanometres, with a subsecond-to-second temporal resolution.
Collapse
Affiliation(s)
- Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Case 906, F13288 Marseille Cedex 09, France.
| | | |
Collapse
|
104
|
Kenworthy AK. Have we become overly reliant on lipid rafts? Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 2008; 9:531-5. [PMID: 18516088 DOI: 10.1038/embor.2008.92] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/25/2008] [Indexed: 01/11/2023] Open
Abstract
During the past decade, the lipid-raft hypothesis has focused attention on the role of membrane domains in controlling cellular functions. Among the best-studied roles of lipid rafts is the regulation of T-cell signalling. In particular, a model has emerged in which lipid rafts regulate protein-protein interactions during signalling in a cholesterol-dependent manner. Does this model provide the best description of what is happening in living cell membranes? Alternatively, has our ability to evaluate this question critically become compromised by the influential nature of the lipid-raft model itself? Here, this issue is explored in the context of two of the major tenets of the lipid-raft model.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
105
|
Nunes RJ, Castro MAA, Gonçalves CM, Bamberger M, Pereira CF, Bismuth G, Carmo AM. Protein interactions between CD2 and Lck are required for the lipid raft distribution of CD2. THE JOURNAL OF IMMUNOLOGY 2008; 180:988-97. [PMID: 18178839 DOI: 10.4049/jimmunol.180.2.988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.
Collapse
Affiliation(s)
- Raquel J Nunes
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
106
|
Van Komen JS, Mishra S, Byrum J, Chichili GR, Yaciuk JC, Farris AD, Rodgers W. Early and Dynamic Polarization of T Cell Membrane Rafts and Constituents Prior to TCR Stop Signals. THE JOURNAL OF IMMUNOLOGY 2007; 179:6845-55. [DOI: 10.4049/jimmunol.179.10.6845] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
107
|
Chichili GR, Rodgers W. Clustering of membrane raft proteins by the actin cytoskeleton. J Biol Chem 2007; 282:36682-91. [PMID: 17947241 DOI: 10.1074/jbc.m702959200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell membranes are laterally organized into functionally discrete domains that include the cholesterol-dependent membrane "rafts." However, how membrane domains are established and maintained remains unresolved and controversial but often requires the actin cytoskeleton. In this study, we used fluorescence resonance energy transfer to measure the role of the actin cytoskeleton in the co-clustering of membrane raft-associated fluorescent proteins (FPs) and FPs targeted to the nonraft membrane fraction. By fitting the fluorescence resonance energy transfer data to an isothermal binding equation, we observed a specific co-clustering of raft-associated donor and acceptor probes that was sensitive to latrunculin B (Lat B), which disrupts the actin cytoskeleton. Conversely, treating with jasplakinolide to enhance actin polymerization increased co-clustering of the raft-associated FPs over that of the nonraft probes. We also observed by immunoblotting experiments that the actin-dependent co-clustering coincided with regulation of the raft-associated Src family kinase Lck. Specifically, Lat B decreased the phosphorylation of the C-terminal regulatory tyrosine of Lck (Tyr505), and combining the Lat B with filipin further decreased the Tyr505 phosphorylation. Furthermore, the Lat B-dependent changes in Lck regulation required CD45 because no significant changes occurred in treated T cells lacking CD45 expression. These data define a role for the actin cytoskeleton in promoting co-clustering of raft-associated proteins and show that this property is important toward regulating raft-associated signaling proteins such as Lck.
Collapse
Affiliation(s)
- Gurunadh R Chichili
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
108
|
Sharif-Askari E, Gaucher D, Halwani R, Ma J, Jao K, Abdallah A, Haddad EK, Sékaly RP. p56Lck tyrosine kinase enhances the assembly of death-inducing signaling complex during Fas-mediated apoptosis. J Biol Chem 2007; 282:36048-56. [PMID: 17932036 DOI: 10.1074/jbc.m706007200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the death-inducing signaling complex (DISC) is rapidly assembled, several lines of evidence suggest that formation of this complex is not the first consequence of cell surface CD95 (Fas) stimulation but rather a later step in this process. Activation of Fas triggers a cascade of signaling events that culminate in cellular apoptosis. Tyrosine kinases are critical effectors in T cell activation. However, their functional involvement in death receptor-mediated apoptosis is unknown. Here, we used p56(Lck)-deficient cells to show that CD95-induced cell death is highly dependent on p56(Lck) activity and its localization within plasma membrane. We found that p56(Lck) acts upstream of the mitochondria; in the absence of p56(Lck), Bid cleavage and the release of cytochrome c were severely impaired. Moreover, p56(Lck)-deficient cells or cells expressing an inactive form of p56(Lck) displayed defective formation of the DISC post CD95 stimulation. In vivo reconstitution of thymocytes from p56(lck)-deficient mice, which are resistant to apoptosis, with p56(Lck) restored Fas-mediated cell death. Our results support a novel model whereby sensitivity to apoptosis is regulated through quantitative changes in the stoichiometry of DISC components triggered by p56(Lck) activation and localization.
Collapse
Affiliation(s)
- Ehssan Sharif-Askari
- Laboratoire d'Immunologie, Centre de Recherche CHUM Saint-Luc, Montréal H2X 1P1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Chen IJ, Chen HL, Demetriou M. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J Biol Chem 2007; 282:35361-72. [PMID: 17897956 DOI: 10.1074/jbc.m706923200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lateral compartmentalization of membrane proteins into microdomains regulates signal transduction; however, structural determinants are incompletely understood. Membrane glycoproteins bind galectins in proportion to the number (i.e. NX(S/T) sites) and degree of GlcNAc branching within attached N-glycans, forming a molecular lattice that negatively regulates T cell function and autoimmunity. We find that in resting T cells, partition of CD45 inside and T cell receptor (TCR)/CD4-Lck/Zap-70 outside microdomains is positively and negatively regulated by the galectin lattice and actin cytoskeleton, respectively. In the absence of TCR ligands, the galectin lattice counteracts F-actin to retain CD45 in microdomains while concurrently blocking TCR/CD4-Lck/Zap-70 partition to microdomains by preventing a conformational change in the TCR that recruits Nck/Wiscott Aldrich Syndrome (WASp)/SLP76/F-actin/CD4 to TCR. The counterbalancing activities of the galectin lattice and actin cytoskeleton negatively and positively regulate Lck activity in resting cells and CD45 versus TCR clustering and signaling at the early immune synapse, respectively. Microdomain-localized CD45 inactivates Lck and inhibits TCR signaling at the early immune synapse. Thus, the galectin lattice and actin cytoskeleton interact on opposing sides of the plasma membrane to control microdomain structure and function, coupling basal growth signaling with thresholds to activation.
Collapse
Affiliation(s)
- I-Ju Chen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
110
|
Robinson MJ, Beinke S, Kouroumalis A, Tsichlis PN, Ley SC. Phosphorylation of TPL-2 on serine 400 is essential for lipopolysaccharide activation of extracellular signal-regulated kinase in macrophages. Mol Cell Biol 2007; 27:7355-64. [PMID: 17709378 PMCID: PMC2169048 DOI: 10.1128/mcb.00301-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor progression locus 2 (TPL-2) kinase is essential for Toll-like receptor 4 activation of the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) and for upregulation of the inflammatory cytokine tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-stimulated macrophages. LPS activation of ERK requires TPL-2 release from associated NF-kappaB1 p105, which blocks TPL-2 access to its substrate, the ERK kinase MEK. Here we demonstrate that TPL-2 activity is also regulated independently of p105, since LPS stimulation was still needed for TPL-2-dependent activation of ERK in Nfkb1(-/-) macrophages. In wild-type macrophages, LPS induced the rapid phosphorylation of serine (S) 400 in the TPL-2 C-terminal tail. Mutation of this conserved residue to alanine (A) blocked the ability of retrovirally expressed TPL-2 to induce the activation of ERK in LPS-stimulated Nfkb1(-/-) macrophages. TPL-2(S400A) expression also failed to reconstitute LPS activation of ERK and induction of TNF in Map3k8(-/-) macrophages, which lack endogenous TPL-2. Consistently, the S400A mutation was found to block LPS stimulation of TPL-2 MEK kinase activity. Thus, induction of TPL-2 MEK kinase activity by LPS stimulation of macrophages requires TPL-2 phosphorylation on S400, in addition to its release from NF-kappaB1 p105. Oncogenic C-terminal truncations of TPL-2 that remove S400 could promote its transforming potential by eliminating this critical control step.
Collapse
Affiliation(s)
- M J Robinson
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
111
|
Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol 2007; 18:608-15. [PMID: 17890113 PMCID: PMC2596300 DOI: 10.1016/j.semcdb.2007.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Elizabeth C. Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
- Corresponding author at: Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom. Tel.: +44 207 679 9634; fax: +44 207 679 9143.
| | - Fabian Flores-Borja
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
| | - Panagiotis S. Kabouridis
- Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
- Corresponding author. Tel.: +44 207882 5664; fax: +44 207882 6121.
| |
Collapse
|
112
|
Abstract
Bilayer mixtures of lipids are used by many researchers as chemically simple models for biological membranes. In particular, observations on three-component bilayer mixtures containing cholesterol show rich phase behavior, including several regions of two-phase coexistence and one region of three-phase coexistence. Yet, the relationship between these simple model mixtures and biological membranes, which contain hundreds of different proteins and lipids, is not clear. Many of the model mixtures have been chosen for study because they exhibit readily observed phase separations, not because they are good mimics of cell membrane components. If the many components of cell membranes could be grouped in some way, then understanding the phase behaviors of biological membranes might be enhanced. Furthermore, if the underlying interaction energies between lipids and proteins can be determined, then it might be possible to model the distributions of lipids and proteins in a bilayer membrane, even in complex mixtures.
Collapse
|
113
|
Aires V, Hichami A, Boulay G, Khan NA. Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: A comparative study with DAG-containing docosahexaenoic acid. Biochimie 2007; 89:926-37. [PMID: 17532549 DOI: 10.1016/j.biochi.2006.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 10/27/2006] [Indexed: 11/29/2022]
Abstract
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.
Collapse
Affiliation(s)
- Virginie Aires
- Département de Physiologie, UPRES Lipides and Nutrition, Université de Bourgogne, Faculté des Sciences de la Vie, 6 Boulevard Gabriel, 2100 Dijon, France
| | | | | | | |
Collapse
|
114
|
Kobayashi M, Katagiri T, Kosako H, Iida N, Hattori S. Global analysis of dynamic changes in lipid raft proteins during T-cell activation. Electrophoresis 2007; 28:2035-43. [PMID: 17486660 DOI: 10.1002/elps.200600675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipid rafts are considered as specialized microdomains within the plasma membrane with unique lipid compositions different from surrounding membranes. Following T-cell receptor (TCR) stimulation, lipid rafts assemble in T-cell/antigen-presenting cell (APC) contact site known as the immunological synapse, inner leaflets of which serve as activation or docking sites for downstream signaling components. To understand the signaling events occurring in lipid rafts, we globally analyzed dynamic changes in lipid raft proteins during TCR/CD28 costimulation using 2-D fluorescence difference gel electrophoresis. We detected multiple spots whose intensities were enhanced after costimulation, and identified proteins in these spots by PMF. Identified proteins include Src family tyrosine kinases, tyrosine phosphatase, phosphatidylinositol 3-kinase (PI3-kinase), actin-binding proteins, and regulators for small GTPases. Of particular interest, a number of pleckstrin homology (PH) domain-containing proteins were identified. Biochemical and histochemical analyses confirmed the translocation of these proteins from cytosol to lipid rafts. We also demonstrated that these proteins assembled at the T-cell/APC interface. These results indicate the efficacy of our system to systematically analyze dynamics of lipid raft proteins during extracellular stimulation.
Collapse
Affiliation(s)
- Michimoto Kobayashi
- Division of Cellular Proteomics (BML), Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
115
|
Pang DJ, Hayday AC, Bijlmakers MJ. CD8 Raft Localization Is Induced by Its Assembly into CD8αβ Heterodimers, Not CD8αα Homodimers. J Biol Chem 2007; 282:13884-94. [PMID: 17341584 DOI: 10.1074/jbc.m701027200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The coreceptor CD8 is expressed as a CD8alphabeta heterodimer on major histocompatibility complex class I-restricted TCRalphabeta T cells, and as a CD8alphaalpha homodimer on subsets of memory T cells, intraepithelial lymphocytes, natural killer cells, and dendritic cells. Although the role of CD8alphaalpha is not well understood, it is increasingly clear that this protein is not a functional homologue of CD8alphabeta. On major histocompatibility complex class I-restricted T cells, CD8alphabeta is a more efficient TCR coreceptor than CD8alphaalpha. This property has for the mouse protein been attributed to the recruitment of CD8alphabeta into lipid rafts, which is dependent on CD8beta palmitoylation. Here, these divergent distributions of CD8alphabeta and CD8alphaalpha are demonstrated for the human CD8 proteins as well. However, although palmitoylation of both CD8alpha and CD8beta chains was detected, this modification did not contribute to raft localization. In contrast, arginines in the cytoplasmic domain are crucial for raft localization of CD8betabeta. Most strikingly, the assembly of a non-raft localized CD8beta chain with a non-raft localized CD8alpha chain resulted in raft-localized CD8alphabeta heterodimers. Using chimeric CD8 proteins, this property of the heterodimer was found to be determined by the assembly of CD8alpha and CD8beta extracellular regions. The presence of two CD8alpha extracellular regions, on the other hand, appears to preclude raft localization. Thus, heterodimer formation and raft association are intimately linked for CD8alphabeta. These results emphasize that lipid raft localization is a key feature of human CD8alphabeta that clearly distinguishes it from CD8alphaalpha.
Collapse
MESH Headings
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Dendritic Cells/immunology
- Dimerization
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunologic Memory/genetics
- Killer Cells, Natural/immunology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Palmitic Acid/immunology
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Dick John Pang
- Peter Gorer Department of Immunobiology, King's College London, School of Medicine at Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
116
|
Siddiqui RA, Harvey KA, Zaloga GP, Stillwell W. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr Clin Pract 2007; 22:74-88. [PMID: 17242459 DOI: 10.1177/011542650702200174] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current understanding of biologic membrane structure and function is largely based on the concept of lipid rafts. Lipid rafts are composed primarily of tightly packed, liquid-ordered sphingolipids/cholesterol/saturated phospholipids that float in a sea of more unsaturated and loosely packed, liquid-disordered lipids. Lipid rafts have important clinical implications because many important membrane-signaling proteins are located within the raft regions of the membrane, and alterations in raft structure can alter activity of these signaling proteins. Because rafts are lipid-based, their composition, structure, and function are susceptible to manipulation by dietary components such as omega-3 polyunsaturated fatty acids and by cholesterol depletion. We review how alteration of raft lipids affects the raft/nonraft localization and hence the function of several proteins involved in cell signaling. We focus our discussion of raft-signaling proteins on inflammation and cancer.
Collapse
Affiliation(s)
- Rafat A Siddiqui
- Methodist Research Institute, Cellular Biochemistry, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
117
|
Barbat C, Trucy M, Sorice M, Garofalo T, Manganelli V, Fischer A, Mazerolles F. p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner. Biochem J 2007; 402:471-81. [PMID: 17123354 PMCID: PMC1863576 DOI: 10.1042/bj20061061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with the G(M1) ganglioside that partially co-localized with G(M3) in these domains. In the present study, we show that CD4-p56(lck) association in CD4 signalling is required for the redistribution of p56(lck), PI3K and LFA-1 in ganglioside-enriched domains, since ganglioside aggregation and recruitment of these proteins were not observed in a T-cell line (A201) expressing the mutant form of CD4 that does not bind p56(lck). In addition, we show that although these proteins associated in different ways with G(M1) and G(M3), all of the associations were dependent on CD4-p56(lck) association. Gangliosides could associate with these proteins that differ in affinity binding and could be modified following CD4 signalling. Our results suggest that through these associations, gangliosides transiently sequestrate these proteins and consequently inhibit LFA-1-dependent adhesion. Furthermore, while structural diversity of gangliosides may allow association with distinct proteins, we show that the tyrosine phosphatase SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), also required for the down-regulation of LFA-1-dependent adhesion, transiently and partially co-localized with PI3K and p56(lck) in detergent-insoluble membranes without association with G(M1) or G(M3). We propose that CD4 ligation and binding with p56(lck) and their interaction with G(M3) and/or G(M1) gangliosides induce recruitment of distinct proteins important for CD4 signalling to form a multimolecular signalling complex.
Collapse
Key Words
- adhesion molecule
- cd4 t-cell
- ganglioside
- lymphocyte function-associated antigen-1 (lfa-1)
- phosphoinositide 3-kinase (pi3k)
- raft
- ab, antibody
- au, arbitrary units
- ctxb, cholera toxin
- drm, detergent-resistant membrane
- gamig, goat anti-mouse ig
- hla, human leucocyte antigen
- hptlc, high-performance tlc
- hrp, horseradish peroxidase
- lfa-1, lymphocyte function-associated antigen-1
- mab, monoclonal ab
- pi3k, phosphoinositide 3-kinase
- pdk1, phosphoinositide-dependent kinase-1
- pns, post-nuclear supernatant
- rn, relative number
- shp-2, src homology 2 domain-containing protein tyrosine phosphatase 2
- tcr, t-cell receptor
- tritc, tetramethylrhodamine β-isothiocyanate
Collapse
Affiliation(s)
- Christiane Barbat
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maylis Trucy
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maurizio Sorice
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tina Garofalo
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Valeria Manganelli
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alain Fischer
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
- §Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | - Fabienne Mazerolles
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| |
Collapse
|
118
|
Hang HC, Geutjes EJ, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J Am Chem Soc 2007; 129:2744-5. [PMID: 17305342 DOI: 10.1021/ja0685001] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Howard C Hang
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
119
|
Rah SY, Park KH, Nam TS, Kim SJ, Kim H, Im MJ, Kim UH. Association of CD38 with Nonmuscle Myosin Heavy Chain IIA and Lck Is Essential for the Internalization and Activation of CD38. J Biol Chem 2007; 282:5653-60. [PMID: 17182620 DOI: 10.1074/jbc.m609478200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.
Collapse
Affiliation(s)
- So-Young Rah
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
120
|
Nunes RJ, Castro MAA, Carmo AM. Protein Crosstalk in Lipid Rafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:127-36. [PMID: 16802604 DOI: 10.1007/0-387-34132-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Raquel J Nunes
- Group of Cell Activation and Gene Expression, Institute for Molecular and Cellular Biology, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
121
|
Resh MD. Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods 2006; 40:191-7. [PMID: 17012032 PMCID: PMC1712572 DOI: 10.1016/j.ymeth.2006.04.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 04/21/2006] [Indexed: 11/19/2022] Open
Abstract
Covalent attachment of palmitate to proteins is a post-translational modification that exerts diverse effects on protein localization and function. The three key technical approaches required for an investigator to determine the role of palmitoylation of your favorite palmitoylated protein (YFPP) are methods to: (1) detect YFPP palmitoylation; (2) alter or inhibit palmitoylation of YFPP; (3) determine the functional significance of altered YFPP palmitoylation. Here, I describe experimental methods to address these three issues. Both radioactive (radiolabeling with [(3)H]palmitate or (125)I-IC16 palmitate) and non-radioactive (chemical labeling and mass spectrometry) methods to detect palmitoylated proteins are presented. Next, techniques to inhibit protein palmitoylation are described. These include site specific mutagenesis, and treatment of cells with inhibitors of protein palmitoylation, including 2-bromopalmitate, cerulenin, and tunicamycin. Alternative methods to replace palmitate with other fatty acids are also presented. Finally, general approaches to determining the effect of altered palmitoylation status on YFPP association with membranes and lipid rafts, as well as signal transduction, are described.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 143, New York, NY 10021, USA.
| |
Collapse
|
122
|
Morley SC, Sung J, Sun GP, Martelli MP, Bunnell SC, Bierer BE. Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells. Mol Immunol 2006; 44:2469-80. [PMID: 17178161 PMCID: PMC1945820 DOI: 10.1016/j.molimm.2006.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/29/2006] [Indexed: 12/18/2022]
Abstract
Upon T cell receptor engagement, both the actin cytoskeleton and substrates of tyrosine phosphorylation are remodeled to create a signaling complex at the interface of the antigen-presenting cell and responding T cell. While T cell signaling has been shown to regulate actin reorganization, the mechanisms by which changes in actin dynamics affect early T cell signaling have not been fully explored. Using gelsolin, an actin-binding protein with capping and severing activities, and latrunculin, an actin-depolymerizing agent, we have further investigated the interplay between actin dynamics and the regulation of T cell signaling. Overexpression of gelsolin altered actin dynamics in Jurkat T cells, and alteration of actin dynamics correlated with dysregulation of tyrosine phosphorylation of raft-associated substrates. This perturbation of tyrosine phosphorylation was correlated with inhibition of activation-dependent signaling pathways regulating Erk-1/2 phosphorylation, NF-AT transcriptional activation and IL-2 production. Modification of actin by the depolymerizing agent latrunculin also altered the tyrosine phosphorylation patterns of proteins associated with lipid rafts, and pre-treatment with latrunculin inhibited anti-CD3 mAb-mediated NF-AT activation. Thus, our data indicate that actin cytoskeletal dynamics modulate the tyrosine phosphorylation of raft-associated proteins and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- S Celeste Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Lommerse PHM, Vastenhoud K, Pirinen NJ, Magee AI, Spaink HP, Schmidt T. Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. Biophys J 2006; 91:1090-7. [PMID: 16920696 PMCID: PMC1563745 DOI: 10.1529/biophysj.105.079053] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence on the occurrence of small (5-700 nm diameter) lipid microdomains in the exoplasmic leaflet of the plasma membrane has evoked interest in the possibility that similar domains may also be present in the cytoplasmic leaflet of the plasma membrane. However, current knowledge about these "lipid rafts", in live cells is limited. One way to obtain insight into the occurrence and the size of lipid rafts is the use of single-molecule microscopy, which allows one to study the diffusive motion of individual molecules with high positional and temporal accuracy. Using this technique, we compared the diffusion behavior of the Lck membrane anchor, which has a high affinity for lipid rafts, to the diffusion behavior of the K-Ras membrane anchor, which has negligible affinity for rafts and compared the results with those of the H-Ras membrane anchor. Surprisingly, we found only minor differences in the diffusion behavior of the various lipid anchors, indicating that putative cytoplasmic leaflet lipid rafts would have to be small (<137 nm diameter) and do not affect the mobility of membrane-anchored molecules much on timescales up to 60 ms.
Collapse
Affiliation(s)
- Piet H M Lommerse
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
124
|
Zambricki E, Zal T, Yachi P, Shigeoka A, Sprent J, Gascoigne N, McKay D. In vivo anergized T cells form altered immunological synapses in vitro. Am J Transplant 2006; 6:2572-9. [PMID: 16952297 DOI: 10.1111/j.1600-6143.2006.01517.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T cells contact allogeneic antigen presenting cells (APCs) and assemble, at their contact interface, a molecular platform called the immunological synapse. Synapse-based molecules provide directional signals for the T cell--either positive signals, resulting in T-cell activation, or negative signals causing T-cell inactivation or anergy. To better understand the molecular basis of in vivo T-cell anergy we analyzed the contacts made between in vivo anergized T cells and APCs, and determined which signaling molecules were included or excluded from their immunological synapses. Anergy was induced in TCR transgenic mice by the intravenous injection of semiallogeneic donor spleen cells. T cells from anergized mice were mixed with APCs, the T-cell/APC synapses imaged using deconvolution microscopy, and their molecular compositions were determined. T cells from anergic mice formed unstable immunological synapses in vitro with allogeneic APCs and failed to recruit the signaling proteins necessary to initiate T-cell activation. These findings suggest that T-cell anergy induced by exposure to semiallogeneic donor cells is associated with defects in the earliest events of T-cell activation, immunological synapse formation and recruitment of TCR-mediated signaling proteins.
Collapse
Affiliation(s)
- E Zambricki
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Palmitate, a 16-carbon saturated fatty acid, is attached to more than 100 proteins. Modification of proteins by palmitate has pleiotropic effects on protein function. Palmitoylation can influence membrane binding and membrane targeting of the modified proteins. In particular, many palmitoylated proteins concentrate in lipid rafts, and enrichment in rafts is required for efficient signal transduction. This Review focuses on the multiple effects of palmitoylation on the localization and function of ligands, receptors, and intracellular signaling proteins. Palmitoylation regulates the trafficking and function of transmembrane proteins such as ion channels, neurotransmitter receptors, heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors, and integrins. In addition, immune receptor signaling relies on protein palmitoylation at many levels, including palmitoylated co-receptors, Src family kinases, and adaptor or scaffolding proteins. The localization and signaling capacities of Ras and G proteins are modulated by dynamic protein palmitoylation. Cycles of palmitoylation and depalmitoylation allow H-Ras and G protein alpha subunits to reversibly bind to and signal from different intracellular cell membranes. Moreover, secreted ligands such as Hedgehog, Wingless, and Spitz use palmitoylation to regulate the extent of long- or short-range signaling. Finally, palmitoylation can alter signaling protein function by direct effects on enzymatic activity and substrate specificity. The identification of the palmitoyl acyltransferases has provided new insights into the biochemistry of this posttranslational process and permitted new substrates to be identified.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10021, USA.
| |
Collapse
|
126
|
Herrmann MM, Pinto S, Kluth J, Wienand U, Lorbiecke R. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC PLANT BIOLOGY 2006; 6:22. [PMID: 17022830 PMCID: PMC1609167 DOI: 10.1186/1471-2229-6-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/06/2006] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. RESULTS Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-beta-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. CONCLUSION ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types.
Collapse
Affiliation(s)
- Markus M Herrmann
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sheena Pinto
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Jantjeline Kluth
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Udo Wienand
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - René Lorbiecke
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
127
|
Lee J, Jung E, Kim Y, Lee J, Park J, Hong S, Hyun CG, Park D, Kim YS. Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3. Br J Pharmacol 2006; 148:366-75. [PMID: 16604092 PMCID: PMC1751564 DOI: 10.1038/sj.bjp.0706728] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/27/2006] [Accepted: 02/17/2006] [Indexed: 12/31/2022] Open
Abstract
1. Tumor necrosis factor (TNF)-alpha is known to induce the expression of CCL11 and CCR3 via the activation of NF-kappaB. CCL11 (eotaxin), the C-C chemokine, is a potent chemoattractant for eosinophils and Th2 lymphocytes, and CCR3 is the receptor for CCL11. 2. In order to determine the effects of rosmarinic acid on the TNF-alpha-induced upregulation of CCL11 and CCR3 in human dermal fibroblasts, we performed an enzyme-linked immunosorbent assay for CCL11 and a Western blot assay for CCR3. The TNF-alpha-induced expression of CCL11 and CCR3 genes was attenuated by rosmarinic acid. 3. In our NF-kappaB luciferase reporter system, TNF-alpha-induced NF-kappaB activation was observed to be reduced by rosmarinic acid. In accordance with this result, rosmarinic acid also inhibited TNF-alpha-induced phosphorylation and degradation of IkappaB-alpha, as well as nuclear translocation of NF-kappaB heterodimer induced by TNF-alpha. This suggests that rosmarinic acid downregulates the expression of CCL11 and CCR3 via the inhibition of NF-kappaB activation signaling. 4. Using the NF-kappaB luciferase reporter system, Western blot analysis, and IKK-beta activity assay, we determined that rosmarinic acid inhibits IKK-beta activity in NF-kappaB signaling, which upregulates the expression of CCL11 and CCR3. Additionally, TNF-alpha-induced secretion of soluble intercellular adhesion molecule-1 and soluble vascular cell adhesion molecule-1 molecules was found to be attenuated by rosmarinic acid. 5. Our results show that rosmarinic acid inhibits the expression of CCL11 and CCR3 by suppressing the IKK-beta activity in NF-kappaB activation signaling. Further, these results suggest that rosmarinic acid might inhibit the expression of NF-kappaB promoter-related genes.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yeonkun Dong, Jongro Gu, Seoul 110-460, Republic of Korea
| | - Eunsun Jung
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Youngji Kim
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Jiyoung Lee
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Junho Park
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Seongtaek Hong
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Chang-Gu Hyun
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Deokhoon Park
- Department of Skin cell biology, Biospectrum Life Science Institute (BLSI), SK Ventium 101-701, Dangjung Dong, Gunpo City, Kyunggi-do 436-776, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yeonkun Dong, Jongro Gu, Seoul 110-460, Republic of Korea
| |
Collapse
|
128
|
Langhorst MF, Reuter A, Luxenhofer G, Boneberg EM, Legler DF, Plattner H, Stuermer CAO. Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells. FASEB J 2006; 20:711-3. [PMID: 16452278 DOI: 10.1096/fj.05-4760fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cell activation after contact with an antigen-presenting cell depends on the regulated assembly of the T cell receptor signaling complex, which involves the polarized assembly of a stable, raft-like macrodomain surrounding engaged T cell receptors. Here we show that the preformed reggie/flotillin caps present in resting T cells act as priming platforms for macrodomain assembly. Preformed reggie-1/flotillin-2 caps are exceptionally stable, as shown by fluorescence recovery after photobleaching (FRAP). Upon T cell stimulation, signaling molecules are recruited to the stable reggie/flotillin caps. Importantly, a trans-negative reggie-1/flotillin-2 deletion mutant, which interferes with assembly of the preformed reggie/flotillin cap, impairs raft polarization and macrodomain formation after T cell activation. Accordingly, expression of the trans-negative reggie-1 mutant leads to the incorrect positioning of the guanine nucleotide exchange factor Vav, resulting in defects in cytoskeletal reorganization. Thus, the preformed reggie/flotillin caps are stable priming platforms for the assembly of multiprotein complexes controlling actin reorganization during T cell activation.
Collapse
Affiliation(s)
- Matthias F Langhorst
- Developmental Neurobiology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
129
|
Karnell FG, Monroe JG. The Role of Membrane Lipids in the Regulation of Immune Cell Activity. Transfus Med Hemother 2006. [DOI: 10.1159/000090192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
130
|
Abstract
The molecular events and the protein components that are involved in signalling by the T cell receptor (TCR) for antigen have been extensively studied. Activation of signalling cascades following TCR stimulation depends on the phosphorylation of the receptor by the tyrosine kinase Lck, which localizes to the cytoplasmic face of the plasma membrane by virtue of its post-translational modification. However, the precise order of events during TCR phosphorylation at the plasma membrane, remains to be defined. A current theory that describes early signalling events incorporates the function of lipid rafts, microdomains at the plasma membrane with distinct lipid and protein composition. Lipid rafts have been implicated in diverse biological functions in mammalian cells. In T cells, molecules with a key role in TCR signalling, including Lck, localize to these domains. Importantly, mutant versions of these proteins which fail to localise to raft domains were unable to support signalling by the TCR. Biochemical studies using purified detergent-resistant membranes (DRM) and confocal microscopy have suggested that upon stimulation, the TCR and Lck-containing lipid rafts may come into proximity allowing phosphorylation of the receptor. Further, there are data suggesting that phosphorylation of the TCR could depend on a transient increase in Lck activity that takes place within lipid rafts to initiate signalling. Current results and a model of how lipid rafts may regulate TCR signalling are discussed.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- Bone & Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, UK.
| |
Collapse
|
131
|
Viard M, Parolini I, Rawat SS, Fecchi K, Sargiacomo M, Puri A, Blumenthal R. The role of glycosphingolipids in HIV signaling, entry and pathogenesis. Glycoconj J 2005; 20:213-22. [PMID: 15090735 DOI: 10.1023/b:glyc.0000024253.48791.d9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed. An overview of signaling properties of HIV receptors is provided with some speculation on how GSL may play a role in these events by virtue of being in membrane rafts. Finally, we summarize how interactions between HIV and coreceptors leading to signaling and/or fusion can be analyzed by the use of various tyrosine kinase and cytoskeletal inhibitors.
Collapse
Affiliation(s)
- Mathias Viard
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Multiple classes of proteins are modified to tailor them for specific physiological roles. The nature of these posttranslational modifications of proteins, as well as the relationships between them including those of the immune system proteins themselves, and immune system responses are reviewed. Aspects of protein posttranslational modification and their relationship to the pathogenesis of several autoimmune diseases and primary biliary cirrhosis are highlighted.
Collapse
Affiliation(s)
- Chih-Te Wu
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, GBSF Suite 6510, 451 E. Health Sciences Drive, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
133
|
Touz MC, Conrad JT, Nash TE. A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity inGiardia lamblia. Mol Microbiol 2005; 58:999-1011. [PMID: 16262786 DOI: 10.1111/j.1365-2958.2005.04891.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intestinal protozoan parasite Giardia lamblia undergoes surface antigenic variation whereby one of a family of structurally related variant-specific surface proteins (VSPs) is replaced in a regulated process by another antigenically distinct VSP. All VSPs are type I membrane proteins that have a conserved hydrophobic sequence terminated by the invariant hydrophilic amino acids, CRGKA. Using transfected Giardia constitutively expressing HA-tagged VSPH7 and incubated with radioactive [3H]palmitate, we demonstrate that the palmitate is attached to the Cys in the conserved CRGKA tail. Surface location of mutant VSPs lacking either the CRGKA tail or its Cys is identical to that of wild-type VSPH7 but non-palmitoylated mutants fail to undergo complement-independent antibody specific cytotoxicity. In addition, membrane localization of non-palmitoylated mutant VSPH7 changes from a pattern similar to rafts to non-rafts. Palmitoyl transferases (PAT), responsible for protein palmitoylation in other organisms, often possess a cysteine-rich domain containing a conserved DHHC motif (DHHC-CRD). An open reading frame corresponding to a putative 50 kDa Giardia PAT (gPAT) containing a DHHC-CRD motif was found in the Giardia genome database. Expression of epitope-tagged gPAT using a tetracycline inducible vector localized gPAT to the plasma membrane, a pattern similar to that of VSPs. Transfection with gPAT antisense producing vectors inhibits gPAT expression and palmitoylation of VSPs in vitro confirming the function of gPAT. These results show that VSPs are palmitoylated at the cysteine within the conserved tail by gPAT and indicate an essential function of palmitoylation in control of VSP-mediated signalling and processing.
Collapse
Affiliation(s)
- María C Touz
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
134
|
Abstract
The role of plasma-membrane microdomains in the organization of signaling proteins has been a controversial topic in T cell signaling. In this issue of Cell, use of single-molecule fluorescence suggests that protein-protein interactions, not detergent insolubility, regulate the assembly of signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Joseph Lin
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
135
|
Douglass AD, Vale RD. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005; 121:937-50. [PMID: 15960980 PMCID: PMC2851620 DOI: 10.1016/j.cell.2005.04.009] [Citation(s) in RCA: 592] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/22/2005] [Accepted: 04/04/2005] [Indexed: 01/21/2023]
Abstract
Membrane subdomains have been implicated in T cell signaling, although their properties and mechanisms of formation remain controversial. Here, we have used single-molecule and scanning confocal imaging to characterize the behavior of GFP-tagged signaling proteins in Jurkat T cells. We show that the coreceptor CD2, the adaptor protein LAT, and tyrosine kinase Lck cocluster in discrete microdomains in the plasma membrane of signaling T cells. These microdomains require protein-protein interactions mediated through phosphorylation of LAT and are not maintained by interactions with actin or lipid rafts. Using a two color imaging approach that allows tracking of single molecules relative to the CD2/LAT/Lck clusters, we demonstrate that these microdomains exclude and limit the free diffusion of molecules in the membrane but also can trap and immobilize specific proteins. Our data suggest that diffusional trapping through protein-protein interactions creates microdomains that concentrate or exclude cell surface proteins to facilitate T cell signaling.
Collapse
|
136
|
Seydel KB, Gaur D, Aravind L, Subramanian G, Miller LH. Plasmodium falciparum: Characterization of a late asexual stage Golgi protein containing both ankyrin and DHHC domains. Exp Parasitol 2005; 110:389-93. [PMID: 15882865 DOI: 10.1016/j.exppara.2005.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/14/2005] [Accepted: 03/23/2005] [Indexed: 11/20/2022]
Abstract
Proteins containing the DHHC motif have been shown to function as palmitoyl transferases. The palmitoylation of proteins has been shown to play an important role in the trafficking of proteins to the proper subcellular location. Herein, we describe a protein containing both ankyrin domains and a DHHC domain that is present in the Golgi of late schizonts of P. falciparum. The timing of expression as well as the location of this protein suggests that it may play an important role in the sorting of proteins to the apical organelles during the development of the asexual stage of the parasite.
Collapse
Affiliation(s)
- Karl B Seydel
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
137
|
Magee AI, Adler J, Parmryd I. Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J Cell Sci 2005; 118:3141-51. [PMID: 16014381 DOI: 10.1242/jcs.02442] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membranes of eukaryotic cells are hypothesised to contain microdomains with distinct lipid and protein composition known as lipid rafts. In T cells, cross-linking of lipid raft components triggers signalling cascades. We show that the T-cell antigen receptor (TCR) and a protein tyrosine kinase, Lck, have a patchy plasma membrane distribution in Jurkat T cells at reduced temperatures, although they have a continuous distribution at physiological temperature (37 degrees C). GM1 displays a patchy distribution at reduced temperature after Triton X-100 extraction. The archetypal non-lipid raft marker, the transferrin receptor, displays a more continuous plasma membrane distribution uncorrelated with that of Lck at 0 degrees C. Cold-induced aggregation of the lipid raft-partitioning proteins is accompanied by increased tyrosine phosphorylation and ERK activation, peaking at 10-20 degrees C. Tyrosine phosphorylation is further greatly increased by ligating the TCR with anti-CD3 at 10-20 degrees C. The tyrosine phosphorylation mainly occurred at the plasma membrane, was dependent on Lck and on the surface expression of the TCR. The activation of tyrosine phosphorylation and ERK by TCR ligation at reduced temperature also occurred in human primary T cells. These results support the concept that lipid rafts can form in membranes of live cells and that their coalescence stimulates signalling.
Collapse
Affiliation(s)
- Anthony I Magee
- Division of Biomedical Sciences, Imperial College Faculty of Medicine, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | | | | |
Collapse
|
138
|
Ozegbe P, Chernajovsky Y, Kabouridis PS. Regulation of expression and function of Lck tyrosine kinase by high cell density. Mol Membr Biol 2005; 22:363-72. [PMID: 16154907 PMCID: PMC2596299 DOI: 10.1080/09687860500187834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.
Collapse
Affiliation(s)
- Patricia Ozegbe
- Bone & Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, London, UK
| | | | | |
Collapse
|
139
|
Sleight SB, Miranda PV, Plaskett NW, Maier B, Lysiak J, Scrable H, Herr JC, Visconti PE. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: evidence for dissociation of lipid rafts during capacitation. Biol Reprod 2005; 73:721-9. [PMID: 15917346 DOI: 10.1095/biolreprod.105.041533] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian sperm acquire fertilization capacity after residing in the female tract during a process known as capacitation. The present study examined whether cholesterol efflux during capacitation alters the biophysical properties of the sperm plasma membrane by potentially reducing the extent of lipid raft domains as analyzed by the isolation of detergent-resistant membrane fractions using sucrose gradients. In addition, this work investigated whether dissociation of the detergent-resistant membrane fraction during capacitation alters resident sperm raft proteins. Mouse sperm proteins associated with such fractions were studied by silver staining, tandem mass spectrometry, and Western blot analysis. Caveolin 1 was identified in sperm lipid rafts in multimeric states, including a high-molecular-weight oligomer that is sensitive to degradation under reducing conditions at high pH. Capacitation resulted in reduction of the light buoyant-density, detergent-resistant membrane fraction and decreased the array of proteins isolated within this fraction, including loss of the high-molecular-weight caveolin 1 oligomers. Proteomic analysis of sperm proteins isolated in the light buoyant-density fraction identified several proteins, including hexokinase 1, testis serine proteases 1 and 2, TEX101, hyaluronidase (PH20, SPAM1), facilitated glucose transporter 3, lactate dehydrogenase A, carbonic anhydrase IV, IZUMO, pantophysin, basigin, and cysteine-rich inhibitory secretory protein 1. Capacitation also resulted in a significant reduction of sperm labeling by the fluorescent lipid-analog DiIC16, indicating that capacitation alters the liquid-ordered domains in the sperm plasma membrane. The observations that capacitation alters the protein composition of the detergent-resistant membrane fractions is consistent with the hypothesis that cholesterol efflux during capacitation dissociates lipid raft constituents, initiating signaling events that lead to sperm capacitation.
Collapse
Affiliation(s)
- Susan B Sleight
- Center for Research in Contraceptive and Reproductive Health (CRCRH), University of Virginia, Charlottesville, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Kim KH, Lee EJ, Kim K, Han SY, Jhon GJ. Modification of concanavalin A-dependent proliferation by phosphatidylcholines isolated from deer antler, Cervus elaphus. Nutrition 2005; 20:394-401. [PMID: 15043858 DOI: 10.1016/j.nut.2003.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The immunomodulatory effect of deer antler, which is used as traditional medicine, has been known, but the active component of antlers from Cervus elaphus has not been identified. In this study, we identified the immunomodulator from C. elaphus and examined its biological activities on the immune system. METHODS To identify an immunomodulator, we used bioassay-guided fractionation after silica gel column chromatography. Structural analysis was performed with one- and two-dimensional nuclear magnetic resonance techniques and tandem mass spectrometry coupled with fast atom bombardment. RESULTS The subfraction, phosphatidylcholines, isolated 70% ethanol extract of C. elaphus induced the proliferation of spleen cells in synergy with concanavalin A. According to the structural analysis, phosphatidylcholines were classified as a family (1,2-alkyl-sn-glycerol-3-phosphocholines) containing arachidonyl (C20:4), stearoyl (C18:0), oleoyl (C18:1), linoleoyl (C18:2), palmitoyl (C16:0), and myristoyl (C14:0) chains in their fatty acyl chains. Because the unsaturated fatty acids showed an inhibitory effect on the immune system, dialkyl phosphatidylcholines with different chain lengths from C10:0 to C20:0 that stimulate the proliferation of spleen cells were examined extensively. Among other saturated phosphatidylcholines used, dimyristoyl phosphatidylcholine (C14:0) induced the proliferation of spleen cells more efficiently, whereas dimyristoleoyl phosphatidylcholine (C14:1) effected little change in the proliferation of spleen cells. CONCLUSIONS These data collectively suggest that phosphatidylcholines with saturated fatty acyl chains are immunostimulating factors. They may modify the proliferation of known mitogens. Further, chain length and saturation of the fatty acids may play important roles in the proliferation of spleen cells.
Collapse
Affiliation(s)
- Ki-Hwan Kim
- Department of Chemistry, College of Pharmacy, Seoul, South Korea
| | | | | | | | | |
Collapse
|
141
|
Koneru M, Schaer D, Monu N, Ayala A, Frey AB. Defective Proximal TCR Signaling Inhibits CD8+ Tumor-Infiltrating Lymphocyte Lytic Function. THE JOURNAL OF IMMUNOLOGY 2005; 174:1830-40. [PMID: 15699109 DOI: 10.4049/jimmunol.174.4.1830] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes (TIL) are severely deficient in cytolysis, a defect that may permit tumor escape from immune-mediated destruction. Because lytic function is dependent upon TCR signaling, we have tested the hypothesis that primary TIL have defective signaling by analysis of the localization and activation status of TIL proteins important in TCR-mediated signaling. Upon conjugate formation with cognate target cells in vitro, TIL do not recruit granzyme B+ granules, the microtubule-organizing center, F-actin, Wiskott-Aldrich syndrome protein, nor proline rich tyrosine kinase-2 to the target cell contact site. In addition, TIL do not flux calcium nor demonstrate proximal tyrosine kinase activity, deficiencies likely to underlie failure to fully activate the lytic machinery. Confocal microscopy and fluorescence resonance energy transfer analyses demonstrate that TIL are triggered by conjugate formation in that the TCR, p56lck, CD3zeta, LFA-1, lipid rafts, ZAP70, and linker for activation of T cells localize at the TIL:tumor cell contact site, and CD43 and CD45 are excluded. However, proximal TCR signaling is blocked upon conjugate formation because the inhibitory motif of p56lck is rapidly phosphorylated (Y505) and COOH-terminal Src kinase is recruited to the contact site, while Src homology 2 domain-containing protein phosphatase 2 is cytoplasmic. Our data support a novel mechanism explaining how tumor-induced inactivation of proximal TCR signaling regulates lytic function of antitumor T cells.
Collapse
MESH Headings
- Actins/deficiency
- Actins/metabolism
- Animals
- CD2 Antigens/metabolism
- CD3 Complex/metabolism
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Calcium/metabolism
- Cell Line, Tumor
- Cell Separation
- Cytoplasmic Granules/immunology
- Cytoplasmic Granules/metabolism
- Cytotoxicity, Immunologic
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Transport/immunology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Mythili Koneru
- Department of Cell Biology and Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
142
|
Veldhoen M, Magee AI, Penha-Goncalves MN, Stockinger B. Transduction of naive CD4 T?cells with kinase-deficient Lck-HIV-Tat fusion protein dampens T?cell activation and provokes a switch to regulatory function. Eur J Immunol 2005; 35:207-16. [PMID: 15580657 DOI: 10.1002/eji.200425542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We show here that T cell differentiation can be altered by exposing naive mouse CD4 T cells to altered T cell receptor signaling, achieved by transducing them with a fusion protein consisting of a modified Lck protein lacking the kinase domain and the HIV-Tat protein transduction domain. The Lck-HIV-Tat fusion protein is internalized into naive mouse T cells within 30 min after application to the medium. Activation of transduced cells in vitro resulted in strongly reduced intracellular calcium mobilization, alterations in cytokine profile, and sustained up-regulation of CD25. The cells had suppressive activity in vitro, but no Foxp3 expression. Our data indicate that signals encountered by a naive T cell during its initial activation can profoundly influence its subsequent functional behavior and elicit T cells, which can have regulatory activity.
Collapse
Affiliation(s)
- Marc Veldhoen
- Division of Molecular Immunology, The National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
143
|
Beinke S, Robinson MJ, Hugunin M, Ley SC. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol 2004; 24:9658-67. [PMID: 15485931 PMCID: PMC522219 DOI: 10.1128/mcb.24.21.9658-9667.2004] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-kappaB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool. Activation of TPL-2, MEK, and ERK by LPS is also demonstrated to require proteasome-mediated proteolysis. p105 is known to be proteolysed by the proteasome following stimulus-induced phosphorylation of two serines in its PEST region by the IkappaB kinase (IKK) complex. Expression of a p105 point mutant, which is not susceptible to signal-induced proteolysis, in RAW264.7 macrophages impairs LPS-induced release of TPL-2 from p105 and its subsequent activation of MEK. Furthermore, expression of wild-type but not mutant p105 reconstitutes LPS stimulation of MEK and ERK phosphorylation in primary NF-kappaB1-deficient macrophages. Consistently, pharmacological blockade of IKK inhibits LPS-induced release of TPL-2 from p105 and TPL-2 activation. These data show that IKK-induced p105 proteolysis is essential for LPS activation of TPL-2, thus revealing a novel function of IKK in the regulation of the ERK MAP kinase cascade.
Collapse
Affiliation(s)
- S Beinke
- National Institute for Medical Research, Division of Immune Cell Biology, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
144
|
Razzaq TM, Ozegbe P, Jury EC, Sembi P, Blackwell NM, Kabouridis PS. Regulation of T-cell receptor signalling by membrane microdomains. Immunology 2004; 113:413-26. [PMID: 15554919 PMCID: PMC1782593 DOI: 10.1111/j.1365-2567.2004.01998.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/09/2004] [Accepted: 09/15/2004] [Indexed: 01/04/2023] Open
Abstract
There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms.
Collapse
Affiliation(s)
- Tahir M Razzaq
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, Queen Mary's College, London
| | | | | | | | | | | |
Collapse
|
145
|
Wollscheid B, von Haller PD, Yi E, Donohoe S, Vaughn K, Keller A, Nesvizhskii AI, Eng J, Li XJ, Goodlett DR, Aebersold R, Watts JD. Lipid raft proteins and their identification in T lymphocytes. Subcell Biochem 2004; 37:121-52. [PMID: 15376619 DOI: 10.1007/978-1-4757-5806-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
This review focuses on how membrane lipid rafts have been detected and isolated, mostly from lymphocytes, and their associated proteins identified. These proteins include transmembrane antigens/receptors, GPI-anchored proteins, cytoskeletal proteins, Src-family protein kinases, G-proteins, and other proteins involved in signal transduction. To further understand the biology of lipid rafts, new methodological approaches are needed to help characterize the raft protein component, and changes that occur in this component as a result of cell perturbation. We describe the application of new proteomic approaches to the identification and quantification of raft proteins in T-lymphocytes. Similar approaches, applied to other model cell systems, will provide valuable new insights into both cellular signal transduction and lipid raft biology.
Collapse
|
146
|
Geahlen RL, Handley MD, Harrison ML. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Oncogene 2004; 23:8024-32. [PMID: 15489920 DOI: 10.1038/sj.onc.1208078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of Src-family kinases (SFKs) to mediate signaling from cell surface receptors in hematopoietic cells is a function of their catalytic activity, location and binding partners. Kinase activity is regulated in the cell by kinases and phosphatases that alter the state of phosphorylation of key tyrosine residues and by protein binding partners that stabilize the kinase in active or inactive conformations or localize the enzyme to specific subcellular or submembrane domains. Kinase activity and function can be modulated experimentally through the use of small molecule inhibitors designed to directly target catalytic or binding domains or regulate the location of the protein by altering its state of acylation.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
147
|
Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 2004; 73:559-87. [PMID: 15189153 DOI: 10.1146/annurev.biochem.73.011303.073954] [Citation(s) in RCA: 460] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein S-palmitoylation is the thioester linkage of long-chain fatty acids to cysteine residues in proteins. Addition of palmitate to proteins facilitates their membrane interactions and trafficking, and it modulates protein-protein interactions and enzyme activity. The reversibility of palmitoylation makes it an attractive mechanism for regulating protein activity, and this feature has generated intensive investigation of this modification. The regulation of palmitoylation occurs through the actions of protein acyltransferases and protein acylthioesterases. Identification of the protein acyltransferases Erf2/Erf4 and Akr1 in yeast has provided new insight into the palmitoylation reaction. These molecules work in concert with thioesterases, such as acyl-protein thioesterase 1, to regulate the palmitoylation status of numerous signaling molecules, ultimately influencing their function. This review discusses the function and regulation of protein palmitoylation, focusing on intracellular proteins that participate in cell signaling or protein trafficking.
Collapse
Affiliation(s)
- Jessica E Smotrys
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
148
|
Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, Tsokos GC. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2004; 172:7821-31. [PMID: 15187166 DOI: 10.4049/jimmunol.172.12.7821] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In response to appropriate stimulation, T lymphocytes from systemic lupus erythematosus (SLE) patients exhibit increased and faster intracellular tyrosine phosphorylation and free calcium responses. We have explored whether the composition and dynamics of lipid rafts are responsible for the abnormal T cell responses in SLE. SLE T cells generate and possess higher amounts of ganglioside-containing lipid rafts and, unlike normal T cells, SLE T cell lipid rafts include FcRgamma and activated Syk kinase. IgM anti-CD3 Ab-mediated capping of TCR complexes occurs more rapidly in SLE T cells and concomitant with dramatic acceleration of actin polymerization kinetics. The significance of these findings is evident from the observation that cross-linking of lipid rafts evokes earlier and higher calcium responses in SLE T cells. Thus, we propose that alterations in the lipid raft signaling machinery represent an important mechanism that is responsible for the heightened and accelerated T cell responses in SLE.
Collapse
Affiliation(s)
- Sandeep Krishnan
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Watson ARO, Lee WT. Differences in signaling molecule organization between naive and memory CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:33-41. [PMID: 15210756 DOI: 10.4049/jimmunol.173.1.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immunological synapse is a highly organized complex formed at the junction between Ag-specific T cells and APCs as a prelude to cell activation. Although its exact role in modulating T cell signaling is unknown, it is commonly believed that the immunological synapse is the site of cross-talk between the T cell and APC (or target). We have examined the synapses formed by naive and memory CD4 cells during Ag-specific cognate interactions with APCs. We show that the mature immunological synapse forms more quickly during memory T cell activation. We further show that the composition of the synapse found in naive or memory cell conjugates with APCs is distinct with the tyrosine phosphatase, CD45, being a more integral component of the mature synapses formed by memory cells. Finally, we show that signaling molecules, including CD45, are preassociated in discrete, lipid-raft microdomains in resting memory cells but not in naive cells. Thus, enhanced memory cell responses may be due to intrinsic properties of signaling molecule organization.
Collapse
Affiliation(s)
- Andrew R O Watson
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201-0509, USA
| | | |
Collapse
|
150
|
Abstract
The existence of sphingolipid- and cholesterol-rich membrane microdomains called "lipid rafts", as well as their role in lymphocyte biology, has been widely debated during the last few years. Plasma membrane microdomains seem to be primarily involved in initiation and propagation of the signal transduction cascade associated with lymphocyte activation. In this review, we discuss the recent literature suggesting that, during lymphocyte activation and chemotaxis, lipid rafts act as platforms to compartmentalise signalling and facilitate specific protein-protein interactions.
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, I-35121, Italy.
| | | |
Collapse
|