101
|
Higuchi M. Roles of Mitochondrial DNA Changes on Cancer Initiation and Progression. ACTA ACUST UNITED AC 2012; 1. [PMID: 24319697 DOI: 10.4172/2324-9293.1000e109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Masahiro Higuchi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| |
Collapse
|
102
|
Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 2011; 12:86-99. [PMID: 21983689 DOI: 10.1016/j.mito.2011.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 12/29/2022]
Abstract
Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease.
Collapse
Affiliation(s)
- Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | | | | | | | | |
Collapse
|
103
|
Abstract
Molecular chaperones are master regulators of protein folding quality control, and it is widely accepted that these functions are aberrantly exploited in human tumors. What has also emerged in recent years is that chaperone control of protein folding does not occur randomly in cells, but is spatially compartmentalized in subcellular organelles and specialized microenvironments. Fresh experimental evidence has now uncovered a role for mitochondrial localized chaperones to oversee the protein folding environment within the organelle, selectively in tumor cells. Perturbation of this compartmentalized chaperone network triggers an array of compensatory responses that aims at restoring homeostasis, while also providing novel opportunities for rational cancer therapy.
Collapse
Affiliation(s)
- Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
104
|
Altieri DC, Stein GS, Lian JB, Languino LR. TRAP-1, the mitochondrial Hsp90. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:767-73. [PMID: 21878357 DOI: 10.1016/j.bbamcr.2011.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 12/21/2022]
Abstract
Protein folding quality control does not occur randomly in cells, but requires the action of specialized molecular chaperones compartmentalized in subcellular microenvironments and organelles. Fresh experimental evidence has now linked a mitochondrial-specific Heat Shock Protein-90 (Hsp90) homolog, Tumor Necrosis Factor Receptor-Associated Protein-1 (TRAP-1) to pleiotropic signaling circuitries of organelle integrity and cellular homeostasis. TRAP-1-directed compartmentalized protein folding is broadly exploited in cancer and neurodegenerative diseases, presenting new opportunities for therapeutic intervention in humans. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
|
105
|
Glycolysis inhibition by 2-deoxy-d-glucose reverts the metastatic phenotype in vitro and in vivo. Clin Exp Metastasis 2011; 28:865-75. [DOI: 10.1007/s10585-011-9417-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
106
|
Tseng LM, Yin PH, Yang CW, Tsai YF, Hsu CY, Chi CW, Lee HC. Somatic mutations of the mitochondrial genome in human breast cancers. Genes Chromosomes Cancer 2011; 50:800-11. [PMID: 21748819 DOI: 10.1002/gcc.20901] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations in mitochondrial DNA (mtDNA) have been identified in various tumors, including breast cancer. However, their clinicopathological impact on breast cancer still remains unclear. In this study, we re-sequenced the entire mtDNA from breast cancer samples together with paired non-tumorous breast tissues from 58 Taiwanese patients. We identified 19 somatic mutations in the mtDNA coding region of 16 breast cancers. Out of these mutations, 12 of the 19 mutations (63%) are missense or frame-shift mutations that have the potential to cause mitochondrial dysfunction. In combination with our previously study on the D-loop region of mtDNA, we found that 47% (27/58) of the breast cancers harbored somatic mtDNA mutations. Among a total of 40 somatic mutations, 53% (21/40) were located in the D-loop region of the mtDNA, 5% (2/40) were in the ribosomal RNA genes, 5% (2/40) were in the tRNA genes, and 38% (15/40) occurred in mRNA genes. The occurrence of these somatic mtDNA mutations is associated with an older onset age (≥ 50-year old, P = 0.039), a higher TNM stage (P = 0.027), and a higher histological grade (P = 0.012). Multiple logistic regression analysis revealed that an older onset age (P = 0.029) and a higher histological grade (P = 0.006) are significantly correlated with patients having somatic mutations in the mtDNA in their breast cancer sample. In conclusion, our results suggest that somatic mtDNA mutations may play a critical role in the progression of breast cancer.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, and National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
107
|
Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA, Ross AH, Plescia J, Altieri DC. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 2011; 121:1349-60. [PMID: 21364280 DOI: 10.1172/jci44855] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/05/2011] [Indexed: 12/11/2022] Open
Abstract
Fine tuning of the protein folding environment in subcellular organelles, such as mitochondria, is important for adaptive homeostasis and may participate in human diseases, but the regulators of this process are still largely elusive. Here, we have shown that selective targeting of heat shock protein-90 (Hsp90) chaperones in mitochondria of human tumor cells triggered compensatory autophagy and an organelle unfolded protein response (UPR) centered on upregulation of CCAAT enhancer binding protein (C/EBP) transcription factors. In turn, this transcriptional UPR repressed NF-κB-dependent gene expression, enhanced tumor cell apoptosis initiated by death receptor ligation, and inhibited intracranial glioblastoma growth in mice without detectable toxicity. These data reveal what we believe to be a novel role of Hsp90 chaperones in the regulation of the protein-folding environment in mitochondria of tumor cells. Disabling this general adaptive pathway could potentially be used in treatment of genetically heterogeneous human tumors.
Collapse
Affiliation(s)
- Markus D Siegelin
- Prostate Cancer Discovery and Development Program, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 2011; 6:e17343. [PMID: 21464990 PMCID: PMC3064581 DOI: 10.1371/journal.pone.0017343] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/31/2011] [Indexed: 12/24/2022] Open
Abstract
Background Mitochondrial dysfunction induces insulin resistance in myocytes via a reduction of insulin receptor substrate-1 (IRS-1) expression. However, the effect of mitochondrial dysfunction on insulin sensitivity is not understood well in hepatocytes. Although research has implicated the translational repression of target genes by endogenous non-coding microRNAs (miRNA) in the pathogenesis of various diseases, the identity and role of the miRNAs that are involved in the development of insulin resistance also remain largely unknown. Methodology To determine whether mitochondrial dysfunction induced by genetic or metabolic inhibition causes insulin resistance in hepatocytes, we analyzed the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in SK-Hep1 hepatocytes. We used qRT-PCR to measure cellular levels of selected miRNAs that are thought to target IRS-1 3′ untranslated regions (3′UTR). Using overexpression of miR-126, we determined whether IRS-1-targeting miRNA causes insulin resistance in hepatocytes. Principal Findings Mitochondrial dysfunction resulting from genetic (mitochondrial DNA depletion) or metabolic inhibition (Rotenone or Antimycin A) induced insulin resistance in hepatocytes via a reduction in the expression of IRS-1 protein. In addition, we observed a significant up-regulation of several miRNAs presumed to target IRS-1 3′UTR in hepatocytes with mitochondrial dysfunction. Using reporter gene assay we confirmed that miR-126 directly targeted to IRS-1 3′UTR. Furthermore, the overexpression of miR-126 in hepatocytes caused a substantial reduction in IRS-1 protein expression, and a consequent impairment in insulin signaling. Conclusions/Significance We demonstrated that miR-126 was actively involved in the development of insulin resistance induced by mitochondrial dysfunction. These data provide novel insights into the molecular basis of insulin resistance, and implicate miRNA in the development of metabolic disease.
Collapse
Affiliation(s)
- Hyun Su Ryu
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
| | - Duan Ma
- Key Lab of Molecular Medicine, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Lab of Molecular Medicine, Shanghai Medical College, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Kyungju, Korea
- * E-mail:
| |
Collapse
|
109
|
Landerer E, Villegas J, Burzio VA, Oliveira L, Villota C, Lopez C, Restovic F, Martinez R, Castillo O, Burzio LO. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr) 2011; 34:297-305. [PMID: 21347712 DOI: 10.1007/s13402-011-0018-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. METHODS FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. RESULTS In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. CONCLUSION The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.
Collapse
|
110
|
Czarnecka AM, Bartnik E. The role of the mitochondrial genome in ageing and carcinogenesis. J Aging Res 2011; 2011:136435. [PMID: 21403887 PMCID: PMC3042732 DOI: 10.4061/2011/136435] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial DNA mutations and polymorphisms have been the focus of intensive investigations for well over a decade in an attempt to understand how they affect fundamental processes such as cancer and aging. Initial interest in mutations occurring in mitochondrial DNA of cancer cells diminished when most were found to be the same mutations which occurred during the evolution of human mitochondrial haplogroups. However, increasingly correlations are being found between various mitochondrial haplogroups and susceptibility to cancer or diseases in some cases and successful aging in others.
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Laboratory of Molecular Oncology, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 01-141 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
111
|
Dou Z, Carruthers VB. Cathepsin proteases in Toxoplasma gondii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:49-61. [PMID: 21660658 DOI: 10.1007/978-1-4419-8414-2_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB) and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication and nutrient acquisition. here, we review the key features and roles of T. gondii cathepsins and discuss the therapeutic potential for specific inhibitor development.
Collapse
Affiliation(s)
- Zhicheng Dou
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
112
|
Rommelaere G, Michel S, Mercy L, Fattaccioli A, Demazy C, Ninane N, Houbion A, Renard P, Arnould T. Hypersensitivity of mtDNA-depleted cells to staurosporine-induced apoptosis: roles of Bcl-2 downregulation and cathepsin B. Am J Physiol Cell Physiol 2010; 300:C1090-106. [PMID: 21068357 DOI: 10.1152/ajpcell.00037.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology, Faculty of Sciences, University of Namur, 61 rue de Bruxelles, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
|
114
|
Lee HC, Chang CM, Chi CW. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev 2010; 9 Suppl 1:S47-58. [PMID: 20816876 DOI: 10.1016/j.arr.2010.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are intracellular organelles responsible for generating ATP through respiration and oxidative phosphorylation (OXPHOS), producing reactive oxygen species, and initiating and executing apoptosis. Mitochondrial dysfunction has been observed to be an important hallmark of aging and cancer. Because mitochondrial DNA (mtDNA) is important in maintaining functionally competent organelles, accumulation of mtDNA mutations can affect energy production, oxidative stress, and cell survival, which may contribute to aging and/or carcinogenesis. This review outlines a variety of somatic mtDNA mutations identified in aging tissues and human cancers, as well as recent advances in understanding the causal role of mtDNA mutations in the aging process and cancer progression. Mitochondrial dysfunction elicited by somatic mutations in mtDNA could induce apoptosis in aging cells and some cancer cells with severe mtDNA mutations. In addition, it could activate mitochondria-to-nucleus retrograde signaling to modulate the expression of nuclear genes involved in a metabolic shift from OXPHOS to glycolysis, facilitate cells to adapt to altered environments and develop resistance to chemotherapeutic agents, or promote metastatic properties of cancer cells. These findings suggest that accumulation of somatic mtDNA mutations is not only an important contributor to human aging but also plays a critical role in cancer progression.
Collapse
|
115
|
Kobliakov VA. Mechanisms of tumor promotion by reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2010; 75:675-85. [PMID: 20636258 DOI: 10.1134/s0006297910060015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review analyzes the available information concerning mechanisms of non-genotoxic action of reactive oxygen species (ROS) during tumor promotion and pathways of their generation under the influence of chemical compounds. Special attention is given to the ability of ROS to induce pseudohypoxia through inhibition of prolyl oxidase, which is an oxygen sensor in the cell. Functions of HIF-1alpha as a main contributor to the ROS-induced promotion are analyzed. Data suggest that an unregulated high level of HIF-1alpha in the cell could induce the development of tumors. Hypothetical possibilities of ROS production under the influence of different environmental pollutants, which are promoters of tumorigenesis, include functioning of cytochrome P450 during oxidation of substrates, functioning of the mitochondrial respiratory chain, and action of peroxisome proliferators.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
116
|
Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:543-51. [PMID: 21035425 DOI: 10.1016/j.bbabio.2010.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
A distinctive metabolic trait of tumors is their enforced aerobic glycolysis. This phenotype was first reported by Otto Warburg, who suggested that the increased glucose consumption of cancer cells under aerobic conditions might result from an impaired bioenergetic activity of their mitochondria. A central player in defining the bioenergetic activity of the cell is the mitochondrial H(+)-ATP synthase. The expression of its catalytic subunit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian development and in the cell cycle. Moreover, the down-regulation of β-F1-ATPase is a hallmark of most human carcinomas. In this review we summarize our present understanding of the molecular mechanisms that participate in promoting the "abnormal" aerobic glycolysis of prevalent human carcinomas. The role of the ATPase Inhibitor Factor 1 (IF1) and of Ras-GAP SH3 binding protein 1 (G3BP1), controlling the activity of the H(+)-ATP synthase and the translation of β-F1-ATPase mRNA respectively in cancer cells is emphasized. Furthermore, we underline the role of mitochondrial dysfunction as a pivotal player of tumorigenesis.
Collapse
|
117
|
Oliva CR, Nozell SE, Diers A, McClugage SG, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE. Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 2010; 285:39759-67. [PMID: 20870728 DOI: 10.1074/jbc.m110.147504] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.
Collapse
Affiliation(s)
- Claudia R Oliva
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Alabama 35294-0006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 2010; 21:3578-89. [PMID: 20719961 PMCID: PMC2954122 DOI: 10.1091/mbc.e10-03-0192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article shows that mitochondrial respiratory dysfunction activates a stress signaling that induces Akt1 activation. Akt1 activation occurs through calcineurin-mediated IGF1R/PI3-K pathway. Akt1-mediated phosphorylation of hnRNPA2 is a key requirement for the propagation of stress signaling and activation of nuclear target genes. Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca2+/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1−/− mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
119
|
Correia RL, Oba-Shinjo SM, Uno M, Huang N, Marie SKN. Mitochondrial DNA depletion and its correlation with TFAM, TFB1M, TFB2M and POLG in human diffusely infiltrating astrocytomas. Mitochondrion 2010; 11:48-53. [PMID: 20643228 DOI: 10.1016/j.mito.2010.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/09/2010] [Accepted: 07/08/2010] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA (mtDNA) alterations and their clinical and pathological implications have been analyzed in several human malignancies. A marked decrease in mtDNA copy number along with the increase in malignancy was observed in diffusely infiltrating astrocytomas (24 WHO grade II, 18 grade III, and 78 grade IV or GBM) compared to non-neoplastic brain tissues, being mostly depleted in GBM. Although high relative gene expression levels of mtDNA replication regulators (mitochondrial polymerase catalytic subunit (POLG), transcription factors A (TFAM), B1 (TFB1M) and B2 (TFB2M)) were detected, it cannot successfully revert the mtDNA depletion observed in our samples. On the other hand, a strong correlation among the expression levels of mitochondrial transcription factors corroborates with the TFAM role in the direct control of TFB1M and TFB2M during initiation of mtDNA replication. POLG expression was related to decreased mtDNA copy number, and its overexpression associated with TFAM expression levels also have an impact on long-term survival among GBM patients, interpreted as a potential predictive factor for better prognosis.
Collapse
Affiliation(s)
- R L Correia
- Laboratory of Cellular and Molecular Biology, Department of Neurology, School of Medicine, University of São Paulo, Av Dr Arnaldo 455, 4th Floor, Room 4110, São Paulo, SP, 01246-903, Brazil
| | | | | | | | | |
Collapse
|
120
|
Cui H, Wu F, Sun Y, Fan G, Wang Q. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma. BMC Cancer 2010; 10:356. [PMID: 20604928 PMCID: PMC2915982 DOI: 10.1186/1471-2407-10-356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/06/2010] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the world's leading causes of death among cancer patients. It is important to find a new biomarker that diagnoses HCC and monitors its treatment. In our previous work, we screened a single-chain antibody (scFv) N14, which could specifically recognize human HepG2 HCC cells but not human non-cancerous liver LO2 cells. However, the antigen it recognized in the cells remained unknown. Methods Recombinant scFv N14 antibody was expressed as an active antibody. Using this antibody with a combination of immunological and proteomic approaches, we identified the antigen of scFv N14 antibody as the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). The expression of hnRNP A2/B1 in HCC cells was then investigated by semi-quantitative RT-PCR and immunohistochemistry. Results We found that the up-regulation of hnRNP A2/B1 was measured at both transcriptional and translational levels in rat HCC cells but not in rat hepatic cells. We also found that in various human hepatic tissues, hnRNP A2/B1 was highly expressed in both human hepatitis virus positive liver tissues and human HCC tissues but not in normal liver tissues. Interestingly, we observed that the localization of hnRNP A2/B1 in HCC cells was altered during the development of HCC. In human hepatitis virus infected tissues hnRNP A2/B1 resides exclusively in the nuclei of hepatocytes. However, when the HCC progressed from a well differentiated to a poorly differentiated stage, hnRNP A2/B1 was increasingly localized in the cytoplasm. In contrast, the HCC tissues with hnRNP A2/B1 highly expressed in the nucleus decreased. Conclusions This work is the first to show that hnRNP A2/B1 is the antigen specifically recognized by the scFv N14 antibody in HCC cells. The over-expression of hnRNP A2/B1 was confirmed in cultured human and rat HCC cell lines, human virus related hepatitis liver tissues and human HCC tissues. The increased localization of hnRNP A2/B1 in the cytoplasm of HCC cells was revealed during the dedifferentiation of hepatocellular carcinoma. Therefore, we suggest that the increased expression and cytoplasmic localization of hnRNP A2/B1 can be used as a diagnostic biomarker to assess the risk of human liver cancer.
Collapse
Affiliation(s)
- Huaqing Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, No 33 Life Science Park Road, Beijing 102206, China
| | | | | | | | | |
Collapse
|
121
|
Decreased copy number of mitochondrial DNA in Ewing's sarcoma. Clin Chim Acta 2010; 411:679-83. [DOI: 10.1016/j.cca.2010.01.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 12/15/2022]
|
122
|
Molecular oncology focus - is carcinogenesis a 'mitochondriopathy'? J Biomed Sci 2010; 17:31. [PMID: 20416110 PMCID: PMC2876137 DOI: 10.1186/1423-0127-17-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/25/2010] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA) appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.
Collapse
|
123
|
Hsu CW, Yin PH, Lee HC, Chi CW, Tseng LM. Mitochondrial DNA content as a potential marker to predict response to anthracycline in breast cancer patients. Breast J 2010; 16:264-70. [PMID: 20408822 DOI: 10.1111/j.1524-4741.2010.00908.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations and reduced mitochondrial DNA (mtDNA) content are commonly observed in breast cancer, yet their functional significance is not clear. This study aimed to determine whether the mtDNA content in breast cancer plays an important role in modulating the response to anthracycline treatment in vivo and in vitro. The mtDNA content in tumor cells was analyzed using quantitative polymerase chain reaction in 60 Taiwanese breast cancer patients to correlate with their survival. In addition, human breast cancer MDA-MB-231 cells were treated with ethidium bromide to decrease mtDNA copy number. Cell survival was determined by trypan blue exclusion assay and intracellular reactive oxygen species (ROS) were determined by flow cytometry. After an anthracycline-based regimen, the disease-free survival of patients with higher mtDNA content breast cancer was significantly lower than that of patients with lower mtDNA content breast cancer (p = 0.03). Moreover, the MDA-MB-231 cells with low copies of mtDNA had higher sensitivity to doxorubicin treatment and increased ROS production when compared with higher mtDNA parental cells. Our results suggest that the level of mtDNA copy number in breast cancer may be a potential biomarker for prediction of the response to anthracycline-containing regimens in breast cancer patients.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Division of General Surgery, Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung County, Taiwan
| | | | | | | | | |
Collapse
|
124
|
Li CH, Cheng YW, Liao PL, Yang YT, Kang JJ. Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol Sci 2010; 116:140-50. [PMID: 20338993 PMCID: PMC2886854 DOI: 10.1093/toxsci/kfq085] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Overuse and abuse of antibiotics can increase the risk of cancer. Chloramphenicol can inhibit both bacterial and mitochondrial protein synthesis, causing mitochondrial stress and decreased ATP biosynthesis. Chloramphenicol can accelerate cancer progression; however, the underlying mechanisms of chloramphenicol in carcinogenesis and cancer progression are still unclear. We found that chloramphenicol can induce matrix metalloproteinase (MMP)-13 expression and increase MMP-13 protein in conditioned medium, resulting in an increase in cancer cell invasion. Chloramphenicol also activated c-Jun N-terminal kinases (JNK) and phosphatidylinositol 3-kinase (PI-3K)/Akt signaling, leading to c-Jun protein phosphorylation. The activated c-Jun protein has been proven to activate binding to the MMP-13 promoter and also upregulate the amount of MMP-13. Both the SP 600125 (JNK inhibitor) and LY 294002 (PI-3K/Akt inhibitor) can inhibit chloramphenicol-induced c-Jun phosphorylation, MMP-13 expression, and cell invasion. Overexpression of the dominant-negative JNK and PI-3K p85 subunit also negate chloramphenicol-induced responses. Other antibiotics that cause mitochondrial stress and a decrease in ATP biosynthesis also induce MMP-13 expression. These findings suggest that chloramphenicol-induced PI-3K/Akt, JNK phosphorylation, and activator protein 1 activation might function as a novel mitochondrial stress signal that result in an increase of MMP-13 expression and MMP-13-associated cancer cell invasion. The findings of this study confirms that chloramphenicol, and other 70S ribosomal inhibitors, should be administered with caution, especially during cancer therapy.
Collapse
Affiliation(s)
- Ching-Hao Li
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
125
|
Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1055-65. [PMID: 20153290 DOI: 10.1016/j.bbabio.2010.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/01/2010] [Accepted: 02/07/2010] [Indexed: 01/18/2023]
Abstract
Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.
Collapse
|
126
|
Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond) 2010; 7:7. [PMID: 20181022 PMCID: PMC2845135 DOI: 10.1186/1743-7075-7-7] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mitochondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact approaches to cancer management and prevention.
Collapse
|
127
|
Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol 2010; 298:C1308-14. [PMID: 20107041 DOI: 10.1152/ajpcell.00644.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence exists that mitochondrial content and/or function is reduced in muscle of aging individuals. The purposes of this study were to investigate the contribution of outer membrane protein import and assembly processes to this decline and to determine whether the assembly process could adapt to chronic contractile activity (CCA). Tom40 assembly into the translocases of the outer membrane (TOM complex) was measured in subsarcolemmal mitochondria obtained from young (6 mo old) and aged (36 mo old) Fischer 344 x Brown Norway animals. While the initial import of Tom40 did not differ between young and aged animals, its subsequent assembly into the final approximately 380 kDa complex was 2.2-fold higher (P < 0.05) in mitochondria from aged compared with young animals. This was associated with a higher abundance of Tom22, a protein vital for the assembly process. CCA induced a greater initial import and subsequent assembly of Tom40 in mitochondria from young animals, resulting in a CCA-induced 75% increase (P < 0.05) in Tom40 within mitochondria. This effect of CCA was attenuated in mitochondria from old animals. These data suggest that the import and assembly of proteins into the outer membrane do not contribute to reduced mitochondrial content or function in aged animals. Indeed, the greater assembly rate in mitochondria from aged animals may be a compensatory mechanism attempting to offset any decrements in mitochondrial content or function within aged muscle. Our data also indicate the potential of CCA to contribute to increased mitochondrial biogenesis in muscle through changes in the outer membrane import and assembly pathway.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- School of Kinesiology and Health Science, York Univesity, Toronto, ON, Canada
| | | | | | | |
Collapse
|
128
|
Sánchez-Aragó M, Chamorro M, Cuezva JM. Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis 2010; 31:567-76. [PMID: 20080835 DOI: 10.1093/carcin/bgq012] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The contribution that mitochondrial bioenergetics could have in cancer development is debated. Here, we have generated HCT116-derived colocarcinoma cell lines expressing different levels of the beta catalytic subunit of the mitochondrial H+-adenosine triphosphate synthase to assess the contribution of mitochondrial bioenergetics in colon cancer progression. The generated cells exhibit large ultrastructural, transcriptomic, proteomic and functional differences in their mitochondria and in their in vivo tumor forming capacity. We show that the activity of oxidative phosphorylation defines the rate of glucose utilization by aerobic glycolysis. The aggressive cellular phenotype, which is highly glycolytic, is bound to the deregulated expression of genes involved in metabolic processes, the regulation of the cell cycle, apoptosis, angiogenesis and cell adhesion. Remarkably, the molecular and ultrastructural analysis of the tumors derived from the three HCT116 cell lines under study highlight that tumor promotion inevitably requires the selection of cancer cells with a repressed biogenesis and functional activity of mitochondria, i.e. the highly glycolytic phenotype is selected for tumor development. The tumor forming potential of the cells is a non-genetically acquired condition that provides the cancer cell with a cell-death resistant phenotype. An abrogated mitochondrial respiration contributes to a diminished potential for reactive oxygen species signaling in response to 5-fluorouracil treatment. Treatment of cancer cells with dichloroacetate partially restores the functional differentiation of mitochondria and promotes tumor regression, emphasizing the reversible nature of the metabolic trait of cancer.
Collapse
Affiliation(s)
- María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
129
|
Jahnke VE, Sabido O, Defour A, Castells J, Lefai E, Roussel D, Freyssenet D. Evidence for mitochondrial respiratory deficiency in rat rhabdomyosarcoma cells. PLoS One 2010; 5:e8637. [PMID: 20072609 PMCID: PMC2797644 DOI: 10.1371/journal.pone.0008637] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/11/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is currently unknown whether mitochondria are involved in the failure of rhabdomyosarcoma cells to differentiate. METHODOLOGY/PRINCIPAL FINDINGS Mitochondrial biogenesis and metabolism were studied in rat L6E9 myoblasts and R1H rhabdomyosacoma cells during the cell cycle and after 36 hours of differentiation. Using a combination of flow cytometry, polarographic and molecular analyses, we evidenced a marked decrease in the cardiolipin content of R1H cells cultured in growth and differentiation media, together with a significant increase in the content of mitochondrial biogenesis factors and mitochondrial respiratory chain proteins. Altogether, these data indicate that the mitochondrial inner membrane composition and the overall process of mitochondrial biogenesis are markedly altered in R1H cells. Importantly, the dysregulation of protein-to-cardiolipin ratio was associated with major deficiencies in both basal and maximal mitochondrial respiration rates. This deficiency in mitochondrial respiration probably contributes to the inability of R1H cells to decrease mitochondrial H2O2 level at the onset of differentiation. CONCLUSION/SIGNIFICANCE A defect in the regulation of mitochondrial biogenesis and mitochondrial metabolism may thus be an epigenetic mechanism that may contribute to the tumoral behavior of R1H cells. Our data underline the importance of mitochondria in the regulation of myogenic differentiation.
Collapse
Affiliation(s)
- Vanessa E. Jahnke
- Université de Lyon, Université Jean Monnet, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - Odile Sabido
- Université de Lyon, Université Jean Monnet, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
- Université de Lyon, Université Jean Monnet, Centre Commun de Cytométrie en Flux, Saint Etienne, France
| | - Aurélia Defour
- Université de Lyon, Université Jean Monnet, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - Josiane Castells
- Université de Lyon, Université Jean Monnet, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| | - Etienne Lefai
- Université de Lyon, Université Claude Bernard Lyon 1, Régulations Métaboliques Nutrition et Diabètes INSERM U870, Oullins, France
| | - Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Physiologie Intégrative Cellulaire et Moléculaire CNRS U5123, Villeurbanne, France
| | - Damien Freyssenet
- Université de Lyon, Université Jean Monnet, Laboratoire de Physiologie de l'Exercice EA4338, Saint Etienne, France
| |
Collapse
|
130
|
Abstract
The role of ultraviolet radiation (UV) in the pathogenesis has been discussed controversially for many decades. Studies in mice (SCID, HGF/SF, SV40T) which develop malignant melanoma, show a role of UVB in melanomagenesis. In contrast to this, the role of UVA is less clear. We will review the recent in vitro and in vivo data in support of the hypothesis that UVA is also involved in the development of malignant melanoma. The role of UVA in p53 activation, apoptosis, cell cycle arrest and photoproduct formation is discussed.
Collapse
|
131
|
Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life 2009; 61:871-9. [PMID: 19504573 DOI: 10.1002/iub.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endoplasmic reticulum (ER) response has been thought a cytoprotective mechanism to cope with accumulation of unfolded proteins in the ER. Recent progress has made a quantum leap revealing that ER stress response can be regarded as an autoregulatory system adjusting the ER capacity to cellular demand. This Copernican change raised a novel fundamental question in cell biology: how do cells regulate the capacity of each organelle in accordance with cellular needs? Although this fundamental question has not been fully addressed yet, research about each organelle has been advancing. The proliferation of the peroxisome is regulated by the PPAR alpha pathway, whereas the abundance of mitochondria appears to be regulated by mitochondrial retrograde signaling and the mitochondrial unfolded protein response. The functional capacity of the Golgi apparatus may be regulated by the mechanism of the Golgi stress response. These observations strongly suggest the existence of an elaborate network of organelle autoregulation in eukaryotic cells.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
132
|
Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 2009; 19:802-15. [PMID: 19532122 DOI: 10.1038/cr.2009.69] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.
Collapse
|
133
|
Mizutani S, Miyato Y, Shidara Y, Asoh S, Tokunaga A, Tajiri T, Ohta S. Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs. Cancer Sci 2009; 100:1680-7. [PMID: 19555391 PMCID: PMC11159083 DOI: 10.1111/j.1349-7006.2009.01238.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/27/2022] Open
Abstract
The majority of cancer cells harbor homoplasmic somatic mutations in the mitochondrial genome. We show here that mutations in mitochondrial DNA (mtDNA) are responsible for anticancer drug tolerance. We constructed several trans-mitochondrial hybrids (cybrids) with mtDNA derived from human pancreas cancer cell lines CFPAC-1 and CAPAN-2 as well as from healthy individuals. These cybrids contained the different mitochondrial genomes with the common nuclear background. We compared the mutant and wild-type cybrids for resistance against an apoptosis-inducing reagent and anticancer drugs by exposing the cybrids to staurosporine, 5-fluorouracil, and cisplatin in vitro, and found that all mutant cybrids were more resistant to the apoptosis-inducing and anticancer drugs than wild-type cybrids. Next, we transplanted mutant and wild-type cybrids into nude mice to generate tumors. Tumors derived from mutant cybrids were more resistant than those from wild-type cybrids in suppressing tumor growth and inducing massive apoptosis when 5-fluorouracil and cisplatin were administered. To confirm the tolerance of mutant cybrids to anticancer drugs, we transplanted a mixture of mutant and wild-type cybrids at a 1:1 ratio into nude mice and examined the effect by the drugs on the drift of the ratio of mutant and wild-type mtDNA. The mutant mtDNA showed better survival, indicating that mutant cybrids were more resistant to the anticancer drugs. Thus, we propose that mutations in the mitochondrial genome are potential targets for prognosis in the administration of anticancer drugs to cancer patients.
Collapse
Affiliation(s)
- Satoshi Mizutani
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate of School of Medicine, Nippon Medical School, Kawasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Guha M, Pan H, Fang JK, Avadhani NG. Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell 2009; 20:4107-19. [PMID: 19641020 DOI: 10.1091/mbc.e09-04-0296] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction and altered transmembrane potential initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a wide spectrum of cells. The mitochondrial stress response activates calcineurin, which regulates transcription factors, including a new nuclear factor-kappaB (NF-kappaB) pathway, different from the canonical and noncanonical pathways. In this study using a combination of small interfering RNA-mediated mRNA knock down, transcriptional analysis, and chromatin immunoprecipitation, we report a common mechanism for the regulation of previously established stress response genes Cathepsin L, RyR1, and Glut4. Stress-regulated transcription involves the cooperative interplay between NF-kappaB (cRel: p50), C/EBPdelta, cAMP response element-binding protein, and nuclear factor of activated T cells. We show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein (hnRNP) A2 as a coactivator. HnRNP A2 associates with the enhanceosome, mostly through protein-protein interactions with DNA-bound factors. Silencing of hnRNP A2 as well as other DNA binding signature factors prevents stress-induced transcriptional activation and reverses the invasiveness of mitochondrial DNA-depleted C2C12 cells. Induction of mitochondrial stress signaling by electron transfer chain inhibitors also involved hnRNPA2 activation. We describe a common mechanism of mitochondrial respiratory stress-induced activation of nuclear target genes that involves hnRNP A2 as a transcription coactivator.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
135
|
Chen G, Chan FL, Zhang X, Chan PSF. Identification of differently expressed genes in chemical carcinogen-induced rat bladder cancers. ACTA ACUST UNITED AC 2009; 29:220-6. [PMID: 19399409 DOI: 10.1007/s11596-009-0217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Indexed: 12/21/2022]
Abstract
Possible altered gene expression patterns in bladder tumour carcinogenesis in rat bladder cancers induced by BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine] was examined by cDNA microarray analysis of gene expression profiles. Thirty Sprague-Dawley rats were given drinking water containing 0.05% BBN ad libitum for 24 to 28 weeks. Equal numbers of control rats were given tap water without BBN. After treatment, the rat bladders were excised for RNA extraction and histopathological examinations. Total RNAs were extracted from rat transitional cell carcinoma (TCC) tissues and micro-dissected normal rat bladder epithelia. The atlas glass rat microarray was used, which included oligonucleotides of 1081 rat genes. Some of the up-regulated genes in rat bladder TCCs were further confirmed by Northern blotting. Our results showed that the transcriptions of 30 genes were significantly elevated in the rat bladder TCCs, and these included fly proto-oncogene, Lipocortin 2, COX IV, COX V a, and cathepsin D. Also, 15 genes were significantly down-regulated in the rat bladder TCCs and they included B7.1, TNFr1, APOA1 and VHL. The results of cDNA microarray analysis demonstrated that normal rat bladder epithelia and bladder TCC exhibited different and specific gene statement profiles. The increased expressions of the identified genes may play an important role in the chemically induced bladder carcinogenesis.
Collapse
Affiliation(s)
- Guangfu Chen
- Department of Urology, the General Hospital of the Chinese People's Liberation Army, Beijing, 100853, China.
| | | | | | | |
Collapse
|
136
|
Lymphocytic mitochondrial DNA deletions, biochemical folate status and hepatocellular carcinoma susceptibility in a case-control study. Br J Nutr 2009; 102:715-21. [PMID: 19331700 DOI: 10.1017/s0007114509243054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial (mt) DNA deletions and low folate status, proposed characteristics of carcinogenesis, in relation to human hepatocellular carcinoma (HCC) susceptibility are not clearly understood. We hypothesised that low folate status may modify frequencies of mtDNA deletions in humans, both of which could predispose individuals to HCC development. Biochemical folate status of serum and lymphocytes, and frequencies of mtDNA deletions in lymphocytes were determined in ninety HCC cases and ninety cancer-free healthy controls, individually matched by age and sex. The data revealed that HCC patients had lower levels of serum folate (P = 0.0002), lymphocytic folate (P = 0.040) and accumulated higher frequency of lymphocytic mtDNA deletions (P < 0.0001) than the controls. In the total studied subjects, frequencies of lymphocytic mtDNA deletions were associated with hepatitic B infection (P = 0.004) and HCC incidents (P = 0.001), and were correlated with serum folate (r - 0.155; P = 0.041), lymphocyte folate (r - 0.314; P = 0.0001), levels of glutamate-oxaloacetate transaminase (GOT) (r 0.206; P = 0.006), glutamate-pyruvate transaminase (GPT) (r 0.163; P = 0.037) and alpha-fetal protein concentrations (r 0.212; P = 0.005). After adjustment for age, sex, lifestyle and one-carbon metabolite factors, individuals with low blood folate ( < 11.5 nmol/l) or high mtDNA deletions (Delta threshold cycle number (Ct)>5.3) had increased risks for HCC (OR 7.7, 95 % CI 1.9, 29.9, P = 0.003; OR 5.4; 95 % CI 1.7, 16.8, P = 0.003, respectively). When combined with folate deficiency (serum folate < 14 nmol/l), the OR of HCC in individuals with high levels of lymphocytic mtDNA deletions was enhanced (OR 13.3; 95 % CI 1.45, 122; P = 0.008). Further controlling for GOT and GPT levels, however, negated those effects on HCC risk. Taken together, the data suggest that biochemical folate status and liver injuries are important modulators to lymphocytic mtDNA deletions. The mt genetic instability that results from a high rate of mtDNA deletions and/or low folate status increased the risk for HCC, which is mediated by clinical hepatic lesions.
Collapse
|
137
|
Jahnke VE, Sabido O, Freyssenet D. Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts. Am J Physiol Cell Physiol 2009; 296:C1185-94. [PMID: 19295176 DOI: 10.1152/ajpcell.00377.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria can sense signals linked to changes in energy demand to affect nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. We have investigated the regulation of mitochondrial biogenesis and production of putative retrograde signaling agents [hydrogen peroxide (H(2)O(2)) and Ca(2+)] during the cell cycle and the onset of differentiation in L6E9 muscle cells. The biosynthesis of cardiolipin and mitochondrial proteins was mainly achieved in S phase, whereas the expression of mitochondrial biogenesis factors [peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, and neuronal nitric oxide synthase 1] was regularly increased from G(1) to G(2)M phase. In agreement with the increase in mitochondrial membrane potential, mitochondria in S and G(2)M phases have a significantly higher H(2)O(2) level when compared with G(1) phase. By contrast, the onset of differentiation was characterized by a marked reduction in mitochondrial protein expression and mitochondrial H(2)O(2) level. The capacity of mitochondria to release Ca(2+) in response to a metabolic challenge was significantly decreased at the onset of differentiation. Finally, an increase in calmodulin expression in S and G(2)M phases and a transitory increase in phosphorylated nuclear factor of activated T cells (NFAT) c3 in S phase was observed. NFATc3 phosphorylation was markedly decreased at the onset of differentiation. Our data point to functional links between the control of mitochondrial biogenesis and the regulation of the level of retrograde signaling agents during the cell cycle and the onset of differentiation in L6E9 muscle cells.
Collapse
Affiliation(s)
- Vanessa E Jahnke
- Laboratoire de Physiologie de l'Exercice, Faculté de Médecine, F-42023 Saint-Etienne Cedex 2, France
| | | | | |
Collapse
|
138
|
Zhang SP, Song SJ, Li YX. [Association between mitochondrial DNA mutations and cancer in human]. YI CHUAN = HEREDITAS 2009; 30:263-8. [PMID: 18331991 DOI: 10.3724/sp.j.1005.2008.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria are essential organelles that generate cellular energy in cells. Mutations of mitochondrial DNA (mtDNA) have been identified in various types of cancer, suggesting a complex relationship between mtDNA and cancer. This review focuses on the possible correlation between the mtDNA mutation and cancer. Additionally, possible causes for mtDNA mutations and applications for detecting mtDNA mutations in cancer are discussed.
Collapse
Affiliation(s)
- Shu-Ping Zhang
- College of Life Science, Capital Normal University, Beijing 100037, China.
| | | | | |
Collapse
|
139
|
Lee HC, Wei YH. Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci 2009; 10:674-701. [PMID: 19333428 PMCID: PMC2660656 DOI: 10.3390/ijms10020674] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 12/16/2022] Open
Abstract
A shift in glucose metabolism from oxidative phosphorylation to glycolysis is one of the biochemical hallmarks of tumor cells. Mitochondrial defects have been proposed to play an important role in the initiation and/or progression of various types of cancer. In the past decade, a wide spectrum of mutations and depletion of mtDNA have been identified in human cancers. Moreover, it has been demonstrated that activation of oncogenes or mutation of tumor suppressor genes, such as p53, can lead to the upregulation of glycolytic enzymes or inhibition of the biogenesis or assembly of respiratory enzyme complexes such as cytochrome c oxidase. These findings may explain, at least in part, the well documented phenomena of elevated glucose uptake and mitochondrial defects in cancers. In this article, we review the somatic mtDNA alterations with clinicopathological correlations in human cancers, and their potential roles in tumorigenesis, cancer progression, and metastasis. The signaling pathways involved in the shift from aerobic metabolism to glycolysis in human cancers are also discussed.
Collapse
Affiliation(s)
- Hsin-Chen Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan 112; E-Mail:
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan 112
- Author to whom correspondence should be addressed; E-mail:
; Tel. 02-2826-7118; Fax: 02-28264843
| |
Collapse
|
140
|
Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M. The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1145-58. [PMID: 19419707 DOI: 10.1016/j.bbadis.2009.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/15/2008] [Accepted: 01/16/2009] [Indexed: 01/30/2023]
Abstract
Recently, the inevitable metabolic reprogramming experienced by cancer cells as a result of the onset of cellular proliferation has been added to the list of hallmarks of the cancer cell phenotype. Proliferation is bound to the synchronous fluctuation of cycles of an increased glycolysis concurrent with a restrained oxidative phosphorylation. Mitochondria are key players in the metabolic cycling experienced during proliferation because of their essential roles in the transduction of biological energy and in defining the life-death fate of the cell. These two activities are molecularly and functionally integrated and are both targets of commonly altered cancer genes. Moreover, energetic metabolism of the cancer cell also affords a target to develop new therapies because the activity of mitochondria has an unquestionable tumor suppressor function. In this review, we summarize most of these findings paying special attention to the opportunity that translation of energetic metabolism into the clinics could afford for the management of cancer patients. More specifically, we emphasize the role that mitochondrial beta-F1-ATPase has as a marker for the prognosis of different cancer patients as well as in predicting the tumor response to therapy.
Collapse
Affiliation(s)
- José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
141
|
Up-regulation of cathepsin B expression and enhanced secretion in mitochondrial DNA-depleted osteosarcoma cells. Biol Cell 2009; 101:31-41. [PMID: 18598236 DOI: 10.1042/bc20080043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND INFORMATION mtDNA (mitochondrial DNA) mutations that impair oxidative phosphorylation can contribute to carcinogenesis through the increased production of reactive oxygen species and through the release of proteins involved in cell motility and invasion. On the other hand, many human cancers are associated with both the up-regulation and the increased secretion of several proteases and heparanase. In the present study, we tried to determine whether the depletion in mtDNA could modulate the expression and/or the secretion of some lysosomal hydrolases in the 143B osteosarcoma cells, as these mtDNA-depleted cells are characterized by a higher degree of invasiveness than the parental cells. RESULTS In comparison with the parental cells, we measured a higher amount of procathepsin B in the conditioned culture medium of the 143B cells lacking mtDNA (rho(0) 143B cells), as well as a rise in the specific activity of intracellular cathepsin B. In addition, we observed an activation of the transcription factor NF-kappaB (nuclear factor kappaB) in the cells devoid of functional mitochondria. Finally, we demonstrated that the down-regulation of the NF-kappaB p65 subunit by RNA interference led to a reduction in cathepsin B expression in rho(0) 143B cells. CONCLUSIONS The up-regulation of cathepsin B by NF-kappaB, followed by its secretion into the extracellular environment, might be partly responsible for the previously reported invasiveness of the mtDNA-depleted 143B osteosarcoma cells.
Collapse
|
142
|
Moro L, Arbini AA, Yao JL, di Sant'Agnese PA, Marra E, Greco M. Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ 2008; 16:571-83. [PMID: 19079138 DOI: 10.1038/cdd.2008.178] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neoplastic transformation of prostate epithelium involves aberrant activation of anti-apoptotic and pro-invasive pathways triggered by multiple poorly understood genetic events. We demonstrated earlier that depletion of mitochondrial DNA (mtDNA) induces prostate cancer progression. Here, using normal prostate epithelial PNT1A cells we demonstrate that mtDNA depletion prevents detachment-induced apoptosis (anoikis) and promotes migratory capabilities onto basement membrane proteins through upregulation of p85 and p110 phosphatidylinositol 3-kinase (PI3K) subunits, which results in Akt2 activation and phosphorylation of downstream substrates GSK3beta, c-Myc, MMP-9, Mdm2, and p53. Pharmacological or genetic PI3K inhibition, siRNA-mediated Akt2 depletion, as well as mtDNA reconstitution were sufficient to restore sensitivity to anoikis and curtail cell migration. Moreover, Akt2 activation induced glucose transporter 1 (GLUT1) expression, glucose uptake, and lactate production, common phenotypic changes seen in neoplastic cells. In keeping with these findings, several prostate carcinoma cell lines displayed reduced mtDNA content and increased PI3K/Akt2 levels when compared to normal PNT1A cells, and Akt2 downregulation prevented their survival, migration and glycolytic metabolism. On a tissue microarray, we also found a statistically significant decrease in mtDNA-encoded cytochrome oxidase I in prostate carcinomas. Taken together, these results provide novel mechanistic evidence supporting the notion that mtDNA mutations may confer survival and migratory advantage to prostate cancer cells through Akt2 signaling.
Collapse
Affiliation(s)
- L Moro
- Institute of Biomembranes and Bioenergetics, National Research Council (CNR), Bari, Italy
| | | | | | | | | | | |
Collapse
|
143
|
Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR, Gillespie GY. CD133 is a marker of bioenergetic stress in human glioma. PLoS One 2008; 3:e3655. [PMID: 18985161 PMCID: PMC2577012 DOI: 10.1371/journal.pone.0003655] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/15/2008] [Indexed: 11/18/2022] Open
Abstract
Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho0 or ρ0, are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these ρ0 cells display the ability to form “tumor spheroids” in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, ρ0 cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to ρ0 cells resulting in stable trans-mitochondrial “cybrid” clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Cell Hypoxia/genetics
- DNA, Mitochondrial/physiology
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioma/genetics
- Glioma/metabolism
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Glycoproteins/physiology
- Humans
- Models, Biological
- Neoplastic Stem Cells/metabolism
- Peptides/genetics
- Peptides/metabolism
- Peptides/physiology
- Rotenone/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Tumor Cells, Cultured
- Uncoupling Agents/pharmacology
Collapse
Affiliation(s)
- Corinne E Griguer
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | | | |
Collapse
|
144
|
Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD, Hacia JG. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 2008; 9:521. [PMID: 18980691 PMCID: PMC2612029 DOI: 10.1186/1471-2164-9-521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/03/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA) levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted rho0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. RESULTS Cultured A549 rho0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. CONCLUSION We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells.
Collapse
Affiliation(s)
- Darren Magda
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Fujii S, Toriyama K. Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. PLANT & CELL PHYSIOLOGY 2008; 49:1484-94. [PMID: 18625609 PMCID: PMC2566927 DOI: 10.1093/pcp/pcn102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 05/18/2023]
Abstract
Since plants retain genomes of an extremely large size in mitochondria (200-2,400 kb), and mitochondrial protein complexes are comprised of chimeric structures of nuclear- and mitochondrial-encoded subunits, coordination of gene expression between the nuclei and mitochondria is indispensable for sound plant development. It has been well documented that the nucleus regulates organelle gene expression. This regulation is called anterograde regulation. On the other hand, recent studies have demonstrated that signals emitted from organelles regulate nuclear gene expression. This process is known as retrograde signaling. Incompatibility caused by genome barriers between a nucleus and foreign mitochondria destines the fate of pollen to be dead in cytoplasmic male sterility (CMS), and studies of CMS confirm that pollen fertility is associated with anterograde/retrograde signaling. This review summarizes the current perspectives in CMS and fertility restoration, mainly from the viewpoint of anterograde/retrograde signaling.
Collapse
|
146
|
Suzuki S, Naito A, Asano T, Evans TT, Reddy SAG, Higuchi M. Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 2008; 268:31-7. [PMID: 18468786 PMCID: PMC2562876 DOI: 10.1016/j.canlet.2008.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/04/2008] [Accepted: 03/13/2008] [Indexed: 11/19/2022]
Abstract
TNF plus protein synthesis inhibitor cycloheximide-induced apoptosis in human myelogenous leukemia ML-1a but not in C19, respiration minus mitochondrial DNA-deficient C19 cells, derived from ML-1a. To investigate how mitochondrial DNA depletion inhibits apoptosis, we investigated AKT. Both AKT and its phosphorylated form were observed only in C19, indicating that depletion of mtDNA increased protein and the active form of AKT. Treatment of C19 with LY294002, which inhibits PI-3 kinase and inhibits AKT, significantly increased apoptosis induction by TNF plus cycloheximide and eliminated phosphorylation of AKT. These results indicate that AKT activation was induced by the depletion of mtDNA and inhibited TNF-induced apoptosis.
Collapse
Affiliation(s)
- Seigo Suzuki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Akihiro Naito
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Takayuki Asano
- GI Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Teresa T. Evans
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Masahiro Higuchi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
147
|
Abstract
Following the acquisition of chloroplasts and mitochondria by eukaryotic cells during endosymbiotic evolution, most of the genes in these organelles were either lost or transferred to the nucleus. Encoding organelle-destined proteins in the nucleus allows for host control of the organelle. In return, organelles send signals to the nucleus to coordinate nuclear and organellar activities. In photosynthetic eukaryotes, additional interactions exist between mitochondria and chloroplasts. Here we review recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus, with a focus on photosynthetic plants.
Collapse
|
148
|
Lee W, Choi HI, Kim MJ, Park SY. Depletion of mitochondrial DNA up-regulates the expression of MDR1 gene via an increase in mRNA stability. Exp Mol Med 2008; 40:109-17. [PMID: 18305404 DOI: 10.3858/emm.2008.40.1.109] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The mutation and reduction of mitochondrial DNA (mtDNA) have been suggested as factors in the carcinogenesis. However, whether the depletion of mtDNA induces multidrug resistance in cancer cells has not been fully investigated. To elucidate the association of cellular mtDNA content and drug resistance, we generated HCT-8 colon cancer cells which revealed a marked decrease in cellular mtDNA and ATP content, concomitant with a lack of mRNAs encoded by mtDNA. The mtDNA-depleted cells showed a decreased sensitivity and accumulation of anti-cancer drugs, suggesting that mtDNA depletion could develop multidrug resistance (MDR) phenotype in HCT-8 cells. We found that the expression level of MDR1 mRNA and its translated product P-glycoprotein was increased in the mtDNA-depleted cells, indicating that the decrease of sensitivity and accumulation of anti-cancer drug in the mtDNA-depleted cells might be due to a substantial increase in the expression of P-glycoprotein. Furthermore, increased expression of MDR1 mRNA and P-glycoprotein was due to an increase of mRNA stability rather than transcriptional activation. Taken together, these results indicate that mtDNA depletion can induce an increased P-glycoprotein expression via an increase of mRNA stability and suggest that the mtDNA depletion in cancer cells plays an important role in the induction of MDR phenotype.
Collapse
Affiliation(s)
- Wan Lee
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | | | | | | |
Collapse
|
149
|
Mizumachi T, Muskhelishvili L, Naito A, Furusawa J, Fan CY, Siegel ER, Kadlubar FF, Kumar U, Higuchi M. Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells. Prostate 2008; 68:408-17. [PMID: 18196528 PMCID: PMC2268637 DOI: 10.1002/pros.20697] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mitochondria are key organelles for apoptosis, and mitochondrial DNA (mtDNA) content can regulate cancer progression. Increases in mtDNA mutations and deletions have been reported in cancer; however, a detailed investigation of mtDNA content in cancer cells has not yet been conducted. METHODS Quantitative real-time PCR and improved extraction method were established to investigate the mtDNA content in a single prostate cell. RESULTS The heterogeneity of mtDNA content was demonstrated between the clones of prostate cancer cell line LNCaP and individual cells in each clone. To investigate whether large distributional variance of mtDNA content is associated with cancer initiation and/or progression, we first compared PZ-HPV-7, an HPV-transformed normal prostate epithelial cell line, with CA-HPV-10, transformed from prostate cancer cells derived from the same donor. We found an enhanced distributional variance of mtDNA content in CA-HPV-10. Then, we investigated mtDNA content in individual cells in laser microdisssected cancer and adjacent normal cells from prostate cancer tissue specimens using quantitative real-time PCR method. Results showed that the mtDNA content per cell follows a higher skewed distribution in cancer cells as compared in normal cells. We also observed that mtDNA content was increased in seven of nine (78%) of prostate cancers compared to normal prostate tissue. CONCLUSIONS These results indicate that prostate carcinogenesis may involve dysregulation of mtDNA content.
Collapse
Affiliation(s)
- Takatsugu Mizumachi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Levan Muskhelishvili
- Division of Toxicologic Pathology Associates, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Akihiro Naito
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Jun Furusawa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Chun-Yang Fan
- Department of Pathology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Fred F. Kadlubar
- Department of Epidemiology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Udaya Kumar
- Department of Urology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Masahiro Higuchi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
- *Correspondence to: Masahiro Higuchi, 4301 W. Markham St., Slot 516 Little Rock, AR 72205. E-mail:
| |
Collapse
|
150
|
Naito A, Carcel-Trullols J, Xie CH, Evans TT, Mizumachi T, Higuchi M. Induction of acquired resistance to antiestrogen by reversible mitochondrial DNA depletion in breast cancer cell line. Int J Cancer 2008; 122:1506-11. [PMID: 17990320 DOI: 10.1002/ijc.23235] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the net benefits of tamoxifen in adjuvant breast cancer therapy have been proven, the recurrence of the cancer in an aggressive and hormone independent form has been highly problematic. We previously demonstrated the important role mitochondrial DNA (mtDNA) plays in hormone-independence in prostate cancer. Here, the role of mtDNA in breast cancer progression was investigated. We established hydroxytamoxifen (4-OHT) resistant HTRMCF by growing MCF-7, human breast adenocarcinoma cells, in the presence of 4-OHT. HTRMCF was cross-resistant to 4-OHT and ICI182,780 concurrent with the depletion of mtDNA. To further investigate the role of mtDNA depletion, MCF-7 was depleted of mtDNA by treatment with ethidium bromide. MCF Rho 0 was resistant to both 4-OHT and ICI182,780. Furthermore, cybrid (MCFcyb) prepared by fusion MCF Rho 0 with platelet to transfer mtDNA showed susceptibility to antiestrogen. Surprisingly, after withdrawal of 4-OHT for 8 weeks, HTRMCF and their clones became susceptible to both drugs concurrent with a recovery of mtDNA. Herein, our results substantiated the first evidence that the depletion of mtDNA induced by hormone therapy triggers a shift to acquired resistance to hormone therapy in breast cancer. In addition, we showed that mtDNA depletion can be reversed, rendering the cancer cells susceptible to antiestrogen. The fact that the hormone independent phenotype can be reversed should be a step toward more effective treatments for estrogen-responsive breast cancer.
Collapse
Affiliation(s)
- Akihiro Naito
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | | | | | |
Collapse
|