101
|
Zeller P, Gasser SM. The Importance of Satellite Sequence Repression for Genome Stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:15-24. [PMID: 29133300 DOI: 10.1101/sqb.2017.82.033662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Up to two-thirds of eukaryotic genomes consist of repetitive sequences, which include both transposable elements and tandemly arranged simple or satellite repeats. Whereas extensive progress has been made toward understanding the danger of and control over transposon expression, only recently has it been recognized that DNA damage can arise from satellite sequence transcription. Although the structural role of satellite repeats in kinetochore function and end protection has long been appreciated, it has now become clear that it is not only these functions that are compromised by elevated levels of transcription. RNA from simple repeat sequences can compromise replication fork stability and genome integrity, thus compromising germline viability. Here we summarize recent discoveries on how cells control the transcription of repeat sequence and the dangers that arise from their expression. We propose that the link between the DNA damage response and the transcriptional silencing machinery may help a cell or organism recognize foreign DNA insertions into an evolving genome.
Collapse
Affiliation(s)
- Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
102
|
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E9598-E9607. [PMID: 29078403 DOI: 10.1073/pnas.1715049114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1-mediated histone deacetylation in heterochromatin spreading and gene silencing.
Collapse
|
103
|
Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 2017; 127:85-102. [DOI: 10.1007/s00412-017-0647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
|
104
|
Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity. Dev Cell 2017; 42:156-169.e5. [PMID: 28743002 DOI: 10.1016/j.devcel.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.
Collapse
|
105
|
Variation in Position Effect Variegation Within a Natural Population. Genetics 2017; 207:1157-1166. [PMID: 28931559 DOI: 10.1534/genetics.117.300306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Changes in chromatin state may drive changes in gene expression, and it is of growing interest to understand the population genetic forces that drive differences in chromatin state. Here, we use the phenomenon of position effect variegation (PEV), a well-studied proxy for chromatin state, to survey variation in PEV among a naturally derived population. Further, we explore the genetic architecture of natural variation in factors that modify PEV. While previous mutation screens have identified over 150 suppressors and enhancers of PEV, it remains unknown to what extent allelic variation in these modifiers mediate interindividual variation in PEV. Is natural variation in PEV mediated by segregating genetic variation in known Su(var) and E(var) genes, or is the trait polygenic, with many variants mapping elsewhere in the genome? We designed a dominant mapping study that directly answers this question and suggests that the bulk of the variance in PEV does not map to genes with prior annotated impact to PEV. Instead, we find enrichment of top P-value ranked associations that suggest impact to active promoter and transcription start site proximal regions. This work highlights extensive variation in PEV within a population, and provides a quantitative view of the role naturally segregating autosomal variants play in modifying PEV-a phenomenon that continues to shape our understanding of chromatin state and epigenetics.
Collapse
|
106
|
Alam T, Uludag M, Essack M, Salhi A, Ashoor H, Hanks JB, Kapfer C, Mineta K, Gojobori T, Bajic VB. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res 2017; 45:2838-2848. [PMID: 27924038 PMCID: PMC5389649 DOI: 10.1093/nar/gkw973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna
Collapse
Affiliation(s)
- Tanvir Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Haitham Ashoor
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - John B Hanks
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Craig Kapfer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| |
Collapse
|
107
|
Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogenesis 2017; 6:e369. [PMID: 28785073 PMCID: PMC5608919 DOI: 10.1038/oncsis.2017.71] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
The coupling between DNA methylation and histone modification contributes to aberrant expression of oncogenes or tumor suppressor genes that leads to tumor development. Our previous study demonstrated that lysine demethylase 2A (KDM2A) functions as an oncogene in breast cancer by promoting cancer stemness and angiogenesis via activation of the Notch signaling. Here, we demonstrate that knockdown of KDM2A significantly increases the 5′-hydroxymethylcytosine (5′-hmc) level in genomic DNA and expression of tet-eleven translocation 2 (TET2) in various breast cancer cell lines. Conversely, ectopic expression of KDM2A inhibits TET2 expression in KDM2A-depleted cells suggesting TET2 is a transcriptional repression target of KDM2A. Our results show that KDM2A interacts with RelA to co-occupy at the TET2 gene promoter to repress transcription and depletion of RelA or KDM2A restores TET2 expression. Upregulation of TET2 in the KDM2A-depleted cells induces the re-activation of two TET downstream tumor suppressor genes, epithelial cell adhesion molecule (EpCAM) and E-cadherin, and inhibits migration and invasion. On the contrary, knockdown of TET2 in these cells decreases EpCAM and E-cadherin and increases cell invasiveness. More importantly, TET2 expression is negatively associated KDM2A in triple-negative breast tumor tissues, and its expression predicts a better survival. Taken together, we demonstrate for the first time that TET2 is a direct repression target of KDM2A and reveal a novel mechanism by which KDM2A promotes DNA methylation and breast cancer progression via the inhibition of a DNA demethylase.
Collapse
|
108
|
Wiley EA, Horrell S, Yoshino A, Schornak CC, Bagnani C, Chalker DL. Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila. J Eukaryot Microbiol 2017; 65:104-116. [PMID: 28692189 PMCID: PMC5762428 DOI: 10.1111/jeu.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.
Collapse
Affiliation(s)
- Emily A Wiley
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Scott Horrell
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Alyssa Yoshino
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Cara C Schornak
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Claire Bagnani
- W.M. Keck Science Center of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California, 91711
| | - Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| |
Collapse
|
109
|
Single vector non-leaky gene expression system for Drosophila melanogaster. Sci Rep 2017; 7:6899. [PMID: 28761084 PMCID: PMC5537222 DOI: 10.1038/s41598-017-07282-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022] Open
Abstract
An ideal transgenic gene expression system is inducible, non-leaky, and well tolerated by the target organism. While the former has been satisfactorily realized, leakiness and heavy physiological burden imposed by the existing systems are still prominent hurdles in their successful implementation. Here we describe a new system for non-leaky expression of transgenes in Drosophila. PRExpress is based on a single transgenic construct built from endogenous components, the inducible hsp70 promoter and a multimerized copy of a Polycomb response element (PRE) controlled by epigenetic chromatin regulators of the Polycomb group. We show that this system is non-leaky, rapidly and strongly inducible, and reversible. To make the application of PRExpress user-friendly, we deliver the construct via site-specific integration.
Collapse
|
110
|
Tan H, Liu T, Zhang J, Zhou T. Random positioning of nucleosomes enhances heritable bistability. MOLECULAR BIOSYSTEMS 2017; 13:132-141. [PMID: 27833942 DOI: 10.1039/c6mb00729e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal regions are often dynamically modified by histones, leading to the uncertainty of nucleosome positions. Experiments have provided evidence for this randomness, but it is unclear how it impacts epigenetic heritability. Here, by analyzing a mechanic model at the molecular level, which considers three representative types of nucleosomes (unmodified, methylated, and acetylated) and dynamic nucleosome modifications, we find that in contrast to the equidistance partition of nucleosomes, random partition can significantly enhance heritable bistability. Moreover, the more "chaotic" the nucleosome positions are, the better the heritable bistability is, in contrast to the previous view. In both cases of nucleosome positioning, heritable bistability occurs only when the total nucleosome number is beyond a threshold, and it depends strongly on the allocation rate that enzymes regulate transitions between different nucleosome types. Thus, we conclude that random positioning of nucleosomes is an unneglectable factor impacting heritable bistability. A point worth mentioning is that our model established on a master equation can easily be extended to include other more complex processes underlying dynamic nucleosome modifications.
Collapse
Affiliation(s)
- Heli Tan
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and School of Mathematics and Computational Science, Xiangtan University, XiangTan 411105, P. R. China
| | - Tuoqi Liu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
111
|
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 2017; 6. [PMID: 28695823 PMCID: PMC5505702 DOI: 10.7554/elife.25762] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI:http://dx.doi.org/10.7554/eLife.25762.001 The DNA inside an organism encodes all the instructions needed for the organism to develop and work properly. Organisms carefully organize and maintain their DNA (collectively known as the genome) so that the genetic information remains intact and the cell can understand the instructions. However, there are some pieces of DNA that are capable of moving around the genome. For example, pieces known as transposable elements can make new copies of themselves and jump into new locations in the genome. Most transposons do not appear to have any important roles, and in fact they are usually harmful to organisms. Despite this, transposons are present in the genomes of almost all species. The number of transposons in a genome varies greatly between individuals and species, but it is not clear why this is the case. Organisms have evolved ways to limit the damage caused by transposons. For example, many cells package regions of DNA containing transposons into a tightly packed structure known as heterochromatin. However, this type of DNA packaging sometimes spreads to neighboring sections of DNA. This is a problem because cells are not usually able to read the information contained within heterochromatin. This means that transposons can prevent some instructions from being produced when they should be. Lee and Karpen used fruit flies to investigate to what extent transposons harm organisms by changing the way DNA is packaged, and whether this influences how transposons evolve. The experiments show that that more than half of the transposons in fruit flies cause neighboring sections of DNA to be packaged into heterochromatin. This can negatively impact up to 20% of genes in the genome. As a result, transposons that have harmful effects on DNA packaging are more likely to be lost from the fly population during evolution than transposons that do not have harmful effects. Fruit fly species containing transposons that tend to package more neighboring sections of DNA into heterochromatin generally have fewer transposons than genomes containing less harmful transposons. The findings of Lee and Karpen provide new insight as to why the numbers of transposons vary among organisms. The next challenge is to find out whether transposons that alter how DNA is packaged are also common in primates and other animals. DOI:http://dx.doi.org/10.7554/eLife.25762.002
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| |
Collapse
|
112
|
Bechtsi D, Waters A. Genomics and epigenetics of sexual commitment in Plasmodium. Int J Parasitol 2017; 47:425-434. [DOI: 10.1016/j.ijpara.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
|
113
|
Yu T, Wang C, Yang J, Guo Y, Wu Y, Li X. Metformin inhibits SUV39H1-mediated migration of prostate cancer cells. Oncogenesis 2017; 6:e324. [PMID: 28459432 PMCID: PMC5523061 DOI: 10.1038/oncsis.2017.28] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death among men, largely due to incurable distant metastases. Metformin, the most common used anti-type-2 diabetes medicine, has been linked to reduced cancer risk and better diagnosis. We found that metformin was able to inhibit PCa cell migration, which correlates with tumor metastatic capability. The pathogenesis and progression of tumors are closely related to dysregulated gene expression in tumor cells through epigenetic alterations such as DNA methylation and histone modifications. We found that the level of SUV39H1, a histone methyltransferase of H3 Lys9, was reduced in metformin-treated PCa cells in a time-dependent manner. SUV39H1 overexpression increased PCa migration, whereas SUV39H1 depletion suppressed PCa cell migration. There is a positive correlation between SUV39H1 expression and PCa pathological stages. We further showed that both metformin treatment and SUV39H1 knockout in PCa cells can reduce integrin αV and β1 proteins, as well as their downstream phosphorylated focal adhesion kinase (FAK) levels, which is essential for functional adhesion signaling and tumor cell migration. Taken together, metformin reduced SUV39H1 to inhibit migration of PCa cells via disturbing the integrin-FAK signaling. Our study suggests SUV39H1 as a novel target to inhibit PCa cell migration.
Collapse
Affiliation(s)
- T Yu
- Institute of Gene Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry (NYUCD), New York, NY, USA
| | - C Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - J Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry (NYUCD), New York, NY, USA
| | - Y Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry (NYUCD), New York, NY, USA
| | - Y Wu
- Institute of Gene Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry (NYUCD), New York, NY, USA
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - X Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry (NYUCD), New York, NY, USA
- Department of Urology, New York University Langone Medical Center, New York, NY, USA
- Perlmutter Cancer Institute, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
114
|
Zheng Q, Wang H, Wang Z, Liu J, Zhang Q, Zhang L, Lu Y, You H, Jin G. Reprogramming of histone methylation controls the differentiation of monocytes into macrophages. FEBS J 2017; 284:1309-1323. [DOI: 10.1111/febs.14060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/04/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Qi‐Fan Zheng
- Department of Basic Medical Sciences Medical College Xiamen University China
- State Key Laboratory of Cellular Stress Biology Xiamen University China
- Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma Xiamen University China
| | - Hui‐Min Wang
- Department of Basic Medical Sciences Medical College Xiamen University China
| | - Zhan‐Feng Wang
- Department of Neurosurgery China‐Japan Union Hospital Jilin University Changchun China
| | - Jin‐Yang Liu
- Department of Basic Medical Sciences Medical College Xiamen University China
| | - Qi Zhang
- Department of Basic Medical Sciences Medical College Xiamen University China
| | - Li Zhang
- Department of Basic Medical Sciences Medical College Xiamen University China
| | - Yuan‐Hua Lu
- Department of Basic Medical Sciences Medical College Xiamen University China
| | - Han You
- State Key Laboratory of Cellular Stress Biology Xiamen University China
| | - Guang‐Hui Jin
- Department of Basic Medical Sciences Medical College Xiamen University China
- State Key Laboratory of Cellular Stress Biology Xiamen University China
- Fujian Provincial Key Laboratory of chronic liver disease and hepatocellular carcinoma Xiamen University China
| |
Collapse
|
115
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
116
|
Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 2017; 10:12. [PMID: 28293301 PMCID: PMC5348760 DOI: 10.1186/s13072-017-0117-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Histone posttranslational modifications (PTMs) function to regulate chromatin structure and function in part through the recruitment of effector proteins that harbor specialized "reader" domains. Despite efforts to elucidate reader domain-PTM interactions, the influence of neighboring PTMs and the target specificity of many reader domains is still unclear. The aim of this study was to use a high-throughput histone peptide microarray platform to interrogate 83 known and putative histone reader domains from the chromo and Tudor domain families to identify their interactions and characterize the influence of neighboring PTMs on these interactions. RESULTS Nearly a quarter of the chromo and Tudor domains screened showed interactions with histone PTMs by peptide microarray, revealing known and several novel methyllysine interactions. Specifically, we found that the CBX/HP1 chromodomains that recognize H3K9me also recognize H3K23me2/3-a poorly understood histone PTM. We also observed that, in addition to their interaction with H3K4me3, Tudor domains of the Spindlin family also recognized H4K20me3-a previously uncharacterized interaction. Several Tudor domains also showed novel interactions with H3K4me as well. CONCLUSIONS These results provide an important resource for the epigenetics and chromatin community on the interactions of many human chromo and Tudor domains. They also provide the basis for additional studies into the functional significance of the novel interactions that were discovered.
Collapse
Affiliation(s)
- Erin K Shanle
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909 USA
| | - Stephen A Shinsky
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph B Bridgers
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Narkhyun Bae
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| |
Collapse
|
117
|
Aldrich JC, Leibholz A, Cheema MS, Ausiό J, Ferree PM. A 'selfish' B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis. Sci Rep 2017; 7:42551. [PMID: 28211924 PMCID: PMC5304203 DOI: 10.1038/srep42551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023] Open
Abstract
Intragenomic conflict describes a phenomenon in which genetic elements act ‘selfishly’ to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes during the first embryonic mitosis, leading to its loss. Although paternally transmitted, PSR evades self-elimination in order to be inherited. We examined important post-translational modifications to the DNA packaging histones on the normal genome and the PSR chromosome in the fertilized embryo. Three histone marks – H3K9me2,3, H3K27me1, and H4K20me1 – became abnormally enriched and spread to ectopic positions on the sperm’s chromatin before entry into mitosis. In contrast, other histone marks and DNA methylation were not affected by PSR, suggesting that its effect on the paternal genome is specific to a subset of histone marks. Contrary to the paternally derived genome, the PSR chromosome was visibly devoid of the H3K27me1 and H4K20me1 marks. These findings strongly suggest that PSR causes paternal genome elimination by disrupting at least three histone marks following fertilization, while PSR avoids self-elimination by evading two of these marks.
Collapse
Affiliation(s)
- John C Aldrich
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Alexandra Leibholz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Juan Ausiό
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| |
Collapse
|
118
|
Naruse C, Shibata S, Tamura M, Kawaguchi T, Abe K, Sugihara K, Kato T, Nishiuchi T, Wakana S, Ikawa M, Asano M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J 2017; 31:2252-2266. [PMID: 28188179 DOI: 10.1096/fj.201600642r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Jmjd3 and Utx are demethylases specific for lysine 27 of histone H3. Previous reports indicate that Jmjd3 is essential for differentiation of various cell types, such as macrophages and epidermal cells in mice, whereas Utx is involved in cancer and developmental diseases in humans and mice, as well as Hox regulation in zebrafish and nematodes. Here, we report that Jmjd3, but not Utx, is involved in axial skeletal formation in mice. A Jmjd3 mutant embryo (Jmjd3Δ18/Δ18), but not a catalytically inactive Utx truncation mutant (Utx-/y), showed anterior homeotic transformation. Quantitative RT-PCR and microarray analyses showed reduced Hox expression in both Jmjd3Δ18/Δ18 embryos and tailbuds, whereas levels of Hox activators, such as Wnt signaling factors and retinoic acid synthases, did not decrease, which suggests that Jmjd3 plays a regulatory role in Hox expression during axial patterning. Chromatin immunoprecipitation analyses of embryo tailbud tissue showed trimethylated lysine 27 on histone H3 to be at higher levels at the Hox loci in Jmjd3Δ18/Δ18 mutants compared with wild-type tailbuds. In contrast, trimethylated lysine 4 on histone H3 levels were found to be equivalent in wild-type and Jmjd3Δ18/Δ18 tailbuds. Demethylase-inactive Jmjd3 mutant embryos showed the same phenotype as Jmjd3Δ18/Δ18 mice. These results suggest that the demethylase activity of Jmjd3, but not that of Utx, affects mouse axial patterning in concert with alterations in Hox gene expression.-Naruse, C., Shibata, S., Tamura, M., Kawaguchi, T., Abe, K., Sugihara, K., Kato, T., Nishiuchi, T., Wakana, S., Ikawa, M., Asano, M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shinwa Shibata
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Takayuki Kawaguchi
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan; .,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
119
|
Ono T, Kamimura N, Matsuhashi T, Nagai T, Nishiyama T, Endo J, Hishiki T, Nakanishi T, Shimizu N, Tanaka H, Ohta S, Suematsu M, Ieda M, Sano M, Fukuda K, Kaneda R. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure. Sci Rep 2017; 7:39752. [PMID: 28051130 PMCID: PMC5209701 DOI: 10.1038/srep39752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Histone acetylation has been linked to cardiac hypertrophy and heart failure. However, the pathological implications of changes in histone methylation and the effects of interventions with histone methyltransferase inhibitors for heart failure have not been fully clarified. Here, we focused on H3K9me3 status in the heart and investigated the effects of the histone H3K9 methyltransferase inhibitor chaetocin on prognoses in Dahl salt-sensitive rats, an animal model of chronic heart failure. Chaetocin prolonged survival and restored mitochondrial dysfunction. ChIP-seq analysis demonstrated that chronic stress to the heart induced H3K9me3 elevation in thousands of repetitive elements, including intronic regions of mitochondria-related genes, such as the gene encoding peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Furthermore, chaetocin reversed this effect on these repetitive loci. These data suggested that excessive heterochromatinization of repetitive elements of mitochondrial genes in the failing heart may lead to the silencing of genes and impair heart function. Thus, chaetocin may be a potential therapeutic agent for chronic heart failure.
Collapse
Affiliation(s)
- Tomohiko Ono
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Tomohiro Matsuhashi
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Takahiko Nishiyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tsuyoshi Nakanishi
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- MS Business Unit, Shimadzu Corporation, Kyoto, Japan
| | - Noriaki Shimizu
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hirotoshi Tanaka
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku Tokyo, Japan
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|
120
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
121
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|
122
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
123
|
Muramatsu D, Kimura H, Kotoshiba K, Tachibana M, Shinkai Y. Pericentric H3K9me3 Formation by HP1 Interaction-defective Histone Methyltransferase Suv39h1. Cell Struct Funct 2016; 41:145-152. [PMID: 27733730 DOI: 10.1247/csf.16013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pericentric regions form epigenetically organized, silent heterochromatin structures that accumulate histone H3 lysine 9 tri-methylation (H3K9me3) and heterochromatin protein 1 (HP1), a methylated H3K9-binding protein. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1. However, the importance of HP1 interaction for Suv39h-mediated H3K9me3 formation at the pericentromere is not well characterized. To address this question, we introduced HP1 binding-defective, N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient cells. Pericentric H3K9me3-positive cells were not detected by endogenous-level expression of ΔN. Notably, ΔN could induce pericentric accumulation of H3K9me3 as wild type Suv39h1 did if it was overexpressed. These findings demonstrate that the N-terminal region of Suv39h1, presumably via HP1-Suv39h1 interaction, is required for Suv39h1-mediated pericentric H3K9me3 formation, but can be overridden if Suv39h1 is overproduced, indicating that Suv39h1-mediated heterochromatin formation is controlled by multiple modules, including HP1.
Collapse
|
124
|
Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 2016; 113:11277-11282. [PMID: 27621458 DOI: 10.1073/pnas.1604621113] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements, highly enriched in heterochromatin, that constitute a large percentage of the DNA content of eukaryotic genomes. Aging in Drosophila melanogaster is characterized by loss of repressive heterochromatin structure and loss of silencing of reporter genes in constitutive heterochromatin regions. Using next-generation sequencing, we found that transcripts of many genes native to heterochromatic regions and TEs increased with age in fly heads and fat bodies. A dietary restriction regimen, known to extend life span, repressed the age-related increased expression of genes located in heterochromatin, as well as TEs. We also observed a corresponding age-associated increase in TE transposition in fly fat body cells that was delayed by dietary restriction. Furthermore, we found that manipulating genes known to affect heterochromatin structure, including overexpression of Sir2, Su(var)3-9, and Dicer-2, as well as decreased expression of Adar, mitigated age-related increases in expression of TEs. Increasing expression of either Su(var)3-9 or Dicer-2 also led to an increase in life span. Mutation of Dicer-2 led to an increase in DNA double-strand breaks. Treatment with the reverse transcriptase inhibitor 3TC resulted in decreased TE transposition as well as increased life span in TE-sensitized Dicer-2 mutants. Together, these data support the retrotransposon theory of aging, which hypothesizes that epigenetically silenced TEs become deleteriously activated as cellular defense and surveillance mechanisms break down with age. Furthermore, interventions that maintain repressive heterochromatin and preserve TE silencing may prove key to preventing damage caused by TE activation and extending healthy life span.
Collapse
|
125
|
Abstract
Nucleosomes function to tightly package DNA into chromosomes, but the nucleosomal landscape becomes disrupted during active processes such as replication, transcription, and repair. The realization that many proteins responsible for chromatin regulation are frequently mutated in cancer has drawn attention to chromatin dynamics; however, the basic mechanisms whereby nucleosomes are disrupted and reassembled is incompletely understood. Here, I present an overview of chromatin dynamics as has been elucidated in model organisms, in which our understanding is most advanced. A basic understanding of chromatin dynamics during normal developmental processes can provide the context for understanding how this machinery can go awry during oncogenesis.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
126
|
Abstract
Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brownDominant allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brownDominant and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- a Department of Molecular Genetics of the Cell , Institute of Molecular Genetics, Russian Academy of Science , Moscow , Russia
| | - Yuriy A Abramov
- a Department of Molecular Genetics of the Cell , Institute of Molecular Genetics, Russian Academy of Science , Moscow , Russia
| | - Sergey A Lavrov
- a Department of Molecular Genetics of the Cell , Institute of Molecular Genetics, Russian Academy of Science , Moscow , Russia
| |
Collapse
|
127
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
128
|
Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, Siomi H, Saito K. Piwi Modulates Chromatin Accessibility by Regulating Multiple Factors Including Histone H1 to Repress Transposons. Mol Cell 2016; 63:408-19. [PMID: 27425411 DOI: 10.1016/j.molcel.2016.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) mediate transcriptional and post-transcriptional silencing of transposable element (TE) in animal gonads. In Drosophila ovaries, Piwi-piRNA complexes (Piwi-piRISCs) repress TE transcription by modifying the chromatin state, such as by H3K9 trimethylation. Here, we demonstrate that Piwi physically interacts with linker histone H1. Depletion of Piwi decreases H1 density at a subset of TEs, leading to their derepression. Silencing at these loci separately requires H1 and H3K9me3 and heterochromatin protein 1a (HP1a). Loss of H1 increases target loci chromatin accessibility without affecting H3K9me3 density at these loci, while loss of HP1a does not impact H1 density. Thus, Piwi-piRISCs require both H1 and HP1a to repress TEs, and the silencing is correlated with the chromatin state rather than H3K9me3 marks. These findings suggest that Piwi-piRISCs regulate the interaction of chromatin components with target loci to maintain silencing of TEs through the modulation of chromatin accessibility.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirotsugu Ishizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aoi Shibuya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumiko Iyoda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
129
|
Kavi H, Emelyanov AV, Fyodorov DV, Skoultchi AI. Independent Biological and Biochemical Functions for Individual Structural Domains of Drosophila Linker Histone H1. J Biol Chem 2016; 291:15143-55. [PMID: 27226620 DOI: 10.1074/jbc.m116.730705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Linker histone H1 is among the most abundant components of chromatin. H1 has profound effects on chromosome architecture. H1 also helps to tether DNA- and histone-modifying enzymes to chromatin. Metazoan linker histones have a conserved tripartite structure comprising N-terminal, globular, and long, unstructured C-terminal domains. Here we utilize truncated Drosophila H1 polypeptides in vitro and H1 mutant transgenes in vivo to interrogate the roles of these domains in multiple biochemical and biological activities of H1. We demonstrate that the globular domain and the proximal part of the C-terminal domain are essential for H1 deposition into chromosomes and for the stability of H1-chromatin binding. The two domains are also essential for fly viability and the establishment of a normal polytene chromosome structure. Additionally, through interaction with the heterochromatin-specific histone H3 Lys-9 methyltransferase Su(var)3-9, the H1 C-terminal domain makes important contributions to formation and H3K9 methylation of heterochromatin as well as silencing of transposons in heterochromatin. Surprisingly, the N-terminal domain does not appear to be required for any of these functions. However, it is involved in the formation of a single chromocenter in polytene chromosomes. In summary, we have discovered that linker histone H1, similar to core histones, exerts its multiple biological functions through independent, biochemically separable activities of its individual structural domains.
Collapse
Affiliation(s)
- Harsh Kavi
- From the Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alexander V Emelyanov
- From the Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dmitry V Fyodorov
- From the Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Arthur I Skoultchi
- From the Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
130
|
Coulthard AB, Taylor-Kamall RW, Hallson G, Axentiev A, Sinclair DA, Honda BM, Hilliker AJ. Meiotic recombination is suppressed near the histone-defined border of euchromatin and heterochromatin on chromosome 2L of Drosophila melanogaster. Genome 2016; 59:289-94. [DOI: 10.1139/gen-2015-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila melanogaster, the borders between pericentric heterochromatin and euchromatin on the major chromosome arms have been defined in various ways, including chromatin-specific histone modifications, the binding patterns of heterochromatin-enriched chromosomal proteins, and various cytogenetic techniques. Elucidation of the genetic properties that independently define the different chromatin states associated with heterochromatin and euchromatin should help refine the boundary. Since meiotic recombination is present in euchromatin, but absent in heterochromatin, it constitutes a key genetic property that can be observed transitioning between chromatin states. Using P element insertion lines marked with a su(Hw) insulated mini-white gene, meiotic recombination was found to transition in a region consistent with the H3K9me2 transition observed in ovaries.
Collapse
Affiliation(s)
| | | | - Graham Hallson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Anna Axentiev
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Don A. Sinclair
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
131
|
Wang J, Jia ST, Jia S. New Insights into the Regulation of Heterochromatin. Trends Genet 2016; 32:284-294. [PMID: 27005444 DOI: 10.1016/j.tig.2016.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
All living organisms are constantly exposed to stresses from internal biological processes and surrounding environments, which induce many adaptive changes in cellular physiology and gene expression programs. Unexpectedly, constitutive heterochromatin, which is generally associated with the stable maintenance of gene silencing, is also dynamically regulated in response to stimuli. In this review we discuss the mechanism of constitutive heterochromatin assembly, its dynamic nature, and its responses to environmental changes.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sharon T Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
132
|
Baughman BM, Pattenden SG, Norris JL, James LI, Frye SV. The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. ACS Chem Biol 2016; 11:722-8. [PMID: 26317848 DOI: 10.1021/acschembio.5b00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L3MBTL3 recognizes mono- and dimethylated lysine residues on histone tails. The recently reported X-ray cocrystal structures of the chemical probe UNC1215 and inhibitor UNC2533 bound to the methyl-lysine reading MBT domains of L3MBTL3 demonstrate a unique and flexible 2:2 dimer mode of recognition. In this study, we describe our in vitro analysis of L3MBTL3 dimerization via its MBT domains and additionally show that this dimerization occurs within a cellular context in the absence of small molecule ligands. Furthermore, mutations to the first and second MBT domains abrogated L3MBTL3 dimerization both in vitro and in cells. These observations are consistent with the hypothesis that L3MBTL3 engages methylated histone tails as a dimer while carrying out its normal function and provides an explanation for the presence of repeated MBT domains within L3MBTL3.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G. Pattenden
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- Center for Integrative Chemical
Biology and Drug Discovery, Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
133
|
Heterochromatin-Associated Proteins HP1a and Piwi Collaborate to Maintain the Association of Achiasmate Homologs in Drosophila Oocytes. Genetics 2016; 203:173-89. [PMID: 26984058 DOI: 10.1534/genetics.115.186460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes. Proper segregation of these achiasmate homologs relies on their pericentric heterochromatin-mediated association, but the mechanism(s) underlying this attachment remains poorly understood. Using an inducible RNA interference (RNAi) strategy combined with fluorescence in situ hybridization (FISH) to monitor centromere proximal association of the achiasmate FM7a/X homolog pair, we asked whether specific heterochromatin-associated proteins are required for the association and proper segregation of achiasmate homologs in Drosophila oocytes. When we knock down HP1a, H3K9 methytransferases, or the HP1a binding partner Piwi during mid-prophase, we observe significant disruption of pericentric heterochromatin-mediated association of FM7a/X homologs. Furthermore, for both HP1a and Piwi knockdown oocytes, transgenic coexpression of the corresponding wild-type protein is able to rescue RNAi-induced defects, but expression of a mutant protein with a single amino acid change that disrupts the HP1a-Piwi interaction is unable to do so. We show that Piwi is stably bound to numerous sites along the meiotic chromosomes, including centromere proximal regions. In addition, reduction of HP1a or Piwi during meiotic prophase induces a significant increase in FM7a/X segregation errors. We present a speculative model outlining how HP1a and Piwi could collaborate to keep achiasmate chromosomes associated in a homology-dependent manner.
Collapse
|
134
|
Timms RT, Tchasovnikarova IA, Lehner PJ. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 2016; 38:333-43. [DOI: 10.1002/bies.201500184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Richard T. Timms
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Iva A. Tchasovnikarova
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
135
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
136
|
Anwar MA, Kim S, Choi S. The triumph of chemically enhanced cellular reprogramming: a patent review. Expert Opin Ther Pat 2015; 26:265-80. [PMID: 26593376 DOI: 10.1517/13543776.2016.1118058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The revolutionary discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has exposed science to new horizons. However, genetic modifications render reprogrammed cells unstable; for that reason, non-genetic modification approaches are actively under investigation. Among these, the use of small molecules is safe, and these molecules minimally affect the genome. Although iPSCs are ready for clinical trials there are many caveats hindering successful therapy, and small molecules are the best alternative to overcome those caveats. AREAS COVERED Small molecules are playing an active role in generating and improving the quality of iPSCs. In this review, we will highlight the imperative role of small molecules in accelerating the successful translation of basic research into clinical use. Particularly, those ligands that replace the need for reprogramming factors will be discussed. EXPERT OPINION Stem cell research is promising for harvesting medical benefits in near future. The invention of new techniques, mechanisms elucidation, and identification of novel compounds for stem cell creation has certainly established a solid foundation for regenerative medicine. This is the beginning of a new era for the cure of most disabling diseases, and small molecules will have a definite role in successful therapeutic use of iPSCs.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- a Department of Molecular Science and Technology , Ajou University , Suwon , South Korea
| | - Songmee Kim
- a Department of Molecular Science and Technology , Ajou University , Suwon , South Korea
| | - Sangdun Choi
- a Department of Molecular Science and Technology , Ajou University , Suwon , South Korea
| |
Collapse
|
137
|
Rondinelli B, Rosano D, Antonini E, Frenquelli M, Montanini L, Huang D, Segalla S, Yoshihara K, Amin SB, Lazarevic D, The BT, Verhaak RGW, Futreal PA, Di Croce L, Chin L, Cittaro D, Tonon G. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J Clin Invest 2015; 125:4625-37. [PMID: 26551685 DOI: 10.1172/jci81040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.
Collapse
|
138
|
The Differences Between Cis- and Trans-Gene Inactivation Caused by Heterochromatin in Drosophila. Genetics 2015; 202:93-106. [PMID: 26500261 DOI: 10.1534/genetics.115.181693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo-formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.
Collapse
|
139
|
Sienski G, Batki J, Senti KA, Dönertas D, Tirian L, Meixner K, Brennecke J. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 2015; 29:2258-71. [PMID: 26494711 PMCID: PMC4647559 DOI: 10.1101/gad.271908.115] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
In this study, Sienski et al. characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi's nuclear function in guiding the transcriptional silencing of transposons. These results provide novel insight into the transcriptional silencing process downstream from Piwi and the regulation of piRNA-guided heterochromatin formation. The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI–piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. Here, we characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi-mediated transcriptional silencing in Drosophila. Ectopic targeting of Silencio to RNA or DNA is sufficient to elicit silencing independently of Piwi and known piRNA pathway factors. Instead, Silencio requires the H3K9 methyltransferase Eggless/SetDB1 for its silencing ability. In agreement with this, SetDB1, but not Su(var)3-9, is required for Piwi-mediated transcriptional silencing genome-wide. Due to its interaction with the target-engaged Piwi–piRNA complex, we suggest that Silencio acts as linker between the sequence specificity factor Piwi and the cellular heterochromatin machinery.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
140
|
Baker K, Dhillon T, Colas I, Cook N, Milne I, Milne L, Bayer M, Flavell AJ. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:111-24. [PMID: 26255869 PMCID: PMC4973852 DOI: 10.1111/tpj.12963] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 05/05/2023]
Abstract
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next-generation sequencing (ChIP-seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3-containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere-proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene-rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3-depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon-rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere-proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.
Collapse
Affiliation(s)
- Katie Baker
- University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Taniya Dhillon
- University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Isabelle Colas
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Nicola Cook
- University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Iain Milne
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Linda Milne
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Micha Bayer
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | |
Collapse
|
141
|
Fang C, Schmitz L, Ferree PM. An unusually simple HP1 gene set in Hymenopteran insects. Biochem Cell Biol 2015; 93:596-603. [PMID: 26419616 DOI: 10.1139/bcb-2015-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heterochromatin protein 1 (HP1) gene family includes a set of paralogs in higher eukaryotes that serve fundamental roles in heterochromatin structure and maintenance, and other chromatin-related functions. At least 10 full and 16 partial HP1 genes exist among Drosophila species, with multiple gene gains, losses, and sub-functionalizations within this insect group. An important question is whether this diverse set of HP1 genes and their dynamic evolution represent the standard rule in eukaryotic groups. Here we have begun to address this question by bio-informatically identifying the HP1 family genes in representative species of the insect order Hymenoptera, which includes all ants, bees, wasps, and sawflies. Compared to Drosophila species, Hymenopterans have a much simpler set of HP1 genes, including one full and two partial HP1s. All 3 genes appear to have been present in the common ancestor of the Hymenopterans and they derive from a Drosophila HP1B-like gene. In ants, a partial HP1 gene containing only a chromoshadow domain harbors amino acid changes at highly conserved sites within the PxVxL recognition region, suggesting that this gene has undergone sub-functionalization. In the jewel wasp Nasonia vitripennis, the full HP1 and partial chromoshadow-only HP1 are expressed in both germ line and somatic tissues. However, the partial chromodomain-only HP1 is expressed exclusively in the ovary and testis, suggesting that it may have a specialized chromatin role during gametogenesis. Our findings demonstrate that the HP1 gene family is much simpler and evolutionarily less dynamic within the Hymenopterans compared to the much younger Drosophila group, a pattern that may reflect major differences in the range of chromatin-related functions present in these and perhaps other insect groups.
Collapse
Affiliation(s)
- C Fang
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - L Schmitz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - P M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| |
Collapse
|
142
|
Shimaji K, Konishi T, Tanaka S, Yoshida H, Kato Y, Ohkawa Y, Sato T, Suyama M, Kimura H, Yamaguchi M. Genomewide identification of target genes of histone methyltransferase dG9a duringDrosophilaembryogenesis. Genes Cells 2015; 20:902-14. [DOI: 10.1111/gtc.12281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Takahiro Konishi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Shintaro Tanaka
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Hideki Yoshida
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuko Kato
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives; Faculty of Medicine; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Tetsuya Sato
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Mikita Suyama
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Hiroshi Kimura
- Department of Biological Sciences; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Nagatsuta Midori-ku Yokohama 226-8501 Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
143
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
144
|
Pham KTM, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda KI, Nakayashiki H. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLoS Genet 2015; 11:e1005385. [PMID: 26230995 PMCID: PMC4521839 DOI: 10.1371/journal.pgen.1005385] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up- and down-regulated, respectively, in a Moset1-dependent manner. 5) The Moset1-dependent DEGs were enriched in several gene categories such as signal transduction, transport, RNA processing, and translation. This paper provides two major contributions to the field of genetics. First, we systematically studied the biological roles of eight histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. We investigated their roles, especially focusing on their involvement in infection-related morphogenesis and pathogenicity. The results showed that the eight KMTs were involved in various infection processes to varying degrees, and that MoSET1, one of the KMTs catalyzing methylation at histone H3 lysine 4 (H3K4), had the largest impact on the pathogenicity of the fungus. Second, we focused on the role of MoSET1 in global gene regulation. H3K4 methylation is generally believed to be an epigenetic mark for gene activation in higher eukaryotes. However, in Saccharomyces cerevisiae, SET1 was originally characterized as being required for transcriptional silencing of silent mating-type loci. We addressed this apparent discrepancy by examining genome-wide gene expression and H3K4 methylation during infection-related morphogenesis in M. oryzae. RNA-seq analysis of a MoSET1 deletion mutant revealed that MoSET1 was indeed required for proper gene activation and repression. ChIP-seq analyses of H3K4 methylation and MoSET1 suggested that MoSET1 could directly play a role in gene activation while MoSET1-dependent gene repression may be caused by indirect effects.
Collapse
Affiliation(s)
- Kieu Thi Minh Pham
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Yoshihiro Inoue
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ba Van Vu
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hanh Hieu Nguyen
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Toru Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ken-ichi Ikeda
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hitoshi Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
- * E-mail:
| |
Collapse
|
145
|
Golding MC, Snyder M, Williamson GL, Veazey KJ, Peoples M, Pryor JH, Westhusin ME, Long CR. Histone-lysine N-methyltransferase SETDB1 is required for development of the bovine blastocyst. Theriogenology 2015; 84:1411-22. [PMID: 26279314 DOI: 10.1016/j.theriogenology.2015.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023]
Abstract
Transcripts derived from select clades of transposable elements are among the first to appear in early mouse and human embryos, indicating transposable elements and the mechanisms that regulate their activity are fundamental to the establishment of the founding mammalian lineages. However, the mechanisms by which these parasitic sequences are involved in directing the developmental program are still poorly characterized. Transposable elements are regulated through epigenetic means, where combinatorial patterns of DNA methylation and histone 3 lysine 9 trimethylation (H3K9me3) suppress their transcription. From studies in rodents, SET domain bifurcated 1 (SETDB1) has emerged as the core methyltransferase responsible for marking transposable elements with H3K9me3 and temporally regulating their transcriptional activity. SETDB1 loss of function studies in mice reveal that although extraembryonic tissues do not require this methyltransferase, establishment of the embryo proper fails without it. As the bovine embryo initiates the processes of epigenetic programming earlier in the preimplantation phase, we sought to determine whether suppressing SETDB1 would block the formation of the inner cell mass. We report here that bovine SETDB1 transcripts are present throughout preimplantation development, and RNA interference-based depletion blocks embryo growth at the morula stage of development. Although we did not observe alterations in global histone methylation or transposable element transcription, we did observe increased global levels of H3K27 acetylation, an epigenetic mark associated with active enhancers. Our observations suggest that SETDB1 might interact with the epigenetic machinery controlling enhancer function and that suppression of this methyltransferase may disrupt the bovine developmental program.
Collapse
Affiliation(s)
- Michael C Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
| | - Matthew Snyder
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gayle L Williamson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kylee J Veazey
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael Peoples
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jane H Pryor
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
146
|
Rocha MDF, Pine MB, Oliveira EFADS, Loreto V, Gallo RB, da Silva CRM, de Domenico FC, da Rosa R. Spreading of heterochromatin and karyotype differentiation in two Tropidacris Scudder, 1869 species (Orthoptera, Romaleidae). COMPARATIVE CYTOGENETICS 2015; 9:435-450. [PMID: 26312132 PMCID: PMC4547036 DOI: 10.3897/compcytogen.v9i3.5160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Tropidacris Scudder, 1869 is a genus widely distributed throughout the Neotropical region where speciation was probably promoted by forest reduction during the glacial and interglacial periods. There are no cytogenetic studies of Tropidacris, and information allowing inference or confirmation of the evolutionary events involved in speciation within the group is insufficient. In this paper, we used cytogenetic markers in two species, Tropidacriscollaris (Stoll, 1813) and Tropidacriscristatagrandis (Thunberg, 1824), collected in different Brazilian biomes. Both species exhibited 2n=24,XX for females and 2n=23,X0 for males. All chromosomes were acrocentric. There were some differences in the karyotype macrostructure, e.g. in the chromosome size. A wide interspecific variation in the chromosome banding (C-banding and CMA3/DAPI staining) indicated strong differences in the distribution of repetitive DNA sequences. Specifically, Tropidacriscristatagrandis had a higher number of bands in relation to Tropidacriscollaris. FISH with 18S rDNA revealed two markings coinciding with the NORs in both species. However, two analyzed samples of Tropidacriscollaris revealed a heterozygous condition for the rDNA site of S10 pair. In Tropidacriscollaris, the histone H3 genes were distributed on three chromosome pairs, whereas in Tropidacriscristatagrandis, these genes were observed on 14 autosomes and on the X chromosome, always in terminal regions. Our results demonstrate that, although the chromosome number and morphology are conserved in the genus, Tropidacriscristatagrandis substantially differs from Tropidacriscollaris in terms of the distribution of repetitive sequences. The devastation and fragmentation of the Brazilian rainforest may have led to isolation between these species, and the spreading of these repetitive sequences could contribute to speciation within the genus.
Collapse
Affiliation(s)
| | - Mariana Bozina Pine
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | | | - Vilma Loreto
- Departamento de Genética, CCB, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raquel Bozini Gallo
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| | | | | | - Renata da Rosa
- Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
147
|
Cabrera JR, Olcese U, Horabin JI. A balancing act: heterochromatin protein 1a and the Polycomb group coordinate their levels to silence chromatin in Drosophila. Epigenetics Chromatin 2015; 8:17. [PMID: 25954320 PMCID: PMC4423169 DOI: 10.1186/s13072-015-0010-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small non-histone protein Heterochromatin protein 1a (HP1a) plays a vital role in packaging chromatin, most notably in forming constitutive heterochromatin at the centromeres and telomeres. A second major chromatin regulating system is that of the Polycomb/trithorax groups of genes which, respectively, maintain the repressed/activated state of euchromatin. Recent analyses suggest they affect the expression of a multitude of genes, beyond the homeotics whose alteration in expression lead to their initial discovery. RESULTS Our data suggest that early in Drosophila development, HP1a collaborates with the Polycomb/trithorax groups of proteins to regulate gene expression and that the two chromatin systems do not act separately as convention describes. HP1a affects the levels of both the Polycomb complexes and RNA polymerase II at promoters, as assayed by chromatin immunoprecipitation analysis. Deposition of both the repressive (H3K27me3) and activating (H3K4me3) marks promoted by the Polycomb/trithorax group genes at gene promoters is affected. Additionally, depending on which parent contributes the null mutation of the HP1a gene, the levels of the H3K27me3 and H3K9me3 silencing marks at both promoters and heterochromatin are different. Changes in levels of the H3K27me3 and H3K9me3 repressive marks show a mostly reciprocal nature. The time around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, appears to be a transition/decision point for setting the levels. CONCLUSIONS We find that HP1a, which is normally critical for the formation of constitutive heterochromatin, also affects the generation of the epigenetic marks of the Polycomb/trithorax groups of proteins, chromatin modifiers which are key to maintaining gene expression in euchromatin. At gene promoters, deposition of both the repressive H3K27me3 and activating H3K4me3 marks of histone modifications shows a dependence on HP1a. Around the mid-blastula transition, when the zygotic genome begins to be actively transcribed, a pivotal decision for the level of silencing appears to take place. This is also when the embryo organizes its genome into heterochromatin and euchromatin. A balance between the HP1a and Polycomb group silencing systems appears to be set for the chromatin types that each system will primarily regulate.
Collapse
Affiliation(s)
- Janel R Cabrera
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA ; Current Address: Center for Life Sciences, Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Rm 917, 3 Blackfan Circle, Boston, MA 02215 USA
| | - Ursula Olcese
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA
| | - Jamila I Horabin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W, Call St., Tallahassee, FL 32306 USA
| |
Collapse
|
148
|
Popowski M, Tucker H. Repressors of reprogramming. World J Stem Cells 2015; 7:541-546. [PMID: 25914761 PMCID: PMC4404389 DOI: 10.4252/wjsc.v7.i3.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/10/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been the focal point of ever increasing interest and scrutiny as they hold the promise of personalized regenerative medicine. However, creation of iPSCs is an inefficient process that requires forced expression of potentially oncogenic proteins. In order to unlock the full potential of iPSCs, both for basic and clinical research, we must broaden our search for more reliable ways of inducing pluripotency in somatic cells. This review surveys an area of reprogramming that does not receive as much focus, barriers to reprogramming, in the hope of stimulating new ideas and approaches towards developing safer and more efficient methods of reprogramming. Better methods of iPSC creation will allow for more reliable disease modeling, better basic research into the pluripotent state and safer iPSCs that can be used in a clinical setting.
Collapse
|
149
|
Jafari S, Alenius M. Cis-regulatory mechanisms for robust olfactory sensory neuron class-restricted odorant receptor gene expression in Drosophila. PLoS Genet 2015; 11:e1005051. [PMID: 25760344 PMCID: PMC4356613 DOI: 10.1371/journal.pgen.1005051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022] Open
Abstract
Odor perception requires that each olfactory sensory neuron (OSN) class continuously express a single odorant receptor (OR) regardless of changes in the environment. However, little is known about the control of the robust, class-specific OR expression involved. Here, we investigate the cis-regulatory mechanisms and components that generate robust and OSN class-specific OR expression in Drosophila. Our results demonstrate that the spatial restriction of expression to a single OSN class is directed by clusters of transcription-factor DNA binding motifs. Our dissection of motif clusters of differing complexity demonstrates that structural components such as motif overlap and motif order integrate transcription factor combinations and chromatin status to form a spatially restricted pattern. We further demonstrate that changes in metabolism or temperature perturb the function of complex clusters. We show that the cooperative regulation between motifs around and within the cluster generates robust, class-specific OR expression. Our neurons can become over a hundred years old. Even if neurons are restructured and remodeled by their constant work of receiving, storing and sending information, they stay devoted to one single task and retain their identity for their whole life. How a neuron keeps its identity is not well understood. In the olfactory system, the identity of the olfactory sensory neuron (OSN) is a result of the expression of a single odorant receptor (OR) from a large receptor gene repertoire in the genome. Neurons that share an expressed receptor make a functional class. Here, we identify clusters of transcription factor binding motifs to be the smallest unit that drive expression in a single olfactory sensory neuron class. We further demonstrate that it is the structure of the cluster that determines the class specific expression. However, environmental stress, such as temperature changes or starvation, destabilizes the expression produced by the cluster. Our results demonstrate that stable expression is generated from redundant motifs outside the cluster and suggest that cooperative regulation generates robust expression of the genes that determine neuronal identity and function.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
150
|
Jenkins AM, Muskavitch MAT. Evolution of an epigenetic gene ensemble within the genus Anopheles. Genome Biol Evol 2015; 7:901-15. [PMID: 25724208 PMCID: PMC5322554 DOI: 10.1093/gbe/evv041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epigenetic control of gene expression has important implications for the regulation of developmental processes, for mediating homeostasis and responses to the external environment, and for transgenerational inheritance of gene expression patterns. Genes that mediate epigenetic control have been well-characterized in Drosophila melanogaster, and we have identified and analyzed an orthologous gene ensemble in Anopheles gambiae that comprises 169 orthologs related to a 215-member epigenetic gene ensemble in D. melanogaster. We find that this ensemble is highly conserved among anopheline mosquitoes, as we identify only seven gene family expansion/contraction events within the ensemble among 12 mosquito species we have studied within the genus Anopheles. Comparative analyses of the epigenetic gene expression across the genera Drosophila and Anopheles reveal distinct tissue-associated expression patterns in the two genera, but similar temporal expression patterns. The A. gambiae complex and D. melanogaster subgroup epigenetic gene ensembles exhibit similar evolutionary rates, as assessed by their respective dN/dS values. These differences in tissue-associated expression patterns, in contrast to similarities in evolutionary rates and temporal expression patterns, may imply that some members of the epigenetic gene ensemble have been redeployed within one or both genera, in comparison to the most recent common ancestor of these two clades. Members of this epigenetic gene ensemble may constitute another set of potential targets for vector control and enable further reductions in the burden of human malaria, by analogy to recent success in development of small molecule antagonists for mammalian epigenetic machinery.
Collapse
Affiliation(s)
| | - Marc A T Muskavitch
- Department of Biology, Boston College Discovery Research, Biogen Idec, Cambridge, Massachusetts
| |
Collapse
|