101
|
Boros FA, Vécsei L. Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Front Immunol 2019; 10:2570. [PMID: 31781097 PMCID: PMC6851023 DOI: 10.3389/fimmu.2019.02570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Several enzymes and metabolites of the kynurenine pathway (KP) have immunomodulatory effects. Modulation of the activities and levels of these molecules might be of particular importance under disease conditions when the amelioration of overreacting immune responses is desired. Results obtained by the use of animal and tissue culture models indicate that by eliminating or decreasing activities of key enzymes of the KP, a beneficial shift in disease outcome can be attained. This review summarizes experimental data of models in which IDO, TDO, or KMO activity modulation was achieved by interventions affecting enzyme production at a genomic level. Elimination of IDO activity was found to improve the outcome of sepsis, certain viral infections, chronic inflammation linked to diabetes, obesity, aorta aneurysm formation, and in anti-tumoral processes. Similarly, lack of TDO activity was advantageous in the case of anti-tumoral immunity, while KMO inhibition was found to be beneficial against microorganisms and in the combat against tumors, as well. On the other hand, the complex interplay among KP metabolites and immune function in some cases requires an increase in a particular enzyme activity for the desired immune response modulation, as was shown by the exacerbation of liver fibrosis due to the elimination of IDO activity and the detrimental effects of TDO inhibition in a mouse model of autoimmune gastritis. The relevance of these studies concerning possible human applications are discussed and highlighted. Finally, a brief overview is presented on naturally occurring genetic variants affecting immune functions via modulation of KP enzyme activity.
Collapse
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
102
|
Majd AMM, Faghihzadeh S, Pourfarzam S, Eghtedardoost M, Jamali D, Mirsharif ES, Dilmaghanian R, Ghazanfari T. Serum and sputum levels of IL-17, IL-21, TNFα and mRNA expression of IL-17 in sulfur mustard lung tissue with long term pulmonary complications (28 years after sulfur mustard exposure). Int Immunopharmacol 2019; 76:105828. [DOI: 10.1016/j.intimp.2019.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023]
|
103
|
Gao YH, Li QQ, Wang CG, Sun J, Wang XM, Li YJ, He XT, Xu HQ, Niu JQ. The role of IL22 polymorphisms on liver cirrhosis in patients with hepatitis B virus: A case control study. Medicine (Baltimore) 2019; 98:e17867. [PMID: 31689880 PMCID: PMC6946515 DOI: 10.1097/md.0000000000017867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/14/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS Interleukin(IL)-22 plays an important role in promoting liver regeneration and repair, but its role in chronic HBV-related liver diseasesis not clear. The goal of this study was to evaluate associations between eight IL22 single nucleotide polymorphisms (SNPs) and the development of chronic HBV cirrhosis and HBV-related HCC within a Chinese Han population. METHODS We investigated associations between single nucleotide polymorphisms (SNPs) in the IL22 gene (rs1026788, rs2227472, rs2227491, rs2227485, rs1179249, rs2046068,rs2227473, and rs7314777) and the risk of HBV-related chronic liver diseases within a Han population in Northeast China. A total of 649 participants were included in the study, including 103 patients with CHB, 264 patients with LC, and 282 patients with HCC. The odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated using chi-square test. Haplotype analysis was conducted by haploview software. RESULTS Genotype and allele distributions of SNPs rs1179249 and rs2227472 differed between LC and CHB groups (both P < 0.05).The G alleles of SNP rs2227491 and rs1026788 were more frequent in the LC group than in the CHB group (P = 0.046, P = 0.041 respectively). A IL22 haplotype consisting of the minor alleles of SNP rs1179249 and the major alleles of seven other SNPs occurred less frequently in the LC and HCC groups than in the CHB group (28.2%, 33.94%, and 37.86%, respectively, P < 0.05). Moreover, there were no significant associations between smoking or drinking and IL22 SNPs on the risk of HCC (P > 0.05). CONCLUSION IL22 genetic variations were associated with chronic HBV infection progression, especially in the HBV-LC group. The IL22 genetic variations may help clinicians initiate the correct treatment strategy at the CHB stage.
Collapse
Affiliation(s)
- Yan-Hang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Qing-Quan Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Department of Gastroenterology, The Hospital of CNOOC, Tianjin
| | - Chun-Guang Wang
- Department of Surgery, The Second Hospital of Jilin University, Changchun, Jilin
| | - Jing Sun
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Department of Gastroenterology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi
| | - Xiao-Mei Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Ya-Jun Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Xiu-Ting He
- Department of Geriatrics, The First Hospital of Jilin University
| | - Hong-Qin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, Changchun, Jilin Province, China
| |
Collapse
|
104
|
High levels of plasma interleukin-17A are associated with severe neurological sequelae in Langerhans cell histiocytosis. Cytokine 2019; 126:154877. [PMID: 31629106 DOI: 10.1016/j.cyto.2019.154877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Langerhans cell histiocytosis (LCH) is a granulomatous inflammatory myeloid neoplasia associated with a cytokine storm in both serum and lesions. Increased levels of plasma interleukin-17A (IL-17A) in LCH patients have been reported, but this finding was not confirmed in all studies. Neurodegeneration is a devastating complication of LCH (ND-LCH). We aimed to revisit the issue of plasma IL-17A levels in LCH, by using a larger number of patients, and also to investigate the relationship between IL-17A and LCH sequelae, especially ND-LCH. METHODS Plasma samples from 68 LCH patients and 127 controls were analyzed for IL-17A levels by two ELISAs with different anti-IL-17A capture antibodies: either polyclonal or neutralizing monoclonal antibodies in 17polyAb-ELISA or 17mAb-ELISA, respectively. RESULTS Both ELISAs had a similar capacity to specifically detect recombinant or native human IL-17A, as well as plasma IL-17A from LCH patients. We confirmed the finding of higher levels of plasma IL-17A in LCH patients compared to controls (p < 0.0001). The association of IL-17A with LCH was independent of the ELISA used, and of gender, age, disease class activity, and pattern of tissue-organ involvement (single-system versus multi-system). ROC analyses (p < 0.0001) allow to discriminate LCH patients from the control group, supporting the notion that IL-17A may be a potential biomarker for LCH. More interestingly, high IL-17A levels were significantly associated with LCH patients having sequelae, with the highest plasma levels in patients with ND-LCH (p < 0.0001). CONCLUSION The association between high levels of IL-17A and LCH was confirmed. IL-17A may be associated with ND-LCH development. This might have therapeutic implications, offering a novel target for precision therapy of ND-LCH.
Collapse
|
105
|
Keramat S, Sadeghian MH, Keramati MR, Fazeli B. Assessment of T helper 17-associated cytokines in thromboangiitis obliterans. J Inflamm Res 2019; 12:251-258. [PMID: 31564950 PMCID: PMC6734553 DOI: 10.2147/jir.s218105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background The management of thromboangiitis obliterans (TAO) remains a medical challenge because of its unknown etiology. It is also not known whether it is a systemic or localized disease or a type of autoimmune vasculitis. Methods In this study, we evaluated the serum level of IL-17 and IL-23 which increase in both systemic inflammation and autoimmunity, in 60 TAO patients and 30 age- and smoking habit-matched controls. Also, IL-22, which has reported high level during infection but not in autoimmunity, was evaluated. Results The serum levels of IL-17, IL-22 and IL-23 were significantly higher in the TAO patients in comparison with the controls (P<0.001). Notably, the serum levels of IL-17, IL-22 and IL-23 were highest in the patients with the chief complaint of chronic ulcer and lowest in the patients with gangrene (P<0.05). Also, the serum level of IL-22 was significantly higher in the anemic patients in comparison with the non-anemic patients (P=0.03). Conclusion Owing to our findings, TAO appears more likely to be a systemic disorder rather than a localized vasculopathy. Therefore, treatment protocols based on systemic treatment of TAO patients may be more helpful than localized treatment, such as bypass surgery and endovascular procedures. Also, according to our findings regarding the high level of IL-22, the trigger of TAO development may be an infectious pathogen. However, additional research is highly recommended to investigate whether TAO is an infectious disease or an infectious-induced autoimmunity. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/KHamw3jfa1Q
Collapse
Affiliation(s)
- Shayan Keramat
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Hematology Department, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.,Pathology Department, Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Immunology Department, Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Angiology, L.Sacco Hospital, Vascular Independent Research and Education, European Organization, Milan, Italy
| |
Collapse
|
106
|
Pickering H, Palmer CD, Houghton J, Makalo P, Joof H, Derrick T, Goncalves A, Mabey DCW, Bailey RL, Burton MJ, Roberts CH, Burr SE, Holland MJ. Conjunctival Microbiome-Host Responses Are Associated With Impaired Epithelial Cell Health in Both Early and Late Stages of Trachoma. Front Cell Infect Microbiol 2019; 9:297. [PMID: 31552195 PMCID: PMC6736612 DOI: 10.3389/fcimb.2019.00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Trachoma, a neglected tropical disease, is the leading infectious cause of blindness and visual impairment worldwide. Host responses to ocular chlamydial infection resulting in chronic inflammation and expansion of non-chlamydial bacteria are hypothesized risk factors for development of active trachoma and conjunctival scarring. Methods: Ocular swabs from trachoma endemic populations in The Gambia were selected from archived samples for 16S sequencing and host conjunctival gene expression. We recruited children with active trachoma and adults with conjunctival scarring, alongside corresponding matched controls. Findings: In children, active trachoma was not associated with significant changes in the ocular microbiome. Haemophilus enrichment was associated with antimicrobial responses but not linked to active trachoma. Adults with scarring trachoma had a reduced ocular bacterial diversity compared to controls, with increased relative abundance of Corynebacterium. Increased abundance of Corynebacterium in scarring disease was associated with innate immune responses to the microbiota, dominated by altered mucin expression and increased matrix adhesion. Interpretation: In the absence of current Chlamydia trachomatis infection, changes in the ocular microbiome associate with differential expression of antimicrobial and inflammatory genes that impair epithelial cell health. In scarring trachoma, expansion of non-pathogenic bacteria such as Corynebacterium and innate responses are coincident, warranting further investigation of this relationship. Comparisons between active and scarring trachoma supported the relative absence of type-2 interferon responses in scarring, whilst highlighting a common suppression of re-epithelialization with altered epithelial and bacterial adhesion, likely contributing to development of scarring pathology.
Collapse
Affiliation(s)
- Harry Pickering
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christine D Palmer
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joanna Houghton
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pateh Makalo
- Disease Control and Elimination Theme, MRC Unit the Gambia at LSHTM, Banjul, Gambia
| | - Hassan Joof
- Disease Control and Elimination Theme, MRC Unit the Gambia at LSHTM, Banjul, Gambia
| | - Tamsyn Derrick
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adriana Goncalves
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David C W Mabey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L Bailey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J Burton
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chrissy H Roberts
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah E Burr
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Disease Control and Elimination Theme, MRC Unit the Gambia at LSHTM, Banjul, Gambia
| | - Martin J Holland
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Disease Control and Elimination Theme, MRC Unit the Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
107
|
Jin R, Liu S, Wang M, Zhong W, Li G. Inhibition of CD147 Attenuates Stroke-Associated Pneumonia Through Modulating Lung Immune Response in Mice. Front Neurol 2019; 10:853. [PMID: 31447768 PMCID: PMC6692478 DOI: 10.3389/fneur.2019.00853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose: Acute ischemic stroke triggers a profound systemic and local immunodysfunction that increased the susceptibility to infections, especially stroke-associated pneumonia (SAP). Our previous study has shown that inhibition of CD147 ameliorates acute ischemic stroke, however, the role of CD147 in post-stroke lung infection has not been investigated. Methods: C57BL/6 mice were subjected to transient (60 min) middle cerebral artery occlusion, and treated with anti-CD147 antibody (αCD147). Lung histological changes, vascular permeability, and pulmonary edema were determined. Bacterial burden in the lung tissue and Broncho alveolar lavage fluid (BALF) were measured. Lung leukocyte infiltration, circulating platelet-leukocyte aggregates, cell type-specific IL-17A, and IFN-γ expression in the lung were detected by flow cytometry. Results: CD147 expression was markedly upregulated in the lung after stroke. αCD147 treatment significantly decreased the stroke-associated lung histological damages, bacterial load, vascular permeability and pulmonary edema. The protective effects by αCD147 treatment were associated with deceased lung inflammatory cell infiltration by reducing IL-17A expression in lung γδ T cells and attenuated bacterial load by enhancing IFN-γ expression in the lung NK1.1+ cells and CD4+ T cells. In addition, CD147 expression was also increased in the circulating platelets and leukocytes. Enhanced platelet-leukocyte aggregates following stroke was inhibited by αCD147 treatment. Conclusions: Inhibition of CD147 ameliorates aberrant lung inflammatory and immune response and reduces bacterial infection after stroke. CD147 might represent a novel and promising therapeutic target for post-stroke lung infection.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shan Liu
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Min Wang
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Wei Zhong
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Guohong Li
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
108
|
Bunte K, Beikler T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2019; 20:ijms20143394. [PMID: 31295952 PMCID: PMC6679067 DOI: 10.3390/ijms20143394] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
109
|
Wang Z, Li J, Li J, Li Y, Wang L, Wang Q, Fang L, Ding X, Huang P, Yin J, Yin Y, Yang H. Protective effect of chicken egg yolk immunoglobulins (IgY) against enterotoxigenic Escherichia coli K88 adhesion in weaned piglets. BMC Vet Res 2019; 15:234. [PMID: 31286936 PMCID: PMC6615277 DOI: 10.1186/s12917-019-1958-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli K88 (E. coli K88) are considered as a major cause of diarrhea and death in newly weaned piglets. Oral passive immunization with chicken egg yolk immunoglobulins (IgY) have attracted considerable attention for treatment of gastrointestinal infection due to its high specificity. In this study it was estimated the protective effect of anti-K88 fimbriae IgY against E. coli K88 adhesion to piglet intestinal mucus in vitro and to investigate the potential use of IgY for controlling E. coli-induced diarrhea in weaned piglets in vivo. Results E. coli K88 was incubated with IgY for 24 h, and the bacterial growth profiles showed that specific IgY with a concentration higher than 5 mg/mL was observed to significantly inhibit the growth of E. coli K88 compared to nonspecific yolk powder in a liquid medium. Moreover, pretreatment with 50 mg/mL of IgY was found to significantly decrease the adhesion ability of E. coli K88 to porcine jejunal and ileal mucus, further supported by the observations from our immunofluorescence microscopic analysis. In vivo, administration of IgY successfully protected piglets from diarrhea caused by E. coli K88 challenge. Additionally, IgY treatment efficiently alleviated E. coli-induced intestinal inflammation in piglets as the gene expression levels of inflammatory cytokines TNF-α, IL-22, IL-6 and IL-1β in IgY-treated piglets remained unchanged after E. coli K88 infection. Furthermore, IgY significantly prevented E. coli K88 adhering to the jejunal and ileal mucosa of piglets with E. coli infection and significantly decreased E. coli and enterotoxin expression in colonic contents. Conclusion Outcome of the study demonstrated that IgY against the fimbrial antigen K88 was able to significantly inhibit the growth of E. coli K88, block the binding of E. coli to small intestinal mucus, and protect piglets from E. coli-induced diarrhea. These results indicate that passive immunization with IgY may be useful to prevent bacterial colonization and to control enteric diseases due to E. coli infection. The study has great clinical implication to provide alternative therapy to antibiotics in E coli induced diarrhea. Electronic supplementary material The online version of this article (10.1186/s12917-019-1958-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jia Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Lixia Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qingping Wang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Lin Fang
- Zyme Fast (Changsha) Biotechnology Co., Ltd, Changsha City, 410311, Hunan, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha City, 410125, Hunan, China.
| |
Collapse
|
110
|
Cantorna MT, Rogers CJ, Arora J. Aligning the Paradoxical Role of Vitamin D in Gastrointestinal Immunity. Trends Endocrinol Metab 2019; 30:459-466. [PMID: 31122825 PMCID: PMC6588413 DOI: 10.1016/j.tem.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by inflammation of the gastrointestinal tract and an immune-mediated attack against the commensal microbiota. Vitamin D is an essential vitamin that not only promotes calcium and phosphate absorption but also regulates immune function. The active form of vitamin D [1,25(OH)2D] has been shown to suppress symptoms of IBD by inhibiting T cell responses. Host protection from gastrointestinal infection depends on T cells. Paradoxically, vitamin D deficiency increases susceptibility to IBD and gastrointestinal infection. Here we review the roles of vitamin D in immune cells using a kinetic model of the vitamin D-mediated effects on infection to explain the sometimes paradoxical effects of vitamin D on gastrointestinal immunity.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Connie J Rogers
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA; Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juhi Arora
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
111
|
Wu D, Hou SY, Zhao S, Hou LX, Jiao T, Xu NN, Zhang N. Meta-analysis of IL-17 inhibitors in two populations of rheumatoid arthritis patients: biologic-naïve or tumor necrosis factor inhibitor inadequate responders. Clin Rheumatol 2019; 38:2747-2756. [PMID: 31165341 DOI: 10.1007/s10067-019-04608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To evaluate the efficacy and safety of interleukin 17 (IL-17) inhibitors in two rheumatoid arthritis (RA) populations: biologic-naïve or tumor necrosis factor inhibitor inadequate responders (TNF-IR). METHOD A systematic search was performed in major electronic databases to identify relevant randomized controlled trials (RCTs) reporting the American College of Rheumatology 20% (ACR20), ACR50, ACR70 responses and adverse events (AEs) of IL-17 inhibitors versus placebo in patients with RA. We divided these patients into two subgroups: biologic-naïve or TNF-IR. The meta-analysis was performed using Review Manager 5.3 software. Results were expressed as risk ratio (RR) with pertinent 95% confidence interval (95% CI). RESULTS Ten studies with a total of 2499 patients were included. For biologic-naïve patients, ACR50 and ACR70 responses were significantly better with IL-17 inhibitors than placebo (RR = 1.71, 95% CI 1.23-2.38, P = 0.001 and RR = 2.63, 95% CI 1.10-6.25, P = 0.03, respectively), but ACR20 responses for IL-17 inhibitors were not statistically superior to placebo (RR = 1.34, 95% CI 0.94-1.91, P = 0.11). For TNF-IR, IL-17 inhibitors were effective in achieving ACR20 (RR = 1.67, 95% CI 1.40-2.00, P < 0.00001), ACR50 (RR = 1.94, 95% CI 1.43-2.63, P < 0.0001), and ACR70 (RR = 2.11, 95% CI 1.26-3.55, P = 0.005) compared to placebo. In the safety analysis, IL-17 inhibitors did not show increased risk of any AEs by comparing to placebo in both biologic-naïve patients and TNF-IR. CONCLUSION IL-17 inhibitors were effective in the treatment of RA without increased risk of AEs, whether for biologic-naïve patients or TNF-IR. Key Points • In this meta-analysis comparing IL-17 inhibitors with placebo in 2499 rheumatoid arthritis patients, IL-17 inhibitors improved ACR50 and ACR70, but not ACR20, responses in biologic-naïve patients. • IL-17 inhibitors improved ACR20, ACR50, and ACR70 responses in tumor necrosis factor inhibitor inadequate responders.
Collapse
Affiliation(s)
- Dan Wu
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China
| | - Si-Yuan Hou
- Intensive Care Unit, The People's Hospital of Liaoning Province, NO. 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Shuai Zhao
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China
| | - Lin-Xin Hou
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China
| | - Ting Jiao
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China
| | - Nan-Nan Xu
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China
| | - Ning Zhang
- Second Department of Rheumatology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110072, Liaoning, China.
| |
Collapse
|
112
|
Mendes V, Galvão I, Vieira AT. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J Interferon Cytokine Res 2019; 39:393-409. [PMID: 31013453 DOI: 10.1089/jir.2019.0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.
Collapse
Affiliation(s)
- Viviani Mendes
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- 3 Department of Cellular Biology ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelica Thomaz Vieira
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
113
|
Cheng HY, Ning MX, Chen DK, Ma WT. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Front Immunol 2019; 10:607. [PMID: 30984184 PMCID: PMC6449424 DOI: 10.3389/fimmu.2019.00607] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestine is colonized by over a trillion microbes that comprise the "gut microbiota," a microbial community which has co-evolved with the host to form a mutually beneficial relationship. Accumulating evidence indicates that the gut microbiota participates in immune system maturation and also plays a central role in host defense against pathogens. Here we review some of the mechanisms employed by the gut microbiota to boost the innate immune response against pathogens present on epithelial mucosal surfaces. Antimicrobial peptide secretion, inflammasome activation and induction of host IL-22, IL-17, and IL-10 production are the most commonly observed strategies employed by the gut microbiota for host anti-pathogen defense. Taken together, the body of evidence suggests that the host gut microbiota can elicit innate immunity against pathogens.
Collapse
Affiliation(s)
- Hong-Yu Cheng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Meng-Xia Ning
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
114
|
Tonarelli L. Discover the Potential: Exploring New Frontiers of IL-23 Inhibitors. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10310287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Affecting up to 11.4% of the population worldwide,1 psoriasis is one of the most common chronic autoinflammatory diseases. It is associated with multiple comorbidities and can have profound negative effects on physical and emotional wellbeing and overall quality of life, making it a serious public health concern. A primary objective of this symposium was to explain the pathogenesis of psoriasis and its relation to the development of novel targeted immune therapies. Psoriasis is characterised by skin and systemic damage consequent to pathogenic cytokine production under the influence of both environmental and genetic factors. Differentiation of Th17 cells from naïve T cells is central to the development of psoriasis, and recently pathogenic models have identified IL-23 as the pathogenic cytokine responsible for promoting Th17 cell proliferation and IL-17 production. Therefore, selective blockade of IL-23 may be instrumental in controlling Th17-mediated inflammation in psoriasis. Another key objective of the symposium was to evaluate key learnings from the latest available clinical trial data on agents targeting the IL-23/Th17 signalling pathway and how these learnings can be harnessed to improve the management of patients with psoriasis. Both IL-17 inhibitors (e.g., ixekizumab and secukinumab) and IL-23 inhibitors (e.g., guselkumab and risankizumab) have demonstrated high efficacy and a good safety profile. Anti-IL-17 agents have faster onset of action and allow the achievement of good response rates very rapidly. Efficacy is better maintained over time with anti-IL-23 agents, including in patients who have stopped and those that then restarted anti-IL-23 therapy after a withdrawal period. Despite the availability of effective treatments, undertreatment in psoriasis is common. This can be attributed to factors such as the heterogeneous nature of psoriasis and relatively large prevalence of addictive behaviours in patients with the condition. When making treatment decisions, it is important to consider these factors as well as patient preferences and expectations, so that treatment can be individualised as much as possible. The symposium concluded with an interactive session, which offered the audience the opportunity to ask questions and discuss relevant issues of interest.
Collapse
|
115
|
Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun 2019; 10:1198. [PMID: 30867416 PMCID: PMC6416356 DOI: 10.1038/s41467-019-09037-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023] Open
Abstract
Microbe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas. Using Pseudomonas aeruginosa producing elastase as a model, we show gluten-independent, PAR-2 mediated upregulation of inflammatory pathways in C57BL/6 mice without villus blunting. In mice expressing CeD risk genes, P. aeruginosa elastase synergizes with gluten to induce more severe inflammation that is associated with moderate villus blunting. These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen. Gluten triggers celiac disease in genetically predisposed individuals, but additional unknown mechanisms are required. Here, the authors show that proteases from Pseudomonas aeruginosa can modulate inflammatory pathways that are relevant to the development of food sensitivities, independently of the trigger antigen.
Collapse
|
116
|
Transition metals and host-microbe interactions in the inflamed intestine. Biometals 2019; 32:369-384. [PMID: 30788645 DOI: 10.1007/s10534-019-00182-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Host-associated microbial communities provide critical functions for their hosts. Transition metals are essential for both the mammalian host and the majority of commensal bacteria. As such, access to transition metals is an important component of host-microbe interactions in the gastrointestinal tract. In mammals, transition metal ions are often sequestered by metal binding proteins to limit microbial access under homeostatic conditions. In response to invading pathogens, the mammalian host further decreases availability of these micronutrients by regulating their trafficking or releasing high-affinity metal chelating proteins, a process termed nutritional immunity. Bacterial pathogens have evolved several mechanisms to subvert nutritional immunity. Here, we provide an overview on how metal ion availability shapes host-microbe interactions in the gut with a particular focus on intestinal inflammatory diseases.
Collapse
|
117
|
Liu J, Gu Z, Song F, Zhang H, Zhao J, Chen W. Lactobacillus plantarum ZS2058 and Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo. Front Microbiol 2019; 10:299. [PMID: 30842764 PMCID: PMC6391337 DOI: 10.3389/fmicb.2019.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Pathogen-induced infectious diseases pose great threats to public health. Accordingly, many studies have investigated effective strategies targeting pathogenic infections. We previously reported the preventive effects of Lactobacillus plantarum ZS2058 (ZS2058) and L. rhamnosus GG (LGG) against Salmonella spp. in a murine model. Here, we compared the mechanisms underlying the preventive effects of these Lactobacillus strains in vivo. Notably, reduced C-reactive protein levels were observed with both ZS2058 and LGG, which suggests abrogated anti-infection and inflammatory responses. ZS2058 more efficiently reduced the pathogenicity of Salmonella by increasing the level of propionic acid in feces and production of mucin 2 in the mouse colon and activity through the interleukin (IL)-23/IL-22 and IL-23/IL-17 pathways. Meanwhile, LGG more strongly alleviated gut inflammation, as indicated by changes in the levels of tissue necrosis factor (TNF)-α, IL-10 and myeloperoxidase (MPO) in infected mice. Moreover, both ZS2058 and LGG restored the levels of interferon (INF)-γ, a cytokine suppressed by Salmonella, albeit through different pathways. Our results demonstrate that ZS2058 and LGG prevent Salmonella infection via different mechanisms.
Collapse
Affiliation(s)
- Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
118
|
Amerson-Brown MH, Miller AL, Maxwell CA, White MM, Vincent KL, Bourne N, Pyles RB. Cultivated Human Vaginal Microbiome Communities Impact Zika and Herpes Simplex Virus Replication in ex vivo Vaginal Mucosal Cultures. Front Microbiol 2019; 9:3340. [PMID: 30692980 PMCID: PMC6340164 DOI: 10.3389/fmicb.2018.03340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
The human vaginal microbiome (VMB) is a complex bacterial community that interacts closely with vaginal epithelial cells (VECs) impacting the mucosal phenotype and its responses to pathogenic insults. The VMB and VEC relationship includes nutrient exchange and regulation of signaling molecules that controls numerous host functions and defends against invading pathogens. To better understand infection and replication of sexually transmitted viral pathogens in the human vaginal mucosa we used our ex vivo VEC multilayer culture system. We tested the hypothesis that selected VMB communities could be identified that alter the replication of sexually transmitted viruses consistent with reported clinical associations. Sterile VEC multilayer cultures or those colonized with VMB dominated by specific Lactobacillus spp., or VMB lacking lactobacilli, were infected with Zika virus, (ZIKV) a single stranded RNA virus, or Herpes Simplex Virus type 2 (HSV-2), a double stranded DNA virus. The virus was added to the apical surface of the cultured VEC multilayer to model transmission during vaginal intercourse. Viral replication was measured 48 h later by qPCR. The results indicated that VEC cultures colonized by VMB containing Staphylococcus spp., previously reported as inflammatory, significantly reduced the quantity of viral genomes produced by ZIKV. HSV-2 titers were decreased by nearly every VMB tested relative to the sterile control, although Lactobacillus spp.-dominated VMBs caused the greatest reduction in HSV-2 titer consistent with clinical observations. To explore the mechanism for reduced ZIKV titers, we investigated inflammation created by ZIKV infection, VMB colonization or pre-exposure to selected TLR agonists. Finally, expression levels of human beta defensins 1–3 were quantified in cultures infected by ZIKV and those colonized by VMBs that impacted ZIKV titers. Human beta defensins 1–3 produced by the VEC showed no association with ZIKV titers. The data presented expands the utility of this ex vivo model system providing controlled and reproducible methods to study the VMB impact on STIs and indicated an association between viral replication and specific bacterial species within the VMB.
Collapse
Affiliation(s)
- Megan H Amerson-Brown
- Graduate School of Biomedical Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Aaron L Miller
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Carrie A Maxwell
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mellodee M White
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Nigel Bourne
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Richard B Pyles
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
119
|
Malacco NLSDO, Rachid MA, Gurgel ILDS, Moura TR, Sucupira PHF, de Sousa LP, de Souza DDG, Russo RDC, Teixeira MM, Soriani FM. Eosinophil-Associated Innate IL-17 Response Promotes Aspergillus fumigatus Lung Pathology. Front Cell Infect Microbiol 2019; 8:453. [PMID: 30687649 PMCID: PMC6336733 DOI: 10.3389/fcimb.2018.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is a common widespread microorganism with environmental, biological and clinical relevance. After inhalation, swollen conidia can germinate, colonize and invade pulmonary tissues. Eosinophils have been described as key cells in A. fumigatus lung infection. However, their specific role in protecting or damaging lung tissue as well as their relatioship among different A. fumigatus strains is poorly understood. Previously, it has been reported that eosinophils are able to produce IL-17 and mediate an innate response that protected mice from infection using Af293 and CEA10 strains. Here, we have developed a set of new experiments with the CEA17-derived A1163 strain of A. fumigatus. Using ΔdblGATA1 mice, we demonstrate that eosinophils produce IL-17 and are involved in control of neutrophil, macrophage and lymphocyte recruitment. We found that eosinophils also induce high levels of cytokines and chemokines, generating an intense inflammatory process. Eosinophils are responsible for increased pulmonary dysfunction and elevated lethality rates in mice. Curiously, fungal burden was not affected. To address the role of IL-17 signaling, pharmacological inhibition of this mediator in the airways with anti-IL-17 antibody was able to reduce inflammation in the airways and protect infected mice. In conclusion, our results demonstrate that eosinophils control IL-17-mediated response and contribute to lung pathology after A. fumigatus infection. Therefore, eosinophils may represent a potential target for controlling exacerbated inflammation and prevent tissue damage during this fungal infection.
Collapse
Affiliation(s)
- Nathália Luísa Sousa de Oliveira Malacco
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratório de Patologia Celular e Molecular, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luisa da Silva Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tauany Rodrigues Moura
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Ferreira Sucupira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires de Sousa
- Laboratório de Sinalização da Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele da Glória de Souza
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Marianetti Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
120
|
Yamamoto T. Clinical Characteristics of Japanese Patients with Palmoplantar Pustulosis. Clin Drug Investig 2019; 39:241-252. [DOI: 10.1007/s40261-018-00745-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
121
|
Barbut D, Stolzenberg E, Zasloff M. Gastrointestinal Immunity and Alpha-Synuclein. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S313-S322. [PMID: 31594249 PMCID: PMC6839499 DOI: 10.3233/jpd-191702] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
The gastrointestinal (GI) tract is equipped with robust immune defenses which protect the organism from infection. Enteric nerves are front and center in this defensive network, even in the most primitive organisms. Neuropeptides exhibit potent antimicrobial activity in the vicinity of the nerve and attract the innate and adaptive immune systems to help confine the invading agent. Alpha-synuclein (αS) has many biophysical characteristics of antimicrobial peptides and binds small vesicles such as those carrying endocytosed viruses. It is induced in nerve cells in response to viral and bacterial infections. It renders the nerve cell resistant to viral infection and propagation. It signals the immune system by attracting neutrophils and macrophages, and by activating dendritic cells. Most remarkably αS is trafficked to the central nervous system (CNS) conferring immunity in advance of an infection. Chronic GI infection or breakdown of the epithelial barrier can cause αS to accumulate and form neurotoxic aggregates. Overproduction of αS in the enteric nervous system (ENS) and its chronic trafficking to the CNS may damage nerves and lead to Parkinson's disease. Targeting the formation of αS aggregates in the ENS may therefore slow the progression of the disease.
Collapse
Affiliation(s)
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA
- MedStar Georgetown Transplant Institute, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
122
|
Naili I, Vinot J, Baudner BC, Bernalier-Donadille A, Pizza M, Desvaux M, Jubelin G, D'Oro U, Buonsanti C. Mixed mucosal-parenteral immunizations with the broadly conserved pathogenic Escherichia coli antigen SslE induce a robust mucosal and systemic immunity without affecting the murine intestinal microbiota. Vaccine 2018; 37:314-324. [PMID: 30503655 DOI: 10.1016/j.vaccine.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Emergence and dissemination of multidrug resistance among pathogenic Escherichia coli have posed a serious threat to public health across developing and developed countries. In combination with a flexible repertoire of virulence mechanisms, E. coli can cause a vast range of intestinal (InPEC) and extraintestinal (ExPEC) diseases but only a very limited number of antibiotics still remains effective against this pathogen. Hence, a broad spectrum E. coli vaccine could be a promising alternative to prevent the burden of such diseases, while offering the potential for covering against several InPEC and ExPEC at once. SslE, the Secreted and Surface-associated Lipoprotein of E. coli, is a widely distributed protein among InPEC and ExPEC. SslE functions ex vivo as a mucinase capable of degrading mucins and reaching the surface of mucus-producing epithelial cells. SslE was identified by reverse vaccinology as a protective vaccine candidate against an ExPEC murine model of sepsis, and further shown to be cross-effective against other ExPEC and InPEC models of infection. In this study, we aimed to gain insight into the immune response to antigen SslE and identify an immunization strategy suited to generate robust mucosal and systemic immune responses. We showed, by analyzing T cell and antibody responses, that mice immunized with SslE via an intranasal prime followed by two intramuscular boosts developed an enhanced overall immune response compared to either intranasal-only or intramuscular-only protocols. Importantly, we also report that this regimen of immunization did not impact the richness of the murine gut microbiota, and mice had a comparable cecal microbial composition, whether immunized with SslE or PBS. Collectively, our findings further support the use of SslE in future vaccination strategies to effectively target both InPEC and ExPEC while not perturbing the resident gut microbiota.
Collapse
Affiliation(s)
- Ilham Naili
- GSK, Siena, Italy; Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France.
| | | | | | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRA, UMR454 MEDiS, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
123
|
Salerno-Gonçalves R, Galen JE, Levine MM, Fasano A, Sztein MB. Manipulation of Salmonella Typhi Gene Expression Impacts Innate Cell Responses in the Human Intestinal Mucosa. Front Immunol 2018; 9:2543. [PMID: 30443257 PMCID: PMC6221971 DOI: 10.3389/fimmu.2018.02543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Although immunity induced by typhoid fever is moderated and short-lived, typhoid vaccination with the attenuated Ty21a oral vaccine generates long-lasting protection rates reaching up to 92%. Thus, there are important differences on how wild-type Salmonella and typhoid vaccine strains stimulate host immunity. We hypothesize that vaccine strains with different mutations might affect gut inflammation and intestinal permeability by different mechanisms. To test this hypothesis, we used an in vitro organotypic model of the human intestinal mucosa composed of human intestinal epithelial cells, lymphocytes/monocytes, endothelial cells, and fibroblasts. We also used six Salmonella enterica serovar Typhi (S. Typhi) strains: the licensed Ty21a oral vaccine, four typhoid vaccine candidates (i.e., CVD 908, CVD 909, CVD 910, and CVD 915) and the wild-type Ty2 strain. We found that genetically engineered S. Typhi vaccine strains elicit differential host changes not only in the intestinal permeability and secretion of inflammatory cytokines, but also in the phenotype and activation pathways of innate cells. These changes were distinct from those elicited by the parent wild-type S. Typhi and depended on the genetic manipulation. In sum, these results emphasize the importance of carefully selecting specific manipulations of the Salmonella genome in the development of typhoid vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
124
|
Abstract
IL-22 is a critical cytokine in modulating tissue responses during inflammation. IL-22 is upregulated in many chronic inflammatory diseases, making IL-22 biology a potentially rewarding therapeutic target. However, this is complicated by the dual-natured role of IL-22 in inflammation, as the cytokine can be protective or inflammatory depending on the disease model. Although scientific interest in IL-22 has increased considerably in the past 10 y, there is still much we do not know about the environmental, cellular, and molecular factors that regulate the production and function of this cytokine. A better understanding of IL-22 biology will allow us to develop new or improved therapeutics for treating chronic inflammatory diseases. In this article, I will highlight some of the outstanding questions in IL-22 biology.
Collapse
Affiliation(s)
- Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
125
|
Pascual DW, Yang X, Wang H, Goodwin Z, Hoffman C, Clapp B. Alternative strategies for vaccination to brucellosis. Microbes Infect 2017; 20:599-605. [PMID: 29287984 DOI: 10.1016/j.micinf.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023]
Abstract
Brucellosis remains burdensome for livestock and humans worldwide. Better vaccines for protection are needed to reduce disease incidence. Immunity to brucellosis and barriers to protection are discussed. The benefits and limitations of conventional and experimental brucellosis vaccines are outlined, and novel vaccination strategies needed to ultimately protect against brucellosis are introduced.
Collapse
Affiliation(s)
- David W Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Xinghong Yang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Hongbin Wang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Zakia Goodwin
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
126
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
127
|
Liu Y, Verma VK, Malhi H, Gores GJ, Kamath PS, Sanyal A, Chalasani N, Gao B, Shah VH. Lipopolysaccharide downregulates macrophage-derived IL-22 to modulate alcohol-induced hepatocyte cell death. Am J Physiol Cell Physiol 2017; 313:C305-C313. [PMID: 28637673 PMCID: PMC5625090 DOI: 10.1152/ajpcell.00005.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-22 (IL-22) is a Th17 cell hepatoprotective cytokine that is undergoing clinical trials to treat patients with alcoholic hepatitis (AH). Lipopolysaccharide (LPS) activation of macrophage is implicated in hepatocyte cell death and pathogenesis of AH. The role of IL-22 production from macrophage, its regulation by LPS, and effects on alcohol-induced hepatocyte cell death are unexplored and were examined in this study. Low levels of IL-22 mRNA/protein were detected in macrophage but were significantly upregulated by 6.5-fold in response to the tissue reparative cytokine IL-10. Conversely, LPS significantly decreased IL-22 mRNA levels in a temporal and concentration-dependent manner with a maximum reduction of 5-fold. LPS downregulation of IL-22 mRNA levels was rescued in the presence of a pharmacological inhibitor of c-Jun NH2-terminal kinase (JNK) and by JNK knockdown. Next, we explored whether macrophage-derived IL-22 regulated ethanol-induced hepatocyte death. Conditioned media from IL-10-stimulated macrophages attenuated ethanol-induced hepatocyte caspase-3/7 activity, and apoptosis as assessed by fluorometric assay and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. This effect was diminished in conditioned media from macrophages with IL-22 knockdown. Cytokine analysis in sera samples of patients with AH revealed that IL-22 levels were significantly elevated compared with healthy controls and heavy-drinking controls, implying a state of IL-22 resistance in human AH. Macrophage-derived IL-22 protects hepatocytes from ethanol-induced cell death. IL-22 downregulation is a new regulatory target of LPS in the pathogenesis of AH.
Collapse
Affiliation(s)
- Yaming Liu
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota
- The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Vikas K Verma
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota
| | - Greg J Gores
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, Virginia
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; and
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
128
|
Characteristics of IL-9 induced by Schistosoma japonicum infection in C57BL/6 mouse liver. Sci Rep 2017; 7:2343. [PMID: 28539607 PMCID: PMC5443805 DOI: 10.1038/s41598-017-02422-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Liver granulomatous inflammation and fibrosis were the primary pathological changes observed during Schistosoma japonicum (S. japonicum) infection. In the present study, the characteristics of IL-9 were investigated in the liver of S. japonicum infection C57BL/6 mice. Immunofluorescence, qRT-PCR, and ELISA results demonstrated that the expression of IL-9 significantly increased after infection (P < 0.01). FACS results indicated that the peak of IL-9+ Th9 cells in the liver mononuclear cells appeared at the early phase of infection (week 5), except that Th9 cells, CD8+ Tc cells, NKT and γδT cells could secrete IL-9 in this model. Although IL-9 neutralization has a limited effect on liver granulomatous inflammation, it could decrease the level of fibrosis-associated factor, PC-III, in the serum of infected mice (P < 0.05). Taken together, our results indicated that IL-9 was an important type of cytokine involved in the progression of S. japonicum infection-induced hepatic damage.
Collapse
|
129
|
Zhang Z, Zheng W, Xie H, Chai R, Wang J, Zhang H, He S. Up-regulated expression of substance P in CD8 + T cells and NK1R on monocytes of atopic dermatitis. J Transl Med 2017; 15:93. [PMID: 28460633 PMCID: PMC5412038 DOI: 10.1186/s12967-017-1196-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/25/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Large numbers of CD8+ T cells were observed in atopic dermatitis (AD) skin, and monocytes from AD patients showed increased prostaglandin E2 production. However, little is known about the expression of substance P (SP) and its receptor NK1R in blood leukocytes of patients with AD. OBJECTIVE To explore the expression of SP and NK1R in leukocytes of AD and the influence of allergens on SP and NK1R expression. METHODS The expression levels of SP and NK1R in patients with AD were examined by flow cytometry, ELISA and a mouse AD model. RESULTS The plasma SP level was 4.9-fold higher in patients with AD than in HC subjects. Both the percentage of SP expression in the population and mean fluorescence intensity (MFI) of SP expression were elevated in CD8+ T cells in the blood of AD patients. However, both the CD14+NK1R+ population and MFI of NK1R expression on CD14+ cells were enhanced in the blood of AD patients. Allergens ASWE, HDME and PPE failed to up-regulate SP expression in CD8+ T cells. However, allergens ASWE and HDME both enhanced NK1R expression on CD14+ blood leukocytes regardless of AD or HC subjects. OVA-sensitized AD mice showed an elevated proportion and MFI of SP-expressing CD8+ T cells in the blood, which agrees with the SP expression situation in human AD blood. Injection of SP into mouse skin did not up-regulate NK1R expression on monocytes. CONCLUSIONS An elevated plasma SP level, up-regulated expression of SP and NK1R indicate that the SP/NK1R complex is important in the development of AD. Therefore, SP and NK1R antagonist or blocker agents may help to treat patients with AD. Trial registration Registration number: ChiCTR-BOC-16010279; Registration date: Dec., 28, 2016; retrospectively registered.
Collapse
Affiliation(s)
- Zenan Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Wenjiao Zheng
- Department of Laboratory Medicine, Zibo Mining Group Co., LTD. Central Hospital, Zibo, 255120, Shandong, China
| | - Hua Xie
- The PLA Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, 110840, Liaoning, China
| | - Ruonan Chai
- The PLA Center of Respiratory and Allergic Disease Diagnosing Management, General Hospital of Shenyang Military Area Command, Shenyang, 110840, Liaoning, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning, People's Republic of China.
| |
Collapse
|
130
|
Napier BA, Monack DM. Editorial: The sum of all defenses: tolerance + resistance. Pathog Dis 2017; 75:2975571. [DOI: 10.1093/femspd/ftx015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|