101
|
Bouchez O, Huard C, Lorrain S, Roby D, Balagué C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. PLANT PHYSIOLOGY 2007; 145:465-77. [PMID: 17720753 PMCID: PMC2048732 DOI: 10.1104/pp.107.106302] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.
Collapse
Affiliation(s)
- Olivier Bouchez
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA/CNRS 441/2594, 31320 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
102
|
Wang W, Devoto A, Turner JG, Xiao S. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:966-76. [PMID: 17722700 DOI: 10.1094/mpmi-20-8-0966] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The powdery mildew resistance genes RPW8.1 and RPW8.2 from Arabidopsis differ from the other isolated plant resistance (R) genes in their predicted protein domains and their resistance spectrum. The two homologous RPW8 genes encode small proteins featuring a predicted amino-terminal transmembrane anchor domain and a coiled-coil domain and confer resistance to a broad spectrum of powdery mildews. Here, we show that Arabidopsis plants expressing the RPW8 genes have enhanced resistance to another biotrophic pathogen, Hyaloperonospora parasitica, raising the possibility that the RPW8 genes may function to enhance salicylic-acid-dependent basal defenses, rather than as powdery-mildew-specific R genes. When overexpressed from their native promoters, the RPW8 genes confer enhanced resistance to the Cauliflower mosaic virus, but render plants more susceptible to the necrotrophic fungal pathogens Alternaria and Botrytis spp. Furthermore, we show that the RPW8 proteins appear to be localized to the endomembrane system, overlapping with the endoplasmic reticulum-associated small GTPase SAR1, and accumulate to higher levels in response to application of exogenous salicylic acid, one of the signaling molecules of plant defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | |
Collapse
|
103
|
Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Choi YD. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2007; 64:1-15. [PMID: 17364223 DOI: 10.1007/s11103-006-9123-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/07/2006] [Indexed: 05/14/2023]
Abstract
We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.
Collapse
Affiliation(s)
- Yeon Jong Koo
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 2007; 17:499-508. [PMID: 17350264 PMCID: PMC1857343 DOI: 10.1016/j.cub.2007.02.028] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The plant pathogen Pseudomonas syringae injects 20-40 different proteins called effectors into host plant cells, yet the functions and sites of action of these effectors in promoting pathogenesis are largely unknown. Plants in turn defend themselves against P. syringae by activating the salicylic acid (SA)-mediated signaling pathway. The P. syringae-specific HopI1 effector has a putative chloroplast-targeting sequence and a J domain. J domains function by activating 70 kDa heat-shock proteins (Hsp70). RESULTS HopI1 is a ubiquitous P. syringae virulence effector that acts inside plant cells. When expressed in plants, HopI1 localizes to chloroplasts, the site of SA synthesis. HopI1 causes chloroplast thylakoid structure remodeling and suppresses SA accumulation. HopI1's C terminus has bona fide J domain activity that is necessary for HopI1-mediated virulence and thylakoid remodeling. Furthermore, HopI1-expressing plants have increased heat tolerance, establishing that HopI1 can engage the plant stress-response machinery. CONCLUSIONS These results strongly suggest that chloroplast Hsp70 is targeted by the P. syringae HopI1 effector to promote bacterial virulence by suppressing plant defenses. The targeting of Hsp70 function through J domain proteins is known to occur in a mammalian virus, SV40. However, this is the first example of a bacterial pathogen exploiting a J domain protein to promote pathogenesis through alterations of chloroplast structure and function.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| | - Nan Yao
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- State Key Laboratory of Biocontrol, College of Life Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Boris A. Vinatzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- Current Address: Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Latham Hall, Blacksburg, VA 24061, USA
| | - Christine M. Wright
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| |
Collapse
|
105
|
Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC. S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. PLANT PHYSIOLOGY 2007; 143:1282-92. [PMID: 17277089 PMCID: PMC1820916 DOI: 10.1104/pp.106.091686] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.
Collapse
Affiliation(s)
- Christine Rustérucci
- Laboratoire de Génomique Fonctionnelle des Plantes, Université Jules Verne-Picardie Sciences, 80039 Amiens cedex, France
| | | | | | | | | |
Collapse
|
106
|
Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, Fairfax K, Jenrette J, Greenberg JT. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 2006; 62:26-44. [PMID: 16942603 DOI: 10.1111/j.1365-2958.2006.05350.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial plant pathogen Pseudomonas syringae injects a large repertoire of effector proteins into plant cells using a type III secretion apparatus. Effectors can trigger or suppress defences in a host-dependent fashion. Host defences are often accompanied by programmed cell death, while interference with defences is sometimes associated with cell death suppression. We previously predicted the effector repertoire of the sequenced bean pathogen P. syringae pv. syringae (Psy) B728a using bioinformatics. Here we show that PsyB728a is also pathogenic on the model plant species Nicotiana benthamiana (tobacco). We confirm our effector predictions and clone the nearly complete PsyB728a effector repertoire. We find effectors to have different cell death-modulating activities and distinct roles during the infection of the susceptible bean and tobacco hosts. Unexpectedly, we do not find a strict correlation between cell death-eliciting and defence-eliciting activity and between cell death-suppressing activity and defence-interfering activity. Furthermore, we find several effectors with quantitative avirulence activities on their susceptible hosts, but with growth-promoting effects on Arabidopsis thaliana, a species on which PsyB728a does not cause disease. We conclude that P. syringae strains may have evolved large effector repertoires to extend their host ranges or increase their survival on various unrelated plant species.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Fralin Biotechnology Center, West Campus Drive, Blacksburg, VA 24061-0346, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
van Loon LC, Geraats BPJ, Linthorst HJM. Ethylene as a modulator of disease resistance in plants. TRENDS IN PLANT SCIENCE 2006; 11:184-91. [PMID: 16531096 DOI: 10.1016/j.tplants.2006.02.005] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
The role of ethylene in the hormonal regulation of plant development has been well established. In addition, it has been implicated in biotic stress, both as a virulence factor of fungal and bacterial pathogens and as a signaling compound in disease resistance. This apparent discrepancy has stimulated research on the effects of various types of pathogens on mutant and transgenic plants that are impaired in ethylene production or perception. It has become clear that ethylene differentially affects resistance against pathogens with different lifestyles and plays an important role in mediating different types of induced resistance.
Collapse
Affiliation(s)
- Leendert C van Loon
- Institute of Environmental Biology, Section Phytopathology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
108
|
Yao N, Greenberg JT. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. THE PLANT CELL 2006; 18:397-411. [PMID: 16387834 PMCID: PMC1356547 DOI: 10.1105/tpc.105.036251] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events.
Collapse
Affiliation(s)
- Nan Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
109
|
Lu H, Liu Y, Greenberg JT. Structure-function analysis of the plasma membrane- localized Arabidopsis defense component ACD6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:798-809. [PMID: 16297071 DOI: 10.1111/j.1365-313x.2005.02567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ACCELERATED CELL DEATH 6 (ACD6) protein, composed of an ankyrin-repeat domain and a predicted transmembrane region, is a necessary positive regulator of Arabidopsis defenses. ACD6 overexpression confers enhanced disease resistance by priming stronger and quicker defense responses during pathogen infection, plant development or treatment with an agonist of the key defense regulator salicylic acid (SA). Modulation of ACD6 affects both SA-dependent and SA-independent defenses. ACD6 localizes to the plasma membrane and is an integral membrane protein with a cytoplasmic ankyrin domain. An activated version of ACD6 with a predicted transmembrane helix mutation called ACD6-1 has the same localization and overall topology as the wild-type protein. A genetic screen for mutants that suppress acd6-1-conferred phenotypes identified 17 intragenic mutations of ACD6. The majority of these mutations reside in the ankyrin domain and in predicted transmembrane helices, suggesting that both ankyrin and transmembrane domains are important for ACD6 function. One mutation (S638F) also identified a key residue in a putative loop between two transmembrane helices. This mutation did not alter the stability or localization of ACD6, suggesting that S635 is a critical residue for ACD6 function. Based on structural modeling, two ankyrin domain mutations are predicted to be in surface-accessible residues. As ankyrin repeats are protein interaction modules, these mutations may disrupt protein-protein interactions. A plausible scenario is that information exchange between the ankyrin and transmembrane domains is involved in activating defense signaling.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
110
|
Cohn JR, Martin GB. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:139-54. [PMID: 16167902 DOI: 10.1111/j.1365-313x.2005.02516.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The type III secretion system (TTSS) of Pseudomonas syringae pv. tomato (Pst) injects into the plant cell effector proteins that play an essential role in the formation of bacterial speck disease. To investigate the molecular roles of TTSS effectors in disease formation, we used a cDNA microarray to analyze the expression of approximately 8600 random tomato genes in response to wild-type Pst strain DC3000 and a mutant lacking a functional TTSS. Many of the differentially expressed genes identified encode proteins associated with hormone response or hormone biosynthesis pathways. Using isogenic mutant strains of DC3000, we monitored host transcriptional changes in response to the TTSS effector proteins AvrPto and AvrPtoB, both of which are important virulence factors on susceptible tomato lines. We found that AvrPto and AvrPtoB induce a set of host genes involved in ethylene biosynthesis and signaling, and in particular they regulate the expression of two genes, LeACO1 and LeACO2, encoding the ethylene-forming enzyme ACC oxidase. Analysis of transgenic tomato lines with diminished ACC oxidase activity revealed that ethylene production by the host is required for the full virulence activity of both AvrPto and AvrPtoB. AvrPto and AvrPtoB therefore appear to promote enhanced disease in tomato leaves, in part, by upregulating genes involved in ethylene production.
Collapse
Affiliation(s)
- Jonathan R Cohn
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY 14853-1801, USA
| | | |
Collapse
|
111
|
Vinatzer BA, Jelenska J, Greenberg JT. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:877-88. [PMID: 16134900 DOI: 10.1094/mpmi-18-0877] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The plant pathogen Pseudomonas syringae causes disease by secreting a potentially large set of virulence proteins called effectors directly into host cells, their environment, or both, using a type III secretion system (T3SS). Most P. syringae effectors have a common upstream element called the hrp box, and their N-terminal regions have amino acids biases, features that permit their bioinformatic prediction. One of the most prominent biases is a positive serine bias. We previously used the truncated AvrRpt2(81-255) effector containing a serine-rich stretch from amino acids 81 to 100 as a T3SS reporter. Region 81 to 100 of this reporter does not contribute to the secretion or translocation of AvrRpt2 or to putative effector protein chimeras. Rather, the serine-rich region from the N-terminus of AvrRpt2 is important for protein accumulation in bacteria. Most of the N-terminal region (amino acids 15 to 100) is not essential for secretion in culture or delivery to plants. However, portions of this sequence may increase the efficiency of AvrRpt2 secretion, delivery to plants, or both. Two effectors previously identified with the AvrRpt2(81-255) reporter were secreted in culture independently of AvrRpt2, validating the use of the C terminus of AvrRpt2 as a T3SS reporter. Finally, using the reduced AvrRpt2(101-255) reporter, we confirmed seven predicted effectors from P. syringae pv. tomato DC3000, four from P. syringae pv. syringae B728a, and two from P. fluorescens SBW25.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street, EBC410, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
112
|
Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A, Kanna M, Ioki M, Kamada H, Saji H. Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. PLANT & CELL PHYSIOLOGY 2005; 46:1062-72. [PMID: 15870097 DOI: 10.1093/pcp/pci118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ozone (O3), a major photochemical oxidant, induces leaf injury concomitant with salicylic acid (SA) synthesis. In pathogen-infected leaves, SA is synthesized via two pathways, involving phenylalanine or isochorismate. SA biosynthesis under O3 fumigation is not well understood. When we applied 14C-labeled benzoic acid (a precursor of SA in the pathway via phenylalanine) to O3-exposed tobacco leaves, it was effectively metabolized to SA. However, the activity and mRNA level of isochorismate synthase (ICS) were not increased. In contrast, ICS activity was increased in O3-exposed Arabidopsis thaliana L. These results suggest that SA is synthesized via benzoic acid from phenylalanine in O3-exposed tobacco leaves but via isochorismate in Arabidopsis. Ethylene is a plant hormone that promotes leaf damage in O3-exposed plants. During O3 exposure, transgenic plants with a phenotype of reduced O3-induced ethylene production accumulated less SA than did wild-type plants. O3 increased the activity of phenylalanine ammonia-lyase (PAL) and the transcript levels of the chorismate mutase (CM) and PAL genes in wild-type tobacco, but their induction was suppressed in the transgenic plants. These results indicate that ethylene promotes SA accumulation by regulating the expression of the CM and PAL genes in O3-exposed tobacco.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. PLANT PHYSIOLOGY 2005; 138:1018-26. [PMID: 15894742 PMCID: PMC1150416 DOI: 10.1104/pp.105.060400] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | |
Collapse
|
114
|
Abstract
SUMMARY Disease resistance takes place within the context of the host developmental programme. The cellular and molecular basis of the developmental control of resistance is virtually unknown. It is clear from mutant studies that developmental processes are impacted when defence factors are altered and it is equally clear that alteration of developmental factors impacts defence functions. A review of current knowledge regarding the interplay of resistance and development is presented. Stage-specific limitations on defence represent an important target for crop improvement.
Collapse
Affiliation(s)
- Maureen C Whalen
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
115
|
Abstract
Hormones are key regulators of plant growth and development. Genetic and biochemical studies have identified major factors that mediate ethylene biosynthesis and signal transduction. Substantial progress in the elucidation of the ethylene signal transduction pathway has been made, mainly by research on Arabidopsis thaliana. Research on ethylene biosynthesis and its regulation provided new insights, particularly on the posttranslational regulation of ethylene synthesis and the feedback from ethylene signal transduction. The identification of new components in the ethylene-response pathway and the elucidation of their mode of action provide a framework for understanding not only how plants sense and respond to this hormone but also how the signal is integrated with other inputs, ultimately determining the plant phenotype.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
116
|
Shah J. Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:229-60. [PMID: 16078884 DOI: 10.1146/annurev.phyto.43.040204.135951] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lipids and lipid metabolites influence pathogenesis and resistance mechanisms associated with plant-microbe interactions. Some microorganisms sense their presence on a host by perceiving plant surface waxes, whereas others produce toxins that target plant lipid metabolism. In contrast, plants have evolved to recognize microbial lipopolysaccharides (LPSs), sphingolipids, and lipid-binding proteins as elicitors of defense response. Recent studies have demonstrated that the plasma membrane provides a surface on which some plant resistance (R) proteins perceive pathogen-derived effectors and thus confer race-specific resistance. Plant cell membranes also serve as reservoirs from which biologically active lipids and precursors of oxidized lipids are released. Some of these oxylipins, for example jasmonic acid (JA), are important signal molecules in plant defense. Arabidopsis thaliana is an excellent model plant to elucidate the biosynthesis and metabolism of lipids and lipid metabolites, and the characterization of signaling mechanisms involved in the modulation of plant defense responses by phytolipids. This review focuses on recent studies that highlight the involvement of lipids and lipid metabolites, and enzymes involved in lipid metabolism and modification in plant disease resistance.
Collapse
Affiliation(s)
- Jyoti Shah
- Division of Biology and Molecular, Cellular and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
117
|
Yao N, Eisfelder BJ, Marvin J, Greenberg JT. The mitochondrion--an organelle commonly involved in programmed cell death in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:596-610. [PMID: 15500474 DOI: 10.1111/j.1365-313x.2004.02239.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant cells undergoing programmed cell death (PCD) at late stages typically show chromatin condensation and endonucleolytic cleavage prior to obvious membrane or organelle ultrastructural changes. To investigate possible early PCD-associated events, we used microscopic observations and flow cytometry to quantitate mitochondrial membrane potential (DeltaPsim) changes during PCD at the single cell and population levels using Arabidopsis protoplasts. A DeltaPsim loss was commonly induced early during plant PCD and was important for PCD execution, as evidenced by the concomitant reduction of the change in DeltaPsim and PCD by cyclosporin A, which inhibits mitochondrial permeability transition pores in animal cells. DeltaPsim loss occurred prior to nuclear morphological changes and was only associated with mitochondrial cytochrome c release (an apoptotic trigger in animals) in response to one of three PCD elicitors. Three different stimuli in wild type implicated DeltaPsim changes in PCD: ceramide, protoporphyrin IX, and the hypersensitive response elicitor AvrRpt2. Additionally, the behavior of the conditional ectopic cell death mutant accelerated cell death2 and ACD2-overproducing plants also implicated DeltaPsim alteration as key for PCD execution. Because ACD2 is largely a chloroplast component in mature plants, the observation that the cell death in acd2 mutants requires changes in mitochondrial functions implicates communication between chloroplasts and mitochondria in mediating PCD activation. We suggest that DeltaPsim loss is a common early marker in plant PCD, similar to what has been documented in animals. However, unlike in animal cells, in plant cells, mitochondrial cytochrome c release is not an obligatory step in PCD control.
Collapse
Affiliation(s)
- Nan Yao
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
118
|
Song JT, Lu H, McDowell JM, Greenberg JT. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:200-12. [PMID: 15447647 DOI: 10.1111/j.1365-313x.2004.02200.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana agd2-like defense response protein1 (ald1) mutant was previously found to be hypersusceptible to the virulent bacterial pathogen Pseudomonas syringae and had reduced accumulation of the defense signal salicylic acid (SA). ALD1 was shown to possess aminotransferase activity in vitro, suggesting it generates an amino acid-derived defense signal. We now find ALD1 to be a key defense component that acts in multiple contexts and partially requires the PHYTOALEXIN DEFICIENT4 (PAD4) defense regulatory gene for its expression in response to infection. ald1 plants have increased susceptibility to avirulent P. syringae strains, are unable to activate systemic acquired resistance and are compromised for resistance to the oomycete pathogen Peronospora parasitica in mutants with constitutively active defenses. ALD1 and PAD4 can act additively to control SA, PATHOGENESIS RELATED GENE1 (PR1) transcript and camalexin (an antimicrobial metabolite) accumulation as well as disease resistance. Finally, ALD1 and PAD4 can mutually affect each other's expression in a constitutive defense mutant, suggesting that these two genes can act in a signal amplification loop.
Collapse
Affiliation(s)
- Jong Tae Song
- Department of Molecular Genetics and Cell Biology, Erman Biology Center, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
119
|
Lorrain S, Lin B, Auriac MC, Kroj T, Saindrenan P, Nicole M, Balagué C, Roby D. Vascular associated death1, a novel GRAM domain-containing protein, is a regulator of cell death and defense responses in vascular tissues. THE PLANT CELL 2004; 16:2217-32. [PMID: 15269331 PMCID: PMC519209 DOI: 10.1105/tpc.104.022038] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/11/2004] [Indexed: 05/18/2023]
Abstract
The hypersensitive response (HR) is a programmed cell death that is commonly associated with plant disease resistance. A novel lesion mimic mutant, vad1 (for vascular associated death1), that exhibits light conditional appearance of propagative HR-like lesions along the vascular system was identified. Lesion formation is associated with expression of defense genes, production of high levels of salicylic acid (SA), and increased resistance to virulent and avirulent strains of Pseudomonas syringae pv tomato. Analyses of the progeny from crosses between vad1 plants and either nahG transgenic plants, sid1, nonexpressor of PR1 (npr1), enhanced disease susceptibility1 (eds1), or non-race specific disease resistance1 (ndr1) mutants, revealed the vad1 cell death phenotype to be dependent on SA biosynthesis but NPR1 independent; in addition, both EDS1 and NDR1 are necessary for the proper timing and amplification of cell death as well as for increased resistance to Pseudomonas strains. VAD1 encodes a novel putative membrane-associated protein containing a GRAM domain, a lipid or protein binding signaling domain, and is expressed in response to pathogen infection at the vicinity of the hypersensitive lesions. VAD1 might thus represent a new potential function in cell death control associated with cells in the vicinity of vascular bundles.
Collapse
Affiliation(s)
- Séverine Lorrain
- Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594, Boîte Postale 27, 31326 Castanet-Tolosan, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
120
|
De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:537-59. [PMID: 15272873 DOI: 10.1111/j.1365-313x.2004.02156.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A comprehensive transcriptome analysis by means of cDNA-amplified fragment length polymorphism (AFLP) and cDNA-microarray technology was performed in order to gain further understanding of the molecular mechanisms of immediate transcriptional response to ethylene. Col-0 plants were treated with exogenous ethylene and sampled at six different time-points ranging from 10 min until 6 h. In order to isolate truly ethylene-responsive genes, both the ethylene-insensitive mutant ein2-1 and the constitutive mutant (ctr1-1) were analysed in parallel by cDNA-AFLP while ein2-1 was included for the microarray experiment. Out of the cDNA-transcript profiling covering about 5% of the Arabidopsis transcriptome, 46 ethylene-responsive genes were isolated, falling in different classes of expression pattern and including a number of novel genes. Out of the 6008 genes present on the chip, 214 genes were significantly (alpha = 0.001) differentially expressed between Col-0 and ein2-1 over time. Cluster analysis and functional grouping of co-regulated genes allowed to determine the major ethylene-regulated classes of genes. In particular, a large number of genes involved in cell rescue, disease and defence mechanisms were identified as early ethylene-regulated genes. Furthermore, the data provide insight into the role of protein degradation in ethylene signalling and ethylene-regulated transcription and protein fate. Novel interactions between ethylene response and responses to several other signals have been identified by this study. Of particular interest is the overlap between ethylene response and responses to abscisic acid, sugar and auxin. In conclusion, the data provide unique insight into early regulatory steps of ethylene response.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signalling and Bio-imaging, Department of Molecular Genetics, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
121
|
Affiliation(s)
- Eric Lam
- Biotechnology Center and the Department of Plant Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
122
|
Abstract
It is commonly known that animal pathogens often target and suppress programmed cell death (pcd) pathway components to manipulate their hosts. In contrast, plant pathogens often trigger pcd. In cases in which plant pcd accompanies disease resistance, an event called the hypersensitive response, the plant surveillance system has learned to detect pathogen-secreted molecules in order to mount a defence response. In plants without genetic disease resistance, these secreted molecules serve as virulence factors that act through largely unknown mechanisms. Recent studies suggest that plant bacterial pathogens also secrete antiapoptotic proteins to promote their virulence. In contrast, a number of fungal pathogens secrete pcd-promoting molecules that are critical virulence factors. Here, we review recent progress in determining the role and regulation of plant pcd responses that accompany both resistance and susceptible interactions. We also review progress in discerning the mechanisms by which plant pcd occurs during these different interactions.
Collapse
Affiliation(s)
- Jean T Greenberg
- The University of Chicago, 1103 East 57th Street, EBC410, Chicago, IL 60637, USA.
| | | |
Collapse
|
123
|
Fitzgerald HA, Chern MS, Navarre R, Ronald PC. Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:140-51. [PMID: 14964528 DOI: 10.1094/mpmi.2004.17.2.140] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense response that protects plants against a broad spectrum of pathogens. A central regulator of SAR in Arabidopsis is NPR1 (nonexpresser of pathogenesis-related genes). In rice, overexpression of Arabidopsis NPR1 enhances plant resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. This report demonstrates that overexpression of (At)NPR1 in rice also triggers a lesion-mimic/cell death (LMD) phenotype. The LMD phenotype is environmentally regulated and heritable. In addition, the development of lesions and death correlates with the expression of rice defense genes and the accumulation of hydrogen peroxide. Application of the salicylic acid (SA) analog, benzo(1,2,3) thiadiazole-7-carbothioc acid S-methyl ester (BTH), potentiates this phenotype Endogenous SA levels are reduced in rice overexpressing (At)NPR1 when compared with wildtype plants, supporting the idea that (At)NPR1 may perceive and modulate the accumulation of SA. The association of (At)NPR1 expression in rice with the development of an LMD phenotype suggests that (At)NPR1 has multiple roles in plant stress responses that may affect its efficacy as a transgenic tool for engineering broad-spectrum resistance.
Collapse
|
124
|
Song JT, Lu H, Greenberg JT. Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, aberrant growth and death2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. THE PLANT CELL 2004; 16:353-66. [PMID: 14729919 PMCID: PMC341909 DOI: 10.1105/tpc.019372] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 11/26/2003] [Indexed: 05/18/2023]
Abstract
The disease-resistant Arabidopsis thaliana aberrant growth and death2 (agd2-1) mutant has elevated levels of the defense signal salicylic acid (SA), altered leaf morphology, and mild dwarfism. AGD2 and its close homolog ALD1 (for AGD2-LIKE DEFENSE RESPONSE PROTEIN1) encode aminotransferases that act on an overlapping set of amino acids in vitro. However, kinetic parameters indicate that AGD2 and ALD1 may drive the aminotransferase reaction in opposite directions. ALD1-deficient mutants have the opposite phenotypes from agd2-1, showing reduced SA production and increased disease susceptibility. Furthermore, ALD1 transcript levels are elevated in agd2-1 and are induced in the wild type by bacterial pathogen infection. ALD1 is responsible for some of the elevated SA content and a majority of the disease resistance and dwarfism of agd2-1. A complete knockout of AGD2 renders embryos inviable. We suggest that AGD2 synthesizes an important amino acid-derived molecule that promotes development and suppresses defenses, whereas ALD1 generates a related amino acid-derived molecule important for activating defense signaling.
Collapse
Affiliation(s)
- Jong Tae Song
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | | | | |
Collapse
|
125
|
Chen Z, Kloek AP, Cuzick A, Moeder W, Tang D, Innes RW, Klessig DF, McDowell JM, Kunkel BN. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:494-504. [PMID: 14756766 DOI: 10.1111/j.1365-313x.2003.01984.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Métraux JP, Durner J. The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance. ECOLOGICAL STUDIES 2004. [DOI: 10.1007/978-3-662-08818-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
127
|
O'Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB, Klee HJ. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. PLANT PHYSIOLOGY 2003; 133:1181-9. [PMID: 14551324 PMCID: PMC281613 DOI: 10.1104/pp.103.030379] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 07/30/2003] [Accepted: 08/07/2003] [Indexed: 05/18/2023]
Abstract
Phytohormones regulate plant responses to a wide range of biotic and abiotic stresses. How a limited number of hormones differentially mediate individual stress responses is not understood. We have used one such response, the compatible interaction of tomato (Lycopersicon esculentum) and Xanthomonas campestris pv vesicatoria (Xcv), to examine the interactions of jasmonic acid (JA), ethylene, and salicylic acid (SA). The role of JA was assessed using an antisense allene oxide cyclase transgenic line and the def1 mutant to suppress Xcv-induced biosynthesis of jasmonates. Xcv growth was limited in these lines as was subsequent disease symptom development. No increase in JA was detected before the onset of terminal necrosis. The lack of a detectable increase in JA may indicate that an oxylipin other than JA regulates basal resistance and symptom proliferation. Alternatively, there may be an increase in sensitivity to JA or related compounds following infection. Hormone measurements showed that the oxylipin signal must precede subsequent increases in ethylene and SA accumulation. Tomato thus actively regulates the Xcv-induced disease response via the sequential action of at least three hormones, promoting expansive cell death of its own tissue. This sequential action of jasmonate, ethylene, and SA in disease symptom development is different from the hormone interactions observed in many other plant-pathogen interactions.
Collapse
Affiliation(s)
- Philip J O'Donnell
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT. Ceramides modulate programmed cell death in plants. Genes Dev 2003; 17:2636-41. [PMID: 14563678 PMCID: PMC280613 DOI: 10.1101/gad.1140503] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The balance between the bioactive sphingolipid ceramide and its phosphorylated derivative has been proposed to modulate the amount of programmed cell death (PCD) in eukaryotes. We characterized the first ceramide kinase (CERK) mutant in any organism. The Arabidopsis CERK mutant, called accelerated cell death 5, accumulates CERK substrates and shows enhanced disease symptoms during pathogen attack and apoptotic-like cell death dependent on defense signaling late in development. ACD5 protein shows high specificity for ceramides in vitro. Strikingly, C2 ceramide induces, whereas its phosphorylated derivative partially blocks, plant PCD, supporting a role for ceramide phosphorylation in modulating cell death in plants.
Collapse
Affiliation(s)
- Hua Liang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. THE PLANT CELL 2003; 15:2408-20. [PMID: 14507999 PMCID: PMC197305 DOI: 10.1105/tpc.015412] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 05/18/2023]
Abstract
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
130
|
Mahalingam R, Fedoroff N. Stress response, cell death and signalling: the many faces of reactive oxygen species. PHYSIOLOGIA PLANTARUM 2003; 119:56-68. [PMID: 0 DOI: 10.1034/j.1399-3054.2003.00156.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
131
|
Lieberherr D, Wagner U, Dubuis PH, Métraux JP, Mauch F. The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. PLANT & CELL PHYSIOLOGY 2003; 44:750-7. [PMID: 12881503 DOI: 10.1093/pcp/pcg093] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression of two members of the glutathione S-transferase (GST) multigene family was studied in Arabidopsis plants inoculated with an avirulent strain of Pseudomonas syringae pv. tomato (Pst). Accumulation of AtGSTF2 and AtGSTF6 transcripts started 4 and 2 h after inoculation, respectively, and clearly preceded the induction of the pathogenesis-related PR-1 gene. The aim of this work was to find the reason for the faster induction of the two GSTs compared with classical salicylic acid (SA)-regulated PR-proteins. Expression studies in Pst-inoculated SA-signaling mutants NahG and npr1 revealed that induction of both GSTs was SA-dependent and partially NPR1-independent. The induction of AtGSTF2 by Pst was also strongly repressed in the ethylene insensitive etr1 mutant. Both GSTs were induced by low amounts of SA (0.1 mM) and ethylene (0.1 ppm) while PR-1 gene expression was unaffected by ethylene. Interestingly, ethylene was about 50-fold less effective in NahG compared with wild-type plants thus suggesting a potentiation effect of SA on ethylene-induced accumulation of AtGST transcripts. Increased AtGST expression in plants inoculated with Pst correlated with increased production of SA and ethylene. However, the initial phase of AtGSTF6 induction was independent of SA- and ethylene-signaling. The jasmonate (JA)-insensitive mutant jar1 showed normal induction kinetics for both GSTs. Our data support the hypothesis that full expression of the pathogen-induced AtGSTF2 and, to a lesser extent AtGSTF6, is the result of combined SA- and ethylene-signaling and that early AtGSTF6 expression depends on additional unknown signaling mechanisms.
Collapse
Affiliation(s)
- Damien Lieberherr
- Département de Biologie, Université de Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
132
|
Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L, Farmer EE. Reactive electrophile species activate defense gene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:205-16. [PMID: 12694595 DOI: 10.1046/j.1365-313x.2003.01718.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Compounds containing alpha,beta-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small alpha,beta-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.
Collapse
Affiliation(s)
- Emmanuelle Alméras
- Gene Expression Laboratory, University of Lausanne, Biology Building, Switzerland
| | | | | | | | | | | |
Collapse
|
133
|
Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. THE PLANT CELL 2003; 15:365-79. [PMID: 12566578 PMCID: PMC141207 DOI: 10.1105/tpc.006999] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 11/14/2002] [Indexed: 05/17/2023]
Abstract
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.
Collapse
Affiliation(s)
- Claudine Balagué
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 215, BP 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
O'Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ. Susceptible to intolerance--a range of hormonal actions in a susceptible Arabidopsis pathogen response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:245-57. [PMID: 12535339 DOI: 10.1046/j.1365-313x.2003.01619.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene and salicylic acid (SA) are key intermediates in a host's response to pathogens. Previously, we have shown using a tomato compatible interaction that ethylene and SA act sequentially and are essential for disease symptom production. Here, we have examined the relationship between the two signals in the Arabidopsis-Xanthomonas campestris pv. campestris (Xcc) compatible interaction. Preventing SA accumulation by expression of the nahG gene reduced subsequent ethylene production and altered the development of disease symptoms, with plants showing no visible chlorosis. The ethylene insensitive lines, etr1-1 and etr2-1, on the other hand, accumulated SA and exhibited normal but precocious symptom development. Therefore, Arabidopsis, like tomato, was found to exhibit co-operative ethylene and SA action for the production of disease symptoms. However, in Arabidopsis, SA was found to act upstream of ethylene. Jasmonic acid and indole-3-acetic acid levels were also found to increase in response to Xcc. In contrast to ethylene, accumulation of these hormones was not found to be dependent on SA action. These results indicate that the plants response to a virulent pathogen is a composite of multiple signaling pathways.
Collapse
Affiliation(s)
- Philip J O'Donnell
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
135
|
Hoeberichts FA, Woltering EJ. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays 2003; 25:47-57. [PMID: 12508282 DOI: 10.1002/bies.10175] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Programmed cell death (PCD) is a process aimed at the removal of redundant, misplaced, or damaged cells and it is essential to the development and maintenance of multicellular organisms. In contrast to the relatively well-described cell death pathway in animals, often referred to as apoptosis, mechanisms and regulation of plant PCD are still ill-defined. Several morphological and biochemical similarities between apoptosis and plant PCD have been described, including DNA laddering, caspase-like proteolytic activity, and cytochrome c release from mitochondria. Reactive oxygen species (ROS) have emerged as important signals in the activation of plant PCD. In addition, several plant hormones may exert their respective effects on plant PCD through the regulation of ROS accumulation. The possible plant PCD regulators discussed in this review are integrated in a model that combines plant-specific regulators with mechanisms functionally conserved between animals and plants.
Collapse
Affiliation(s)
- Frank A Hoeberichts
- Agrotechnological Research Institute (ATO), Wageningen University and Research Centre, The Netherlands
| | | |
Collapse
|
136
|
Rao MV, Lee HI, Davis KR. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:447-56. [PMID: 12445117 DOI: 10.1046/j.1365-313x.2002.01434.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene is known to influence plant defense responses including cell death in response to both biotic and abiotic stress factors. However, whether ethylene acts alone or in conjunction with other signaling pathways is not clearly understood. Ethylene overproducer mutants, eto1 and eto3, produced high levels of ethylene and developed necrotic lesions in response to an acute O3 exposure that does not induce lesions in O3-tolerant wild-type Col-0 plants. Treatment of plants with ethylene inhibitors completely blocked O3-induced ethylene production and partially attenuated O3-induced cell death. Analyses of the responses of molecular markers of specific signaling pathways indicated a relationship between salicylic acid (SA)- and ethylene-signaling pathways and O3 sensitivity. Both eto1 and eto3 plants constitutively accumulated threefold higher levels of total SA and exhibited a rapid increase in free SA and ethylene levels prior to lesion formation in response to O3 exposure. SA pre-treatments increased O3 sensitivity of Col-0, suggesting that constitutive high SA levels prime leaf tissue to exhibit increased magnitude of O3-induced cell death. NahG and npr1 plants compromised in SA signaling failed to produce ethylene in response to O3 and other stress factors suggesting that SA is required for stress-induced ethylene production. Furthermore, NahG expression in the dominant eto3 mutant attenuated ethylene-dependent PR4 expression and rescued the O3-induced HR (hypersensitive response) cell death phenotype exhibited by eto3 plants. Our results suggest that both SA and ethylene act in concert to influence cell death in O3-sensitive genotypes, and that O3-induced ethylene production is dependent on SA.
Collapse
Affiliation(s)
- Mulpuri V Rao
- Paradigm Genetics, Inc., 108 Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
137
|
Li J, Shan L, Zhou JM, Tang X. Overexpression of Pto induces a salicylate-independent cell death but inhibits necrotic lesions caused by salicylate-deficiency in tomato plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:654-661. [PMID: 12118881 DOI: 10.1094/mpmi.2002.15.7.654] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tomato plants overexpressing the disease resistance gene Pto (35S::Pto) exhibit spontaneous cell death, accumulation of salicylic acid (SA), elevated expression of pathogenesis-related genes, and enhanced resistance to a broad range of pathogens. Because salicylate plays an important role in the cell death and defense activation in many lesion mimic mutants, we investigated the interaction of SA-mediated processes and the 35S::Pto-mediated defense pathway by introducing the nahG transgene that encodes salicylate hydroxylase. Here, we show that SA is not required for the 35S::Pto-activated microscopic cell death and plays a minor role in defense gene activation and general disease resistance in 35S::Pto plants. In contrast, temperature greatly affects the spontaneous cell death and general resistance in 35S::Pto plants, and high temperature inhibits the cell death. The NahG tomato plants develop spontaneous, unconstrained necrotic lesions on leaves. These lesions also are initiated by the inoculation of a virulent strain of Pseudomonas syringae pv. tomato. However, the NahG-dependent necrotic lesions are inhibited in the NahG/35S::Pto plants. This inhibition is most pronounced under conditions favoring the 35S::Pto-mediated spontaneous cell death development. These results indicate that the signaling pathways activated by Pto overexpression suppress the cellular damage that is caused by SA depletion. We also found that ethylene is dispensable for the 35S::Pto-mediated general defense.
Collapse
Affiliation(s)
- Jianxiong Li
- Department of Plant Pathology, Kansas State University, Manhattan 66506-5502, USA
| | | | | | | |
Collapse
|
138
|
Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 2002; 16:1139-49. [PMID: 12000796 PMCID: PMC186251 DOI: 10.1101/gad.222702] [Citation(s) in RCA: 444] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Accepted: 03/05/2002] [Indexed: 11/24/2022]
Abstract
In Arabidopsis, WRKY factors comprise a large gene family of plant-specific transcriptional regulators controlling several types of plant stress responses. To understand the regulatory role of WRKY proteins during such processes, we identified targets of the senescence- and defense-associated WRKY6 factor. WRKY6 was found to suppress its own promoter activity as well as that of a closely related WRKY family member, indicating negative autoregulation. On the other hand, WRKY6 positively influenced the senescence- and pathogen defense-associated PR1 promoter activity, most likely involving NPR1 function. One novel identified target gene, SIRK, encodes a receptor-like protein kinase, whose developmental expression is strongly induced specifically during leaf senescence. The transcriptional activation of SIRK is dependent on WRKY6 function. Senescing leaves of wrky6 knockout mutants showed a drastic reduction, and green leaves of WRKY6 overexpression lines showed clearly elevated SIRK transcript levels. Furthermore, the SIRK gene promoter was specifically activated by WRKY6 in vivo, functioning very likely through direct W-box interactions.
Collapse
Affiliation(s)
- Silke Robatzek
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, 50829 Köln, Germany
| | | |
Collapse
|
139
|
Devadas SK, Enyedi A, Raina R. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:467-80. [PMID: 12028576 DOI: 10.1046/j.1365-313x.2002.01300.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.
Collapse
Affiliation(s)
- Sendil K Devadas
- Biology Department, Biotechnology Institute, and Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
140
|
Heil M, Bostock RM. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. ANNALS OF BOTANY 2002; 89:503-12. [PMID: 12099523 PMCID: PMC4233886 DOI: 10.1093/aob/mcf076] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Induced systemic resistance (ISR) of plants against pathogens is a widespread phenomenon that has been intensively investigated with respect to the underlying signalling pathways as well as to its potential use in plant protection. Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses. Changes in cell wall composition, de novo production of pathogenesis-related-proteins such as chitinases and glucanases, and synthesis of phytoalexins are associated with resistance, although further defensive compounds are likely to exist but remain to be identified. In this Botanical Briefing we focus on interactions between ISR and induced resistance against herbivores that is mediated by jasmonic acid as a central signalling molecule. While many studies report cross-resistance, others have found trade-offs, i.e. inhibition of one resistance pathway by the other. Here we propose a framework that explains many of the thus far contradictory results. We regard elicitation separately from signalling and from production, i.e. the synthesis of defensive compounds. Interactions on all three levels can act independently from each other.
Collapse
Affiliation(s)
- Martin Heil
- Centre d'Ecologie Fonctionelle et Ecolutive, CEFE-CNRS, UPR 9056, Montpellier, France.
| | | |
Collapse
|
141
|
Pilloff RK, Devadas SK, Enyedi A, Raina R. The Arabidopsis gain-of-function mutant dll1 spontaneously develops lesions mimicking cell death associated with disease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:61-70. [PMID: 11967093 DOI: 10.1046/j.1365-313x.2002.01265.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe the characterization of a novel gain-of-function Arabidopsis mutant, dll1 (disease-like lesions1), which spontaneously develops lesions mimicking bacterial speck disease and constitutively expresses biochemical and molecular markers associated with pathogen infection. Despite the constitutive expression of defense-related responses, dll1 is unable to suppress the growth of virulent pathogens. However, dll1 elicits normal hypersensitive response in response to avirulent pathogens, thus indicating that dll1 is not defective in the induction of normal resistance responses. The lesion+ leaves of dll1 support the growth of hrcC mutant of Pseudomonas syringae, which is defective in the transfer of virulence factors into the plant cells, and therefore non-pathogenic to wild-type Col-0 plants. This suggests that dll1 intrinsically expresses many of the cellular processes that are required for pathogen growth during disease. Epistasis analyses reveal that salicylic acid and NPR1 are required for lesion formation, while ethylene modulates lesion development in dll1, suggesting that significant overlap exist between the signalling pathways leading to resistance- and disease-associated cell death. Our results suggest that host cell death during compatible interactions, at least in part, is genetically controlled by the plant and DLL1 may positively regulate this process.
Collapse
Affiliation(s)
- Rachel K Pilloff
- Biology Department, Biotechnology Institute, and Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
142
|
Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jørgensen LB, Brown RE, Mundy J. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 2002; 16:490-502. [PMID: 11850411 PMCID: PMC155338 DOI: 10.1101/gad.218202] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe the lethal, recessive accelerated-cell-death11 Arabidopsis mutant (acd11). Cell death in acd11 exhibits characteristics of animal apoptosis monitored by flow cytometry, and acd11 constitutively expresses defense-related genes that accompany the hypersensitive response normally triggered by avirulent pathogens. Global transcriptional changes during programmed cell death (PCD) and defense activation in acd11 were monitored by cDNA microarray hybridization. The PCD and defense pathways activated in acd11 are salicylic acid (SA) dependent, but do not require intact jasmonic acid or ethylene signaling pathways. Light is required for PCD execution in acd11, as application of an SA-analog to SA-deficient acd11 induced death in the light, but not in the dark. Epistatic analysis showed that the SA-dependent pathways require two regulators of SA-mediated resistance responses, PAD4 and EDS1. Furthermore, acd11 PR1 gene expression, but not cell death, depends on the SA signal tranducer NPR1, suggesting that the npr1-1 mutation uncouples resistance responses and cell death in acd11. The acd11 phenotype is caused by deletion of the ACD11 gene encoding a protein homologous to a mammalian glycolipid transfer protein (GLTP). In contrast to GLTP, ACD11 accelerates the transfer of sphingosine, but not of glycosphingolipids, between membranes in vitro.
Collapse
Affiliation(s)
- Peter Brodersen
- Institute of Molecular Biology, Copenhagen University, 1353 Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. THE PLANT CELL 2002; 14 Suppl:S131-51. [PMID: 12045274 PMCID: PMC151252 DOI: 10.1105/tpc.001768] [Citation(s) in RCA: 983] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 03/18/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - Joseph R. Ecker
- To whom correspondence should be addressed. E-mail ; fax 858-558-6379
| |
Collapse
|
144
|
Abstract
Cell death is an important aspect of plant resistance to pathogen infection. Recent results have shed new light on the mechanisms that control this cell death following attempted pathogen infection.
Collapse
Affiliation(s)
- G Loake
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, EH9 3JH, Edinburgh, UK.
| |
Collapse
|
145
|
Beers EP, McDowell JM. Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:561-567. [PMID: 11641074 DOI: 10.1016/s1369-5266(00)00216-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent studies have expanded our view of the interactions between small molecule signals that regulate the hypersensitive response and other forms of cell suicide in plants. The mitochondrion has received increasing support as a mediator of at least some forms of programmed cell death in plants. In addition, new information provides a glimpse of how plant hormone signaling may be integrated with extensive autolysis, sensitivity to reactive oxygen intermediates and cell death.
Collapse
Affiliation(s)
- E P Beers
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
146
|
Vanacker H, Lu H, Rate DN, Greenberg JT. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:209-216. [PMID: 11722764 DOI: 10.1046/j.1365-313x.2001.01158.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) plays a key role in activating defenses and cell death during plant-pathogen interactions. In response to some pathogens, SA also limits the extent of cell death, indicating that it acts positively or negatively depending on the host-pathogen interaction. In addition, we previously showed that SA affects cell growth in the Arabidopsis defense-related mutants accelerated cell death 6-1 (acd6-1) and aberrant growth and death 2 (agd2). Using acd6-1, agd2 and two other defense-related mutants, lesion simulating disease 6 (lsd6), suppressor of SA-insensitivity (ssi1), we show here in detail that SA regulates cell growth by specifically affecting cell enlargement, endoreduplication and/or cell division. We find that SA can act either positively or negatively to regulate cell growth depending on the context in which signaling occurs. Additionally, Nonexpressor of PR 1 (NPR1), a key SA signaling protein important for regulating defenses and cell death, also acts to promote cell division and/or suppress endoreduplication during leaf development. We propose that SA interacts with multiple receptors or signaling pathways to control cellular alterations during normal development, pathogen attack and/or stress situations. We suggest that SA and NPR1 play broader roles in cell fate control than has previously been understood.
Collapse
Affiliation(s)
- H Vanacker
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
147
|
Rate DN, Greenberg JT. The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:203-11. [PMID: 11532166 DOI: 10.1046/j.0960-7412.2001.1075umedoc.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.
Collapse
Affiliation(s)
- D N Rate
- Chemistry and Biochemistry Graduate Program, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
148
|
Glazebrook J. Genes controlling expression of defense responses in Arabidopsis--2001 status. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:301-8. [PMID: 11418339 DOI: 10.1016/s1369-5266(00)00177-1] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the past two years, the focus of studies of the genes controlling expression of defense responses in Arabidopsis has shifted from the identification of mutants to gene isolation and the ordering of genes within branches of the signal transduction networks. It is now clear that gene-for-gene resistance can be mediated through at least three genetically distinguishable pathways. Additional genes affecting salicylic-acid-dependent signaling have been identified, and double-mutant analyses have begun to reveal the order in which they act. Genes required for jasmonic-acid-dependent signaling and for induced systemic resistance have also been identified.
Collapse
Affiliation(s)
- J Glazebrook
- Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
149
|
Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:509-22. [PMID: 11439137 DOI: 10.1046/j.1365-313x.2001.01050.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauliflower mosaic virus. Resistance to P. syringae strain PstDC3000 in coi1-20 plants is correlated with hyperactivation of PR-1 expression and accumulation of elevated levels of salicylic acid (SA) following infection, suggesting that the SA-mediated defense response pathway is sensitized in this mutant. Restriction of growth of PstDC3000 in coi1-20 leaves is partially dependent on NPR1 and fully dependent on SA, indicating that SA-mediated defenses are required for restriction of PstDC3000 growth in coi1-20 plants. Surprisingly, despite high levels of PstDC3000 growth in coi1-20 plants carrying the salicylate hydroxylase (nahG) transgene, these plants do not exhibit disease symptoms. Thus resistance to P. syringae in coi1-20 plants is conferred by two different mechanisms: (i) restriction of pathogen growth via activation of the SA-dependent defense pathway; and (ii) an SA-independent inability to develop disease symptoms. These findings are consistent with the hypotheses that the P. syringae phytotoxin coronatine acts to promote virulence by inhibiting host defense responses and by promoting lesion formation.
Collapse
Affiliation(s)
- A P Kloek
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Guttman DS, Greenberg JT. Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:145-55. [PMID: 11204777 DOI: 10.1094/mpmi.2001.14.2.145] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gram-negative phytopathogenic bacteria require a type III secretion apparatus for pathogenesis, presumably to deliver Avr effector proteins directly into plant cells. To extend previous studies of Avr effectors that employed plasmids encoding Avr proteins, we developed a system that permits the integration of any gene into the Pseudomonas syringae genome in single copy. With this system, we confirmed earlier findings showing that P. syringae pv. maculicola strain PsmES4326 expressing the AvrRpt2 effector induces a resistance response in plants with the cognate R gene, RPS2. Chromosomally located avrRpt2, however, provoked a stronger resistance response than that observed with plasmid-expressed AvrRpt2 in RPS2+ plants. Additionally, chromosomal expression of AvrRpt2 conferred a fitness advantage on P. syringae grown in rps2- plants, aiding in growth within leaves and escape to leaf surfaces that was difficult to detect with plasmid-borne avrRpt2. Finally, with the use of the genomic integration system, we found that a chimeric protein composed of the N terminus of the heterologous AvrRpml effector and the C-terminal effector region of AvrRpt2 was delivered to plant cells. Because the C terminus of AvrRpt2 cannot translocate into plant cells on its own, this indicates that the N-terminal region can direct secretion and translocation during an infection, which supports the view that Avr proteins have a modular design. This work establishes a readily manipulatable system to study type III effectors in a biologically realistic context.
Collapse
Affiliation(s)
- D S Guttman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 60637, USA.
| | | |
Collapse
|