101
|
Frenzel H, Bohlender J, Pinsker K, Wohlleben B, Tank J, Lechner SG, Schiska D, Jaijo T, Rüschendorf F, Saar K, Jordan J, Millán JM, Gross M, Lewin GR. A genetic basis for mechanosensory traits in humans. PLoS Biol 2012; 10:e1001318. [PMID: 22563300 PMCID: PMC3341339 DOI: 10.1371/journal.pbio.1001318] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Hearing and touch are genetically related, and people with excellent hearing are more likely to have a fine sense of touch and vice versa. In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A. In humans many genes have been identified that cause deafness when mutated, but no equivalent genes have been identified that are required for touch. Here, we asked whether genes that influence hearing can also influence touch. Using identical and non-identical human twins it was possible to show that touch performance is substantially influenced by genes. Furthermore, people who have excellent hearing are more likely to have a fine sense of touch and vice versa. Interestingly, people who suffer from congenital deafness have a higher chance of having poor touch performance. In a genetically defined form of human deafness, Usher syndrome type II, a single mutated gene was identified that also impairs touch. Touch and hearing are thus intricately intertwined and there may be other touch/hearing genes waiting to be discovered.
Collapse
Affiliation(s)
- Henning Frenzel
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Jörg Bohlender
- Department of Audiology and Phoniatrics, Charité Universitätsmedizin, Berlin, Germany
| | - Katrin Pinsker
- Department of Audiology and Phoniatrics, Charité Universitätsmedizin, Berlin, Germany
| | - Bärbel Wohlleben
- Department of Audiology and Phoniatrics, Charité Universitätsmedizin, Berlin, Germany
| | - Jens Tank
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Stefan G. Lechner
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Daniela Schiska
- Department of Audiology and Phoniatrics, Charité Universitätsmedizin, Berlin, Germany
| | - Teresa Jaijo
- Genetics Unit, Hospital Universitario La Fe, and CIBERER, Valencia, Spain
| | - Franz Rüschendorf
- Experimental Genetics of Cardiovascular Disease, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Kathrin Saar
- Experimental Genetics of Cardiovascular Disease, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - José M. Millán
- Genetics Unit, Hospital Universitario La Fe, and CIBERER, Valencia, Spain
| | - Manfred Gross
- Department of Audiology and Phoniatrics, Charité Universitätsmedizin, Berlin, Germany
| | - Gary R. Lewin
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- * E-mail:
| |
Collapse
|
102
|
Kersten FF, van Wijk E, Hetterschijt L, Bauβ K, Peters TA, Aslanyan MG, van der Zwaag B, Wolfrum U, Keunen JE, Roepman R, Kremer H. The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically. Cilia 2012; 1:2. [PMID: 23351521 PMCID: PMC3541543 DOI: 10.1186/2046-2530-1-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 04/25/2012] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED BACKGROUND Mutations in the gene for Usher syndrome 2A (USH2A) are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB) in the retina. RESULTS We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG)5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we found that Spag5 was widely expressed during murine embryonic development, with prominent signals in the eye, cochlea, brain, kidney and liver. SPAG5 expression in adult human tissues was detected by quantitative PCR, which identified expression in the retina, brain, intestine, kidney and testis. In the retina, Spag5, Ush2aisoB and NinlisoB were present at several subcellular structures of photoreceptor cells, and colocalized at the basal bodies. CONCLUSIONS Based on these results and on the suggested roles for USH proteins in vesicle transport and providing structural support to both the inner ear and the retina, we hypothesize that SPAG5, USH2AisoB and NINLisoB may function together in microtubule-based cytoplasmic trafficking of proteins that are essential for cilium formation, maintenance and/or function.
Collapse
Affiliation(s)
- Ferry Fj Kersten
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Armengot M, Salom D, Diaz-Llopis M, Millan JM, Milara J, Mata M, Cortijo J. Nasal ciliary beat frequency and beat pattern in retinal ciliopathies. Invest Ophthalmol Vis Sci 2012; 53:2076-9. [PMID: 22427547 DOI: 10.1167/iovs.11-8666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The cilium in photoreceptors appears ultrastructurally very similar to the nasal ciliated epithelium. The purpose of this study was to evaluate the nasal ciliary beat frequency and beat pattern in patients with retinitis pigmentosa (RP) and Usher syndrome type II and compare it with that of healthy control subjects. METHODS A prospective, comparative control study. Fresh samples of nasal mucosa were obtained from 13 patients with typical forms of RP, and from 4 patients with Usher syndrome type II. The nasal ciliary beat frequency (CBF) and beat pattern were determined using high-resolution digital high-speed video imaging (DHSV). The control group included 32 fresh nasal mucosa samples from 32 healthy volunteers without any other confounding diseases. RESULTS The nasal CBF was lower in patients with Usher syndrome than in control subjects (Mann-Whitney U test, P = 0.01). The nasal CBF was 9.28 ± 0.4 (mean ± SD) Hz in patients with Usher syndrome and 10.82 ± 1.39 Hz in patients of the control group. No significant difference was observed in the nasal CBF between the RP (10.59 ± 1.54 Hz) and control group (Mann-Whitney U test, P = 0.64). Normal ciliary beat pattern was observed in all the patients and healthy volunteers. CONCLUSIONS The nasal CBF is diminished in patients with Usher syndrome type II, whereas it remains normal in simplex RP patients. These results add evidence to the fact that Usher syndrome could be a primary ciliary disorder.
Collapse
Affiliation(s)
- Miguel Armengot
- Rhinology Unit, General and University Hospital, Medical School, Valencia University, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
104
|
The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis Neurosci 2012; 28:453-71. [PMID: 22192503 DOI: 10.1017/s0952523811000356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rod and cone photoreceptors possess ribbon synapses that assist in the transmission of graded light responses to second-order bipolar and horizontal cells of the vertebrate retina. Proper functioning of the synapse requires the juxtaposition of presynaptic release sites immediately adjacent to postsynaptic receptors. In this review, we focus on the synaptic, cytoskeletal, and extracellular matrix proteins that help to organize photoreceptor ribbon synapses in the outer plexiform layer. We examine the proteins that foster the clustering of release proteins, calcium channels, and synaptic vesicles in the presynaptic terminals of photoreceptors adjacent to their postsynaptic contacts. Although many proteins interact with one another in the presynaptic terminal and synaptic cleft, these protein-protein interactions do not create a static and immutable structure. Instead, photoreceptor ribbon synapses are remarkably dynamic, exhibiting structural changes on both rapid and slow time scales.
Collapse
|
105
|
Wright RN, Hong DH, Perkins B. RpgrORF15 connects to the usher protein network through direct interactions with multiple whirlin isoforms. Invest Ophthalmol Vis Sci 2012; 53:1519-29. [PMID: 22323458 DOI: 10.1167/iovs.11-8845] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are a frequent cause of X-linked retinitis pigmentosa. The RPGR transcript undergoes complex alternative splicing to express both constitutive (Rpgr(ex1-19)) and Rpgr(ORF15) variants. Because functional studies of Rpgr suggest a role in intracellular protein trafficking through the connecting cilia, the goal of this study was to identify potential binding partners for Rpgr(ORF15) and to identify the domains on whirlin necessary for Rpgr binding. METHODS The C-terminus of mouse Rpgr(ORF15) was used as bait in a yeast two-hybrid system. Whirlin expression was analyzed using RT-PCR and Western blot analysis. Protein-protein interactions were confirmed using in vitro binding assays and coimmunoprecipitation. Subcellular colocalization was analyzed using immunohistochemistry on retinal cryosections. RESULTS Yeast two-hybrid analysis identified whirlin, a PDZ-scaffold protein, as a putative binding partner for Rpgr(ORF15). The RPGR(ORF15)-whirlin interaction was confirmed using in vitro binding assays and coimmunoprecipitation from retinal tissue, and both proteins were shown to colocalize in the photoreceptor connecting cilia in vivo. Results from RT-PCR, Western blot analysis, and immunocytochemistry demonstrated that whirlin expressed multiple isoforms in photoreceptors with variable subcellular localization. CONCLUSIONS Whirlin expression has been reported in photoreceptors and cochlear hair cells, and mutations in whirlin cause Usher syndrome (USH2D) and nonsyndromic congenital deafness (DFNB31). Because mutations in the 5' end of whirlin are associated with the syndromic phenotype associated with USH2D, the identification of novel N-terminal isoforms in the retina and a novel RPGR(ORF15)-whirlin interaction provide a potential mechanism for the retinal phenotype observed in USH2D.
Collapse
Affiliation(s)
- Rachel N Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
106
|
Zallocchi M, Meehan DT, Delimont D, Rutledge J, Gratton MA, Flannery J, Cosgrove D. Role for a novel Usher protein complex in hair cell synaptic maturation. PLoS One 2012; 7:e30573. [PMID: 22363448 PMCID: PMC3281840 DOI: 10.1371/journal.pone.0030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/22/2011] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.
Collapse
Affiliation(s)
- Marisa Zallocchi
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Daniel T. Meehan
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Duane Delimont
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Joseph Rutledge
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - Michael Anne Gratton
- Otolaryngology-Head, Neck Surgery, St Louis University, St Louis, Missouri, United States of America
| | - John Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, Nebraska, United States of America
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
107
|
Yang J, Wang L, Song H, Sokolov M. Current understanding of usher syndrome type II. Front Biosci (Landmark Ed) 2012; 17:1165-83. [PMID: 22201796 DOI: 10.2741/3979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored.
Collapse
Affiliation(s)
- Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | | | | | | |
Collapse
|
108
|
Chatterjee S, Lufkin T. The sound of silence: mouse models for hearing loss. GENETICS RESEARCH INTERNATIONAL 2011; 2011:416450. [PMID: 22567353 PMCID: PMC3335620 DOI: 10.4061/2011/416450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/10/2011] [Indexed: 01/27/2023]
Abstract
Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI) in humans.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672
| | | |
Collapse
|
109
|
Maravillas-Montero JL, Santos-Argumedo L. The myosin family: unconventional roles of actin-dependent molecular motors in immune cells. J Leukoc Biol 2011; 91:35-46. [DOI: 10.1189/jlb.0711335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
110
|
Peng YW, Zallocchi M, Wang WM, Delimont D, Cosgrove D. Moderate light-induced degeneration of rod photoreceptors with delayed transducin translocation in shaker1 mice. Invest Ophthalmol Vis Sci 2011; 52:6421-7. [PMID: 21447681 DOI: 10.1167/iovs.10-6557] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. METHODS. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. RESULTS. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. CONCLUSIONS. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light.
Collapse
Affiliation(s)
- You-Wei Peng
- National Usher Syndrome Center, Boys Town National Research Hospital, Omaha, Nebraska, USA.
| | | | | | | | | |
Collapse
|
111
|
Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1883-92. [PMID: 21767579 DOI: 10.1016/j.bbamcr.2011.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 01/21/2023]
Abstract
The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) contributes to the periciliary protein network in retinal photoreceptor cells. This study aimed to further elucidate the role of SANS by identifying novel interaction partners. In yeast two-hybrid screens of retinal cDNA libraries we identified 30 novel putative interacting proteins binding to the central domain of SANS (CENT). We confirmed the direct binding of the phosphodiesterase 4D interacting protein (PDE4DIP), a Golgi associated protein synonymously named myomegalin, to the CENT domain of SANS by independent assays. Correlative immunohistochemical and electron microscopic analyses showed a co-localization of SANS and myomegalin in mammalian photoreceptor cells in close association with microtubules. Based on the present results we propose a role of the SANS-myomegalin complex in microtubule-dependent inner segment cargo transport towards the ciliary base of photoreceptor cells.
Collapse
|
112
|
Akoury E, El Zir E, Mansour A, Mégarbané A, Majewski J, Slim R. A novel 5-bp deletion in Clarin 1 in a family with Usher syndrome. Ophthalmic Genet 2011; 32:245-9. [PMID: 21675857 DOI: 10.3109/13816810.2011.587083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To identify the genetic defect in a Lebanese family with two sibs diagnosed with Usher Syndrome. MATERIALS AND METHODS Exome capture and sequencing were performed on DNA from one affected member using Agilent in solution bead capture, followed by Illumina sequencing. RESULTS This analysis revealed the presence of a novel homozygous 5-bp deletion, in Clarin 1 (CLRN1), a known gene responsible for Usher syndrome type III. The deletion is inherited from both parents and segregates with the disease phenotype in the family. The 5-bp deletion, c.301_305delGTCAT, p.Val101SerfsX27, is predicted to result in a frameshift and protein truncation after 27 amino acids. Sequencing all the coding regions of the CLRN1 gene in the proband did not reveal any other mutation or variant. CONCLUSION Here we describe a novel deletion in CLRN1. Our data support previously reported intra familial variability in the clinical features of Usher syndrome type I and III.
Collapse
Affiliation(s)
- Elie Akoury
- Department of Human Genetics, McGill University Health Centre, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
113
|
Turan-Vural E, Torun-Acar B, Tükenmez N, Sevim MŞ, Buttanri B, Acar S. Usher syndrome associated with Fuchs' heterochromic uveitis: a case report. Clin Ophthalmol 2011; 5:557-9. [PMID: 21607024 PMCID: PMC3096617 DOI: 10.2147/opth.s19525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 12/18/2022] Open
Abstract
We report a case of Usher syndrome in association with unilateral Fuchs' heterochromic uveitis.
Collapse
Affiliation(s)
- Ece Turan-Vural
- Ophthalmology Clinic, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
114
|
Castiglioni AJ, Remis NN, Flores EN, García-Añoveros J. Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 2011; 519:1095-1114. [PMID: 21344404 PMCID: PMC4105223 DOI: 10.1002/cne.22554] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TRPML3 is a member of the mucolipin branch of the transient receptor potential cation channel family. A dominant missense mutation in Trpml3 (also known as Mcoln3) causes deafness and vestibular impairment characterized by stereocilia disorganization, hair cell loss, and endocochlear potential reduction. Both marginal cells of the stria vascularis and hair cells express Trpml3 mRNA. Here we used in situ hybridization, quantitative RT-qPCR, and immunohistochemistry with several antisera raised against TRPML3 to determine the expression and subcellular distribution of TRPML3 in the inner ear as well as in other sensory organs. We also use Trpml3 knockout tissues to distinguish TRPML3-specific from nonspecific immunoreactivities. We find that TRPML3 localizes to vesicles of hair cells and strial marginal cells but not to stereociliary ankle links or pillar cells, which nonspecifically react with two antisera raised against TRPML3. Upon cochlear maturation, TRPML3 protein is redistributed to perinuclear vesicles of strial marginal cells and is augmented in inner hair cells vs. outer hair cells. Mouse somatosensory neurons, retinal neurons, and taste receptor cells do not appear to express physiologically relevant levels of TRPML3. Finally, we found that vomeronasal and olfactory sensory receptor cells do express TRPML3 mRNA and protein, which localizes to vesicles in their somas and dendrites as well as at apical dendritic knobs.
Collapse
Affiliation(s)
- Andrew J. Castiglioni
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Natalie N. Remis
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Emma N. Flores
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Chicago, Illinois 60611
| | - Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Chicago, Illinois 60611
- Departments of Neurology and Physiology, and Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
115
|
A mutation in Myo15 leads to Usher-like symptoms in LEW/Ztm-ci2 rats. PLoS One 2011; 6:e15669. [PMID: 21479269 PMCID: PMC3066203 DOI: 10.1371/journal.pone.0015669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/22/2010] [Indexed: 02/02/2023] Open
Abstract
The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction.
Collapse
|
116
|
Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med 2011; 10:802-23. [PMID: 21091424 DOI: 10.2174/156652410793937813] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/13/2010] [Indexed: 12/15/2022]
Abstract
Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
Collapse
Affiliation(s)
- J R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
117
|
Jaijo T, Aller E, Aparisi MJ, García-García G, Hernan I, Gamundi MJ, Nájera C, Carballo M, Millán JM. Functional analysis of splicing mutations in MYO7A and USH2A genes. Clin Genet 2011; 79:282-8. [DOI: 10.1111/j.1399-0004.2010.01454.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
118
|
Hurle B, Marques-Bonet T, Antonacci F, Hughes I, Ryan JF, Eichler EE, Ornitz DM, Green ED. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses. BMC Evol Biol 2011; 11:23. [PMID: 21261979 PMCID: PMC3038909 DOI: 10.1186/1471-2148-11-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways.
Collapse
Affiliation(s)
- Belen Hurle
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Haithcock J, Billington N, Choi K, Fordham J, Sellers JR, Stafford WF, White H, Forgacs E. The kinetic mechanism of mouse myosin VIIA. J Biol Chem 2011; 286:8819-28. [PMID: 21212272 DOI: 10.1074/jbc.m110.163592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VIIa is crucial in hearing and visual processes. We examined the kinetic and association properties of the baculovirus expressed, truncated mouse myosin VIIa construct containing the head, all 5IQ motifs and the putative coiled coil domain (myosin VIIa-5IQ). The construct appears to be monomeric as determined by analytical ultracentrifugation experiments, and only single headed molecules were detected by negative stain electron microscopy. The relatively high basal steady-state rate of 0.18 s(-1) is activated by actin only by ∼3.5-fold resulting in a V(max) of 0.7 s(-1) and a K(ATPase) of 11.5 μM. There is no single rate-limiting step of the ATP hydrolysis cycle. The ATP hydrolysis step (M·T M·D·P) is slow (12 s(-1)) and the equilibrium constant (K(H)) of 1 suggests significant reversal of hydrolysis. In the presence of actin ADP dissociates with a rate constant of 1.2 s(-1). Phosphate dissociation is relatively fast (>12 s(-1)), but the maximal rate could not be experimentally obtained at actin concentrations ≤ 50 μM because of the weak binding of the myosin VIIa-ADP-P(i) complex to actin. At higher actin concentrations the rate of attached hydrolysis (0.4 s(-1)) becomes significant and partially rate-limiting. Our findings suggest that the myosin VIIa is a "slow", monomeric molecular motor with a duty ratio of 0.6.
Collapse
Affiliation(s)
- Jessica Haithcock
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Millán JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C. An update on the genetics of usher syndrome. J Ophthalmol 2010; 2011:417217. [PMID: 21234346 PMCID: PMC3017948 DOI: 10.1155/2011/417217] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, retinitis pigmentosa (RP), and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous and is the most common cause underlying deafness and blindness of genetic origin. Clinically, USH is divided into three types. Usher type I (USH1) is the most severe form and is characterized by severe to profound congenital deafness, vestibular areflexia, and prepubertal onset of progressive RP. Type II (USH2) displays moderate to severe hearing loss, absence of vestibular dysfunction, and later onset of retinal degeneration. Type III (USH3) shows progressive postlingual hearing loss, variable onset of RP, and variable vestibular response. To date, five USH1 genes have been identified: MYO7A (USH1B), CDH23 (USH1D), PCDH15 (USH1F), USH1C(USH1C), and USH1G(USH1G). Three genes are involved in USH2, namely, USH2A (USH2A), GPR98 (USH2C), and DFNB31 (USH2D). USH3 is rare except in certain populations, and the gene responsible for this type is USH3A.
Collapse
Affiliation(s)
- José M. Millán
- Unidad de Genética, Instituto de Investigación Sanitaria-La Fe, 46009 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Elena Aller
- Unidad de Genética, Instituto de Investigación Sanitaria-La Fe, 46009 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Jaijo
- Unidad de Genética, Instituto de Investigación Sanitaria-La Fe, 46009 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Fiona Blanco-Kelly
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Departamento de Genética Médica, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Avenida Reyes Católicos, 2, 28040 Madrid, Spain
| | - Ascensión Gimenez-Pardo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Departamento de Genética Médica, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Avenida Reyes Católicos, 2, 28040 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Departamento de Genética Médica, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Avenida Reyes Católicos, 2, 28040 Madrid, Spain
| |
Collapse
|
121
|
Malm E, Ponjavic V, Möller C, Kimberling WJ, Andréasson S. Phenotypes in defined genotypes including siblings with Usher syndrome. Ophthalmic Genet 2010; 32:65-74. [PMID: 21174530 DOI: 10.3109/13816810.2010.536064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To characterize visual function in defined genotypes including siblings with Usher syndrome. METHODS Thirteen patients with phenotypically different subtypes of Usher syndrome, including 3 families with affected siblings, were selected. Genetic analysis and ophthalmological examinations including visual fields, full-field electroretinography (ERG), multifocal electroretinography (mf ERG), and optical coherence tomography (OCT) were assessed. The patients' degree of visual handicap was evaluated by a questionnaire (ADL). RESULTS Twelve of thirteen patients were genotyped as Usher 1B, 1D, 1F, 2A, 2C or 3A. In 12 of 13 patients examined with ERG the 30 Hz flickering light response revealed remaining cone function. In 3 of the patients with Usher type 1 mf ERG demonstrated a specific pattern, with a sharp distinction between the area with reduced function and the central area with remaining macular function and normal peak time. OCT demonstrated loss of foveal depression with distortion of the foveal architecture in the macula in all patients. The foveal thickness ranged from 159 to 384 µm and was not correlated to retinal function. Three siblings shared the same mutation for Usher 2C but in contrast to previous reports regarding this genotype, 1 of them diverged in phenotype with substantially normal visual fields, almost normal OCT and mf ERG findings, and only moderately reduced rod and cone function according to ERG. CONCLUSIONS Evaluation of visual function comprising both the severity of the rod cone degeneration and the function in the macular region confirm phenotypical heterogeneity within siblings and between different genotypes of Usher syndrome.
Collapse
Affiliation(s)
- Eva Malm
- Department of Ophthalmology, Skåne University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
122
|
Chakarova CF, Khanna H, Shah AZ, Patil SB, Sedmak T, Murga-Zamalloa CA, Papaioannou MG, Nagel-Wolfrum K, Lopez I, Munro P, Cheetham M, Koenekoop RK, Rios RM, Matter K, Wolfrum U, Swaroop A, Bhattacharya SS. TOPORS, implicated in retinal degeneration, is a cilia-centrosomal protein. Hum Mol Genet 2010; 20:975-87. [PMID: 21159800 DOI: 10.1093/hmg/ddq543] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We recently reported that mutations in the widely expressed nuclear protein TOPORS (topoisomerase I-binding arginine/serine rich) are associated with autosomal dominant retinal degeneration. However, the precise localization and a functional role of TOPORS in the retina remain unknown. Here, we demonstrate that TOPORS is a novel component of the photoreceptor sensory cilium, which is a modified primary cilium involved with polarized trafficking of proteins. In photoreceptors, TOPORS localizes primarily to the basal bodies of connecting cilium and in the centrosomes of cultured cells. Morpholino-mediated silencing of topors in zebrafish embryos demonstrates in another species a comparable retinal problem as seen in humans, resulting in defective retinal development and failure to form outer segments. These defects can be rescued by mRNA encoding human TOPORS. Taken together, our data suggest that TOPORS may play a key role in regulating primary cilia-dependent photoreceptor development and function. Additionally, it is well known that mutations in other ciliary proteins cause retinal degeneration, which may explain why mutations in TOPORS result in the same phenotype.
Collapse
|
123
|
Abstract
Humans possess the remarkable ability to perceive color, shape, and motion, and to differentiate between light intensities varied by over nine orders of magnitude. Phototransduction—the process in which absorbed photons are converted into electrical responses—is the first stage of visual processing, and occurs in the outer segment, the light-sensing organelle of the photoreceptor cell. Studies of genes linked to human inherited blindness have been crucial to understanding the biogenesis of the outer segment and membrane-trafficking of photoreceptors.
Collapse
Affiliation(s)
- Ching-Hwa Sung
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA.
| | | |
Collapse
|
124
|
Abstract
The 6-billion human population provides a vast reservoir of mutations, which, in addition to the opportunity of detecting very subtle defects, including specific cognitive dysfunctions as well as late appearing disorders, offers a unique background in which to investigate the roles of cell-cell adhesion proteins. Here we focus on inherited human disorders involving members of the cadherin superfamily. Most of the advances concern monogenic disorders. Yet, with the development of single nucleotide polymorphism (SNP) association studies, cadherin genes are emerging as susceptibility genes in multifactorial disorders. Various skin and heart disorders revealed the critical role played by desmosomal cadherins in epidermis, hairs, and myocardium, which experience high mechanical stress. Of particular interest in that respect is the study of Usher syndrome type 1 (USH1), a hereditary syndromic form of deafness. Studies of USH1 brought to light the crucial role of transient fibrous links formed by cadherin 23 and protocadherin 15 in the cohesion of the developing hair bundle, the mechanoreceptive structure of the auditory sensory cells, as well as the involvement of these cadherins in the formation of the tip-link, a key component of the mechano-electrical transduction machinery. Finally, in line with the well-established role of cadherins in synaptic formation, maintenance, strength, and plasticity, a growing number of cadherin family members, especially protocadherins, have been found to be involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziz El-Amraoui
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 Rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
125
|
Rao NP, Danivas V, Venkatasubramanian G, Behere RV, Gangadhar BN. Comorbid bipolar disorder and Usher syndrome. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2010; 12. [PMID: 20694130 DOI: 10.4088/pcc.09l00792yel] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
126
|
Abstract
Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
127
|
Abstract
Sitting in the rainforest in Costa Rica, you can hear rain, rushing water, howling monkeys, birds and crickets. All are in abundance and although they are tantalizing to all your senses, your sense of hearing picks up what you cannot see with your eyes or feel with your hands.
Collapse
Affiliation(s)
- Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
128
|
Ebermann I, Phillips JB, Liebau MC, Koenekoop RK, Schermer B, Lopez I, Schäfer E, Roux AF, Dafinger C, Bernd A, Zrenner E, Claustres M, Blanco B, Nürnberg G, Nürnberg P, Ruland R, Westerfield M, Benzing T, Bolz HJ. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120:1812-23. [PMID: 20440071 DOI: 10.1172/jci39715] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 02/24/2010] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
Collapse
Affiliation(s)
- Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Zallocchi M, Sisson JH, Cosgrove D. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells. Biochemistry 2010; 49:1236-47. [PMID: 20058854 DOI: 10.1021/bi9020617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.
Collapse
Affiliation(s)
- Marisa Zallocchi
- Usher Syndrome Center, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | | | | |
Collapse
|
130
|
Abstract
Usher syndrome (USH) comprises a group of autosomal recessively inherited disorders characterized by a dual sensory impairment of the audiovestibular and visual systems. Three major clinical subtypes (USH type I, USH type II and USH type III) are distinguished on the basis of the severity of the hearing loss, the presence or absence of vestibular dysfunction and the age of onset of retinitis pigmentosa (RP). Since the cloning of the first USH gene (MYO7A) in 1995, there have been remarkable advances in elucidating the genetic basis for this disorder, as evidence for 11 distinct loci have been obtained and genes for 9 of them have been identified. The USH genes encode proteins of different classes and families, including motor proteins, scaffold proteins, cell adhesion molecules and transmembrane receptor proteins. Extensive information has emerged from mouse models and molecular studies regarding pathogenesis of this disorder and the wide phenotypic variation in both audiovestibular and/or visual function. A unifying hypothesis is that the USH proteins are integrated into a protein network that regulates hair bundle morphogenesis in the inner ear. This review addresses genetics and pathological mechanisms of USH. Understanding the molecular basis of phenotypic variation and pathogenesis of USH is important toward discovery of new molecular targets for diagnosis, prevention and treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
131
|
Liu X, Tang Z, Li C, Yang K, Gan G, Zhang Z, Liu J, Jiang F, Wang Q, Liu M. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family. Mol Vis 2010; 16:454-61. [PMID: 20309401 PMCID: PMC2842093 DOI: 10.1167/3.9.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/09/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). METHODS Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. RESULTS The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. CONCLUSIONS This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.
Collapse
Affiliation(s)
- Xiaowen Liu
- The Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Tian C, Liu XZ, Han F, Yu H, Longo-Guess C, Yang B, Lu C, Yan D, Zheng QY. Ush1c gene expression levels in the ear and eye suggest different roles for Ush1c in neurosensory organs in a new Ush1c knockout mouse. Brain Res 2010; 1328:57-70. [PMID: 20211154 DOI: 10.1016/j.brainres.2010.02.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/15/2010] [Accepted: 02/26/2010] [Indexed: 02/03/2023]
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness in humans. Molecular characterization revealed that the USH gene products form a macromolecular protein network in hair cells of the inner ear and in photoreceptor cells of the retina via binding to PDZ domains in the scaffold protein harmonin encoded by the Ush1c gene in mice and humans. Although several mouse mutants for the Ush1c gene have been described, we generated a targeted null mutation Ush1c mouse model in which the first four exons of the Ush1c gene were replaced with a reporter gene. Here, we assessed the expression pattern of the reporter gene under control of Ush1c regulatory elements and characterized the phenotype of mice defective for Ush1c. These Ush1 knockout mice are deaf but do not recapitulate vision defects before 10 months of age. Our data show LacZ expression in multiple layers of the retina but in neither outer nor inner segments of the photoreceptor layers in mice bearing the knockout construct at 1-5 months of age. The fact that Ush1c expression is much higher in the ear than in the eye suggests a different role for Ush1c in ear function than in the eye and may explain why Ush1c mutant mice do not recapitulate vision defects.
Collapse
Affiliation(s)
- Cong Tian
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc Natl Acad Sci U S A 2010; 107:4040-5. [PMID: 20142502 DOI: 10.1073/pnas.0911385107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hereditary hearing-vision loss disease, Usher syndrome I (USH1), is caused by defects in several proteins that can interact with each other in vitro. Defects in USH1 proteins are thought to be responsible for the developmental and functional impairments of sensory cells in the retina and inner ear. Harmonin/USH1C and Sans/USH1G are two of the USH1 proteins that interact with each other. Harmonin also binds to other USH1 proteins such as cadherin 23 (CDH23) and protocadherin 15 (PCDH15). However, the molecular basis governing the harmonin and Sans interaction is largely unknown. Here, we report an unexpected assembly mode between harmonin and Sans. We demonstrate that the N-terminal domain and the first PDZ domain of harmonin are tethered by a small-domain C-terminal to PDZ1 to form a structural and functional supramodule responsible for binding to Sans. We discover that the SAM domain of Sans, specifically, binds to the PDZ domain of harmonin, revealing previously unknown interaction modes for both PDZ and SAM domains. We further show that the synergistic PDZ1/SAM and PDZ1/carboxyl PDZ binding-motif interactions, between harmonin and Sans, lock the two scaffold proteins into a highly stable complex. Mutations in harmonin and Sans found in USH1 patients are shown to destabilize the complex formation of the two proteins.
Collapse
|
134
|
Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neurosci Biobehav Rev 2010; 34:31-49. [DOI: 10.1016/j.neubiorev.2009.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 12/16/2022]
|
135
|
Sakaguchi H, Tokita J, Müller U, Kachar B. Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 2009; 17:388-93. [PMID: 19633555 DOI: 10.1097/moo.0b013e3283303472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Tip links are thought to be an essential element of the mechanoelectrical transduction (MET) apparatus in sensory hair cells of the inner ear. The molecules that form tip links have recently been identified, and the analysis of their properties has not only changed our view of MET but also suggests that tip-link defects can cause hearing loss. RECENT FINDINGS Structural, histological and biochemical studies show that the extracellular domains of two deafness-associated cadherins, cadherin 23 (CDH23) and protocadherin 15 (PCDH15), interact in trans to form the upper and lower part of each tip link, respectively. High-speed Ca imaging suggests that MET channels are localized exclusively at the lower end of each tip link. Biochemical and genetic studies provide evidence that defects in tip links cause hearing impairment in humans. SUMMARY The identification of the proteins that form tip links have shed new light on the molecular basis of MET and the mechanisms causing hereditary deafness, noise-induced hearing loss and presbycusis.
Collapse
Affiliation(s)
- Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
136
|
Expression of classic cadherins and delta-protocadherins in the developing ferret retina. BMC Neurosci 2009; 10:153. [PMID: 20028529 PMCID: PMC2811116 DOI: 10.1186/1471-2202-10-153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cadherins are a superfamily of calcium-dependent adhesion molecules that play multiple roles in morphogenesis, including proliferation, migration, differentiation and cell-cell recognition. The subgroups of classic cadherins and delta-protocadherins are involved in processes of neural development, such as neurite outgrowth, pathfinding, target recognition, synaptogenesis as well as synaptic plasticity. We mapped the expression of 7 classic cadherins (CDH4, CDH6, CDH7, CDH8, CDH11, CDH14, CDH20) and 8 delta-protocadherins (PCDH1, PCDH7, PCDH8, PCDH9, PCDH10, PCDH11, PCDH17, PCDH18) at representative stages of retinal development and in the mature retina of the ferret by in situ hybridization. RESULTS All cadherins investigated by us are expressed differentially by restricted populations of retinal cells during specific periods of the ferret retinogenesis. For example, during embryonic development, some cadherins are exclusively expressed in the outer, proliferative zone of the neuroblast layer, whereas other cadherins mark the prospective ganglion cell layer or cells in the prospective inner nuclear layer. These expression patterns anticipate histogenetic changes that become visible in Nissl or nuclear stainings at later stages. In parallel to the ongoing development of retinal circuits, cadherin expression becomes restricted to specific subpopulations of retinal cell types, especially of ganglion cells, which express most of the investigated cadherins until adulthood. A comparison to previous results in chicken and mouse reveals overall conserved expression patterns of some cadherins but also species differences. CONCLUSIONS The spatiotemporally restricted expression patterns of 7 classic cadherins and 8 delta-protocadherins indicate that cadherins provide a combinatorial adhesive code that specifies developing retinal cell populations and intraretinal as well as retinofugal neural circuits in the developing ferret retina.
Collapse
|
137
|
Abstract
Hearing loss (HL), or deafness in its most severe form, affects an estimated 28 and 22.5 million Americans and Europeans, respectively. The numbers are higher in regions such as India and the Middle East, where consanguinity contributes to larger numbers of recessively inherited hearing impairment (HI). As a result of work-related difficulties, educational and developmental delays, and social stigmas and exclusion, the economic impact of HL is very high. At the other end of the spectrum, a rich deaf culture, particularly for individuals whose parents and even grandparents were deaf, is a social movement that believes that deafness is a difference in human experience rather than a disability. This review attempts to cover the remarkable progress made in the field of the genetics of HL over the past 20 years. Mutations in a significant number of genes have been discovered over the years that contribute to clinically heterogeneous forms of HL, enabling genetic counseling and prediction of progression of HL. Cell biological assays, protein localization in the inner ear, and detailed analysis of spontaneous and transgenic mouse models have provided an incredibly rich resource for elucidating mechanisms of hereditary hearing loss (HHL). This knowledge is providing answers for the families with HL, who contribute a great deal to the research being performed worldwide.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
138
|
Nakanishi H, Ohtsubo M, Iwasaki S, Hotta Y, Mizuta K, Mineta H, Minoshima S. Identification of 11 novel mutations in USH2A among Japanese patients with Usher syndrome type 2. Clin Genet 2009; 76:383-91. [PMID: 19737284 DOI: 10.1111/j.1399-0004.2009.01257.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A, which accounts for 74-90% of USH2 cases. This is the first study reporting the results of scanning for USH2A mutations in Japanese patients with USH2. In 8 of 10 unrelated patients, we identified 14 different mutations. Of these mutations, 11 were novel. Although the mutation spectrum that we identified differed from that for Caucasians, the incidence of mutations in USH2A was 80% for all patients tested, which is consistent with previous findings. Further, c.8559-2A>G was identified in four patients and accounted for 26.7% of mutated alleles; it is thus a frequent mutation in Japanese patients. Hence, mutation screening for c.8559-2A>G in USH2A may prove very effective for the early diagnosis of USH2.
Collapse
Affiliation(s)
- H Nakanishi
- Department of Otolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
Usher syndrome denotes a clinically and genetically heterogeneous combination of retinitis pigmentosa and sensorineural deafness. The division into subtypes I, II, and III is based on the degree of hearing loss: Type I is characterized by deafness from birth together with ataxia and retarded motor development, type II by a stationary deafness of a moderate degree, and type III by a progressive deafness with adult onset. In Germany, Usher syndrome currently bears particular relevance because in January 2009 a new compulsory screening of auditory function in newborn infants was introduced. Consequently, it can be expected that a higher number of patients with Usher syndrome will be identified in early childhood and referred to ophthalmologists. The focus of this work is to introduce the typical clinical picture of Usher syndrome, summarize diagnostic options, and give an overview of therapeutic strategies.
Collapse
|
140
|
Geller SF, Guerin KI, Visel M, Pham A, Lee ES, Dror AA, Avraham KB, Hayashi T, Ray CA, Reh TA, Bermingham-McDonogh O, Triffo WJ, Bao S, Isosomppi J, Västinsalo H, Sankila EM, Flannery JG. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development. PLoS Genet 2009; 5:e1000607. [PMID: 19680541 PMCID: PMC2719914 DOI: 10.1371/journal.pgen.1000607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/17/2009] [Indexed: 02/02/2023] Open
Abstract
Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.
Collapse
Affiliation(s)
- Scott F. Geller
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail: (SFG); (JGF)
| | - Karen I. Guerin
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- Vision Science, University of California, Berkeley, California, United States of America
| | - Meike Visel
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Aaron Pham
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Edwin S. Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Amiel A. Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Toshinori Hayashi
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Catherine A. Ray
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas A. Reh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - William J. Triffo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Shaowen Bao
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Juha Isosomppi
- Folkhälsan Institute of Genetics, Biomedicum Helsinki and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Hanna Västinsalo
- Folkhälsan Institute of Genetics, Biomedicum Helsinki and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Eeva-Marja Sankila
- Folkhälsan Institute of Genetics, Biomedicum Helsinki and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Helsinki University Eye Hospital, Helsinki, Finland
| | - John G. Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- Vision Science, University of California, Berkeley, California, United States of America
- * E-mail: (SFG); (JGF)
| |
Collapse
|
141
|
|
142
|
Zallocchi M, Meehan DT, Delimont D, Askew C, Garige S, Gratton MA, Rothermund-Franklin CA, Cosgrove D. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors. Hear Res 2009; 255:109-20. [PMID: 19539019 DOI: 10.1016/j.heares.2009.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/19/2009] [Accepted: 06/10/2009] [Indexed: 01/13/2023]
Abstract
The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The subcellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia.
Collapse
|
143
|
|
144
|
Morín M, Bryan KE, Mayo-Merino F, Goodyear R, Mencía A, Modamio-Høybjør S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA. In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 2009; 18:3075-89. [PMID: 19477959 DOI: 10.1093/hmg/ddp249] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the functional assessment of two novel deafness-associated gamma-actin mutants, K118N and E241K, in a spectrum of different situations with increasing biological complexity by combining biochemical and cell biological analysis in yeast and mammalian cells. Our in vivo experiments showed that while the K118N had a very mild effect on yeast behaviour, the phenotype caused by the E241K mutation was very severe and characterized by a highly compromised ability to grow on glycerol as a carbon source, an aberrant multi-vacuolar pattern and the deposition of thick F-actin bundles randomly in the cell. The latter feature is consistent with the highly unusual spontaneous tendency of the E241K mutant to form bundles in vitro, although this propensity to bundle was neutralized by tropomyosin and the E241K filament bundles were hypersensitive to severing in the presence of cofilin. In transiently transfected NIH3T3 cells both mutant actins were normally incorporated into cytoskeleton structures, although cytoplasmic aggregates were also observed indicating an element of abnormality caused by the mutations in vivo. Interestingly, gene-gun mediated expression of these mutants in cochlear hair cells results in no gross alteration in cytoskeletal structures or the morphology of stereocilia. Our results provide a more complete picture of the biological consequences of deafness-associated gamma-actin mutants and support the hypothesis that the post-lingual and progressive nature of the DFNA20/26 hearing loss is the result of a progressive deterioration of the hair cell cytoskeleton over time.
Collapse
Affiliation(s)
- Matías Morín
- Unidad de Genética Molecular, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Tian G, Zhou Y, Hajkova D, Miyagi M, Dinculescu A, Hauswirth WW, Palczewski K, Geng R, Alagramam KN, Isosomppi J, Sankila EM, Flannery JG, Imanishi Y. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton. J Biol Chem 2009; 284:18980-93. [PMID: 19423712 DOI: 10.1074/jbc.m109.003160] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Geng R, Geller SF, Hayashi T, Ray CA, Reh TA, Bermingham-McDonogh O, Jones SM, Wright CG, Melki S, Imanishi Y, Palczewski K, Alagramam KN, Flannery JG. Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation. Hum Mol Genet 2009; 18:2748-60. [PMID: 19414487 DOI: 10.1093/hmg/ddp210] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Usher syndrome 3A (USH3A) is an autosomal recessive disorder characterized by progressive loss of hearing and vision due to mutation in the clarin-1 (CLRN1) gene. Lack of an animal model has hindered our ability to understand the function of CLRN1 and the pathophysiology associated with USH3A. Here we report for the first time a mouse model for ear disease in USH3A. Detailed evaluation of inner ear phenotype in the Clrn1 knockout mouse (Clrn1(-/-)) coupled with expression pattern of Clrn1 in the inner ear are presented here. Clrn1 was expressed as early as embryonic day 16.5 in the auditory and vestibular hair cells and associated ganglionic neurons, with its expression being higher in outer hair cells (OHCs) than inner hair cells. Clrn1(-/-) mice showed early onset hearing loss that rapidly progressed to severe levels. Two to three weeks after birth (P14-P21), Clrn1(-/-) mice showed elevated auditory-evoked brainstem response (ABR) thresholds and prolonged peak and interpeak latencies. By P21, approximately 70% of Clrn1(-/-) mice had no detectable ABR and by P30 these mice were deaf. Distortion product otoacoustic emissions were not recordable from Clrn1(-/-) mice. Vestibular function in Clrn1(-/-) mice mirrored the cochlear phenotype, although it deteriorated more gradually than cochlear function. Disorganization of OHC stereocilia was seen as early as P2 and by P21 OHC loss was observed. In sum, hair cell dysfunction and prolonged peak latencies in vestibular and cochlear evoked potentials in Clrn1(-/-) mice strongly indicate that Clrn1 is necessary for hair cell function and associated neural activation.
Collapse
Affiliation(s)
- Ruishuang Geng
- Department of Otolaryngology Head & Neck Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Lee JH, Kim CH, Kim DG, Ahn YS. Microarray analysis of differentially expressed genes in the brains of tubby mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:91-7. [PMID: 19885003 DOI: 10.4196/kjpp.2009.13.2.91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdr1) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and micro-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.
Collapse
Affiliation(s)
- Jeong Ho Lee
- Department of Pharmacology, Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
148
|
Smith AJ, Bainbridge JW, Ali RR. Prospects for retinal gene replacement therapy. Trends Genet 2009; 25:156-65. [DOI: 10.1016/j.tig.2009.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023]
|
149
|
Williams DS, Aleman TS, Lillo C, Lopes VS, Hughes LC, Stone EM, Jacobson SG. Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C. Invest Ophthalmol Vis Sci 2009; 50:3881-9. [PMID: 19324851 DOI: 10.1167/iovs.08-3358] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. METHODS Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). RESULTS Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. CONCLUSIONS The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.
Collapse
Affiliation(s)
- David S Williams
- Jules Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA 90095-7008, USA.
| | | | | | | | | | | | | |
Collapse
|
150
|
Schneider E, Märker T, Daser A, Frey-Mahn G, Beyer V, Farcas R, Schneider-Rätzke B, Kohlschmidt N, Grossmann B, Bauss K, Napiontek U, Keilmann A, Bartsch O, Zechner U, Wolfrum U, Haaf T. Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment. Hum Mol Genet 2008; 18:655-66. [DOI: 10.1093/hmg/ddn395] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|