101
|
Stanga S, Brambilla L, Tasiaux B, Dang AH, Ivanoiu A, Octave JN, Rossi D, van Pesch V, Kienlen-Campard P. A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology. Front Neurol 2018; 9:384. [PMID: 29899726 PMCID: PMC5988896 DOI: 10.3389/fneur.2018.00384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
The current inability of clinical criteria to accurately identify the "at-risk group" for Amyotrophic Lateral Sclerosis (ALS) development as well as its unknown etiology are fueling the interest in biomarkers aimed at completing clinical approaches for the diagnosis. The Glial cell line-derived neurotrophic factor (GDNF) is a diffusible peptide critically involved in neuronal differentiation and survival. GDNF is largely studied in various neurological and neuromuscular diseases, with a great interest in the peripheral nervous system (PNS). The recent discovery of Amyloid Precursor Protein (APP)-dependent GDNF regulation driving neuro-muscular junctions' formation in APP null transgenic mice, prompts to study whether neurodegeneration relies on loss or gain of APP function and suggests that it could affect peripheral processes. Here, we explored a brand-new aspect of the loss of trophic support in ALS by measuring GDNF, APP, soluble APP fragments and Aβ peptides levels in SOD1WT or SOD1G93A transgenic mouse models of ALS and in human biological fluids [i.e. serum and cerebrospinal fluid (CSF)] from ALS patients and control subjects. Our results show that both GDNF and soluble APP fragments levels are altered at the onset of motor deficits in mice and that their levels are also modified in patient samples. This study indicates that both GDNF and soluble APPα represent possible biomarkers for ALS.
Collapse
Affiliation(s)
- Serena Stanga
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB - IRCCS, Pavia, Italy
| | - Bernadette Tasiaux
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Anh H Dang
- Unité de Neurochimie, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Adrian Ivanoiu
- Neurology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Noël Octave
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB - IRCCS, Pavia, Italy
| | - Vincent van Pesch
- Unité de Neurochimie, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,Neurology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
102
|
Micro-computed tomography for non-invasive evaluation of muscle atrophy in mouse models of disease. PLoS One 2018; 13:e0198089. [PMID: 29813127 PMCID: PMC5973599 DOI: 10.1371/journal.pone.0198089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Muscle wasting occurs during various chronic diseases and precedes death in humans as in mice. The evaluation of the degree of muscle atrophy in diseased mouse models is often overlooked since it requires the sacrifice of the animals for muscle examination or expensive instrumentation and highly qualified personnel, such as Magnetic Resonance Imaging (MRI). Very often behavioral tests for muscle strength evaluation are used as an outcome measurement in preclinical therapeutic trials. However, these tests are easy to perform serially, but not enough sensitive to detect early muscle changes during disease progression. Monitoring muscle loss in living animals could allow to perform more informative preclinical trials with a better evaluation of therapeutic benefit with respect to muscle wasting. We developed a non-invasive procedure based on micro-computed tomography (micro-CT) without contrast agents to monitor hind limb muscle wasting in mouse models of amyotrophic lateral sclerosis (ALS) and cancer cachexia: the transgenic SOD1G93A mouse and the colon adenocarcinoma C26-bearing mouse, respectively. We established the scanning procedure and the parameters to consider in the reconstructed images to calculate the Index of Muscle Mass (IMM). The coefficient of variance for the whole procedure was 2.2%. We performed longitudinally micro-CT scan of hind limbs in SOD1G93A mice at presymptomatic and symptomatic stages of the disease and calculated the IMM. We found that IMM in SOD1G93A mice was lower than age-matched controls even before symptom onset. We also detected a further decrease in IMM as disease progresses, most markedly just before disease onset. We performed the same analyses in the C26-based mouse model losing quickly body and muscle mass because of cancer cachexia. Overall, we found that the reduced muscle content detected by micro-CT mirrored the reduced muscle weight in both disease models. We developed a fast, precise and easy-to-conduct imaging procedure to monitor hind limb muscle mass, useful in therapeutic preclinical trials but also in proof-of-principle studies to identify the onset of muscle wasting. This method could be widely applied to other disease models characterized by muscle wasting, to assist drug development and search for early biomarkers of muscle atrophy. Moreover, reducing the number of mice needed for the experiments and being less distressing are in line with the 3R principle embodied in national and international directives for animal research.
Collapse
|
103
|
miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS. J Neurosci 2018; 38:5478-5494. [PMID: 29773756 PMCID: PMC6001038 DOI: 10.1523/jneurosci.3037-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.
Collapse
|
104
|
Dobrowolny G, Martini M, Scicchitano BM, Romanello V, Boncompagni S, Nicoletti C, Pietrangelo L, De Panfilis S, Catizone A, Bouchè M, Sandri M, Rudolf R, Protasi F, Musarò A. Muscle Expression of SOD1 G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta. Antioxid Redox Signal 2018; 28:1105-1119. [PMID: 28931313 DOI: 10.1089/ars.2017.7054] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. RESULTS Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1G93A in transgenic MLC/SOD1G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. INNOVATION The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. CONCLUSIONS Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Martina Martini
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Bianca Maria Scicchitano
- 3 Institute of Histology and Embryology, School of Medicine, Catholic University of the Sacred Heart , Rome, Italy
| | - Vanina Romanello
- 4 Department of Biomedical Science, University of Padova , Padova, Italy
| | - Simona Boncompagni
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Carmine Nicoletti
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Laura Pietrangelo
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Simone De Panfilis
- 2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Catizone
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Marina Bouchè
- 6 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Rome, Italy
| | - Marco Sandri
- 4 Department of Biomedical Science, University of Padova , Padova, Italy
| | - Rüdiger Rudolf
- 7 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany .,8 Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences , Mannheim, Germany .,9 Interdisciplinary Center for Neuroscience, University of Heidelberg , Heidelberg, Germany
| | - Feliciano Protasi
- 5 CeSI-Met-Center for Research on Ageing and Translational Medicine and DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio of Chieti , Chieti, Italy
| | - Antonio Musarò
- 1 Center for Life Nano Science at Sapienza , Istituto Italiano di Tecnologia, Rome, Italy .,2 DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome , Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
105
|
Lehmann S, Esch E, Hartmann P, Goswami A, Nikolin S, Weis J, Beyer C, Johann S. Expression profile of pattern recognition receptors in skeletal muscle of SOD1 (G93A) amyotrophic lateral sclerosis (ALS) mice and sporadic ALS patients. Neuropathol Appl Neurobiol 2018; 44:606-627. [PMID: 29575052 DOI: 10.1111/nan.12483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and progressive muscle wasting. Inflammatory processes, mediated by non-neuronal cells, such as glial cells, are known to contribute to disease progression. Inflammasomes consist of pattern recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and caspase 1 and are essential for interleukin (IL) processing and a rapid immune response after tissue damage. Recently, we described inflammasome activation in the spinal cord of ALS patients and in SOD1(G93A) ALS mice. Since pathological changes in the skeletal muscle are early events in ALS, we hypothesized that PRRs might be abnormally expressed in muscle fibre degeneration. METHODS Western blot analysis, real-time PCR and immunohistochemistry were performed with muscle tissue from presymptomatic and early-symptomatic male SOD1(G93A) mice and with muscle biopsies of control and sporadic ALS (sALS) patients. Analysed PRRs include nucleotide-binding oligomerization domain-like (NOD-like) receptor protein 1 (NLRP1), NLR protein 3 (NLRP3), NLR family CARD domain-containing 4 (NLRC4) and absent in melanoma 2. Additionally, expression levels of ASC, caspase 1, interleukin 1 beta (IL1β) and interleukin 18 (IL18) were evaluated. RESULTS Expression of PRRs and ASC was detected in murine and human tissue. The PRR NLRC4, caspase 1 and IL1β were significantly elevated in denervated muscle of SOD1(G93A) mice and sALS patients. Furthermore, levels of caspase 1 and IL1β were already increased in presymptomatic animals. CONCLUSION Our findings suggest that increased inflammasome activation may be involved in skeletal muscle pathology in ALS. Furthermore, elevated levels of NLRC4, caspase 1 and IL1β reflect early changes in the skeletal muscle and may contribute to the denervation process.
Collapse
Affiliation(s)
- S Lehmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute Molecular and Cellular Anatomy (MOCA), Medical Clinic RWTH Aachen University, Aachen, Germany
| | - E Esch
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - P Hartmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - A Goswami
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - S Nikolin
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - J Weis
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - C Beyer
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen, Germany
| | - S Johann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute of Anatomy II, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
106
|
Shanmukha S, Narayanappa G, Nalini A, Alladi PA, Raju TR. Sporadic amyotrophic lateral sclerosis (SALS) - skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model. Dis Model Mech 2018; 11:11/4/dmm031997. [PMID: 29666144 PMCID: PMC5963857 DOI: 10.1242/dmm.031997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/05/2018] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle atrophy is the most prominent feature of amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease of motor neurons. However, the contribution of skeletal muscle to disease progression remains elusive. Our previous studies have shown that intrathecal injection of cerebrospinal fluid from sporadic ALS patients (ALS-CSF) induces several degenerative changes in motor neurons and glia of neonatal rats. Here, we describe various pathologic events in the rat extensor digitorum longus muscle following intrathecal injection of ALS-CSF. Adenosine triphosphatase staining and electron microscopic (EM) analysis revealed significant atrophy and grouping of type 2 fibres in ALS-CSF-injected rats. Profound neuromuscular junction (NMJ) damage, such as fragmentation accompanied by denervation, were revealed by α-bungarotoxin immunostaining. Altered expression of key NMJ proteins, rapsyn and calpain, was also observed by immunoblotting. In addition, EM analysis showed sarcolemmal folding, Z-line streaming, structural alterations of mitochondria and dilated sarcoplasmic reticulum. The expression of trophic factors was affected, with significant downregulation of vascular endothelial growth factor (VEGF), marginal reduction in insulin-like growth factor-1 (IGF-1), and upregulation of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF). However, motor neurons might be unable to harness the enhanced levels of BDNF and GDNF, owing to impaired NMJs. We propose that ALS-CSF triggers motor neuronal degeneration, resulting in pathological changes in the skeletal muscle. Muscle damage further aggravates the motor neuronal pathology, because of the interdependency between them. This sets in a vicious cycle, leading to rapid and progressive loss of motor neurons, which could explain the relentless course of ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shruthi Shanmukha
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| |
Collapse
|
107
|
Cykowski MD, Powell SZ, Appel JW, Arumanayagam AS, Rivera AL, Appel SH. Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol Commun 2018; 6:28. [PMID: 29653597 PMCID: PMC5899326 DOI: 10.1186/s40478-018-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
Muscle atrophy with weakness is a core feature of amyotrophic lateral sclerosis (ALS) that has long been attributed to motor neuron loss alone. However, several studies in ALS patients, and more so in animal models, have challenged this assumption with the latter providing direct evidence that muscle can play an active role in the disease. Here, we examined the possible role of cell autonomous pathology in 148 skeletal muscle samples from 57 ALS patients, identifying phosphorylated TAR DNA-binding protein (pTDP-43) inclusions in the muscle fibers of 19 patients (33.3%) and 24 tissue samples (16.2% of specimens). A muscle group-specific difference was identified with pTDP-43 pathology being significantly more common in axial (paraspinous, diaphragm) than appendicular muscles (P = 0.0087). This pathology was not significantly associated with pertinent clinical, genetic (c9ALS) or nervous system pathologic data, suggesting it is not limited to any particular subgroup of ALS patients. Among 25 non-ALS muscle samples, pTDP-43 inclusions were seen only in the autophagy-related disorder inclusion body myositis (IBM) (n = 4), where they were more diffuse than in positive ALS samples (P = 0.007). As in IBM samples, pTDP-43 aggregates in ALS were p62/ sequestosome-1-positive, potentially indicating induction of autophagy. Phospho-TDP-43-positive ALS and IBM samples also showed significant up-regulation of TARDBP and SQSTM1 expression. These findings implicate axial skeletal muscle as an additional site of pTDP-43 pathology in some ALS patients, including sporadic and familial cases, which is deserving of further investigation.
Collapse
Affiliation(s)
- Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
- Institute of Academic Medicine (IAM) in the Houston Methodist Research Institute (HMRI), Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
| | - Suzanne Z Powell
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Institute of Academic Medicine (IAM) in the Houston Methodist Research Institute (HMRI), Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Houston Methodist Neurological Institute, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Joan W Appel
- Houston Methodist Neurological Institute, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Neurology, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Anithachristy S Arumanayagam
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Andreana L Rivera
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Institute of Academic Medicine (IAM) in the Houston Methodist Research Institute (HMRI), Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Houston Methodist Neurological Institute, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Stanley H Appel
- Institute of Academic Medicine (IAM) in the Houston Methodist Research Institute (HMRI), Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Houston Methodist Neurological Institute, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Neurology, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| |
Collapse
|
108
|
Swim Training Modulates Skeletal Muscle Energy Metabolism, Oxidative Stress, and Mitochondrial Cholesterol Content in Amyotrophic Lateral Sclerosis Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5940748. [PMID: 29849903 PMCID: PMC5924974 DOI: 10.1155/2018/5940748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Recently, in terms of amyotrophic lateral sclerosis (ALS), much attention has been paid to the cell structures formed by the mitochondria and the endoplasmic reticulum membranes (MAMs) that are involved in the regulation of Ca2+ signaling, mitochondrial bioenergetics, apoptosis, and oxidative stress. We assumed that remodeling of these structures via swim training may accompany the prolongation of the ALS lifespan. In the present study, we used transgenic mice with the G93A hmSOD1 gene mutation. We examined muscle energy metabolism, oxidative stress parameters, and markers of MAMs (Caveolin-1 protein level and cholesterol content in crude mitochondrial fraction) in groups of mice divided according to disease progression and training status. The progression of ALS was related to the lowering of Caveolin-1 protein levels and the accumulation of cholesterol in a crude mitochondrial fraction. These changes were associated with aerobic and anaerobic energy metabolism dysfunction and higher oxidative stress. Our data indicated that swim training prolonged the lifespan of ALS mice with accompanying changes in MAM components. Swim training also maintained mitochondrial function and lowered oxidative stress. These data suggest that modification of MAMs might play a crucial role in the exercise-induced deceleration of ALS development.
Collapse
|
109
|
Rando A, Pastor D, Viso-León MC, Martínez A, Manzano R, Navarro X, Osta R, Martínez S. Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1 G93A mice and modulates expression of prognosis biomarkers of the disease. Stem Cell Res Ther 2018; 9:90. [PMID: 29625589 PMCID: PMC5889612 DOI: 10.1186/s13287-018-0843-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. METHODS SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. RESULTS Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. CONCLUSIONS This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.
Collapse
Affiliation(s)
- Amaya Rando
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Diego Pastor
- Centro de Investigación Deporte, Universidad Miguel Hernández de Elche, Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Mari Carmen Viso-León
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Anna Martínez
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Xavier Navarro
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Rosario Osta
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
110
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
111
|
Wilson RJ, Drake JC, Cui D, Lewellen BM, Fisher CC, Zhang M, Kashatus DF, Palmer LA, Murphy MP, Yan Z. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med 2018; 117:180-190. [PMID: 29432799 PMCID: PMC5896769 DOI: 10.1016/j.freeradbiomed.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/08/2023]
Abstract
Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restoration. However, little is known about the underlying mechanism(s) and hence the lack of effective interventions. New evidence suggests that mitochondrial oxidative stress plays a causal role in IR injury, which can be precluded by enhancing mitochondrial protein S-nitrosation (SNO). To elucidate the role of IR and mitochondrial protein SNO in skeletal muscle, we utilized a clinically relevant model and showed that IR resulted in significant muscle and motor nerve injuries with evidence of elevated muscle creatine kinase in the serum, denervation at NMJ, myofiber degeneration and regeneration, as well as muscle atrophy. Interestingly, we observed that neuromuscular transmission improved prior to muscle recovery, suggesting the importance of the motor nerve in muscle functional recovery. Injection of a mitochondria-targeted S-nitrosation enhancing agent, MitoSNO, into ischemic muscle prior to reperfusion reduced mitochondrial oxidative stress in the motor nerve and NMJ, attenuated denervation at NMJ, and resulted in accelerated functional recovery of the muscle. These findings demonstrate that enhancing mitochondrial protein SNO protects against IR-induced denervation at NMJ in skeletal muscle and accelerates functional regeneration. This could be an efficacious intervention for protecting neuromuscular injury under the condition of IR and other related pathological conditions.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Departments of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bevan M Lewellen
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carleigh C Fisher
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mei Zhang
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David F Kashatus
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lisa A Palmer
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Zhen Yan
- Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Departments of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
112
|
Iyer AK, Jones KJ, Sanders VM, Walker CL. Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19020631. [PMID: 29473876 PMCID: PMC5855853 DOI: 10.3390/ijms19020631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS.
Collapse
Affiliation(s)
- Abhirami K Iyer
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Kathryn J Jones
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chandler L Walker
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
| |
Collapse
|
113
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter IV - Abstracts of March 17, 2018. Eur J Transl Myol 2018; 28:7366. [PMID: 30057728 PMCID: PMC6047882 DOI: 10.4081/ejtm.2018.7366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract endorsement of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality international journals. The abstracts of the presentations of the March 16, 2018 Padua Muscle Day and those of the remaining Posters are listed in this chapter IV. The Author Index of the 2018Spring PaduaMuscleDays follows at page 78.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
114
|
|
115
|
Wang H, Yi J, Li X, Xiao Y, Dhakal K, Zhou J. ALS-associated mutation SOD1 G93A leads to abnormal mitochondrial dynamics in osteocytes. Bone 2018; 106:126-138. [PMID: 29030231 PMCID: PMC5718158 DOI: 10.1016/j.bone.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1G93A. Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1G93A on mitochondrial network and dynamics, indicating that SOD1G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1G93A-mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression.
Collapse
Affiliation(s)
- Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO, USA.
| |
Collapse
|
116
|
Liu W, Chakkalakal JV. The Composition, Development, and Regeneration of Neuromuscular Junctions. Curr Top Dev Biol 2018; 126:99-124. [DOI: 10.1016/bs.ctdb.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
117
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
118
|
Trias E, Ibarburu S, Barreto-Núñez R, Varela V, Moura IC, Dubreuil P, Hermine O, Beckman JS, Barbeito L. Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS. JCI Insight 2017; 2:95934. [PMID: 29046475 PMCID: PMC5846907 DOI: 10.1172/jci.insight.95934] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Evidence indicates that neuroinflammation contributes to motor neuron degeneration in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease leading to progressive muscular paralysis. However, it remains elusive whether inflammatory cells can interact with degenerating distal motor axons, influencing the progressive denervation of neuromuscular junctions (NMJs). By analyzing the muscle extensor digitorum longus (EDL) following paralysis onset in the SOD1G93A rat model, we have observed a massive infiltration and degranulation of mast cells, starting after paralysis onset and correlating with progressive NMJ denervation. Remarkably, mast cells accumulated around degenerating motor axons and NMJs, and were also associated with macrophages. Mast cell accumulation and degranulation in paralytic EDL muscle was prevented by systemic treatment over 15 days with masitinib, a tyrosine kinase inhibitor currently in clinical trials for ALS exhibiting pharmacological activity affecting mast cells and microglia. Masitinib-induced mast cell reduction resulted in a 35% decrease in NMJ denervation and reduced motor deficits as compared with vehicle-treated rats. Masitinib also normalized macrophage infiltration, as well as regressive changes in Schwann cells and capillary networks observed in advanced paralysis. These findings provide evidence for mast cell contribution to distal axonopathy and paralysis progression in ALS, a mechanism that can be therapeutically targeted by masitinib.
Collapse
Affiliation(s)
| | | | | | | | - Ivan C. Moura
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
| | - Patrice Dubreuil
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
- AB Science, Paris, France
- Signaling, Hematopoiesis and Mechanism of Oncogenesis, Cancer Research Center of Marseille (CRCM), Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University UM105, CNRS UMR7258, Marseille, France
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer, Parisa, France
- AB Science, Paris, France
- Department of Hematology, Necker Hospital, Paris, France
- Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | - Joseph S. Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
119
|
Cappello V, Francolini M. Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18102092. [PMID: 28972545 PMCID: PMC5666774 DOI: 10.3390/ijms18102092] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular junction assembly and plasticity during embryonic, postnatal, and adult life are tightly regulated by the continuous cross-talk among motor nerve endings, muscle fibers, and glial cells. Altered communications among these components is thought to be responsible for the physiological age-related changes at this synapse and possibly for its destruction in pathological states. Neuromuscular junction dismantling plays a crucial role in the onset of Amyotrophic Lateral Sclerosis (ALS). ALS is characterized by the degeneration and death of motor neurons leading to skeletal muscle denervation, atrophy and, most often, death of the patient within five years from diagnosis. ALS is a non-cell autonomous disease as, besides motor neuron degeneration, glial cells, and possibly muscle fibers, play a role in its onset and progression. Here, we will review the recent literature regarding the mechanisms leading to neuromuscular junction disassembly and muscle denervation focusing on the role of the three players of this peripheral tripartite synapse.
Collapse
Affiliation(s)
- Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano-Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
120
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
121
|
What is "Hyper" in the ALS Hypermetabolism? Mediators Inflamm 2017; 2017:7821672. [PMID: 29081604 PMCID: PMC5610793 DOI: 10.1155/2017/7821672] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.
Collapse
|
122
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
123
|
Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, van Zundert B, Brandan E. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One 2017; 12:e0177649. [PMID: 28520806 PMCID: PMC5433732 DOI: 10.1371/journal.pone.0177649] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM) components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα), Tcf4 and α-smooth muscle actin (α-SMA) levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs), which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF) signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Osvaldo Contreras
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Espinoza
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
124
|
Zhang C, Peng Y, Liu Y, Li S, Zhou P, Rymer WZ, Zhang Y. Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings. J Neural Eng 2017; 14:036011. [PMID: 28358718 DOI: 10.1088/1741-2552/aa65dd] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To localize neuromuscular junctions in skeletal muscles in vivo which is of great importance in understanding, diagnosing and managing of neuromuscular disorders. APPROACH A three-dimensional global innervation zone imaging technique was developed to characterize the global distribution of innervation zones, as an indication of the location and features of neuromuscular junctions, using electrically evoked high-density surface electromyogram recordings. MAIN RESULTS The performance of the technique was evaluated in the biceps brachii of six intact human subjects. The geometric centers of the distributions of the reconstructed innervation zones were determined with a mean distance of 9.4 ± 1.4 cm from the reference plane, situated at the medial epicondyle of the humerus. A mean depth was calculated as 1.5 ± 0.3 cm from the geometric centers to the closed points over the skin. The results are consistent with those reported in previous histology studies. It was also found that the volumes and distributions of the reconstructed innervation zones changed as the stimulation intensities increased until the supramaximal muscle response was achieved. SIGNIFICANCE Results have demonstrated the high performance of the proposed imaging technique in noninvasively imaging global distributions of the innervation zones in the three-dimensional muscle space in vivo, and the feasibility of its clinical applications, such as guiding botulinum toxin injections in spasticity management, or in early diagnosis of neurodegenerative progression of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States of America
| | | | | | | | | | | | | |
Collapse
|
125
|
Jesse CM, Bushuven E, Tripathi P, Chandrasekar A, Simon CM, Drepper C, Yamoah A, Dreser A, Katona I, Johann S, Beyer C, Wagner S, Grond M, Nikolin S, Anink J, Troost D, Sendtner M, Goswami A, Weis J. ALS-Associated Endoplasmic Reticulum Proteins in Denervated Skeletal Muscle: Implications for Motor Neuron Disease Pathology. Brain Pathol 2017; 27:781-794. [PMID: 27790792 DOI: 10.1111/bpa.12453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Alpha-motoneurons and muscle fibres are structurally and functionally interdependent. Both cell types particularly rely on endoplasmic reticulum (ER/SR) functions. Mutations of the ER proteins VAPB, SigR1 and HSP27 lead to hereditary motor neuron diseases (MNDs). Here, we determined the expression profile and localization of these ER proteins/chaperons by immunohistochemistry and immunoblotting in biopsy and autopsy muscle tissue of patients with amyotrophic lateral sclerosis (ALS) and other neurogenic muscular atrophies (NMAs) and compared these patterns to mouse models of neurogenic muscular atrophy. Postsynaptic neuromuscular junction staining for VAPB was intense in normal human and mouse muscle and decreased in denervated Nmd2J mouse muscle fibres. In contrast, VAPB levels together with other chaperones and autophagy markers were increased in extrasynaptic regions of denervated muscle fibres of patients with MNDs and other NMAs, especially at sites of focal myofibrillar disintegration (targets). These findings did not differ between NMAs due to ALS and other causes. G93A-SOD1 mouse muscle fibres showed a similar pattern of protein level increases in denervated muscle fibres. In addition, they showed globular VAPB-immunoreactive structures together with misfolded SOD1 protein accumulations, suggesting a primary myopathic change. Our findings indicate that altered expression and localization of these ER proteins and autophagy markers are part of the dynamic response of muscle fibres to denervation. The ER is particularly prominent and vulnerable in both muscle fibres and alpha-motoneurons. Thus, ER pathology could contribute to the selective build-up of degenerative changes in the neuromuscular axis in MNDs.
Collapse
Affiliation(s)
- C M Jesse
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany.,Department of Neurosurgery, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - E Bushuven
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - P Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - A Chandrasekar
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany.,Department of Neurology, Ulm University, Helmholtzstr 8/2, Ulm, 89081, Germany
| | - C M Simon
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany.,Columbia University Medical Center, Center for Motor Neuron Biology and Disease, 630 West 168th Street, New York, NY, 10032
| | - C Drepper
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Würzburg, Füchsleinstr. 15, Würzburg, 97080, Germany
| | - A Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - A Dreser
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - I Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - S Johann
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - C Beyer
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - S Wagner
- Department of Neurology, District Hospital Siegen, Siegen, 57076, Germany
| | - M Grond
- Department of Neurology, District Hospital Siegen, Siegen, 57076, Germany
| | - S Nikolin
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - J Anink
- Academic Medical Centre, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - D Troost
- Academic Medical Centre, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - M Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, Würzburg, 97078, Germany
| | - A Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| | - J Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
126
|
Peggion C, Massimino ML, Biancotto G, Angeletti R, Reggiani C, Sorgato MC, Bertoli A, Stella R. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem 2017; 409:2143-2153. [PMID: 28078418 DOI: 10.1007/s00216-016-0160-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method. Graphical Abstract Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Lina Massimino
- CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Giancarlo Biancotto
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Roberto Angeletti
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.,CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.
| | - Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy.
| |
Collapse
|
127
|
McCombe PA, Wray NR, Henderson RD. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother 2017; 17:561-577. [PMID: 27983884 DOI: 10.1080/14737175.2017.1273772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease defined by the presence of muscle weakness. The motor features of disease are heterogeneous in site of onset and progression. There are also extra-motor features in some patients. The genetic basis for extra-motor features is uncertain. The heterogeneity of ALS is an issue for clinical trials. Areas covered: This paper reviews the range and prevalence of extra-motor features associated with ALS, and highlights the current information about genetic associations with extra-motor features. Expert commentary: There are extra-motor features of ALS, but these are not found in all patients. The most common is cognitive abnormality. More data is required to ascertain whether extra-motor features arise with progression of disease. Extra-motor features are reported in patients with a range of causative genetic mutations, but are not found in all patients with these mutations. Further studies are required of the heterogeneity of ALS, and genotype/phenotype correlations are required, taking note of extra-motor features.
Collapse
Affiliation(s)
- P A McCombe
- a The University of Queensland Centre for Clinical Research and Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - N R Wray
- b The University of Queensland Institute for Molecular Bioscience , Brisbane , Australia
| | - R D Henderson
- a The University of Queensland Centre for Clinical Research and Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia
| |
Collapse
|
128
|
Rozas P, Bargsted L, Martínez F, Hetz C, Medinas DB. The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability. Neurosci Lett 2017; 636:9-15. [DOI: 10.1016/j.neulet.2016.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
129
|
Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM, Osta R. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro. NEURODEGENER DIS 2017; 17:1-13. [DOI: 10.1159/000446113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
<b><i>Background:</i></b> Amyotrophic lateral sclerosis (ALS) causes loss of upper and lower motor neurons as well as skeletal muscle (SKM) dysfunction and atrophy. SKM is one of the tissues involved in the development of ALS pathology, and studies in a SOD1-G93A mouse model of ALS have demonstrated alterations in SKM degeneration/regeneration marker expression in vivo and defective mutant myoblast proliferation in vitro. Granulocyte colony-stimulating factor (G-CSF) has been shown to alleviate SOD1-G93A pathology. However, it is unknown whether G-CSF may have a direct effect on SKM or derived myoblasts. <b><i>Objective:</i></b> To investigate effects of G-CSF and its analog pegfilgrastim (PEGF) on SOD1-G93A- associated SKM markers in vivo and those of G-CSF on myoblast proliferation in vitro. <b><i>Methods:</i></b> The effect of PEGF treatment on hematopoietic stem cell mobilization, survival, and motor function was determined. RNA expression of SKM markers associated with mutant SOD1 expression was quantified in response to PEGF treatment in vivo, and the effect of G-CSF on the proliferation of myoblasts derived from mutant and control muscles was determined in vitro. <b><i>Results:</i></b> Positive effects of PEGF on hematopoietic stem cell mobilization, survival, and functional assays in SOD1-G93A animals were confirmed. In vivo PEGF treatment augmented the expression of its receptor Csf3r and alleviated typical markers for mutant SOD1 muscle. Additionally, G-CSF was found to directly increase the proliferation of SOD1-G93A, but not wild-type primary myoblasts in vitro. <b><i>Conclusion:</i></b> Our results support the beneficial role of the G-CSF analog PEGF in a SOD1-G93A model of ALS. Thus, G-CSF and<b> </b>its analogs may be directly beneficial in diseases where the SKM function is compromised.
Collapse
|
130
|
Enge TG, Ecroyd H, Jolley DF, Yerbury JJ, Dosseto A. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis. Metallomics 2017; 9:161-174. [DOI: 10.1039/c6mt00270f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
131
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
132
|
Isak B, Tankisi H, Johnsen B, Pugdahl K, Torvin MØLler A, Finnerup NB, Christensen PB, Fuglsang-Frederiksen A. Involvement of distal sensory nerves in amyotrophic lateral sclerosis. Muscle Nerve 2016; 54:1086-1092. [DOI: 10.1002/mus.25157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Baris Isak
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Birger Johnsen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Kirsten Pugdahl
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | | | - Nanna Brix Finnerup
- Danish Pain Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | | | - Anders Fuglsang-Frederiksen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| |
Collapse
|
133
|
Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat 2016; 76:35-47. [DOI: 10.1016/j.jchemneu.2016.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
134
|
Tsitkanou S, Della Gatta PA, Russell AP. Skeletal Muscle Satellite Cells, Mitochondria, and MicroRNAs: Their Involvement in the Pathogenesis of ALS. Front Physiol 2016; 7:403. [PMID: 27679581 PMCID: PMC5020084 DOI: 10.3389/fphys.2016.00403] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a fatal motor neuron disorder. It results in progressive degeneration and death of upper and lower motor neurons, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between 2 and 5 years from the onset of symptoms. ALS manifests as either familial ALS (FALS) (~10% of cases) or sporadic ALS (SALS), (~90% of cases). Mutations in the copper/zinc (CuZn) superoxide dismutase (SOD1) gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signaling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens Athens, Greece
| | - Paul A Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University Geelong, VIC, Australia
| | - Aaron P Russell
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University Geelong, VIC, Australia
| |
Collapse
|
135
|
Stoica L, Sena-Esteves M. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2016; 9:56. [PMID: 27531973 PMCID: PMC4969298 DOI: 10.3389/fnmol.2016.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of upper and lower motor neurons. Mutations in superoxide dismutase 1 (SOD1) are a leading cause of ALS, responsible for up to 20% of familial cases. Although the exact mechanism by which mutant SOD1 causes disease remains unknown, multiple studies have shown that reduction of the mutant species leads to delayed disease onset and extension of lifespan of animal models. This makes SOD1 an ideal target for gene therapy coupling adeno associated virus vector (AAV) gene delivery with RNAi molecules. In this review we summarize the studies done thus far attempting to decrease SOD1 gene expression, using AAV vectors as delivery tools, and RNAi as therapeutic molecules. Current hurdles to be overcome, such as the need for widespread gene delivery through the entire central nervous system (CNS), are discussed. Continued efforts to improve current AAV delivery methods and capsids will accelerate the application of these therapeutics to the clinic.
Collapse
Affiliation(s)
- Lorelei Stoica
- Gene Therapy Center, University of Massachusetts Medical SchoolWorcester, MA, USA; Department of Neurology, University of Massachusetts Medical SchoolWorcester, MA, USA
| | - Miguel Sena-Esteves
- Gene Therapy Center, University of Massachusetts Medical SchoolWorcester, MA, USA; Department of Neurology, University of Massachusetts Medical SchoolWorcester, MA, USA
| |
Collapse
|
136
|
Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proc Natl Acad Sci U S A 2016; 113:E4494-503. [PMID: 27418600 PMCID: PMC4978283 DOI: 10.1073/pnas.1608423113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.
Collapse
|
137
|
Casas C, Manzano R, Vaz R, Osta R, Brites D. Synaptic Failure: Focus in an Integrative View of ALS. Brain Plast 2016; 1:159-175. [PMID: 29765840 PMCID: PMC5928542 DOI: 10.3233/bpl-140001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From early description by Charcot, the classification of the Amyotrophic Lateral Sclerosis (ALS) is evolving from a subtype of Motor Neuron (MN) Disease to be considered rather a multi-systemic, non-cell autonomous and complex neurodegenerative disease. In the last decade, the huge amount of knowledge acquired has shed new insights on the pathological mechanisms underlying ALS from different perspectives. However, a whole vision on the multiple dysfunctional pathways is needed with the inclusion of information often excluded in other published revisions. We propose an integrative view of ALS pathology, although centered on the synaptic failure as a converging and crucial player to the etiology of the disease. Homeostasis of input and output synaptic activity of MNs has been proved to be severely and early disrupted and to definitively contribute to microcircuitry alterations at the spinal cord. Several cells play roles in synaptic communication across the MNs network system such as interneurons, astrocytes, microglia, Schwann and skeletal muscle cells. Microglia are described as highly dynamic surveying cells of the nervous system but also as determinant contributors to the synaptic plasticity linked to neuronal activity. Several signaling axis such as TNFα/TNFR1 and CX3CR1/CX3CL1 that characterize MN-microglia cross talk contribute to synaptic scaling and maintenance, have been found altered in ALS. The presence of dystrophic and atypical microglia in late stages of ALS, with a decline in their dynamic motility and phagocytic ability, together with less synaptic and neuronal contacts disrupts the MN-microglia dialogue, decreases homeostatic regulation of neuronal activity, perturbs “on/off” signals and accelerates disease progression associated to impaired synaptic function and regeneration. Other hotspot in the ALS affected network system is the unstable neuromuscular junction (NMJ) leading to distal axonal degeneration. Reduced neuromuscular spontaneous synaptic activity in ALS mice models was also suggested to account for the selective vulnerability of MNs and decreased regenerative capability. Synaptic destabilization may as well derive from increased release of molecules by muscle cells (e.g. NogoA) and by terminal Schwann cells (e.g. semaphorin 3A) conceivably causing nerve terminal retraction and denervation, as well as inhibition of re-connection to muscle fibers. Indeed, we have overviewed the alterations on the metabolic pathways and self-regenerative capacity presented in skeletal muscle cells that contribute to muscle wasting in ALS. Finally, a detailed footpath of pathologic changes on MNs and associated dysfunctional and synaptic alterations is provided. The oriented motivation in future ALS studies as outlined in the present article will help in fruitful novel achievements on the mechanisms involved and in developing more target-driven therapies that will bring new hope in halting or delaying disease progression in ALS patients.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Raquel Manzano
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
138
|
Martin LJ, Wong M. Enforced DNA repair enzymes rescue neurons from apoptosis induced by target deprivation and axotomy in mouse models of neurodegeneration. Mech Ageing Dev 2016; 161:149-162. [PMID: 27364693 DOI: 10.1016/j.mad.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
It is unknown whether DNA damage accumulation is an upstream instigator or secondary effect of the cell death process in different populations of adult postmitotic neurons in the central nervous system. In two different mouse models of injury-induced neurodegeneration characterized by relatively synchronous accumulation of mitochondria, oxidative stress, and DNA damage prior to neuronal apoptosis, we enforced the expression of human 8-oxoguanine DNA glycosylase (hOGG1) and human apurinic-apyrimidinic endonuclease-1/Ref1 (hAPE) using recombinant adenoviruses (Ad). Thalamic lateral geniculate neurons and lumbar spinal cord motor neurons were transduced by Ad-hOGG1 and Ad-hAPE injections into the occipital cortex and skeletal muscle, respectively, prior to their target deprivation- and axotomy-induced retrograde apoptosis. Enforced expression of hOGG1 and hAPE in thalamus and spinal cord was confirmed by western blotting and immunohistochemistry. In injured populations of neurons in thalamus and spinal cord, a DNA damage response (DDR) was registered, as shown by localization of phospho-activated p53, Rad17, and replication protein A-32 immunoreactivities, and this DDR was attenuated more effectively by enforced hAPE expression than by hOGG1 expression. Enforced expression of hOGG1 and hAPE significantly protected thalamic neurons and motor neurons from retrograde apoptosis induced by target deprivation and axotomy. We conclude that a DDR response is engaged pre-apoptotically in different types of injured mature CNS neurons and that DNA repair enzymes can regulate the survival of retrogradely dying neurons, suggesting that DNA damage and activation of DDR are upstream mechanisms for this form of adult neurodegeneration in vivo, thus identifying DNA repair as a therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
139
|
Beqollari D, Romberg CF, Dobrowolny G, Martini M, Voss AA, Musarò A, Bannister RA. Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skelet Muscle 2016; 6:24. [PMID: 27340545 PMCID: PMC4918102 DOI: 10.1186/s13395-016-0094-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that is typically fatal within 3–5 years of diagnosis. While motoneuron death is the defining characteristic of ALS, the events that underlie its pathology are not restricted to the nervous system. In this regard, ALS muscle atrophies and weakens significantly before presentation of neurological symptoms. Since the skeletal muscle L-type Ca2+ channel (CaV1.1) is a key regulator of both mass and force, we investigated whether CaV1.1 function is impaired in the muscle of two distinct mouse models carrying an ALS-linked mutation. Methods We recorded L-type currents, charge movements, and myoplasmic Ca2+ transients from dissociated flexor digitorum brevis (FDB) fibers to assess CaV1.1 function in two mouse models expressing a type 1 Cu/Zn superoxide dismutase mutant (SOD1G93A). Results In FDB fibers obtained from “symptomatic” global SOD1G93A mice, we observed a substantial reduction of SR Ca2+ release in response to depolarization relative to fibers harvested from age-matched control mice. L-type current and charge movement were both reduced by ~40 % in symptomatic SOD1G93A fibers when compared to control fibers. Ca2+ transients were not significantly reduced in similar experiments performed with FDB fibers obtained from “early-symptomatic” SOD1G93A mice, but L-type current and charge movement were decreased (~30 and ~20 %, respectively). Reductions in SR Ca2+ release (~35 %), L-type current (~20 %), and charge movement (~15 %) were also observed in fibers obtained from another model where SOD1G93A expression was restricted to skeletal muscle. Conclusions We report reductions in EC coupling, L-type current density, and charge movement in FDB fibers obtained from symptomatic global SOD1G93A mice. Experiments performed with FDB fibers obtained from early-symptomatic SOD1G93A and skeletal muscle autonomous MLC/SOD1G93A mice support the idea that events occurring locally in the skeletal muscle contribute to the impairment of CaV1.1 function in ALS muscle independently of innervation status. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0094-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donald Beqollari
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| | - Christin F Romberg
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| | - Gabriella Dobrowolny
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Martina Martini
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Andrew A Voss
- Department of Biological Sciences, College of Science and Mathematics, Wright State University, 235A Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH 45435 USA
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, La Sapienza University, Via A. Scarpa, 14, 00161 Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, 12700 East 19th Avenue, B-139, Aurora, CO 80045 USA
| |
Collapse
|
140
|
Abstract
Amyotrophic lateral sclerosis (ALS) is proving intractable. Difficulties in pre-clinical studies contribute in small measure to this futility, but the chief reason for failure is an inadequate understanding of disease pathogenesis. Many acquired and inherited processes have been advanced as potential causes of ALS but, while they may predispose to disease, it seems increasingly likely that none leads directly to ALS. Rather, two recent overlapping considerations, both involving aberrant protein homeostasis, may provide a better explanation for a common disease phenotype and a common terminal pathogenesis. If so, therapeutic approaches will need to be altered and carefully nuanced, since protein homeostasis is essential and highly conserved. Nonetheless, these considerations provide new optimism in a difficult disease which has hitherto defied treatment.
Collapse
|
141
|
Blasco H, Vourc'h P, Pradat PF, Gordon PH, Andres CR, Corcia P. Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Mol Diagn 2016; 16:853-68. [PMID: 27275785 DOI: 10.1080/14737159.2016.1199277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is an idiopathic neurodegenerative disease usually fatal in less than three years. Even if standard guidelines are available to diagnose ALS, the mean diagnosis delay is more than one year. In this context, biomarker discovery is a priority. Research has to focus on new diagnostic tools, based on combined explorations. AREAS COVERED In this review, we specifically focus on biology and imaging markers. We detail the innovative field of 'omics' approach and imaging and explain their limits to be useful in routine practice. We describe the most relevant biomarkers and suggest some perspectives for biomarker research. Expert commentary: The successive failures of clinical trials in ALS underline the need for new strategy based on innovative tools to stratify patients and to evaluate their responses to treatment. Biomarker data may be useful to improve the designs of clinical trials. Biomarkers are also needed to better investigate disease pathophysiology, to identify new therapeutic targets, and to improve the performance of clinical assessments for diagnosis and prognosis in the clinical setting. A consensus on the best management of neuroimaging and 'omics' methods is necessary and a systematic independent validation of findings may add robustness to future studies.
Collapse
Affiliation(s)
- H Blasco
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Vourc'h
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P F Pradat
- c Département des Maladies du Système Nerveux, Assistance Publique-Hôpitaux de Paris , Hôpital de la Salpêtrière , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM , Laboratoire d'Imagerie Biomédicale , Paris , France
| | - P H Gordon
- e Neurology Unit, Northern Navajo Medical Center , Shiprock , NM , USA
| | - C R Andres
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France
| | - P Corcia
- a UMR INSERM U930 , Université François-Rabelais de Tours , Tours , France.,b Laboratoire de Biochimie et de Biologie Moléculaire , Hôpital Bretonneau, CHRU de Tours , Tours , France.,f Centre SLA , Service de Neurologie et Neurophysiologie Clinique, CHRU de Tours , Tours , France
| |
Collapse
|
142
|
Vilmont V, Cadot B, Vezin E, Le Grand F, Gomes ER. Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Sci Rep 2016; 6:27804. [PMID: 27283349 PMCID: PMC4901269 DOI: 10.1038/srep27804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) allows the transformation of a neuronal message into a mechanical force by muscle contraction and is the target of several neuromuscular disorders. While the neuronal side is under extensive research, the muscle appeared recently to have a growing role in the formation and integrity of the neuromuscular junction. We used an in vitro model of mature myofibers to study the role of dynein on major postsynaptic proteins. We found that dynein affects the expression and the clustering of acetylcholine receptors (AChRs), muscle specific tyrosine kinase (MuSK) and Rapsyn. We also show that myofibers with dynein impairment or from an amyotrophic lateral sclerosis (ALS) model (SOD1G93A) show similar defects in myofiber formation and agrin-induced AChR clustering suggesting a role for dynein impairment in ALS progression. Finally, we found that dynein can affect MuSK traffic through the endosomal pathway. Collectively, our studies show that defects in dynein can lead to impairment of muscle NMJ components’ expression and clustering. We propose that NMJ defects could happen via defective MuSK traffic and that this could be one of the pathological features involved in neurodegeneration such as ALS.
Collapse
Affiliation(s)
- Valérie Vilmont
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Elsa Vezin
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Fabien Le Grand
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Edgar R Gomes
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
143
|
Lenzi J, Pagani F, De Santis R, Limatola C, Bozzoni I, Di Angelantonio S, Rosa A. Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Res 2016; 17:140-7. [PMID: 27318155 PMCID: PMC5009183 DOI: 10.1016/j.scr.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disease characterized by progressive loss of motoneurons, muscle atrophy and paralysis. Recent evidence suggests that ALS should be considered as a multi-systemic disease, in which several cell types contribute to motoneuron degeneration. In this view, mutations in ALS linked genes in other neural and non-neural cell types may exert non-cell autonomous effects on motoneuron survival and function. Induced Pluripotent Stem Cells (iPSCs) have been recently derived from several patients with ALS mutations and it has been shown that they can generate motoneurons in vitro, providing a valuable tool to study ALS. However, the potential of iPSCs could be further valorized by generating other cell types that may be relevant to the pathology. In this paper, by taking advantage of a novel inducible system for MyoD expression, we show that both control iPSCs and iPSCs carrying mutations in ALS genes can generate skeletal muscle cells. We provide evidence that both control and mutant iPSC-derived myotubes are functionally active. This in vitro system will be instrumental to dissect the molecular and cellular pathways impairing the complex motoneuron microenvironment in ALS. A novel method for inducing iPSCs differentiation into muscle is presented Multiple inducible lines can be easily generated by a new transposable vector Both control and iPSCs carrying ALS mutations can generate functional muscle fibers This system will be instrumental to study non-cell autonomous contributions to ALS
Collapse
Affiliation(s)
- Jessica Lenzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Pagani
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
144
|
Gallart-Palau X, Ng CH, Ribera J, Sze SK, Lim KL. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neurosci Lett 2016; 624:47-52. [PMID: 27163198 DOI: 10.1016/j.neulet.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/12/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1(G93A) mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1(G93A) in muscle fibers. Presence of SOD1(G93A) in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1(G93A) fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Chee-Hoe Ng
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Joan Ribera
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore 117543, Singapore; Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
145
|
Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5930621. [PMID: 27195289 PMCID: PMC4852332 DOI: 10.1155/2016/5930621] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Muscle weakness is considered the pivotal sign of amyotrophic lateral sclerosis (ALS). Knowledge about the skeletal muscle degeneration/regeneration process and the myogenic potential is limited in ALS patients. Therefore, we investigate these processes in a time course perspective by analysing skeletal muscle biopsies from ALS patients collected before and after a 12-week period of normal daily activities and compare these with healthy age-matched control tissue. We do this by evaluating mRNA and protein (immunohistochemical) markers of regeneration, neurodegeneration, myogenesis, cell cycle regulation, and inflammation. Our results show morphological changes indicative of active denervation and reinnervation and an increase in small atrophic fibres. We demonstrate differences between ALS and controls in pathways controlling skeletal muscle homeostasis, cytoskeletal and regenerative markers, neurodegenerative factors, myogenic factors, cell cycle determinants, and inflammatory markers. Our results on Pax7 and MyoD protein expression suggest that proliferation and differentiation of skeletal muscle stem cells are affected in ALS patients, and the myogenic processes cannot overcome the denervation-induced wasting.
Collapse
|
146
|
Stoica L, Todeasa SH, Cabrera GT, Salameh JS, ElMallah MK, Mueller C, Brown RH, Miguel SE. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann Neurol 2016; 79:687-700. [PMID: 26891182 PMCID: PMC5374859 DOI: 10.1002/ana.24618] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motor neurons, resulting in progressive muscle weakness, paralysis, and death within 5 years of diagnosis. About 10% of cases are inherited, of which 20% are due to mutations in the superoxide dismutase 1 (SOD1) gene. Riluzole, the only US Food and Drug Administration-approved ALS drug, prolongs survival by only a few months. Experiments in transgenic ALS mouse models have shown decreasing levels of mutant SOD1 protein as a potential therapeutic approach. We sought to develop an efficient adeno-associated virus (AAV)-mediated RNAi gene therapy for ALS. METHODS A single-stranded AAV9 vector encoding an artificial microRNA against human SOD1 was injected into the cerebral lateral ventricles of neonatal SOD1(G93A) mice, and impact on disease progression and survival was assessed. RESULTS This therapy extended median survival by 50% and delayed hindlimb paralysis, with animals remaining ambulatory until the humane endpoint, which was due to rapid body weight loss. AAV9-treated SOD1(G93A) mice showed reduction of mutant human SOD1 mRNA levels in upper and lower motor neurons and significant improvements in multiple parameters including the numbers of spinal motor neurons, diameter of ventral root axons, and extent of neuroinflammation in the SOD1(G93A) spinal cord. Mice also showed previously unexplored changes in pulmonary function, with AAV9-treated SOD1(G93A) mice displaying a phenotype reminiscent of patient pathophysiology. INTERPRETATION These studies clearly demonstrate that an AAV9-delivered SOD1-specific artificial microRNA is an effective and translatable therapeutic approach for ALS.
Collapse
Affiliation(s)
- Lorelei Stoica
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sophia H. Todeasa
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabriela Toro Cabrera
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Johnny S. Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mai K. ElMallah
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christian Mueller
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sena-Esteves Miguel
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
147
|
Loeffler J, Picchiarelli G, Dupuis L, Gonzalez De Aguilar J. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:227-36. [PMID: 26780251 PMCID: PMC8029271 DOI: 10.1111/bpa.12350] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly accepted that the pathological process leading to ALS is the result of multiple disease mechanisms that operate within motor neurons and other cell types both inside and outside the central nervous system. The implication of skeletal muscle has been the subject of a number of studies conducted on patients and related animal models. In this review, we describe the features of ALS muscle pathology and discuss on the contribution of muscle to the pathological process. We also give an overview of the therapeutic strategies proposed to alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic disturbances. However, the way by which the disease affects different types of myofibers depends on their contractile and metabolic features. Although the implication of muscle in nourishing the degenerative process is still debated, there is compelling evidence suggesting that it may play a critical role. Detailed understanding of the muscle pathology in ALS could, therefore, lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Jean‐Philippe Loeffler
- Université de Strasbourg, UMR_S 1118StrasbourgFrance
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la NeurodégénérescenceStrasbourgFrance
| | - Gina Picchiarelli
- Université de Strasbourg, UMR_S 1118StrasbourgFrance
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la NeurodégénérescenceStrasbourgFrance
| | - Luc Dupuis
- Université de Strasbourg, UMR_S 1118StrasbourgFrance
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la NeurodégénérescenceStrasbourgFrance
| | - Jose‐Luis Gonzalez De Aguilar
- Université de Strasbourg, UMR_S 1118StrasbourgFrance
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la NeurodégénérescenceStrasbourgFrance
| |
Collapse
|
148
|
von Grabowiecki Y, Abreu P, Blanchard O, Palamiuc L, Benosman S, Mériaux S, Devignot V, Gross I, Mellitzer G, Gonzalez de Aguilar JL, Gaiddon C. Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63. eLife 2016; 5. [PMID: 26919175 PMCID: PMC4786414 DOI: 10.7554/elife.10528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Paula Abreu
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Orphee Blanchard
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Lavinia Palamiuc
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Samir Benosman
- Sanford Burnham Medical Research Institute, San Diego, United States
| | - Sophie Mériaux
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Véronique Devignot
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Isabelle Gross
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Georg Mellitzer
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - José L Gonzalez de Aguilar
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Institut national de la santé et de la recherche médicale, Laboratoire SMN, Strasbourg, France
| | - Christian Gaiddon
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| |
Collapse
|
149
|
Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Dirrig-Grosch S, Henriques A, Boutillier AL, Zoll J, Echaniz-Laguna A, Loeffler JP, René F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 2016; 7:526-46. [PMID: 25820275 PMCID: PMC4492815 DOI: 10.15252/emmm.201404433] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults. Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis. Using a mouse model of the disease (SOD1G86R), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity. We found that at 65 days of age, an age described as asymptomatic, SOD1G86R mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids. Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression. Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased. This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression. Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation. In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology.
Collapse
Affiliation(s)
- Lavinia Palamiuc
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| | - Anna Schlagowski
- Equipe d'Accueil 3072, Mitochondrie, Stress oxydant et Protection Musculaire, Fédération de Médecine Translationelle de Strasbourg, Université de Strasbourg, Strasbourg, France Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique Hôpitaux Universitaires, CHRU de Strasbourg, Strasbourg, France
| | - Shyuan T Ngo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia
| | - Aurelia Vernay
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| | - Alexandre Henriques
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| | - Anne-Laurence Boutillier
- UMR7364 Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie, Université de Strasbourg-CNRS, GDR CNRS 2905, Strasbourg, France
| | - Joffrey Zoll
- Equipe d'Accueil 3072, Mitochondrie, Stress oxydant et Protection Musculaire, Fédération de Médecine Translationelle de Strasbourg, Université de Strasbourg, Strasbourg, France Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique Hôpitaux Universitaires, CHRU de Strasbourg, Strasbourg, France
| | - Andoni Echaniz-Laguna
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| | - Frédérique René
- INSERM, U1118 Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France Université de Strasbourg UMRS1118, Strasbourg, France
| |
Collapse
|
150
|
Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musarò A. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Front Cell Neurosci 2015; 9:463. [PMID: 26648847 PMCID: PMC4664730 DOI: 10.3389/fncel.2015.00463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
A crucial system severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. One of the best examples of impaired interplay between muscle and nerve is Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by degeneration of motor neurons and muscle atrophy. Increasing evidences suggest that damage to motor neurons is enhanced by alterations in the neighboring non-neuronal cells and indicate that altered skeletal muscle might be the source of signals that impinge motor neuron activity and survival. Here we investigated whether muscle selective expression of SOD1G93A mutant gene modulates mRNAs and miRNAs expression at the level of spinal cord of MLC/SOD1G93A mice. Using a Taqman array, the Affymetrix Mouse Gene 2.0 ST approach and the MiRwalk 2.0 database, which provides information on miRNA and their predicted target genes, we revealed that muscle specific expression of SOD1G93A modulates relevant molecules of the genetic and epigenetic circuitry of myelin homeostasis in spinal cord of transgenic mice. Our study provides insights into the pathophysiological interplay between muscle and nerve and supports the hypothesis that muscle is a source of signals that can either positively or negatively affect the nervous system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Martina Martini
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Mirko Baranzini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| |
Collapse
|