101
|
Bu DP, Wang JQ, Dhiman TR, Liu SJ. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J Dairy Sci 2007; 90:998-1007. [PMID: 17235178 DOI: 10.3168/jds.s0022-0302(07)71585-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2 cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1 trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2 cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2 cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2 cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.
Collapse
Affiliation(s)
- D P Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100094, PR China
| | | | | | | |
Collapse
|
102
|
Roy A, Ferlay A, Shingfield KJ, Chilliard Y. Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis ontrans-C18:1fatty acids and isomers of conjugated linoleic acid. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/asc200658] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractIt is well established that plant oils reduce milk saturated fatty acid content and enhance concentrations of conjugated linoleic acid (CLA) and trans C18:1in milk fat, but there is increasing evidence to suggest that milk fat CLA responses are often transient and decline over time. It is probable that time dependent adaptations in ruminal biohydrogenation and changes in milk fatty acid composition to lipid supplements are, at least in part, related to the composition of the basal diet. To test this hypothesis, 18 Holstein cows were used in a continuous randomized block design to examine changes in milk fatty acid composition over time in response to plant oils included in diets of variable composition. Cows were randomly allocated to one of three basal diets containing (g/kg dry matter (DM)) maize silage (267) and concentrates (733) (diet C); maize silage (332), grass hay (148) and concentrates (520) (diet M), or grass hay (642) and concentrates (358) (diet H). Basal rations were offered for 21 days, after which diets were supplemented with 50 g sunflower per kg DM (diets C-S and M-S) or 50 g linseed oil per kg DM (diet H-L). Oils were included in all rations incrementally over a five day period (days 0–4), and responses to 50 g/kg DM of the respective oils were evaluated for 17 days (days 4 to 20). Milk fatty acid composition was intensively monitored from days −2 to 20. In contrast to the H-L diet, both C-S and M-S treatments decreased (P<0·05) DM intake, milk fat content and yield, while the C-S diet also reduced (P<0·05) milk yield. Milk fatcis-9,trans-11 CLA andtrans-11 C18:1contents were enhanced on the C-S and M-S treatments but the increases were transient reaching the highest concentrations between days 4 and 6 (cis-9,trans-11 CLA: 1·94 and 2·18 g per 100 g total fatty acids;trans-11 C18:1: 4·88 and 6·23 g per 100 g total fatty acids, respectively) but declined thereafter. In marked contrast, concentrations ofcis-9,trans-11 CLA andtrans-11 C18:1in milk from the H-L diet increased gradually over time, responses that were maintained until the end of the experiment (2·89 and 7·49 g per 100 g total fatty acids, respectively).Decreases in milk fatcis-9,trans-11 CLA andtrans-11 C18:1after day 6 on the M-S and C-S diets were associated with concomitant increases in milk fattrans-10 C18:1content reaching 7·22 and 18·62 g per 100 g total fatty acids on day 18, respectively, whereas concentrations oftrans-10 C18:1in milk on the H-L diet remained low throughout the experiment (0·70 g per 100 g total fatty acids on day 18). Furthermore, milk fattrans-11,cis-13 CLA,trans-11,trans-13 CLA andtrans-12,trans-14 CLA contents were all enhanced on the H-L diet, while the M-S and C-S diets increasedtrans-8,cis-10 CLA,trans-10,cis-12 CLA andtrans-9,cis-11 CLA concentrations. Across all diets, decreases in milk fat content were associated with increases in milktrans-10 C18:1,trans-10,cis-12 andtrans-9,cis-11 CLA concentrations (r2=0·93, 0·88 and 0·89, respectively). In conclusion, the relative abundance oftransC18:1and CLA isomers in milk fat were dependent on the composition of the basal diet, type of plant oil and duration of lipid supplementation, highlighting the challenges in developing nutritional strategies for the production of milk highly enriched with CLA over an extended period of time.
Collapse
|
103
|
Shingfield KJ, Reynolds CK, Lupoli B, Toivonen V, Yurawecz MP, Delmonte P, Griinari JM, Grandison AS, Beever DE. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/asc41820225] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractBased on the potential benefits ofcis-9,trans-11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 × 4 Latin-square experiment with a 2 × 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65 : 35 and 35 : 65; forage : concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2 : 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P< 0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P< 0.05) amounts of C12:0, C14:0, trans C18:1and long chain ≥ C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P< 0.05) levels of C18:0and trans C18:2when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P< 0.05) C18:2(n-6) and long chain ≥ C20 (n-3) PUFA content, but reduced (P< 0.05) the amount of C18:3(n-3). Concentrations oftrans-11 C18:1in milk were independent of forage type, but tended (P< 0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations oftrans-10 C18:1were higher (P< 0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P> 0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) orcis-9,trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P< 0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) andcis-9,trans-11 CLA (2.9 and 1.7 g/100 g fatty acids) concentrations and increase milktrans-9,cis-11 CLA andtrans-10,cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.
Collapse
|
104
|
Ollier S, Robert-Granié C, Bernard L, Chilliard Y, Leroux C. Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J Nutr 2007; 137:560-7. [PMID: 17311940 DOI: 10.1093/jn/137.3.560] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal nutrition considerably affects milk composition that influences its nutritional quality. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of food deprivation (FD) on the expression of 8379 genes in caprine mammary gland using a bovine oligonucleotide microarray. Twelve lactating goats were assigned to 2 groups based on their feeding level (control diet ad libitum vs. 48-h FD). We identified 161 genes whose expression was altered by FD. Most of these genes (88%) were downregulated, suggesting a stress response by the mammary gland. In particular, the decrease in expression of genes involved in milk protein, lactose, and lipid metabolism could contribute together with the shortage of nutrients to the drop in milk protein, lactose, and fat secretion. In addition, this study highlights modification of the expression of at least 14 genes that could be responsible for a slowdown in mammary cell proliferation and differentiation and/or an increase in programmed cell death in response to 48-h FD in goats.
Collapse
Affiliation(s)
- Séverine Ollier
- Unité de Recherches sur les Herbivores, Institut National de la Recherche Agronomique, Theix, 63122 Saint Genès-Champanelle, France
| | | | | | | | | |
Collapse
|
105
|
Sanz Sampelayo M, Chilliard Y, Schmidely P, Boza J. Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumin Res 2007. [DOI: 10.1016/j.smallrumres.2006.09.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Santercole V, Mazzette R, De Santis EPL, Banni S, Goonewardene L, Kramer JKG. Total Lipids of Sarda Sheep Meat that Include the Fatty Acid and Alkenyl Composition and the CLA and Trans-18:1 Isomers. Lipids 2007; 42:361-82. [PMID: 17406931 DOI: 10.1007/s11745-006-3003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/03/2006] [Indexed: 11/26/2022]
Abstract
The total lipids of the longissimus dorsi muscle were analyzed from commercial adult Sarda sheep in Sardina taken from local abattoirs, and in the subsequent year from three local farms in the Sassari region that provided some information on the amount and type of supplements fed to the pasture-fed sheep. The complete lipid analysis of sheep meat included the fatty acids from O-acyl and N-acyl lipids, including the trans- and conjugated linoleic acid (CLA) isomers and the alk-1-enyl ethers from the plasmalogenic lipids. This analysis required the use of a combination of acid- and base-catalyzed methylation procedures, the former to quantitate the O-acyl, N-acyl and alkenyl ethers, and the latter to determine the content of CLA isomers and their metabolites. A combination of gas chromatographic and silver-ion separation techniques was necessary to quantitate all of the meat lipid constituents, which included a prior separation of the trans-octadecenoic acids (18:1) and a separation of fatty acid methyl esters and the dimethylacetals (DMAs) from the acyl and alk-1-enyl ethers, respectively. The alk-1-enyl moieties of the DMAs were analyzed as their stable cyclic acetals. In general, about half of the meat lipids were triacylglycerols, even though excess fat was trimmed from the meat. The higher fat content in the meat appears to be related to the older age of these animals. The variation in the trans-18:1 and CLA isomer profiles of the Sarda sheep obtained from the abattoirs was much greater than in the profiles from the sheep from the three selected farms. Higher levels of 10t-18:1, 7t9c-18:2, 9t11c-18:2 and 10t12c-18:2 were observed in the commercial sheep meat, which reflected the poorer quality diets of these sheep compared to those from the three farms, which consistently showed higher levels of 11t-18:1, 9c11t-18:2 and 11t13c-18:2. In the second study, sheep were provided with supplements during the spring and summer grazing season, which contributed to higher levels of 11t-18:1 and 9c11t-18:2. The farm that provided a small amount of supplements during the spring had the better lipid profile at both time periods. The polyunsaturated fatty acid (PUFA) content was higher in the meat from Sarda sheep from the three farms than in the meat from those sheep obtained from commercial slaughter operations. The plasmalogenic lipid content ranged from 2 to 3% of total lipids, the alk-1-enyl ethers consisted mainly of saturated and monounsaturated moieties, and the trans-18:1 profile was similar to that of the FA. The n-6 (6-8%) and n-3 PUFA (2-3%) contents, the n-6/n-3 ratio (3:1), as well as the saturated fatty acid (SFA) content (42-45%) and the SFA to PUFA ratio (4:1 to 5:1) of the Sarda sheep from the three farms were comparable to sheep meat lipids found in similar commercial operations in Europe. Inclusion of small amounts of supplements for the grazing Sarda sheep resulted in improved quality of sheep meat lipids.
Collapse
Affiliation(s)
- Viviana Santercole
- Faculty of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
107
|
Nielsen TS, Straarup EM, Vestergaard M, Sejrsen K. Effect of silage type and concentrate level on conjugated linoleic acids, trans-C18:1 isomers and fat content in milk from dairy cows. ACTA ACUST UNITED AC 2006; 46:699-712. [PMID: 17169316 DOI: 10.1051/rnd:2006044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 08/22/2006] [Indexed: 11/14/2022]
Abstract
The objective of the study was to examine how the fatty acid composition of milk especially concentrations of conjugated linoleic acids (CLA) and trans-C18:1 isomers and milk fat percentage were affected by silage type and concentrate level. Forty dairy cows were blocked and randomly assigned to one of four diets in a 2 x 2 factorial arrangement of treatments and a six week experimental period. Treatments were total mixed rations with maize (M) or grass (G) silage differing in polyunsaturated fatty acid (PUFA) profile and starch content, combined with a high (H) or a low (L) level of concentrate (with or without grain). Treatments had no significant effect on milk, protein and lactose yield, but energy corrected milk yield, milk fat percentage and fat yield was lower and protein percentage higher for maize compared with grass silage diets. Overall, maize silage diets resulted in higher concentrations of CLA isomers compared with grass silage diets, but there was a significant interaction between silage type and concentrate level for concentrations of cis9,trans11-CLA; trans10,cis12-CLA; trans11-C18:1 and trans10-C18:1. A high level of concentrate increased trans10,cis12-CLA and trans10-C18:1 and reduced cis9,trans11-CLA and trans11-C18:1 when maize but not grass silage was provided. The results suggest that high levels of concentrate (grain) do not significantly alter the pattern of PUFA biohydrogenation in the rumen, the concentration of CLA and trans-C18:1 isomers in milk or cause milk fat depression unless combined with forage naturally high in starch and C18:2n-6 such as maize silage.
Collapse
Affiliation(s)
- Tina S Nielsen
- Danish Institute of Agricultural Sciences, Research Centre Foulum, Department of Animal Health, Welfare and Nutrition, PO Box 50, 8830 Tjele, Denmark.
| | | | | | | |
Collapse
|
108
|
Palmquist D, Griinari J. Milk fatty acid composition in response to reciprocal combinations of sunflower and fish oils in the diet. Anim Feed Sci Technol 2006. [DOI: 10.1016/j.anifeedsci.2006.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
109
|
|
110
|
Andrade P, Schmidely P. Influence of percentage of concentrate in combination with rolled canola seeds on performance, rumen fermentation and milk fatty acid composition in dairy goats. Livest Sci 2006. [DOI: 10.1016/j.livsci.2006.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
111
|
Harvatine KJ, Bauman DE. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J Nutr 2006; 136:2468-74. [PMID: 16988111 DOI: 10.1093/jn/136.10.2468] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Milk fat synthesis in dairy cows can be inhibited by unique fatty acid intermediates that are produced during rumen biohydrogenation. One of these inhibitory intermediates is trans-10, cis-12 conjugated linoleic acid (CLA), and this milk fat depression (MFD) involves a coordinated decrease in mammary expression of lipogenic enzymes. We investigated the sterol response element binding protein (SREBP) transcription factor system in the mammary tissue of cows during MFD, which was induced by a low forage, high oil (LF/HO) diet and trans-10, cis-12 CLA infusion. The LF/HO diet and CLA treatment decreased milk fat yield by 38 and 24%, respectively. Treatments causing MFD decreased expression of SREBP1 and the insulin responsive gene (INSIG) 1, consistent with decreased abundance of active SREBP1. The LF/HO diet also decreased expression of INSIG2 and SREBP cleavage activating protein. In addition, we identified the involvement of thyroid hormone responsive spot 14 (S14) in the regulation of mammary synthesis of milk fat. A broader role for S14 in the trans-10, cis-12 CLA-mediated decrease in fat synthesis was explored by mining publicly available microarray datasets, and we found that mouse adipose expression of S14 was decreased in response to CLA treatment. Overall, the decreased mammary expression of SREBP1, SREBP activation protein, and the coordinated reduction in SREBP1-responsive lipogenic enzymes provides strong support for a central role of SREBP1 in the regulation of milk fat synthesis. In addition, our results provide evidence for an involvement of S14 in mammary regulation of milk fat synthesis and a possible broader role for S14 in the reported antiobesity effects of CLA.
Collapse
|
112
|
Wright TC, Cant JP, Brenna JT, McBride BW. Acetyl CoA Carboxylase Shares Control of Fatty Acid Synthesis with Fatty Acid Synthase in Bovine Mammary Homogenate. J Dairy Sci 2006; 89:2552-8. [PMID: 16772574 DOI: 10.3168/jds.s0022-0302(06)72331-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this research were to determine the flux control coefficients for acetyl CoA carboxylase and fatty acid synthase using an in vitro preparation of bovine mammary homogenate. For an enzyme to be considered rate limiting with the use of metabolic control analysis, its control coefficient would be equal to unity. The hypothesis for this experiment was that the control coefficient for acetyl CoA carboxylase was not equal to unity, and that this enzyme was not, therefore, the rate-limiting step. Mammary tissue was isolated from lactating Holstein cows at slaughter and frozen in liquid nitrogen. Tissue was ground, homogenized, and centrifuged to obtain a postmitochondrial supernatant for use in in vitro incubations containing labeled acetate. Specific inhibitors for acetyl CoA carboxylase and fatty acid synthase were used to fractionally inhibit de novo synthesis for the calculation of flux control coefficients. The composition of fatty acids synthesized in the absence of enzyme inhibitors was similar to the composition of fatty acids in the presence of inhibitors. Calculations following avidin inhibition of acetyl CoA carboxylase determined the flux control coefficient was 0.63 +/- 0.15, which means that 63% of the control of fatty acid synthesis is exerted by acetyl CoA carboxylase. The remaining control (37%) was from fatty acid synthase, which indicates a significant degree of control over the flux of acetate in de novo synthesis resides with this enzyme. The rate-limiting status ascribed to acetyl CoA carboxylase was not supported, because the flux control coefficient was less than unity. Metabolic control analysis, through its use of pathway product measurements, allows for potential interactions in the pathway such as feedback inhibition contribution to the flux control coefficients, which would not otherwise be considered in studies measuring enzyme kinetics with purified enzymes.
Collapse
Affiliation(s)
- T C Wright
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | |
Collapse
|
113
|
Factors influencing proportion and composition of CLA in beef. Meat Sci 2006; 73:258-68. [DOI: 10.1016/j.meatsci.2005.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 11/28/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022]
|
114
|
German JB, Dillard CJ. Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 2006; 46:57-92. [PMID: 16403683 DOI: 10.1080/10408690590957098] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Milkfat is a remarkable source of energy, fat-soluble nutrients and bioactive lipids for mammals. The composition and content of lipids in milkfat vary widely among mammalian species. Milkfat is not only a source of bioactive lipid components, it also serves as an important delivery medium for nutrients, including the fat-soluble vitamins. Bioactive lipids in milk include triacylglycerides, diacylglycerides, saturated and polyunsaturated fatty acids, and phospholipids. Beneficial activities of milk lipids include anticancer, antimicrobial, anti-inflammatory, and immunosuppression properties. The major mammalian milk that is consumed by humans as a food commodity is that from bovine whose milkfat composition is distinct due to their diet and the presence of a rumen. As a result of these factors bovine milkfat is lower in polyunsaturated fatty acids and higher in saturated fatty acids than human milk, and the consequences of these differences are still being researched. The physical properties of bovine milkfat that result from its composition including its plasticity, make it a highly desirable commodity (butter) and food ingredient. Among the 12 major milk fatty acids, only three (lauric, myristic, and palmitic) have been associated with raising total cholesterol levels in plasma, but their individual effects are variable-both towards raising low-density lipoproteins and raising the level of beneficial high-density lipoproteins. The cholesterol-modifying response of individuals to consuming saturated fats is also variable, and therefore the composition, functions and biological properties of milkfat will need to be re-evaluated as the food marketplace moves increasingly towards more personalized diets.
Collapse
Affiliation(s)
- J Bruce German
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
| | | |
Collapse
|
115
|
Bell JA, Griinari JM, Kennelly JJ. Effect of safflower oil, flaxseed oil, monensin, and vitamin E on concentration of conjugated linoleic acid in bovine milk fat. J Dairy Sci 2006; 89:733-48. [PMID: 16428641 DOI: 10.3168/jds.s0022-0302(06)72135-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) refers to a mixture of conjugated octadecadienoic acids of predominantly ruminant origin. The main isomer in bovine milk fat is the cis-9, trans-11 CLA. Interest in CLA increased after the discovery of its health-promoting properties, including potent anticarcinogenic activity. Two experiments were conducted to evaluate dietary strategies aimed at increasing the concentration of CLA in bovine milk fat. Both experiments were organized as a randomized complete block design with a repeated measures treatment structure. In Experiment 1, 28 Holstein cows received either a control diet or one of 3 treatments for a period of 2 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a dry matter (DM) basis, fed as a total mixed ration (TMR). The concentrate was partially replaced in the treatment groups with 24 ppm of monensin (MON), 6% of DM safflower oil (SAFF), or 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M). Average cis-9, trans-11 CLA levels in milk fat after 2 wk of feeding were 0.45, 0.52, 3.36, and 5.15% of total fatty acids for control, MON, SAFF, and SAFF/M, respectively. In Experiment 2, 62 Holstein cows received either a control diet or one of 5 treatment diets for a period of 9 wk. The control diet consisted of 60% forage (barley silage, alfalfa silage, and alfalfa hay) and 40% concentrate on a DM basis, fed as a TMR. The concentrate was partially replaced in the treatment groups with 6% of DM safflower oil (SAFF), 6% of DM safflower oil plus 150 IU of vitamin E/kg of DM (SAFF/E), 6% of DM safflower oil plus 24 ppm of monensin (SAFF/M), 6% of DM safflower oil plus 24 ppm of monensin plus 150 IU of vitamin E/kg of DM (SAFF/ME), or 6% of DM flaxseed oil plus 150 IU of vitamin E/kg of DM (FLAX/E). Average cis-9, trans-11 CLA levels during the treatment period were 0.68, 4.12, 3.48, 4.55, 4.75, and 2.80% of total fatty acids for control, SAFF, SAFF/E, SAFF/M, SAFF/ME, and FLAX/E, respectively. The combination of safflower oil with monensin was particularly effective at increasing milk fat CLA. The addition of vitamin E to the diet partially prevented the depression in milk fat associated with oilseed feeding, but had no significant effect on the concentration of CLA in milk.
Collapse
Affiliation(s)
- J A Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | |
Collapse
|
116
|
Pottier J, Focant M, Debier C, De Buysser G, Goffe C, Mignolet E, Froidmont E, Larondelle Y. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. J Dairy Sci 2006; 89:685-92. [PMID: 16428637 DOI: 10.3168/jds.s0022-0302(06)72131-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Six lactating Holstein cows were assigned to a replicated Latin square design to test the effect of dietary vitamin E on milk fat depression and on the increased production of milk trans-10 C18:1 classically observed when feeding high doses of unsaturated fatty acids with low-fiber diets. Two diets (linseed diet and linseed diet + 12,000 IU of vitamin E/d) were compared during 2 periods of 21 d. The linseed diet presented a forage-to-concentrate ratio of 50:50 and contained extruded linseed (1.86 kg/d) and linseed oil (190 g/d). It was conceived to favor the "trans-11 to trans-10 shift" (low structural value and high level of unsaturated fatty acids). Milk yield and protein content were not affected by the diets. Milk of cows fed the linseed diet presented the typical symptoms of milk fat depression associated with a shift in biohydrogenation pathways: low fat content and high level of trans-10 C18:1. However, the high dose of dietary vitamin E provided significantly increased milk fat content (by 17.93%) and yield (by 15.56%) and decreased trans-10 C18:1 content (by 47.06%). In addition, it managed to significantly increase the daily yields of vaccenic (by 102.56%) and rumenic acids (by 56.67%). However, the sequence of administration of vitamin E influenced its effect, as vitamin E seemed to be more active in limiting the "trans-11 to trans-10 shift" when it was incorporated in the diet simultaneously with the fat. Once the shift had occurred, the subsequent addition of vitamin E was no longer able to completely counteract this process.
Collapse
Affiliation(s)
- J Pottier
- Unité de Biochimie de la Nutrition, Faculté d'Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Roy A, Ferlay A, Chilliard Y. Production of butter fat rich intrans10-C18:1 for use in biomedical studies in rodents. ACTA ACUST UNITED AC 2006; 46:211-8. [PMID: 16597427 DOI: 10.1051/rnd:2006005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/03/2005] [Indexed: 11/14/2022]
Abstract
Trans fatty acids are suspected to be detrimental to health, particularly to cardiovascular function. Trans fatty acids include a wide range of fatty acids, with isomers of C18:1, conjugated and non-conjugated C18:2 as major components. A vaccenic acid (trans11-C18:1) + rumenic acid (cis9,trans11-CLA)-rich butter has been shown previously to exhibit health beneficial effects, but less is known concerning another trans-C18:1 present in hydrogenated vegetable oil-based products and sometimes in milk fat, the trans10-isomer. The present experiment was conducted to produce butters from milk of variable fatty acid composition for use in biomedical studies with rodents, with the overall aim of evaluating the specific effect of trans10-C18:1 and trans11-C18:1 + cis9,trans11-CLA on cardiovascular function. Milks from lactating dairy cows fed two types of maize-based diets supplemented (5% of dry matter)--or not--with sunflower oil were collected, and used to manufacture butters either rich in trans10-C18:1 (14% of total fatty acids, 64.5% of fat content) or rich in trans11-C18:1 + cis9,trans11-CLA (7.4 and 3.1% of total fatty acids, respectively, 68.5% of fat content), or with standard fatty acid composition (70% of fat content). Additionally, total saturated fatty acid percentage was reduced by more than one third in the enriched butters compared with the standard butter. An understanding of the role of nutrition on milk fatty acid composition in cows allows for the production of dairy products of variable lipid content and composition for use in biomedical studies in animal models and human subjects.
Collapse
Affiliation(s)
- Alexandre Roy
- Herbivore Research Unit INRA-Theix, 63122 St-Genès-Champanelle, France
| | | | | |
Collapse
|
118
|
Shingfield KJ, Reynolds CK, Hervás G, Griinari JM, Grandison AS, Beever DE. Examination of the Persistency of Milk Fatty Acid Composition Responses to Fish Oil and Sunflower Oil in the Diet of Dairy Cows. J Dairy Sci 2006; 89:714-32. [PMID: 16428640 DOI: 10.3168/jds.s0022-0302(06)72134-8] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r(2) = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Delta(4-10) and Delta(12-15)), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.
Collapse
Affiliation(s)
- K J Shingfield
- Centre for Dairy Research, Department of Animal Science, The University of Reading, Earley Gate, Reading, RG6 6AT, UK.
| | | | | | | | | | | |
Collapse
|
119
|
McCaughey K, DePeters E, Robinson P, Santos J, Taylor S, Pareas J. Impact of feeding whole Upland cottonseed, with or without cracked Pima cottonseed with increasing addition of iron sulfate, on milk and milk fat composition of lactating dairy cattle. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Loor JJ, Ferlay A, Ollier A, Ueda K, Doreau M, Chilliard Y. High-Concentrate Diets and Polyunsaturated Oils Alter Trans and Conjugated Isomers in Bovine Rumen, Blood, and Milk. J Dairy Sci 2005; 88:3986-99. [PMID: 16230705 DOI: 10.3168/jds.s0022-0302(05)73085-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three Holstein cows were fed a high-concentrate diet (65:35 concentrate to forage) supplemented with either 5% sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) to examine effects on biohydrogenation and fatty acid profiles in rumen, blood plasma, and milk. Diets were fed in a 3 x 3 Latin square with 4-wk periods with grass hay as the forage. Milk yield, dry matter intake, and percentages of milk fat (2.64) and protein (3.22) did not differ. All diets resulted in incomplete hydrogenation of unsaturated fatty acids as indicated by the profiles of 18:1 isomers, conjugated 18:2 isomers, nonconjugated 18:2 isomers, and 18:0 in ruminal fluid. Percentages of 8:0-14:0 and 16:0 in milk fat were greater with FO. Percentage and yield of trans10,cis12-18:2 were small and greater in cows fed SO (0.14%, 0.57 g/d) than FO (0.03%, 0.15 g/d) or LO (0.04%, 0.12 g/d). Percentage and yield of trans10-18:1, however, increased with FO (6.16%) and SO (6.47%) compared with LO (1.65%). Dietary FO doubled percentage of cis11-18:1 in rumen, plasma, and milk fat. Despite a lack of difference in ruminal percentage of trans11-18:1 (10.5%), cows fed FO had greater plasma trans11-18:1 (116 vs. 61.5 microg/mL) but this response did not result in greater trans11-18:1 percentage in milk fat, which averaged 5.41% across diets. Percentage (2.2%) and yield (14.3 g/d) of cis9,trans11-18:2 in milk fat did not differ due to oils. Unique responses to feeding LO included greater than 2-fold increases in percentages of trans13+14-18:1, trans15-18:1, trans16-18:1, cis15-18:1, cis9,trans12-18:2 and trans11,cis15 -18:2 in umen, plasma, and milk, and cis9,trans13-18:2 in plasma and milk. Ruminal 18:0 percentage had the highest positive correlation with milk fat content (r = 0.82) across all diets. When compared with previous data with cows fed high-concentrate diets without oil supplementation, results suggest that greater production of trans10-18:1, cis11-18:1, and trans11,cis15-18:2 coupled with low production of 18:0 in the rumen may be associated with low milk fat content when feeding high-concentrate diets and fish oil. In contrast, SO or LO could lead to low milk fat content by increasing ruminal trans10-18:1 (SO) or trans11,cis15-18:2 and trans9,trans12-18:2 (LO) along with a reduction in mammary synthesis of 8:0-16:0. Simultaneous increases in ruminal trans11-18:1 with fish oil, at a fraction of sunflower oil supplementation, may represent an effective strategy to maintain cis9,trans11-18:2 synthesis in mammary while reducing milk fat output and sparing energy.
Collapse
Affiliation(s)
- J J Loor
- Herbivore Research Unit INRA-Theix, 63122 St-Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
121
|
Chichlowski MW, Schroeder JW, Park CS, Keller WL, Schimek DE. Altering the Fatty Acids in Milk Fat by Including Canola Seed in Dairy Cattle Diets. J Dairy Sci 2005; 88:3084-94. [PMID: 16107397 DOI: 10.3168/jds.s0022-0302(05)72990-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 +/- 11.9 kg body weight and 28 +/- 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (> or = 18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without affecting milk yield or composition of milk.
Collapse
Affiliation(s)
- M W Chichlowski
- Department of Animal and Range Sciences, North Dakota State University, Fargo, 58105, USA
| | | | | | | | | |
Collapse
|
122
|
Saebø A, Saebø PC, Griinari JM, Shingfield KJ. Effect of abomasal infusions of geometric isomers of 10,12 conjugated linoleic acid on milk fat synthesis in dairy cows. Lipids 2005; 40:823-32. [PMID: 16296401 DOI: 10.1007/s11745-005-1444-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The trans-10,cis-12 isomer of conjugated linoleic acid (CLA) decreases TAG accumulation in 3T3-L1 adipocytes, reduces lipid accretion in growing animals, and inhibits milk fat synthesis in lactating mammals. However, there is evidence to suggest that other FA may also exert antilipogenic effects. In the current experiment, the effects of geometric isomers of 10,12 CLA on milk fat synthesis were examined using four Holstein-British Friesian cows in a 4 x 4 Latin Square experiment with 14-d periods. Treatments consisted of abomasal infusions of skim milk, or skim milk containing trans-10,cis-12 CLA (T1), trans-10,trans-12 CLA (T2), or a mixture of predominantly 10,12 isomers containing (g/l00 g) trans-10,cis-12 (35.0), cis-10,trans-12 (23.2), trans-10,trans-12 (14.9), and cis-10,cis-12 (5.1). CLA supplements were prepared from purified ethyl linoleate and infused as nonesterified FA. Infusions were conducted over a 4-d period with a 10-d interval between treatments and targeted to deliver 4.5 g/d of 10,12 CLA isomers. Compared with the control, trans-10, trans-12 CLA had no effect (P> 0.05) on milk fat yield, whereas treatments T1 and T3 depressed (P < 0.05) milk fat content (19.8 and 22.9%, respectively) and decreased milk fat output (20.8 and 21.3%, respectively). Comparable reductions in milk fat synthesis to 4.14 and 1.80 g trans-10,cis-12/d supplied by treatments T1 and T3 indicate that other 10,12 geometric isomers of CLA have the potential to exert antilipogenic effects. The relative abundance of cis-10,trans-12 CLA in treatment T3 and the low transfer efficiency of this isomer into milk suggest that cis-10,trans-12 CLA was the active component..
Collapse
|
123
|
Dannenberger D, Nuernberg K, Nuernberg G, Scollan N, Steinhart H, Ender K. Effect of pasture vs. concentrate diet on CLA isomer distribution in different tissue lipids of beef cattle. Lipids 2005; 40:589-98. [PMID: 16149738 DOI: 10.1007/s11745-005-1420-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study examined the effects of feeding pasture vs. concentrate on the distribution of CLA isomers in the lipids of longissimus and semitendinosus muscle, liver and heart muscle, and subcutaneous fat in beef bulls. Sixty-four German Holstein and German Simmental bulls were randomly allocated to either an indoor concentrate system or periods of pasture feeding followed by a finishing period on a concentrate containing linseed to enhance their beef content of n-3 PUFA and CLA. The concentrations of CLA isomers in the different tissues were determined by GC and silver ion HPLC. The diet affected the distribution of individual CLA isomers in the lipids of the different tissues. The concentration (mg/100 g fresh tissue) of the most prominent isomer, cis-9,trans-11 18:2, was increased up to 1.5 times in liver and heart tissue of bulls fed on pasture as compared with concentrate. However, no diet effect was observed for cis-9,trans-11 18:2 in the lipids of longissimus muscle and subcutaneous fat. In all tissues, the second-most abundant CLA isomer in concentrate-fed bulls was trans-7,cis-9 18:2. In contrast, trans-11,cis-13 18:2 was the second-most abundant CLA isomer in all investigated tissue lipids of pasture-fed bulls. The concentration of the trans-11,cis-13 18:2 isomer was up to 15 times higher in tissues of pasture-fed bulls as compared with concentrate-fed animals. Furthermore, diet affected the concentrations of the CLA trans,trans 18:2 isomers. Pasture feeding significantly increased the concentrations of some trans,trans 18:2 isomers as compared with concentrate, predominantly trans-12,trans-14 18:2 and trans-11,trans-13 18:2. Overall, pasture feeding resulted in significantly increased concentrations of the sum of CLA isomers in the lipids of longissimus muscle, subcutaneous fat, heart and liver muscle of German Holstein and German Simmental bulls, but not in semitendinosus muscle.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Department of Muscle Biology and Growth, Research Institute for Biology of Farm Animals, D-18196 Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Zheng HC, Liu JX, Yao JH, Yuan Q, Ye HW, Ye JA, Wu YM. Effects of Dietary Sources of Vegetable Oils on Performance of High-Yielding Lactating Cows and Conjugated Linoleic Acids in Milk. J Dairy Sci 2005; 88:2037-42. [PMID: 15905434 DOI: 10.3168/jds.s0022-0302(05)72880-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was conducted to examine the effects of dietary supplementation with vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acid (CLA) content in milk fat. Twelve lactating Holstein cows in early lactation (30 to 45 d postpartum) were used in a triple 4 x 4 Latin square design. In each period, the cows in each group were fed the same basal diet and received one of the following treatments: 1) control (without oil), 2) 500 g of cottonseed oil, 3) 500 g of soybean oil, and 4) 500 g of corn oil. Each experimental period lasted for 3 wk, with the first 2 wk used for adaptation to the diet. Supplementation with vegetable oils tended to increase milk yield, with the highest milk yield in the cottonseed oil group (35.0 kg/d), compared with the control (34.4 kg/d). Milk fat percentage was decreased, but there were few effects on percentage and yield of milk protein as well as milk fat yield. The cows fed added soybean oil produced milk with the highest content of trans-11 C(18:1) (23.8 mg/g of fat), which was twice that of the control (12.6 mg/g of fat). Content of cis-9, trans-11 CLA in milk fat increased from 3.5 mg/g in the control to 6.0, 7.1, and 10.3 mg/g for the cows fed oils from cottonseed, corn, and soybean, respectively. A significant linear relationship existed between trans-11 C(18:1) and cis-9, trans-11 CLA. Supplementation with oils doubled the content of total fatty acids in blood plasma, with little difference between different vegetable oil sources. Octadecenoic acid content was significantly higher in blood plasma of animals fed added oils from cottonseed and soybean than those fed with corn oil and control. The plasma trans-11 C(18:1) content was significantly higher in the oil-added animals than in control. Supplementation of vegetable oils tended to improve milk production of lactating cows, and the CLA content in milk fat was significantly increased. Soybean oil seemed to be the optimal source to increase CLA production.
Collapse
Affiliation(s)
- H C Zheng
- Institute of Dairy Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Nuernberg K, Dannenberger D, Nuernberg G, Ender K, Voigt J, Scollan N, Wood J, Nute G, Richardson R. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.livprodsci.2004.11.036] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
126
|
Bernard L, Rouel J, Leroux C, Ferlay A, Faulconnier Y, Legrand P, Chilliard Y. Mammary Lipid Metabolism and Milk Fatty Acid Secretion in Alpine Goats Fed Vegetable Lipids. J Dairy Sci 2005; 88:1478-89. [PMID: 15778317 DOI: 10.3168/jds.s0022-0302(05)72816-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fourteen Alpine goats at midlactation were fed a diet of hay and concentrate (55:45), without (control) or with formaldehyde-treated linseed (FLS) or oleic sunflower oil (OSO) at 11.2 or 3.5% of dry matter intake, respectively, in a 3 x 3 Latin Square design with three 3-wk periods. Milk yield was lower in goats fed FLS than control or OSO (2.13 vs. 2.32 kg/d). Milk fat content was higher with FLS or OSO than control (40.8 vs. 33.8 g/kg). Formaldehyde-treated linseed and OSO caused a significant decrease (23 and 18%, respectively) of C10 to C17 fatty acids secretion compared with control. The secretion of cis-9 C18:1 and cis-9, trans-11 C18:2 were increased 1.44- and 1.54-fold for FLS and 1.78- and 1.36-fold for OSO, compared with control. The C18:3 (n-3) secretion was increased 2.61-fold with FLS compared with control. Milk cis-9 C14:1/C14:0, cis-9 C16:1/C16:0, and cis-9 C18:1/C18:0 ratios decreased with the supplemented diets compared with control. Mammary stearoyl-CoA desaturase mRNA and activity were decreased by the lipid supplements, whereas no significant change was observed for acetyl-CoA carboxylase and fatty acid synthase. The activities of glucose-6-phosphate dehydrogenase, malic enzyme, and glycerol-3-phosphate dehydrogenase were not affected by the lipid supplements. Mammary lipoprotein lipase mRNA increased with OSO, whereas lipoprotein lipase activity tended to decrease with FLS compared with control. Milk lipoprotein lipase activity sharply decreased with lipid supplement (by 59 and 71%, for FLS and OSO, respectively). The changes in milk fatty acid profile due to FLS and OSO supplements were partly related to changes in the levels of mammary enzyme activities or mRNA.
Collapse
Affiliation(s)
- L Bernard
- Unité de Recherche sur les Herbivores, Institut National de la Recherche Agronomique (INRA), Theix, 63 122 St. Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Loor J, Ueda K, Ferlay A, Chilliard Y, Doreau M. Intestinal flow and digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy cows fed a high-concentrate diet supplemented with fish oil, linseed oil, or sunflower oil. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
128
|
Effects of ruminal or duodenal supply of fish oil on milk fat secretion and profiles of trans-fatty acids and conjugated linoleic acid isomers in dairy cows fed maize silage. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2004.12.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
129
|
Conjugated linoleic acid concentration in M. Longissimus dorsi from heifers offered sunflower oil-based concentrates and conserved forages. Meat Sci 2005; 69:509-18. [DOI: 10.1016/j.meatsci.2004.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 09/09/2004] [Accepted: 09/18/2004] [Indexed: 11/20/2022]
|
130
|
Schmidely P, Morand-Fehr P, Sauvant D. Influence of extruded soybeans with or without bicarbonate on milk performance and fatty acid composition of goat milk. J Dairy Sci 2005; 88:757-65. [PMID: 15653542 DOI: 10.3168/jds.s0022-0302(05)72739-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of extruded soybeans (ESB) included at 0, 10, or 20% of dry matter (DM) of the diet in combination with sodium bicarbonate (0 vs. 1% bicarbonate added to DM) on rumen fermentation characteristics, production parameters, and fatty acid (FA) profiles of milk fat were examined in 30 midlactation goats and 6 rumen-cannulated goats fed high-concentrate diets (30:70 forage-to-concentrate ratio) ad libitum in a 3 x 2 factorial design. Diets were fed as total mixed rations. The trial lasted 13 wk with the final 9 wk as the test period. Milk yield and composition were recorded each week throughout the trial. Individual samples of milk were taken in wk 4, 7, 10, 11, and 13 to determine FA profile of milk fat. Dry matter intake and intake of net energy for lactation were not affected by dietary treatments. Feeding ESB did not modify ruminal pH or volatile fatty acids concentration in the rumen fluid, but it increased the molar proportion of propionate. Feeding ESB increased fat-corrected milk, milk fat content, and fat yield compared with the control diets. There was no change in milk protein content when ESB were fed. Feeding ESB increased the proportions of oleic, linoleic, and linolenic acids in milk fat at the expense of most of the saturated FA. It also increased the n-6 to n-3 FA ratio of milk. The largest changes in milk yield and milk composition were generally obtained with ESB included at 20% of DM. The addition of sodium bicarbonate tended to increase ruminal pH, VFA concentrations in the rumen fluid, and the molar proportions of acetate. The addition of sodium bicarbonate increased milk fat content and fat yield, with no change in milk FA composition. It is concluded that during midlactation, the inclusion of ESB to 20% of DM prevented low milk fat content for goats fed high-concentrate diets, with no decrease in milk protein content. The addition of sodium bicarbonate may enhance the effects of ESB on milk fat content and fat yield.
Collapse
Affiliation(s)
- P Schmidely
- Unité Mixte de Recherches Physiologie de la Nutrition et Alimentation, Département des Sciences Animales, Institut National Agronomique, Paris-Grignon, 75231 Paris, France.
| | | | | |
Collapse
|
131
|
Loor JJ, Ferlay A, Ollier A, Doreau M, Chilliard Y. Relationship Among Trans and Conjugated Fatty Acids and Bovine Milk Fat Yield Due to Dietary Concentrate and Linseed Oil. J Dairy Sci 2005; 88:726-40. [PMID: 15653539 DOI: 10.3168/jds.s0022-0302(05)72736-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effects on fatty acid profiles and milk fat yield due to dietary concentrate and supplemental 18:3n-3 were evaluated in 4 lactating Holstein cows fed a low- (35:65 concentrate:forage; L) or high- (65:35; H) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square with four 4-wk periods was used. Milk yield and dry matter intake averaged 26.7 and 20.2 kg/d, respectively, across treatments. Plasma acetate and beta-hydroxybutyrate decreased, whereas glucose, nonesterified fatty acids, and leptin increased with high-concentrate diets. Milk fat percentage was lower in cows fed high-concentrate diets (2.31 vs. 3.38), resulting in decreases in yield of 11 (HC) and 42% (HCO). Reduced yields of 8:0-16:0 and cis9-18:1 fatty acids accounted for 69 and 17%, respectively, of the decrease in milk fat yield with HC vs. LC (-90 g/d), and for 26 and 33%, respectively, of the decrease with HCO vs. LCO (-400 g/d). Total trans-18:1 yield increased by 25 (HCO) and 59 (LCO) g/d with oil addition. Trans10-18:1 yield was 5-fold greater with high-concentrate diets. Trans11-18:1 increased by 13 (HCO) and 19 (LCO) g/d with oil addition. Trans13+14-18:1 yield increased by 9 (HCO) and 18 (LCO) g/d with linseed oil. Yield of total conjugated linoleic acids (CLA) in milk averaged 6 g/d with LC or HC compared with 14 g/d with LCO or HCO. Cis9,trans11-CLA yield was not affected by concentrate level but increased by 147% in response to oil. Feeding oil increased yields of trans11,cis13-, trans11,trans13-, and trans,trans-CLA, primarily with LCO. Trans10,cis12-CLA yield (average of 0.08 g/d) was not affected by treatments. Yield of trans11,cis15-18:2 was 1 g/d in cows fed LC or HC and 10 g/d with LCO or HCO. Yields of cis9,trans11-18:2, cis9,trans12-18:2, and cis9,trans13-18:2 were positively correlated (r = 0.74 to 0.94) with yields of trans11-18:1, trans12-18:1, and trans13+14-18:1, respectively. Plasma concentrations of biohydrogenation intermediates with concentrate or linseed oil level followed similar changes as those in milk fat. Milk fat depression was observed when HC induced an increase in trans10-18:1 yield. A correlation of 0.84 across 31 comparisons from 13 published studies, including the present one, was found among the increase in percentage of trans10-18:1 in milk fat and decreased milk fat yield. We observed, however, more drastic milk fat depression when HCO increased yields of total trans-18:1, trans11,cis15-18:2, trans isomers of 18:3, and reduced yields of 18:0 plus cis9-18:1.
Collapse
Affiliation(s)
- J J Loor
- Herbivore Research Unit INRA-Theix, 63122 St.-Genes Champanelle, France.
| | | | | | | | | |
Collapse
|
132
|
Palmquist DL, Lock AL, Shingfield KJ, Bauman DE. Biosynthesis of conjugated linoleic acid in ruminants and humans. ADVANCES IN FOOD AND NUTRITION RESEARCH 2005; 50:179-217. [PMID: 16263431 DOI: 10.1016/s1043-4526(05)50006-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Donald L Palmquist
- Department of Animal Sciences, Ohio Agricultural Research and Development Center/The Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | |
Collapse
|
133
|
Piperova LS, Moallem U, Teter BB, Sampugna J, Yurawecz MP, Morehouse KM, Luchini D, Erdman RA. Changes in Milk Fat in Response to Dietary Supplementation with Calcium Salts of Trans-18:1 or Conjugated Linoleic Fatty Acids in Lactating Dairy Cows. J Dairy Sci 2004; 87:3836-44. [PMID: 15483168 DOI: 10.3168/jds.s0022-0302(04)73523-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Milk fat was investigated in lactating dairy cows fed diets supplemented with Ca salts of trans fatty acids (Ca-tFA) or Ca salts of conjugated linoleic acids (Ca-CLA). Forty-five Holstein cows (115 days in milk) were fed a control diet (51% forage; dry matter basis) supplemented with 400 g of EnerG II (Ca salts of palm oil fatty acids) for 2 wk; subsequently, 5 groups of 9 cows each were assigned for 4 wk to the control diet or diets containing 100 g of Ca-CLA or 100, 200, or 400 g of Ca-tFA in a randomized block design. Treatments had no effect on dry matter intake, milk production, protein, lactose, or somatic cell count. Milk fat percentage was reduced from 3.39% in controls to 3.30, 3.04, and 2.98%, respectively, by the Ca-tFA diets and to 2.54% by the Ca-CLA diet. Milk fat yield (1.24 kg/d in controls) was decreased by 60, 130, and 190 g/d with increasing dose of Ca-tFA and by 290 g/d with the Ca-CLA supplement. Consistent with increased endogenous synthesis of cis-9-containing CLA from precursors provided by the Ca-tFA diets, total CLA were similar in milk of cows fed Ca-CLA or Ca-tFA. Compared with controls, the Ca-CLA diet increased trans-10, cis-12-18:2 yield in milk, without altering levels of trans-18:1 isomers. In contrast, yields of most trans-18:1 isomers were elevated in milk of cows fed Ca-tFA diets, whereas yields of trans-10, cis-12-18:2 remained similar to control values. We conclude that milk fat depression can occur without an increase in trans-10, cis-12-18:2 in milk and that other components, perhaps the trans-10-18:1 isomer, may be involved.
Collapse
Affiliation(s)
- L S Piperova
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Dannenberger D, Nuernberg G, Scollan N, Schabbel W, Steinhart H, Ender K, Nuernberg K. Effect of diet on the deposition of n-3 fatty acids, conjugated linoleic and C18:1trans fatty acid isomers in muscle lipids of German Holstein bulls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:6607-6615. [PMID: 15479030 DOI: 10.1021/jf049511l] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study examined the effects of feeding diets rich in either n-3 or n-6 polyunsaturated fatty acids (PUFA) on the fatty acid composition of longissimus muscle in beef bulls. Thirty-three German Holstein bulls were randomly allocated to either an indoor concentrate system or periods of pasture feeding (160 days) followed by a finishing period on a concentrate containing linseed to enhance the contents of n-3 PUFA and conjugated linoleic acids (CLA) in beef muscle. The relative proportion and concentration (mg/100 g fresh muscle) of n-3 fatty acids in the phospholipid and triglyceride fractions were significantly increased (p < or = 0.05) in muscle lipids of pasture-fed bulls. The pasture feeding affected the distribution of individual CLA isomers in the muscle lipids. The proportion of the most prominent isomer, CLA cis-9,trans-11, was decreased from 73.5 to 65.0% of total CLA in bulls fed on concentrate as compared to pasture. The second most abundant CLA isomers were CLA trans-7,cis-9 and CLA trans-11,cis-13 in bulls fed on concentrate and pasture, respectively. Diet had no effect on the concentration of C18:1 trans-11. In contrast, the concentration of the C18:1 trans-13/14, trans-15, and trans-16 isomers in the muscle lipids was up to two times higher in pasture-fed as compared to concentrate-fed bulls. Pasture feeding enhanced the concentration of n-3 fatty acids, but the diet had no effect on the concentration of CLA cis-9,trans-11.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Department of Muscle Biology and Growth, Research Institute for Biology of Farm Animals, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
135
|
Peterson DG, Matitashvili EA, Bauman DE. The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J Nutr 2004; 134:2523-7. [PMID: 15465741 DOI: 10.1093/jn/134.10.2523] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The trans-10, cis-12 CLA isomer has been causally related to milk fat depression in dairy cows, although no molecular mechanism has been established. Sterol response element-binding protein (SREBP)-1 is a transcription factor synthesized and retained as a membrane-bound precursor in the endoplasmic reticulum and proteolytically cleaved to release an active fragment that migrates to the nucleus to stimulate lipogenic gene transcription. Certain lipid molecules (i.e., PUFA) were shown to inhibit the proteolytic activation of SREBP-1 in rodent liver models, although there has been no previous demonstration of its presence in bovine tissues or in mammary tissue of any species. We used a bovine mammary cell line (MAC-T) to assess the involvement of SREBP-1 in the regulation of lipid synthesis in bovine mammary cells by trans-10, cis-12 CLA. Treatment with 75 micromol/L trans-10, cis-12 CLA for 48 h resulted in an approximately 50% reduction of (14)C-acetate incorporation into total lipid and corresponding reductions in mRNA abundance for acetyl CoA carboxylase, fatty acid synthase, and stearoyl CoA desaturase, whereas cis-9, trans-11 CLA had no effect on these genes. There was no reduction in SREBP-1 mRNA or precursor protein, but the abundance of the activated nuclear fragment of the protein was significantly reduced by treatment with 75 micromol/L trans-10, cis-12 CLA. These results indicate that trans-10, cis-12 CLA reduces lipid synthesis in the bovine mammary gland through inhibition of the proteolytic activation of SREBP-1 and subsequent reduction in transcriptional activation of lipogenic genes.
Collapse
Affiliation(s)
- Daniel G Peterson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
136
|
Park Y, Storkson JM, Liu W, Albright KJ, Cook ME, Pariza MW. Structure–activity relationship of conjugated linoleic acid and its cognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fully differentiated 3T3-L1 adipocytes. J Nutr Biochem 2004; 15:561-8. [PMID: 15350989 DOI: 10.1016/j.jnutbio.2004.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Revised: 03/24/2004] [Accepted: 04/19/2004] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) reduces body fat in part by inhibiting the activity of heparin-releasable lipoprotein lipase (HR-LPL) activity in adipocytes, an effect that is induced by the trans-10,cis-12 CLA isomer. In this study we used a series of compounds that are structurally related to CLA (i.e., CLA cognates) to investigate the structural basis for this phenomenon. None of the 18:1 CLA cognates that were tested, nor trans-9,cis-12 18:2, cis-12-octadecen-10-ynoic acid (10y,cis-12) or 11-(2'-(n-pentyl)phenyl)-10-undecylenic acid (designated P-t10), exhibited any significant effect on HR-LPL activity. Among the CLA derivatives (alcohol, amide, and chloride) that were tested, only the alcohol form inhibited HR-LPL activity, although to a lesser extent than CLA itself. In addition, intracellular TG was reduced only by trans-10,cis-12 CLA and the alcohol form of CLA. Hence it appears that the trans-10,cis-12 conjugated double bond in conjunction with a carboxyl group at C-1 is required for inhibition of HR-LPL activity, and that an alcohol group can partially substitute for the carboxyl group. We also studied glycerol release from the cells, observing that this was enhanced by trans-10 18:1, trans-13 18:1, cis-12 18:1, cis-13 18:1, P-t10 but was reduced by cis-9 18:1, the alcohol and amide forms of CLA or 10y,cis-12. Accordingly the structural feature or features involved in regulating lipolysis appear to be more complex. Despite enhancing lipolysis in cultured 3T3-L1 adipocytes, trans-10 18:1 did not reduce body fat gain when fed to mice.
Collapse
Affiliation(s)
- Yeonhwa Park
- Food Research Institute, University of Wisconsin-Madison, 1925 Willow Drive, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
137
|
Loor JJ, Ueda K, Ferlay A, Chilliard Y, Doreau M. Biohydrogenation, Duodenal Flow, and Intestinal Digestibility of Trans Fatty Acids and Conjugated Linoleic Acids in Response to Dietary Forage:Concentrate Ratio and Linseed Oil in Dairy Cows. J Dairy Sci 2004; 87:2472-85. [PMID: 15328271 DOI: 10.3168/jds.s0022-0302(04)73372-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Duodenal flows of hydrogenation intermediates in response to changes in dietary forage:concentrate ratio (F:C) and linseed oil were evaluated using 4 lactating Holstein cows fed a low (65:35 forage to concentrate) or high (35:65) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square design was implemented for 5 wk. Lower hydrogenation of 18:2n-6 and 18:3n-3 was observed with HC, but it increased with LCO or HCO. Duodenal flow of total conjugated linoleic acids (CLA) increased by 1.40 (LCO) to 3.01 (HCO) g/d with linseed oil. This response was associated with greater flows of cis9,trans11- (+0.21 to +0.55 g/d), trans11,cis13- (+0.33 to +0.36), trans11,trans13- (+1.01 to +1.15 g/d), and trans,trans-CLA (+0.12 to +0.72 g/d). Trans10,cis12-CLA flow averaged 0.08 g/d and was not affected by F:C or oil. trans11,cis15-18:2 flow increased by 8.5 (LCO) to 62 (HCO) g/d in response to linseed oil. Total trans-18:1 flow was 37 g/d in cows fed LC and increased to 81 g/d with HC. Feeding oil increased total trans-18:1 to the greatest extent with HCO. Flow of trans10-18:1 was lower with LC than with HC (1.46 vs. 20 g/d). Linseed oil increased trans11-18:1 flow by 40 (LCO) to 113 g/d (HCO). Feeding LCO and HCO also increased flows of trans6+7+8-, trans13+14-, trans15-, and trans16-18:1. Apparent intestinal digestibility of trans-18:1 isomers was largely unaffected by concentrate level and ranged between 67 and 95%. Linseed oil increased digestibility of nearly all isomers by 3 to 16 percentage units. Digestibility of cis9,trans11-CLA was greater in cows fed HC (55%) compared with cows fed LC (32%) and was not affected by linseed oil. Data suggest that high concentrate diets enhanced ruminal outflow of trans10-18:1. We provide initial in vivo evidence that supplemental 18:3n-3 is hydrogenated to trans11,cis15-18:2, trans11-18:1, trans13+14-18:1, trans15-18:1, trans6+7+8-18:1, and trans16-18:1 primarily.
Collapse
Affiliation(s)
- J J Loor
- Unité de Recherches sur les Herbivores, INRA-Theix, 63122 St.- Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
138
|
Kramer JKG, Cruz-Hernandez C, Deng Z, Zhou J, Jahreis G, Dugan MER. Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. Am J Clin Nutr 2004; 79:1137S-1145S. [PMID: 15159247 DOI: 10.1093/ajcn/79.6.1137s] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chemistry of conjugated fatty acids, specifically octadecadienoic acids (18:2; commonly referred to as conjugated linoleic acid, or CLA), has provided many challenges to lipid analysts because of their unique physical properties and the many possible positional and geometric isomers. After the acid-labile properties of CLAs during analytic procedures were overcome, it became evident that natural products, specifically dairy fats, contain one dominant (c9,t11-CLA), 3 intermediate (t7,c9-, t9,c11-, and t11,c13-CLA), and up to 20 more minor CLA isomers. The best analytic techniques to date include a combination of gas chromatography that uses 100-m highly polar capillary columns, silver ion-HPLC, and a combination of silver ion-thin-layer chromatography and gas chromatography to analyze the CLA and trans 18:1 isomers, because some of them serve as precursors of CLA in biological systems. These analytic techniques have assisted commercial suppliers to prepare pure CLA isomers and have permitted the evaluation of individual CLA isomers for their nutritional and biological activity in animal and human systems. It is increasingly evident that different CLA isomers have distinctly different physiologic and biochemical properties. These techniques are essential to evaluate dairy fats for their CLA content, to design experimental diets to increase the amount of CLA in dairy fats, and to determine the CLA profile in these CLA-enriched dairy fats. These improved techniques are used to evaluate the CLA profile in pork products from pigs fed different commercial CLA mixtures.
Collapse
Affiliation(s)
- John K G Kramer
- Food Research Program, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
139
|
AbuGhazaleh AA, Schingoethe DJ, Hippen AR, Kalscheur KF. Conjugated linoleic acid increases in milk when cows fed fish meal and extruded soybeans for an extended period of time. J Dairy Sci 2004; 87:1758-66. [PMID: 15453490 DOI: 10.3168/jds.s0022-0302(04)73331-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the effect of feeding a conjugated linoleic acid (CLA) stimulating diet for an extended period of time on milk cis-9, trans-11 CLA and vaccenic acid (VA) concentrations. Twenty cows (16 Holstein and 4 Brown Swiss) were divided into 2 groups (n = 10 per treatment) for a 10-wk study. Cows in group 1 were fed a traditional corn-soybean-basal diet (control), while those in group 2 were fed a blend of 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans (FMESB) to achieve higher milk fat cis-9, trans-11 CLA and VA. Diets were formulated to contain 18% CP and were composed (dry matter basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Dry matter intake was not affected by diet. Milk production increased in cows fed the FMESB diet. Milk fat and milk protein percentages decreased with the FMESB diet; however, milk fat and protein yields were not affected by treatments. Milk fat cis-9, trans-11 CLA and VA concentration (g/100 of fatty acids) and yield (g/d) were 2.5-fold greater for cows fed the FMESB diet over the 10 wk of fat supplementation. For cows fed the FMESB diet, contents of milk fat cis-9, trans-11 CLA and VA gradually increased from the first week of fat supplementation, reached the highest concentrations in wk 3, then gradually decreased during wk 4 and 5 and then remained relatively constant until wk 10. The concentration of cis-9, trans-11 CLA and VA from the control diet was relatively constant over the 10 wk of fat supplementation. Concentrations of cis-9, trans-11 CLA and VA in milk fat can be increased within a week by feeding a blend of fish meal and extruded soybeans, and that increase remains relatively constant after wk 5 of fat supplementation.
Collapse
Affiliation(s)
- A A AbuGhazaleh
- Dairy Science Department, South Dakota State University, Brookings 57007-0647, USA
| | | | | | | |
Collapse
|
140
|
O'Shea M, Bassaganya-Riera J, Mohede ICM. Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 2004; 79:1199S-1206S. [PMID: 15159257 DOI: 10.1093/ajcn/79.6.1199s] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro studies of the use of immune cells and animal models demonstrate that conjugated linoleic acid (CLA), a lipid, modulates immune function. In addition, recent publications demonstrate that 2 active CLA isomers (ie, cis-9,trans-11 CLA and trans-10,cis-12 CLA) modulate immune function in humans. Aspects of both the innate and adaptive immune responses are affected by dietary CLA supplementation. CLA consists of a mixture of isomers, which reduced immune-induced wasting and enhanced ex vivo lymphocyte proliferation in broilers and decreased tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) production in rat models. In mice, ex vivo lymphocyte proliferation and IL-2 production were increased. Furthermore, evidence suggests that the cis-9,trans-11 and trans-10,cis-12 CLA isomers exert distinct effects on immune function. Specifically, these 2 isomers have differential effects on specific T cell populations and immunoglobulin subclasses in animal and human studies. Herein, a systematic review of the literature and relevant new data are presented with an aim to compare data and to present an overview covering the innate and adaptive components of the immune response that are regulated by CLA. In addition, potential mechanisms of action are discussed and the need for future studies on the immunomodulatory properties of CLA are outlined in detail. The understanding of the mechanism(s) by which CLA increases immune function will aid in the development of nutritionally based therapeutic applications to augment host resistance against infectious diseases and to treat immune imbalances, which result in inflammatory disorders, allergic reactions, or both.
Collapse
Affiliation(s)
- Marianne O'Shea
- Loders Croklaan, Lipid Nutrition, Channahon, IL 60410, USA. marianne.o'
| | | | | |
Collapse
|
141
|
Collomb M, Sollberger H, Bütikofer U, Sieber R, Stoll W, Schaeren W. Impact of a basal diet of hay and fodder beet supplemented with rapeseed, linseed and sunflowerseed on the fatty acid composition of milk fat. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2003.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
142
|
Perfield JW, Saebø A, Bauman DE. Use of Conjugated Linoleic Acid (CLA) Enrichments to Examine the Effects of trans-8, cis-10 CLA, and cis-11, trans-13 CLA on Milk-Fat Synthesis. J Dairy Sci 2004; 87:1196-202. [PMID: 15290967 DOI: 10.3168/jds.s0022-0302(04)73269-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) supplements have typically been comprised of 4 isomers (trans-8, cis-10; cis-9, trans-11; trans-10, cis-12; and cis-11, trans-13 CLA). Abomasal infusion of pure isomers has shown that trans-10, cis-12 CLA is a potent inhibitor of milk-fat synthesis, whereas cis-9, trans-11 CLA has no effect. However, there appear to be additional fatty acids that inhibit milk-fat synthesis, and the objective of this study was to investigate the effects of additional CLA isomers present in CLA supplements. Four rumen fistulated Holstein cows (141+/-8 DIM, mean+/-SE) were randomly assigned in a 4 x 4 Latin square experiment. Treatments were abomasal infusion of (1) skim milk (negative control), (2) trans-10, cis-12 CLA supplement (positive control), (3) trans-8, cis-10 CLA supplement, and (4) cis-11, trans-13 CLA supplement. Treatments 2 through 4 were targeted to provide 4 g/d of the CLA isomer of interest. The trans-8, cis-10 CLA supplement had no effect on milk-fat yield, whereas the trans-10, cis-12 CLA supplement reduced milk-fat yield by 35%. The cis-11, trans-13 CLA supplement contained some trans-10, cis-12 CLA, and when data were compared to the positive control treatment group, it was obvious that cis-11, trans-13 CLA also had no effect on milk-fat synthesis. Milk-fat content of specific CLA isomers was significantly elevated within respective treatment groups. Milk yield, DMI, and milk protein yield were unaffected by treatment. Overall, trans-10, cis-12 CLA reduced milk-fat synthesis, whereas the other major isomers present in CLA supplements (trans-8, cis-10 CLA and cis-11, trans-13 CLA) had no effect.
Collapse
Affiliation(s)
- J W Perfield
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
143
|
Collomb M, Sieber R, Bütikofer U. CLA isomers in milk fat from cows fed diets with high levels of unsaturated fatty acids. Lipids 2004; 39:355-64. [PMID: 15357023 DOI: 10.1007/s11745-004-1239-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The concentrations of CLA isomers were determined by Ag+ -HPLC in the milk fat of cows fed a control diet consisting of hay ad libitum and 15 kg of fodder beets or this diet supplemented with oilseeds containing either high levels of oleic acid (rapeseed), linoleic acid (sunflower seed), or alphalinolenic acid (linseed). Highly significant (P < or = 0.001) correlations were found between the daily intakes of oleic acid and the concentration of the CLA isomer trans-7,cis-9 in milk fat; of linoleic acid and the CLA isomers trans-10,trans-12, trans-9,trans-11, trans-8,trans-10, trans-7,trans-9, trans-10,cis-12, cis-9,trans-11, trans-8,cis-10, and trans-7,cis-9; and of alpha-linolenic acid and the CLA isomers trans-12,trans-14, trans-11 ,trans-13, cis,trans/trans,cis-12,14, trans-11 ,cis-13, and cis-11 ,trans-13. CLA concentrations were also determined in the milk fat of cows grazing in the lowlands (600-650 m), the mountains (900-1210 m), and the highlands (1275-2120 m). The concentrations of many isomers were highest in milk fat from the highlands, but only three CLA isomers (cis-9,trans-11, trans-11 ,cis-13, and trans-8,cis-10) showed a nearly linear increase with elevation. Therefore, these three CLA isomers, and particularly the CLA isomer trans- 11,cis-13, the second-most important CLA in milk fat from cows grazing at the three altitudes, could be useful indicators of milk products of Alpine origin.
Collapse
Affiliation(s)
- Marius Collomb
- Agroscope Liebefeld-Posieux, Swiss Federal Research Station for Animal Production and Dairy Products (ALP), CH-3003 Berne, Switzerland.
| | | | | |
Collapse
|
144
|
|
145
|
Mashek DG, Grummer RR. Effects of Conjugated Linoleic Acid Isomers on Lipid Metabolism and Gluconeogenesis in Monolayer Cultures of Bovine Hepatocytes. J Dairy Sci 2004; 87:67-72. [PMID: 14765812 DOI: 10.3168/jds.s0022-0302(04)73143-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective was to determine the effects of linoleic acid and different isomers of conjugated linoleic acid (CLA) at different concentrations on hepatic lipid and glucose metabolism in the bovine. Monolayer cultures of hepatocytes obtained from 7- to 10-d-old Holstein bull calves were exposed to treatments from 16 to 64 h after plating. The treatments included 1.0 mM palmitic acid plus either 0.1 or 1.0 mM of cis-9, cis-12 linoleic acid, cis-9, trans-11 CLA, or trans-10, cis-12 CLA. Metabolism of palmitic acid to cellular triacylglycerol (TAG) was decreased when media contained cis-9, trans-11 compared with trans-10, cis-12 CLA. Total cellular TAG content was increased for the CLA isomers compared to cis-9, cis-12 linoleic acid. Both CLA isomers increased palmitic acid incorporation into phospholipids, cholesterol, and media triacylglycerol compared with cis-9, cis-12 linoleic acid at a concentration of 1.0 mM. Increasing the concentration of treatment fatty acids from 0.1 to 1.0 mM decreased oxidation of palmitic acid to acid-soluble products, but no effects of fatty acids were observed. There was no treatment effect on rates of gluconeogenesis from propionic acid. Overall, CLA isomers elicited changes in palmitic acid metabolism to cellular and media triacylglycerol, and cellular phospholipids and cholesterol, but had little or no effect on other measured pathways of lipid metabolism or gluconeogenesis in bovine hepatocytes.
Collapse
Affiliation(s)
- D G Mashek
- Department of Dairy Science, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
146
|
Jurjanz S, Monteils V, Juaneda P, Laurent F. Variations of trans octadecenoic acid in milk fat induced by feeding different starch-based diets to cows. Lipids 2004; 39:19-24. [PMID: 15055230 DOI: 10.1007/s11745-004-1196-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The impact of starch sources differing in their velocities of ruminal degradation on the milk fat of dairy cows was studied. The animals received diets containing a slowly degradable (potatoes) or rapidly degradable (wheat) starch concentrate (40% of the dry matter) in a total mixed diet. Milk fat was the only animal performance factor affected: Cows produced significantly less milk fat when fed the wheat diet than the potato diet (-3.3 g/kg, -122 g/d; P < 0.05). With the wheat diet, milk fat was poorer in short-chain FA and richer in unsaturated long-chain FA, especially in trans octadecenoic acid (4.4 vs. 2.7% of the total FA, P < 0.05). A very large increase in the isomer trans-10 18:1 (+1.46% of the total FA) was observed. Because no difference in volatile FA concentrations in the rumen was revealed, the increase in trans octadecenoic acids, and particularly the isomer trans-10 18:1, was associated with the larger postprandial drop in ruminal pH with wheat. Similar concentrate levels and FA profiles in both diets indicated that the decrease in milk fat was due to changes in the ruminal environment. Quicker degradation of wheat starch, and hence a greater drop in pH with this diet associated with the absence of any effect on volatile FA, strengthen the hypothesis developed in the literature of enzyme inhibition via increased levels of trans octadecenoic acids, especially the trans-10 isomer. Hence, milk fat can be decreased with rapidly degradable starch sources and not only with high levels of concentrates in the diet or added fat. More detailed work is necessary to elucidate the microorganisms involved and to determine whether metabolic pathways similar to those reported for high-concentrate diets are involved.
Collapse
Affiliation(s)
- S Jurjanz
- Laboratoire de Sciences Animales, Institut National de la Recherche Agronomique-Ecole Nationale Supérieure d'Agronomique et des Industries Alimentaires (INRA-ENSAIA), Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
147
|
Walker G, Dunshea F, Doyle P. Effects of nutrition and management on the production and composition of milk fat and protein: a review. ACTA ACUST UNITED AC 2004. [DOI: 10.1071/ar03173] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The composition and functional properties of cow’s milk are of considerable importance to the dairy farmer, manufacturer, and consumer. Broadly, there are 3 options for altering the composition and/or functional properties of milk: cow nutrition and management, cow genetics, and dairy manufacturing technologies. This review considers the effects of nutrition and management on the composition and production of milk fat and protein, and the relevance of these effects to the feeding systems used in the Australian dairy industry. Dairy cows on herbage-based diets derive fatty acids for milk fat synthesis from the diet/rumen microorganisms (400–450 g/kg), from adipose tissues (<100 g/kg), and from de novo synthesis in the mammary gland (about 500 g/kg). However, the relative contributions of these sources of fatty acids to milk fat production are highly dependent upon feed intake, diet composition, and stage of lactation. Feed intake, the amount of starch relative to fibre, the amount and composition of long chain fatty acids in the diet, and energy balance are particularly important. Significant differences in these factors exist between pasture-based dairy production systems and those based on total mixed ration, leading to differences in milk fat composition between the two. High intakes of starch are associated with higher levels of de novo synthesis of fat in the mammary gland, resulting in milk fat with a higher concentration of saturated fatty acids. In contrast, higher intakes of polyunsaturated fatty acids from pasture and/or lipid supplements result in higher concentrations of unsaturated fatty acids, particularly oleate, trans-vaccenate, and conjugated linoleic acid (CLA) in milk fat. A decline in milk fat concentration associated with increased feeding with starch-based concentrates can be attributed to changes in the ratios of lipogenic to glucogenic volatile fatty acids produced in the rumen. Milk fat depression, however, is likely the result of increased rates of production of long chain fatty acids containing a trans-10 double bond in the rumen, in particular trans-10 18 : 1 and trans-10-cis-12 18 : 2 in response to diets that contain a high concentration of polyunsaturated fatty acids and/or starch. Low rumen fluid pH can also be a factor. The concentration and composition of protein in milk are largely unresponsive to variation in nutrition and management. Exceptions to this are the effects of very low intakes of metabolisable energy (ME) and/or metabolisable protein (MP) on the concentration of total protein in milk, and the effects of feeding with supplements that contain organic Se on the concentration of Se, as selenoprotein, in milk. In general, the first limitation for the synthesis of milk protein in Australian dairy production systems is availability of ME since pasture usually provides an excess of MP. However, low concentrations of protein in milk produced in Queensland and Western Australia, associated with seasonal variations in the nutritional value of herbage, may be a response to low intakes of both ME and MP. Stage of lactation is important in determining milk protein concentration, but has little influence on protein composition. The exception to this is in very late lactation where stage of lactation and low ME intake can interact to reduce the casein fraction and increase the whey fraction in milk and, consequently, reduce the yield of cheese per unit of milk. Milk and dairy products could also provide significant amounts of Se, as selenoproteins, in human diets. Feeding organic Se supplements to dairy cows grazing pastures that are low in Se may also benefit cow health. Research into targetted feeding strategies that make use of feed supplements including oil seeds, vegetable and fish oils, and organic Se supplements would increase the management options available to dairy farmers for the production of milks that differ in their composition. Given appropriate market signals, milk could be produced with lower concentrations of fat or higher levels of unsaturated fats, including CLA, and/or high concentrations of selenoproteins. This has the potential to allow the farmer to find a higher value market for milk and improve the competitiveness of the dairy manufacturer by enabling better matching of the supply of dairy products to the demands of the market.
Collapse
|
148
|
Eun JS, Fellner V, Burns JC, Gumpertz ML. Fermentation of eastern gamagrass (Tripsacum dactyloides [L.] L.) by mixed cultures of ruminal microorganisms with or without supplemental corn1. J Anim Sci 2004; 82:170-8. [PMID: 14753359 DOI: 10.2527/2004.821170x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five dual-flow fermentors (700 mL) were used to determine the effects of eastern gamagrass (Tripsacum dactyloides [L.] L.) diets on microbial metabolism by mixed rumen cultures. Fermentors were incubated with filtered ruminal contents and allowed to adapt for 4 d to diets followed by 3 d of sample collection. Five dietary treatments were tested: 1) gamagrass hay (GH) + no corn (GHNC), 2) gama grass silage (GS) + no corn (GSNC), 3) GS + low corn (GSLC), 4) GS + medium corn (GSMC); and 5) GS + high corn (GSHC). The experiment was conducted as a randomized complete block design with five treatments and three replications. Total VFA concentrations were not affected by diets. Corn addition linearly decreased (P < 0.001) molar proportion of acetate. In contrast, molar proportion of propionate was reduced in GSLC (cubic effect, P < 0.001) but remained similar across other diets. Corn supplementation linearly increased molar proportion of butyrate (P < 0.001). The acetate + butyrate-to-propionate ratio was highest in cultures offered GSLC (cubic effect, P < 0.001) but similar across other diets. Feeding GSNC resulted in a higher ruminal pH compared with GHNC (P < 0.03). Increasing the level of corn supplementation in GS linearly decreased culture pH (P < 0.001). All diets resulted in similar methane production, with the exception of GSMC, which lowered methane output (quadratic effect, P < 0.004). Total substrate fermented to VFA and gas tended to be greater with GHNC than with GSNC (P < 0.06) and linearly increased with the addition of corn (P < 0.004). Neutral detergent fiber digestibility was similar between GH and GS and was not affected by supplemental corn. Microbial N flow increased in cultures offered GSHC (quadratic effect, P < 0.02). Corn supplementation at the medium and high level linearly decreased C 18:0 (P < 0.02) and increased trans-C18:1 (P < 0.004). Including corn at the high level with GS did not have a detrimental effect on fermentation in dual-flow fermentors.
Collapse
Affiliation(s)
- J S Eun
- Department of Animal Science, USDA-ARS, North Carolina State University, Raleigh 27695-7621, USA
| | | | | | | |
Collapse
|
149
|
Larsen TM, Toubro S, Astrup A. Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 2003; 44:2234-41. [PMID: 12923219 DOI: 10.1194/jlr.r300011-jlr200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary supplements containing conjugated linoleic acid (CLA) are widely promoted as weight loss agents available over the counter and via the Internet. In this review, we evaluate the efficacy and safety of CLA supplementation based on peer-reviewed published results from randomized, placebo-controlled, human intervention trials lasting more than 4 weeks. We also review findings from experimental studies in animals and studies performed in vitro. CLA appears to produce loss of fat mass and increase of lean tissue mass in rodents, but the results from 13 randomized, controlled, short-term (<6 months) trials in humans find little evidence to support that CLA reduces body weight or promotes repartitioning of body fat and fat-free mass in man. However, there is increasing evidence from mice and human studies that the CLA isomer trans-10, cis-12 may produce liver hypertrophy and insulin resistance via a redistribution of fat deposition that resembles lipodystrophy. CLA also decreases the fat content of both human and bovine milk. In conclusion, although CLA appears to attenuate increases in body weight and body fat in several animal models, CLA isomers sold as dietary supplements are not effective as weight loss agents in humans and may actually have adverse effects on human health.
Collapse
Affiliation(s)
- Thomas M Larsen
- Department of Human Nutrition, Center for Advanced Food Studies, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
150
|
Abstract
Certain diets cause a marked reduction in milk fat production in ruminants. Commonly referred to as milk fat depression (MFD), the mechanism involves an interrelationship between rumen microbial processes and tissue metabolism. Numerous theories to explain this interrelationship have been proposed and investigations offer little support for theories that are based on a limitation in the supply of lipogenic precursors. Rather, the basis involves alterations in rumen biohydrogenation of dietary polyunsaturated fatty acids and a specific inhibition of mammary synthesis of milk fat. The biohydrogenation theory proposes that under certain dietary conditions, typical pathways of rumen biohydrogenation are altered to produce unique fatty acid intermediates that inhibit milk fat synthesis. Trans-10, cis-12 conjugated linoleic acid (CLA) has been identified as one example that is correlated with the reduction in milk fat. Investigations with pure isomers have shown that trans-10, cis-12 CLA is a potent inhibitor of milk fat synthesis, and similar to diet-induced MFD, the mechanism involves a coordinated reduction in mRNA abundance for key enzymes involved in the biochemical pathways of fat synthesis. A more complete identification of these naturally produced inhibitors of fat synthesis and delineation of cellular mechanisms may offer broader opportunities for application and understanding of the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Dale E Bauman
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|