101
|
Rolandelli A, Laukaitis-Yousey HJ, Bogale HN, Singh N, Samaddar S, O'Neal AJ, Ferraz CR, Butnaru M, Mameli E, Xia B, Mendes MT, Butler LR, Marnin L, Cabrera Paz FE, Valencia LM, Rana VS, Skerry C, Pal U, Mohr SE, Perrimon N, Serre D, Pedra JHF. Tick hemocytes have a pleiotropic role in microbial infection and arthropod fitness. Nat Commun 2024; 15:2117. [PMID: 38459063 PMCID: PMC10923820 DOI: 10.1038/s41467-024-46494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.
Collapse
Affiliation(s)
- Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Rancho BioSciences, San Diego, CA, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University; Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila R Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
102
|
Rosani U, Sollitto M, Fogal N, Salata C. Comparative analysis of Presence-Absence gene Variations in five hard tick species: impact and functional considerations. Int J Parasitol 2024; 54:147-156. [PMID: 37806426 DOI: 10.1016/j.ijpara.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Tick species are vectors of harmful human and animal diseases, and their expansion is raising concerns under the global environmental changes' scenario. Ticks host and transmit bacteria, protozoa and viruses, making the understanding of host-pathogen molecular pathways critical to development of effective disease control strategies. Despite the considerable sizes and repeat contents of tick genomes, individual tick genomics is perhaps the most effective approach to reveal genotypic traits of interest. Presence-Absence gene Variations (PAVs) can contribute to individual differences within species, with dispensable genes carried by subsets of individuals possibly underpinning functional significance at individual or population-levels. We exploited 350 resequencing datasets of Dermacentor silvarum, Haemaphysalis longicornis, Ixodes persulcatus, Rhipicephalus microplus and Rhipicephalus sanguineus hard tick specimens to reveal the extension of PAV and the conservation of dispensable genes among individuals and, comparatively, between species. Overall, we traced 550-3,346 dispensable genes per species and were able to reconstruct 5.3-7 Mb of genomic regions not included in the respective reference genomes, as part of the tick pangenomes. Both dispensable genes and de novo predicted genes indicated that PAVs preferentially impacted mobile genetic elements in these tick species.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121 Padova, Italy.
| | - Marco Sollitto
- Department of Life Science, University of Trieste, 34100 Trieste, Italy; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Nicolò Fogal
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
103
|
Myburgh E, Geoghegan V, Alves-Ferreira EV, Nievas YR, Grewal JS, Brown E, McLuskey K, Mottram JC. TORC1 is an essential regulator of nutrient-controlled proliferation and differentiation in Leishmania. EMBO Rep 2024; 25:1075-1105. [PMID: 38396206 PMCID: PMC10933368 DOI: 10.1038/s44319-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.
Collapse
Affiliation(s)
- Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK.
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eliza Vc Alves-Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Jaspreet S Grewal
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Elaine Brown
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen McLuskey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
104
|
Borujeni PM, Salavati R. Functional domain annotation by structural similarity. NAR Genom Bioinform 2024; 6:lqae005. [PMID: 38298181 PMCID: PMC10830352 DOI: 10.1093/nargab/lqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Traditional automated in silico functional annotation uses tools like Pfam that rely on sequence similarities for domain annotation. However, structural conservation often exceeds sequence conservation, suggesting an untapped potential for improved annotation through structural similarity. This approach was previously overlooked before the AlphaFold2 introduction due to the need for more high-quality protein structures. Leveraging structural information especially holds significant promise to enhance accurate annotation in diverse proteins across phylogenetic distances. In our study, we evaluated the feasibility of annotating Pfam domains based on structural similarity. To this end, we created a database from segmented full-length protein structures at their domain boundaries, representing the structure of Pfam seeds. We used Trypanosoma brucei, a phylogenetically distant protozoan parasite as our model organism. Its structome was aligned with our database using Foldseek, the ultra-fast structural alignment tool, and the top non-overlapping hits were annotated as domains. Our method identified over 400 new domains in the T. brucei proteome, surpassing the benchmark set by sequence-based tools, Pfam and Pfam-N, with some predictions validated manually. We have also addressed limitations and suggested avenues for further enhancing structure-based domain annotation.
Collapse
Affiliation(s)
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
105
|
Ezenyi I, Madan E, Singhal J, Jain R, Chakrabarti A, Ghousepeer GD, Pandey RP, Igoli N, Igoli J, Singh S. Screening of traditional medicinal plant extracts and compounds identifies a potent anti-leishmanial diarylheptanoid from Siphonochilus aethiopicus. J Biomol Struct Dyn 2024; 42:2449-2463. [PMID: 37199276 DOI: 10.1080/07391102.2023.2212779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifeoma Ezenyi
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amrita Chakrabarti
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development, SRM University, Sonepat, Haryana, India
| | - Ngozichukwuka Igoli
- Centre for Food Technology and Research, Benue State University, Makurdi, Nigeria
| | - John Igoli
- Centre for Medicinal Plants and Propolis Research, Department of Chemical Sciences, Pen Resource University, Gombe, Nigeria
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
106
|
Mehta D, Chaudhary S, Sunil S. Oxidative stress governs mosquito innate immune signalling to reduce chikungunya virus infection in Aedes-derived cells. J Gen Virol 2024; 105. [PMID: 38488850 DOI: 10.1099/jgv.0.001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Arboviruses such as chikungunya, dengue and zika viruses cause debilitating diseases in humans. The principal vector species that transmits these viruses is the Aedes mosquito. Lack of substantial knowledge of the vector species hinders the advancement of strategies for controlling the spread of arboviruses. To supplement our information on mosquitoes' responses to virus infection, we utilized Aedes aegypti-derived Aag2 cells to study changes at the transcriptional level during infection with chikungunya virus (CHIKV). We observed that genes belonging to the redox pathway were significantly differentially regulated. Upon quantifying reactive oxygen species (ROS) in the cells during viral infection, we further discovered that ROS levels are considerably higher during the early hours of infection; however, as the infection progresses, an increase in antioxidant gene expression suppresses the oxidative stress in cells. Our study also suggests that ROS is a critical regulator of viral replication in cells and inhibits intracellular and extracellular viral replication by promoting the Rel2-mediated Imd immune signalling pathway. In conclusion, our study provides evidence for a regulatory role of oxidative stress in infected Aedes-derived cells.
Collapse
Affiliation(s)
- Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
107
|
Beyeler R, Jordan M, Dorner L, He B, Cyrklaff M, Roques M, Stanway R, Frischknecht F, Heussler V. Putative prefoldin complex subunit 5 of Plasmodium berghei is crucial for microtubule formation and parasite development in the mosquito. Mol Microbiol 2024; 121:481-496. [PMID: 38009402 DOI: 10.1111/mmi.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023]
Abstract
Plasmodium sporozoite development in and egress from oocysts in the Anopheles mosquito remains largely enigmatic. In a previously performed high-throughput knockout screen, the putative subunit 5 of the prefoldin complex (PbPCS5, PBANKA_0920100) was identified as essential for parasite development during mosquito and liver stage development. Here we generated and analyzed a PbPCS5 knockout parasite line during its development in the mosquito. Interestingly, PbPCS5 deletion does not significantly affect oocyst formation but leads to a growth defect resulting in aberrantly shaped sporozoites. Sporozoites produced in the absence of PbPCS5 were thinner, markedly elongated, and did, in most cases, not contain a nucleus. Sporozoites contained fewer subpellicular microtubules, which reached deep into the sporoblast during sporogony where they contacted and indented nuclei. These aberrantly shaped sporozoites did not reach the salivary glands, and we, therefore, conclude that PbPCS5 is essential for sporogony and the life cycle progression of the parasite during its mosquito stage.
Collapse
Affiliation(s)
- Raphael Beyeler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Melanie Jordan
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Lilian Dorner
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Buyuan He
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rebecca Stanway
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
108
|
Carlassara M, Khorramnejad A, Oker H, Bahrami R, Lozada-Chávez AN, Mancini MV, Quaranta S, Body MJA, Lahondère C, Bonizzoni M. Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17226. [PMID: 38454541 DOI: 10.1111/gcb.17226] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.
Collapse
Affiliation(s)
- Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ayda Khorramnejad
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Romina Bahrami
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Stefano Quaranta
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mélanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
109
|
Rossi IV, de Almeida RF, Sabatke B, de Godoy LMF, Ramirez MI. Trypanosoma cruzi interaction with host tissues modulate the composition of large extracellular vesicles. Sci Rep 2024; 14:5000. [PMID: 38424216 PMCID: PMC10904747 DOI: 10.1038/s41598-024-55302-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Trypanosoma cruzi is the protozoan that causes Chagas disease (CD), an endemic parasitosis in Latin America distributed around the globe. If CD is not treated in acute phase, the parasite remains silent for years in the host's tissues in a chronic form, which may progress to cardiac, digestive or neurological manifestations. Recently, studies indicated that the gastrointestinal tract represents an important reservoir for T. cruzi in the chronic phase. During interaction T. cruzi and host cells release extracellular vesicles (EVs) that modulates the immune system and infection, but the dynamics of secretion of host and parasite molecules through these EVs is not understood. Now, we used two cell lines: mouse myoblast cell line C2C12, and human intestinal epithelial cell line Caco-2to simulate the environments found by the parasite in the host. We isolated large EVs (LEVs) from the interaction of T. cruzi CL Brener and Dm28c/C2C12 and Caco-2 cells upon 2 and 24 h of infection. Our data showed that at two hours there is a strong cellular response mediated by EVs, both in the number, variety and enrichment/targeting of proteins found in LEVs for diverse functions. Qualitative and quantitative analysis showed that proteins exported in LEVs of C2C12 and Caco-2 have different patterns. We found a predominance of host proteins at early infection. The parasite-host cell interaction induces a switch in the functionality of proteins carried by LEVs and a heterogeneous response depending on the tissues analyzed. Protein-protein interaction analysis showed that cytoplasmic and mitochondrial homologues of the same parasite protein, tryparedoxin peroxidase, were differentially packaged in LEVs, also impacting the interacting molecule of this protein in the host. These data provide new evidence that the interaction with T. cruzi leads to a rapid tissue response through the release of LEVs, reflecting the enrichment of some proteins that could modulate the infection environment.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Rafael Fogaça de Almeida
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Bruna Sabatke
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Marcel Ivan Ramirez
- EVAHPI Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil.
| |
Collapse
|
110
|
Nath M, Bhowmik D, Saha S, Nandi R, Kumar D. Identification of potential inhibitor against Leishmania donovani mitochondrial DNA primase through in-silico and in vitro drug repurposing approaches. Sci Rep 2024; 14:3246. [PMID: 38332162 PMCID: PMC10853515 DOI: 10.1038/s41598-024-53316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Leishmania donovani is the causal organism of leishmaniasis with critical health implications affecting about 12 million people around the globe. Due to less efficacy, adverse side effects, and resistance, the available therapeutic molecules fail to control leishmaniasis. The mitochondrial primase of Leishmania donovani (LdmtPRI1) is a vital cog in the DNA replication mechanism, as the enzyme initiates the replication of the mitochondrial genome of Leishmania donovani. Hence, we target this protein as a probable drug target against leishmaniasis. The de-novo approach enabled computational prediction of the three-dimensional structure of LdmtPRI1, and its active sites were identified. Ligands from commercially available drug compounds were selected and docked against LdmtPRI1. The compounds were chosen for pharmacokinetic study and molecular dynamics simulation based on their binding energies and protein interactions. The LdmtPRI1 gene was cloned, overexpressed, and purified, and a primase activity assay was performed. The selected compounds were verified experimentally by the parasite and primase inhibition assay. Capecitabine was observed to be effective against the promastigote form of Leishmania donovani, as well as inhibiting primase activity. This study's findings suggest capecitabine might be a potential anti-leishmanial drug candidate after adequate further studies.
Collapse
Affiliation(s)
- Mitul Nath
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
111
|
Huang PJ, Weng YC, Huang KY, Lee CC, Yeh YM, Chen YT, Chiu CH, Tang P. ProFun: A web server for functional enrichment analysis of parasitic protozoan genes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00008-2. [PMID: 38311498 DOI: 10.1016/j.jmii.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND The initial step to interpreting putative biological functions from comparative multi-omics studies usually starts from a differential expressed gene list followed by functional enrichment analysis (FEA). However, most FEA packages are designed exclusively for humans and model organisms. Although parasitic protozoan is the most important pathogen in the tropics, no FEA package is available for protozoan functional (ProFun) enrichment analysis. To speed up comparative multi-omics research on parasitic protozoans, we constructed ProFun, a web-based, user-friendly platform for the research community. METHODS ProFun utilizes the Docker container, ShinyProxy, and R Shiny to construct a scalable web service with load-balancing infrastructure. We have integrated a series of visual analytic functions, in-house scripts, and custom-made annotation packages to create three analytical modules for 40 protozoan species: (1) Gene Overlaps; (2) Over-representation Analysis (ORA); (3) Gene Set Enrichment Analysis (GSEA). RESULTS We have established ProFun, a web server for functional enrichment analysis of differentially expressed genes. FEA becomes as simple as pasting a list of gene IDs into the textbox of our website. Users can customize enrichment parameters and results with just one click. The intuitive web interface and publication-ready charts enable users to reveal meaningful biological events and pinpoint potential targets for further studies. CONCLUSION ProFun is the first web application that enables gene functional enrichment analysis of parasitic protozoans. In addition to supporting FEA analysis, ProFun also allows the comparison of FEA results across complicated experimental designs. ProFun is freely available at http://dalek.cgu.edu.tw:8080/app/profun.
Collapse
Affiliation(s)
- Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yi-Chen Weng
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Ching Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department and Graduate Institute of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.
| | - Yuan-Ming Yeh
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yu-Tong Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Petrus Tang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
112
|
Greenfest‐Allen E, Valladares O, Kuksa PP, Gangadharan P, Lee W, Cifello J, Katanic Z, Kuzma AB, Wheeler N, Bush WS, Leung YY, Schellenberg G, Stoeckert CJ, Wang L. NIAGADS Alzheimer's GenomicsDB: A resource for exploring Alzheimer's disease genetic and genomic knowledge. Alzheimers Dement 2024; 20:1123-1136. [PMID: 37881831 PMCID: PMC10916966 DOI: 10.1002/alz.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site Alzheimer's Genomics Database (GenomicsDB) is a public knowledge base of Alzheimer's disease (AD) genetic datasets and genomic annotations. METHODS GenomicsDB uses a custom systems architecture to adopt and enforce rigorous standards that facilitate harmonization of AD-relevant genome-wide association study summary statistics datasets with functional annotations, including over 230 million annotated variants from the AD Sequencing Project. RESULTS GenomicsDB generates interactive reports compiled from the harmonized datasets and annotations. These reports contextualize AD-risk associations in a broader functional genomic setting and summarize them in the context of functionally annotated genes and variants. DISCUSSION Created to make AD-genetics knowledge more accessible to AD researchers, the GenomicsDB is designed to guide users unfamiliar with genetic data in not only exploring but also interpreting this ever-growing volume of data. Scalable and interoperable with other genomics resources using data technology standards, the GenomicsDB can serve as a central hub for research and data analysis on AD and related dementias. HIGHLIGHTS The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) offers to the public a unique, disease-centric collection of AD-relevant GWAS summary statistics datasets. Interpreting these data is challenging and requires significant bioinformatics expertise to standardize datasets and harmonize them with functional annotations on genome-wide scales. The NIAGADS Alzheimer's GenomicsDB helps overcome these challenges by providing a user-friendly public knowledge base for AD-relevant genetics that shares harmonized, annotated summary statistics datasets from the NIAGADS repository in an interpretable, easily searchable format.
Collapse
Affiliation(s)
- Emily Greenfest‐Allen
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Otto Valladares
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Pavel P. Kuksa
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Prabhakaran Gangadharan
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wan‐Ping Lee
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jeffrey Cifello
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zivadin Katanic
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amanda B. Kuzma
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nicholas Wheeler
- Cleveland Institute for Computational BiologyDepartment of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - William S. Bush
- Cleveland Institute for Computational BiologyDepartment of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christian J. Stoeckert
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Li‐San Wang
- Penn Neurodegeneration Genomics CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Biomedical InformaticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
113
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
114
|
Chelaghma S, Ke H, Barylyuk K, Krueger T, Koreny L, Waller RF. Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma. eLife 2024; 13:e94201. [PMID: 38270431 PMCID: PMC10857790 DOI: 10.7554/elife.94201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Apicomplexans are ubiquitous intracellular parasites of animals. These parasites use a programmed sequence of secretory events to find, invade, and then re-engineer their host cells to enable parasite growth and proliferation. The secretory organelles micronemes and rhoptries mediate the first steps of invasion. Both secrete their contents through the apical complex which provides an apical opening in the parasite's elaborate inner membrane complex (IMC) - an extensive subpellicular system of flattened membrane cisternae and proteinaceous meshwork that otherwise limits access of the cytoplasm to the plasma membrane for material exchange with the cell exterior. After invasion, a second secretion programme drives host cell remodelling and occurs from dense granules. The site(s) of dense granule exocytosis, however, has been unknown. In Toxoplasma gondii, small subapical annular structures that are embedded in the IMC have been observed, but the role or significance of these apical annuli to plasma membrane function has also been unknown. Here, we determined that integral membrane proteins of the plasma membrane occur specifically at these apical annular sites, that these proteins include SNARE proteins, and that the apical annuli are sites of vesicle fusion and exocytosis. Specifically, we show that dense granules require these structures for the secretion of their cargo proteins. When secretion is perturbed at the apical annuli, parasite growth is strongly impaired. The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion, and reveal that in Toxoplasma there is a physical separation of the processes of pre- and post-invasion secretion that mediate host-parasite interactions.
Collapse
Affiliation(s)
- Sara Chelaghma
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Thomas Krueger
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ludek Koreny
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ross F Waller
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
115
|
Hoyos Sanchez MC, Ospina Zapata HS, Suarez BD, Ospina C, Barbosa HJ, Carranza Martinez JC, Vallejo GA, Urrea Montes D, Duitama J. A phased genome assembly of a Colombian Trypanosoma cruzi TcI strain and the evolution of gene families. Sci Rep 2024; 14:2054. [PMID: 38267502 PMCID: PMC10808112 DOI: 10.1038/s41598-024-52449-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite Trypanosoma cruzi. High intraspecies variability and genome complexity have been challenges to assemble high quality genomes needed for studies in evolution, population genomics, diagnosis and drug development. Here we present a chromosome-level phased assembly of a TcI T. cruzi strain (Dm25). While 29 chromosomes show a large collinearity with the assembly of the Brazil A4 strain, three chromosomes show both large heterozygosity and large divergence, compared to previous assemblies of TcI T. cruzi strains. Nucleotide and protein evolution statistics indicate that T. cruzi Marinkellei separated before the diversification of T. cruzi in the known DTUs. Interchromosomal paralogs of dispersed gene families and histones appeared before but at the same time have a more strict purifying selection, compared to other repeat families. Previously unreported large tandem arrays of protein kinases and histones were identified in this assembly. Over one million variants obtained from Illumina reads aligned to the primary assembly clearly separate the main DTUs. We expect that this new assembly will be a valuable resource for further studies on evolution and functional genomics of Trypanosomatids.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | - Brayhan Dario Suarez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Carlos Ospina
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Hamilton Julian Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Daniel Urrea Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
116
|
Singh P, Vydyam P, Fang T, Estrada K, Gonzalez LM, Grande R, Kumar M, Chakravarty S, Berry V, Ranwez V, Carcy B, Depoix D, Sánchez S, Cornillot E, Abel S, Ciampossin L, Lenz T, Harb O, Sanchez-Flores A, Montero E, Le Roch KG, Lonardi S, Ben Mamoun C. Multiomics analysis reveals B. MO1 as a distinct Babesia species and provides insights into its evolution and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575932. [PMID: 38293033 PMCID: PMC10827214 DOI: 10.1101/2024.01.17.575932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Babesiosis, caused by protozoan parasites of the genus Babesia , is an emerging tick-borne disease of significance for both human and animal health. Babesia parasites infect erythrocytes of vertebrate hosts where they develop and multiply rapidly to cause the pathological symptoms associated with the disease. The identification of various Babesia species underscores the ongoing risk of new zoonotic pathogens capable of infecting humans, a concern amplified by anthropogenic activities and environmental shifts impacting the distribution and transmission dynamics of parasites, their vectors, and reservoir hosts. One such species, Babesia MO1, previously implicated in severe cases of human babesiosis in the midwestern United States, was initially considered closely related to B. divergens , the predominant agent of human babesiosis in Europe. Yet, uncertainties persist regarding whether these pathogens represent distinct variants of the same species or are entirely separate species. We show that although both B. MO1 and B. divergens share similar genome sizes, comprising three nuclear chromosomes, one linear mitochondrial chromosome, and one circular apicoplast chromosome, major differences exist in terms of genomic sequence divergence, gene functions, transcription profiles, replication rates and susceptibility to antiparasitic drugs. Furthermore, both pathogens have evolved distinct classes of multigene families, crucial for their pathogenicity and adaptation to specific mammalian hosts. Leveraging genomic information for B. MO1, B. divergens , and other members of the Babesiidae family within Apicomplexa provides valuable insights into the evolution, diversity, and virulence of these parasites. This knowledge serves as a critical tool in preemptively addressing the emergence and rapid transmission of more virulent strains.
Collapse
|
117
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
118
|
Conn BN, Lieberman JA, Chatman P, Cotton K, Essandoh MA, Ebqa’ai M, Nelson TL, Wozniak KL. Antifungal activity of eumelanin-inspired indoylenepheyleneethynylene against Cryptococcus neoformans. Front Microbiol 2024; 14:1339303. [PMID: 38293553 PMCID: PMC10826398 DOI: 10.3389/fmicb.2023.1339303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningitis in >152,000 immunocompromised individuals annually, leading to 112,000 yearly deaths. The four classes of existing antifungal agents target plasma membrane sterols (ergosterol), nucleic acid synthesis, and cell wall synthesis. Existing drugs are not highly effective against Cryptococcus, and antifungal drug resistance is an increasing problem. A novel antimicrobial compound, a eumelanin-inspired indoylenepheyleneethynylene, EIPE-1, was synthesized and has antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MSRA), but not towards Gram-negative organisms. Based on EIPE-1's antibacterial activity, we hypothesized that EIPE-1 could have antifungal activity. For these studies, we tested EIPE-1 against C. neoformans strain H99 and 6 additional cryptococcal clinical isolates. We examined antifungal activity, cytotoxicity, effects on fungal gene expression, and mechanism of action of EIPE-1. Results showed that EIPE-1 has fungicidal effects on seven cryptococcal strains with MICs ranging from 1.56 to 3.125 μg/mL depending on the strain, and it is non-toxic to mammalian cells. We conducted scanning and transmission electron microscopy on the exposed cells to examine structural changes to the organism following EIPE-1 treatment. Cells exposed displayed structural changes to their cell wall and membranes, with internal contents leaking out of the cells. To understand the effect of EIPE-1 on fungal gene expression, RNA sequencing was conducted. Results showed that EIPE-1 affects several processes involved stress response, ergosterol biosynthesis, capsule biosynthesis, and cell wall attachment and remodeling. Therefore, our studies demonstrate that EIPE-1 has antifungal activity against C. neoformans, which affects both cellular structure and gene expression of multiple fungal pathways involved in cell membrane stability and viability.
Collapse
Affiliation(s)
- Brittney N. Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Priscilla Chatman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Martha A. Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Mohammad Ebqa’ai
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
119
|
Gao X, Chen K, Xiong J, Zou D, Yang F, Ma Y, Jiang C, Gao X, Wang G, Gu S, Zhang P, Luo S, Huang K, Bao Y, Zhang Z, Ma L, Miao W. The P10K database: a data portal for the protist 10 000 genomes project. Nucleic Acids Res 2024; 52:D747-D755. [PMID: 37930867 PMCID: PMC10767852 DOI: 10.1093/nar/gkad992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.
Collapse
Affiliation(s)
- Xinxin Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Zou
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangdian Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingke Ma
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoxuan Gao
- Shandong University of Technology, Zibo 255000, China
| | - Guangying Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuai Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyao Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
120
|
Svedberg D, Winiger RR, Berg A, Sharma H, Tellgren-Roth C, Debrunner-Vossbrinck BA, Vossbrinck CR, Barandun J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genomics 2024; 25:6. [PMID: 38166563 PMCID: PMC10759460 DOI: 10.1186/s12864-023-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.
Collapse
Affiliation(s)
- Dennis Svedberg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Rahel R Winiger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Charles R Vossbrinck
- Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
121
|
Harb OS, McDowell MA, Roos DS. VEuPathDB Resources: A Platform for Free Online Data Exploration, Integration, and Analysis. Methods Mol Biol 2024; 2802:573-586. [PMID: 38819572 DOI: 10.1007/978-1-0716-3838-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The Eukaryotic Pathogen, Vector and Host Informatics Resources ( VEuPathDB.org ) provide free online access to omic data from eukaryotic protozoan and fungal pathogens, arthropod vectors of disease, and host responses to pathogen infection. The goal of VEuPathDB is to make data easily accessible, findable, and importantly, re-usable by laboratory scientists. All integrated data and analyses follow standard workflows and methods to ensure data accuracy and enable data interoperability. Integrated data include genomes and annotation, transcriptomic (e.g., single-cell/bulk RNA-sequence and microarray data), proteomic (e.g., mass spectrometry evidence and quantitative data), isolate sequencing data used for variant calling and copy number variation determination, epigenomics, whole-genome phenotyping data (e.g., CRISPR screens and large-scale imaging and subcellular localization data), etc. Standard analyses provide additional data such as InterPro domains, signal peptide and transmembrane domain predictions, and metabolic pathways. Comparative genomic analysis in VEuPathDB is facilitated by leveraging orthology to enable the transformation of results between organisms and identifying genes with specific phyletic patterns. In addition, synteny between genomes is facilitated by shading orthologs across species and strains. Accessibility to and re-usability of the data is made possible through specialized searches and a graphical search strategy system that enables scientists to build in silico experiments combining results from multiple experiments with diverse data types.
Collapse
Affiliation(s)
- Omar S Harb
- University of Pennsylvania, Philadelphia, PA, USA.
| | | | - David S Roos
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
122
|
Wattam AR, Bowers N, Brettin T, Conrad N, Cucinell C, Davis JJ, Dickerman AW, Dietrich EM, Kenyon RW, Machi D, Mao C, Nguyen M, Olson RD, Overbeek R, Parrello B, Pusch GD, Shukla M, Stevens RL, Vonstein V, Warren AS. Comparative Genomic Analysis of Bacterial Data in BV-BRC: An Example Exploring Antimicrobial Resistance. Methods Mol Biol 2024; 2802:547-571. [PMID: 38819571 DOI: 10.1007/978-1-0716-3838-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
As genomic and related data continue to expand, research biologists are often hampered by the computational hurdles required to analyze their data. The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Centers (BRC) to assist researchers with their analysis of genome sequence and other omics-related data. Recently, the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD), and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs merged to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) at https://www.bv-brc.org/ . The combined BV-BRC leverages the functionality of the original resources for bacterial and viral research communities with a unified data model, enhanced web-based visualization and analysis tools, and bioinformatics services. Here we demonstrate how antimicrobial resistance data can be analyzed in the new resource.
Collapse
Affiliation(s)
- Alice R Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA.
| | - Nicole Bowers
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Thomas Brettin
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Neal Conrad
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Clark Cucinell
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - James J Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Allan W Dickerman
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Emily M Dietrich
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Ronald W Kenyon
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Dustin Machi
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Chunhong Mao
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Robert D Olson
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Ross Overbeek
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Bruce Parrello
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Maulik Shukla
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA
| | - Rick L Stevens
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | | | - Andrew S Warren
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
123
|
Roscoe S, Guo Y, Vacratsis PO, Ananvoranich S. Proteomic profile of Toxoplasma gondii stress granules by high-resolution mass spectrometry. Can J Microbiol 2024; 70:32-39. [PMID: 37826860 DOI: 10.1139/cjm-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In Toxoplasma gondii, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.
Collapse
Affiliation(s)
- Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Yue Guo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| |
Collapse
|
124
|
Cribbie EP, Doerr D, Chauve C. AGO, a Framework for the Reconstruction of Ancestral Syntenies and Gene Orders. Methods Mol Biol 2024; 2802:247-265. [PMID: 38819563 DOI: 10.1007/978-1-0716-3838-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Reconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial. This chapter introduces AGO, a Python-based framework aimed at creating ancestral gene order reconstruction pipelines allowing to interface and parameterize different bioinformatics tools. The authors illustrate the features of AGO by reconstructing ancestral gene orders for the X chromosome of three ancestral Anopheles species using three different pipelines. AGO is freely available at https://github.com/cchauve/AGO-pipeline .
Collapse
Affiliation(s)
- Evan P Cribbie
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel Doerr
- Department for Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research, and Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
125
|
Jaramillo Ponce JR, Frugier M. Plasmodium, the Apicomplexa Outlier When It Comes to Protein Synthesis. Biomolecules 2023; 14:46. [PMID: 38254646 PMCID: PMC10813123 DOI: 10.3390/biom14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium is an obligate intracellular parasite that has numerous interactions with different hosts during its elaborate life cycle. This is also the case for the other parasites belonging to the same phylum Apicomplexa. In this study, we bioinformatically identified the components of the multi-synthetase complexes (MSCs) of several Apicomplexa parasites and modelled their assembly using AlphaFold2. It appears that none of these MSCs resemble the two MSCs that we have identified and characterized in Plasmodium. Indeed, tRip, the central protein involved in the association of the two Plasmodium MSCs is different from its homologues, suggesting also that the tRip-dependent import of exogenous tRNAs is not conserved in other apicomplexan parasites. Based on this observation, we searched for obvious differences that could explain the singularity of Plasmodium protein synthesis by comparing tRNA genes and amino acid usage in the different genomes. We noted a contradiction between the large number of asparagine residues used in Plasmodium proteomes and the single gene encoding the tRNA that inserts them into proteins. This observation remains true for all the Plasmodia strains studied, even those that do not contain long asparagine homorepeats.
Collapse
Affiliation(s)
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67084 Strasbourg, France;
| |
Collapse
|
126
|
Brait N, Hackl T, Morel C, Exbrayat A, Gutierrez S, Lequime S. A tale of caution: How endogenous viral elements affect virus discovery in transcriptomic data. Virus Evol 2023; 10:vead088. [PMID: 38516656 PMCID: PMC10956553 DOI: 10.1093/ve/vead088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024] Open
Abstract
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | | | - Côme Morel
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Antoni Exbrayat
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Serafin Gutierrez
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
127
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
128
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. mSphere 2023; 8:e0030523. [PMID: 37823656 PMCID: PMC10871163 DOI: 10.1128/msphere.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
Affiliation(s)
- Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Mariano A. Aufiero
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Tobias M. Hohl
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Hospital, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
129
|
Tucker MS, O’Brien CN, Johnson AN, Dubey JP, Rosenthal BM, Jenkins MC. RNA-Seq of Phenotypically Distinct Eimeria maxima Strains Reveals Coordinated and Contrasting Maturation and Shared Sporogonic Biomarkers with Eimeria acervulina. Pathogens 2023; 13:2. [PMID: 38276148 PMCID: PMC10818985 DOI: 10.3390/pathogens13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Strains of Eimeria maxima, an enteric parasite of poultry, vary in virulence. Here, we performed microscopy and RNA sequencing on oocysts of strains APU-1 (which exhibits more virulence) and APU-2. Although each underwent parallel development, APU-1 initially approached maturation more slowly. Each strain sporulated by hour 36; their gene expression diverged somewhat thereafter. Candidate biomarkers of viability included 58 genes contributing at least 1000 Transcripts Per Million throughout sporulation, such as cation-transporting ATPases and zinc finger domain-containing proteins. Many genes resemble constitutively expressed genes also important to Eimeria acervulina. Throughout sporulation, the expression of only a few genes differed between strains; these included cyclophilin A, EF-1α, and surface antigens (SAGs). Mature and immature oocysts uniquely differentially express certain genes, such as an X-Pro dipeptidyl-peptidase domain-containing protein in immature oocysts and a profilin in mature oocysts. The immature oocysts of each strain expressed more phosphoserine aminotransferase and the mature oocysts expressed more SAGs and microneme proteins. These data illuminate processes influencing sporulation in Eimeria and related genera, such as Cyclospora, and identify biological processes which may differentiate them. Drivers of development and senescence may provide tools to assess the viability of oocysts, which would greatly benefit the poultry industry and food safety applications.
Collapse
Affiliation(s)
- Matthew S. Tucker
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Celia N. O’Brien
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Alexis N. Johnson
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
- Department of State, Bureau of Consular Affairs, Washington, DC 20006, USA
| | - Jitender P. Dubey
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Mark C. Jenkins
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| |
Collapse
|
130
|
Heeren S, Maes I, Sanders M, Lye LF, Adaui V, Arevalo J, Llanos-Cuentas A, Garcia L, Lemey P, Beverley SM, Cotton JA, Dujardin JC, Van den Broeck F. Diversity and dissemination of viruses in pathogenic protozoa. Nat Commun 2023; 14:8343. [PMID: 38102141 PMCID: PMC10724245 DOI: 10.1038/s41467-023-44085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lineth Garcia
- Instituto de Investigación Biomédicas e Investigación Social, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, UK
- School of Biodiversity, One Health and Comparative Medicine, Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
131
|
Cubillos EFG, Snebergerova P, Borsodi S, Reichensdorferova D, Levytska V, Asada M, Sojka D, Jalovecka M. Establishment of a stable transfection and gene targeting system in Babesia divergens. Front Cell Infect Microbiol 2023; 13:1278041. [PMID: 38156314 PMCID: PMC10753763 DOI: 10.3389/fcimb.2023.1278041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Eliana F. G. Cubillos
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Pavla Snebergerova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sarka Borsodi
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | | | - Viktoriya Levytska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Obihiro, Japan
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Marie Jalovecka
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
132
|
Maradana MR, Marzook NB, Diaz OE, Mkandawire T, Diny NL, Li Y, Liebert A, Shah K, Tolaini M, Kváč M, Stockinger B, Sateriale A. Dietary environmental factors shape the immune defense against Cryptosporidium infection. Cell Host Microbe 2023; 31:2038-2050.e4. [PMID: 38052207 DOI: 10.1016/j.chom.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cryptosporidium is a leading cause of diarrheal-related deaths in children, especially in resource-poor settings. It also targets the immunocompromised, chronically infecting people living with HIV and primary immunodeficiencies. There is no vaccine or effective treatment. Although it is known from human cases and animal models that CD4+ T cells play a role in curbing Cryptosporidium, the role of CD8+ T cells remains to be defined. Using a Cryptosporidium tyzzeri mouse model, we show that gut-resident CD8+ intraepithelial lymphocytes (IELs) confer resistance to parasite growth. CD8+ IELs express and depend on the ligand-dependent transcription factor aryl hydrocarbon receptor (AHR). AHR deficiency reduces CD8+ IELs, decreases their cytotoxicity, and worsens infection. Transfer of CD8+ IELs rescues severely immunodeficient mice from death following Cryptosporidium challenge. Finally, dietary supplementation of the AHR pro-ligand indole-3-carbinol in newborn mice promotes resistance to infection. Therefore, common dietary metabolites augment the host immune response to cryptosporidiosis, protecting against disease.
Collapse
Affiliation(s)
| | | | - Oscar E Diaz
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | | | | | - Ying Li
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Anke Liebert
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Kathleen Shah
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Mauro Tolaini
- AhR Immunity Lab, The Francis Crick Institute, London, UK
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Adam Sateriale
- Cryptosporidiosis Lab, The Francis Crick Institute, London, UK.
| |
Collapse
|
133
|
Steketee PC, Paxton E, Barrett MP, Pearce MC, Connelley TK, Morrison LJ. Anti-parasitic benzoxaboroles are ineffective against Theileria parva in vitro. Int J Parasitol Drugs Drug Resist 2023; 23:71-77. [PMID: 37866107 PMCID: PMC10623109 DOI: 10.1016/j.ijpddr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
East Coast Fever (ECF) is a disease affecting cattle in sub-Saharan Africa, caused by the tick-borne Apicomplexan pathogen Theileria parva. The disease is a major problem for cattle farmers in affected regions and there are few methods of control, including a complex infection and treatment vaccine, expensive chemotherapy, and the more widespread tick control through acaricides. New intervention strategies are, therefore, sorely needed. Benzoxaboroles are a versatile class of boron-heterocyclic compounds with demonstrable pharmacological activity against a diverse group of pathogens, including those related to T. parva. In this study, the in vitro efficacy of three benzoxaboroles against the intracellular schizont stage of T. parva was investigated using a flow cytometry approach. Of the benzoxaboroles tested, only one showed any potency, albeit only at high concentrations, even though there is high protein sequence similarity in the CPSF3 protein target compared to other protozoan pathogen species. This finding suggests that benzoxaboroles currently of interest for the treatment of African animal trypanosomiasis, toxoplasmosis, cryptosporidiosis and malaria may not be suitable for the treatment of ECF. We conclude that testing of further benzoxaborole compounds is needed to fully determine whether any lead compounds can be identified to target T. parva.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Michael C Pearce
- Global Alliance for Livestock Medicines, Doherty Building, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Timothy K Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
134
|
St Laurent B. Genomic complexity of parasites and vectors challenges malaria control in Southeast Asia. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101113. [PMID: 37690774 DOI: 10.1016/j.cois.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Southeast Asia is a uniquely complex region of malaria transmission that maintains an astounding level of species diversity among potential malaria vectors and also generates drug-resistant and quickly diverging populations of malaria parasites. All five human malaria species circulate in Southeast Asia with over 50 Anopheles species that vary in their ability to transmit these pathogens. The intricate relationships of these parasites and vectors are not well-understood. Human activity in Southeast Asian countries has created an increasingly fragmented landscape, bringing humans and mosquitoes into more frequent contact, sustaining malaria transmission in a region where few control tools are effective. Genomic shifts at the species, population, and individual level in parasites and vectors introduce variation that has produced drug- and insecticide resistance. The goal of this review is to highlight genomic studies of Southeast Asian malaria parasites and vectors that demonstrate how diversity in these organisms presents unique challenges and opportunities for global malaria control and eradication efforts.
Collapse
|
135
|
Schwarz D, Lourido S. The multifaceted roles of Myb domain-containing proteins in apicomplexan parasites. Curr Opin Microbiol 2023; 76:102395. [PMID: 37866202 PMCID: PMC10872578 DOI: 10.1016/j.mib.2023.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Apicomplexan parasites are a large and diverse clade of protists responsible for significant diseases of humans and animals. Central to the ability of these parasites to colonize their host and evade immune responses is an expanded repertoire of gene-expression programs that requires the coordinated action of complex transcriptional networks. DNA-binding proteins and chromatin regulators are essential orchestrators of apicomplexan gene expression that often act in concert. Although apicomplexan genomes encode various families of putative DNA-binding proteins, most remain functionally and mechanistically unexplored. This review highlights the versatile role of myeloblastosis (Myb) domain-containing proteins in apicomplexan parasites as transcription factors and chromatin regulators. We explore the diversity of Myb domain structure and use phylogenetic analysis to identify common features across the phylum. This provides a framework to discuss functional heterogeneity and regulation of Myb domain-containing proteins particularly emphasizing their role in parasite differentiation.
Collapse
Affiliation(s)
- Dominic Schwarz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
136
|
Palmateer NC, Munro JB, Nagaraj S, Crabtree J, Pelle R, Tallon L, Nene V, Bishop R, Silva JC. The Hypervariable Tpr Multigene Family of Theileria Parasites, Defined by a Conserved, Membrane-Associated, C-Terminal Domain, Includes Several Copies with Defined Orthology Between Species. J Mol Evol 2023; 91:897-911. [PMID: 38017120 PMCID: PMC10730637 DOI: 10.1007/s00239-023-10142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.
Collapse
Affiliation(s)
- Nicholas C Palmateer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger Pelle
- International Livestock Research Institute, Nairobi, Kenya
| | - Luke Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vish Nene
- International Livestock Research Institute, Nairobi, Kenya
| | - Richard Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal.
| |
Collapse
|
137
|
Nuss AB, Lomas JS, Reyes JB, Garcia-Cruz O, Lei W, Sharma A, Pham MN, Beniwal S, Swain ML, McVicar M, Hinne IA, Zhang X, Yim WC, Gulia-Nuss M. The highly improved genome of Ixodes scapularis with X and Y pseudochromosomes. Life Sci Alliance 2023; 6:e202302109. [PMID: 37813487 PMCID: PMC10561763 DOI: 10.26508/lsa.202302109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Ixodes scapularis, the black-legged tick, is the principal vector of the Lyme disease spirochete, Borrelia burgdorferi, and is responsible for most of the ∼470,000 estimated Lyme disease cases annually in the USA. Ixodes scapularis can transmit six additional pathogens of human health significance. Because of its medical importance, I. scapularis was the first tick genome to be sequenced and annotated. However, the first assembly, I. scapularis Wikel (IscaW), was highly fragmented because of the technical challenges posed by the long, repetitive genome sequences characteristic of arthropod genomes and the lack of long-read sequencing techniques. Although I. scapularis has emerged as a model for tick research because of the availability of new tools such as embryo injection and CRISPR-Cas9-mediated gene editing yet the lack of chromosome-scale scaffolds has slowed progress in tick biology and the development of tools for their control. Here we combine diverse technologies to produce the I. scapularis Gulia-Nuss (IscGN) genome assembly and gene set. We used DNA from eggs and male and female adult ticks and took advantage of Hi-C, PacBio HiFi sequencing, and Illumina short-read sequencing technologies to produce a chromosome-level assembly. In this work, we present the predicted pseudochromosomes consisting of 13 autosomes and the sex pseudochromosomes: X and Y, and a markedly improved genome annotation compared with the existing assemblies and annotations.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, NV, USA
| | - Johnathan S Lomas
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Jeremiah B Reyes
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- Nevada Bioinformatics Center, University of Nevada, Reno, NV, USA
| | - Omar Garcia-Cruz
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Wenlong Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Michael N Pham
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Saransh Beniwal
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
- Department of Computer Science and Engineering, The University of Nevada, Reno, NV, USA
| | - Mia L Swain
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Molly McVicar
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Isaac Amankona Hinne
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Xingtan Zhang
- Nevada Bioinformatics Center, University of Nevada, Reno, NV, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, USA
| |
Collapse
|
138
|
Hill TW, Vance S, Loome JF, Haugen BJ, Loprete DM, Stoddard SV, Jackson-Hayes L. A member of the OSCA/TMEM63 family of mechanosensitive calcium channels participates in cell wall integrity maintenance in Aspergillus nidulans. Fungal Genet Biol 2023; 169:103842. [PMID: 37805121 DOI: 10.1016/j.fgb.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The calF7 mutation in Aspergillus nidulans causes hypersensitivity to the cell wall compromising agents Calcofluor White (CFW) and Congo Red. In this research we demonstrate that the calF7 mutation resides in gene AN2880, encoding a predicted member of the OSCA/TMEM63 family of transmembrane glycoproteins. Those members of the family whose physiological functions have been investigated have been shown to act as mechanosensitive calcium transport channels. Deletion of AN2880 replicates the CFW hypersensitivity phenotype. Separately, we show that CFW hypersensitivity of calF deletion strains can be overcome by inclusion of elevated levels of extracellular calcium ions in the growth medium, and, correspondingly, wild type strains grown in media deficient in calcium ions are no longer resistant to CFW. These observations support a model in which accommodation to at least some forms of cell wall stress is mediated by a calcium ion signaling system in which the AN2880 gene product plays a role. The genetic lesion in calF7 is predicted to result in a glycine-to-arginine substitution at position 638 of the 945-residue CalF protein in a region of the RSN1_7TM domain that is highly conserved amongst filamentous fungi. Homology modeling predicts that the consequence of a G638R substitution is to structurally occlude the principal conductance pore in the protein. GFP-tagged wild type CalF localizes principally to the Spitzenkörper and the plasma membrane at growing tips and forming septa. However, both septation and hyphal morphology appear to be normal in calF7 and AN2880 deletion strains, indicating that any role played by CalF in normal hyphal growth and cytokinesis is dispensable.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA.
| | - Stanley Vance
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Jennifer F Loome
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Benard J Haugen
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Darlene M Loprete
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Shana V Stoddard
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Loretta Jackson-Hayes
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
139
|
Alencar RM, Sepulveda CCP, Martinez-Villegas L, Bahia AC, Santana RA, de Souza IB, D'Elia GMA, Duarte APM, de Lacerda MVG, Monteiro WM, Secundino NFC, Pimenta PFP, Koerich LB. Unravelling the genome of the brackish water malaria vector Anopheles aquasalis. Sci Rep 2023; 13:20472. [PMID: 37993652 PMCID: PMC10665375 DOI: 10.1038/s41598-023-47830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Malaria is a severe public health problem in several developing tropical and subtropical countries. Anopheles aquasalis is the primary coastal malaria vector in Central and South America and the Caribbean Islands, and it has the peculiar feature of living in water with large changes in salinity. Recent research has recognised An. aquasalis as an important model for studying the interactions of murine and human Plasmodium parasites. This study presents the complete genome of An. aquasalis and offers insights into its evolution and physiology. The genome is similar in size and gene content to other Neotropical anophelines, with 162 Mb and 12,446 protein-coding genes. There are 1387 single-copy orthologs at the Diptera level (eg. An. gambiae, An. darlingi and Drosophila melanogaster). An. aquasalis diverged from An. darlingi, the primary malaria vector in inland South America, nearly 20 million years ago. Proteins related to ion transport and metabolism belong to the most abundant gene families with 660 genes. We identified gene families relevant to osmosis control (e.g., aquaporins, vacuolar-ATPases, Na+/K+-ATPases, and carbonic anhydrases). Evolutionary analysis suggests that all osmotic regulation genes are under strong purifying selection. We also observed low copy number variation in insecticide resistance and immunity-related genes for all known classical pathways. The data provided by this study offers candidate genes for further studies of parasite-vector interactions and for studies on how anophelines of brackish water deal with the high fluctuation in water salinity. We also established data and insights supporting An. aquasalis as an emerging Neotropical malaria vector model for genetic and molecular studies.
Collapse
Affiliation(s)
- Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Luis Martinez-Villegas
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
| | - Ana Cristina Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21.941-170, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, CEP 69.027-070, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Gigliola Mayara Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Ana Paula Marques Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, CEP 69.027-070, Brazil
- University of Texas Medical Branch, Galveston, United States of America
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil.
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil.
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil.
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31.270-901, Brazil.
| |
Collapse
|
140
|
Andrade-Salas A, Canela-Pérez I, Cevallos AM, López-Villaseñor I, Hernández R. Trypanosoma cruzi Fibrillarins: Two paralogous proteins with non-identical signals for nuclear transport. Biochem Biophys Res Commun 2023; 682:274-280. [PMID: 37832384 DOI: 10.1016/j.bbrc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Trypanosoma cruzi is a parasitic protozoa causative of Chagas disease. As part of our interest in studying the basic biology of this microorganism, this work reports our observations related to the characterization of motifs and structural domains present in two fibrillarin isoforms (TcFib1 and TcFib2) that were found to be necessary for the nuclear targeting of these nucleolar proteins. Previous characterization of these proteins indicated that they share 68.67% of identical amino acids and are both expressed as nucleolar proteins in T. cruzi epimastigotes. Using an approach based on the transfection of recombinant genes encoding fluorescent fibrillarin-EGFP fusion proteins, this study found evidence for the presence of 4 motifs or protein domains that help target these proteins to the nucleus: The GAR domain and carboxyl terminus in both TcFibs, as well as two lysines and a computationally predicted cNLS in TcFib1. As a distinctive feature, the GAR domain of TcFib2 proved to be essential for the nuclear localization of this protein paralog. Such a difference between TcFib1 and Tcfib2 nuclear localization signals can be explained as the presence of two partially related nuclear import pathways for the two fibrillarin homologues in this organism.
Collapse
Affiliation(s)
- Arturo Andrade-Salas
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Israel Canela-Pérez
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México City, Mexico.
| |
Collapse
|
141
|
Miramón P, Pountain AW, Lorenz MC. Candida auris-macrophage cellular interactions and transcriptional response. Infect Immun 2023; 91:e0027423. [PMID: 37815367 PMCID: PMC10652981 DOI: 10.1128/iai.00274-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023] Open
Abstract
The pathogenic yeast Candida auris represents a global threat of the utmost clinical relevance. This emerging fungal species is remarkable in its resistance to commonly used antifungal agents and its persistence in the nosocomial settings. The innate immune system is one the first lines of defense preventing the dissemination of pathogens in the host. C. auris is susceptible to circulating phagocytes, and understanding the molecular details of these interactions may suggest routes to improved therapies. In this work, we examined the interactions of this yeast with macrophages. We found that macrophages avidly phagocytose C. auris; however, intracellular replication is not inhibited, indicating that C. auris resists the killing mechanisms imposed by the phagocyte. Unlike Candida albicans, phagocytosis of C. auris does not induce macrophage lysis. The transcriptional response of C. auris to macrophage phagocytosis is very similar to other members of the CUG clade (C. albicans, C. tropicalis, C. parapsilosis, C. lusitaniae), i.e., downregulation of transcription/translation and upregulation of alternative carbon metabolism pathways, transporters, and induction of oxidative stress response and proteolysis. Gene family expansions are common in this yeast, and we found that many of these genes are induced in response to macrophage co-incubation. Among these, amino acid and oligopeptide transporters, as well as lipases and proteases, are upregulated. Thus, C. auris shares key transcriptional signatures shared with other fungal pathogens and capitalizes on the expansion of gene families coding for potential virulence attributes that allow its survival, persistence, and evasion of the innate immune system.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
142
|
Sutanto E, Pava Z, Echeverry DF, Lopera-Mesa TM, Montenegro LM, Yasnot-Acosta MF, Benavente ED, Pearson RD, Herrera S, Arévalo-Herrera M, Trimarsanto H, Rumaseb A, Noviyanti R, Kwiatkowski DP, Price RN, Auburn S. Genomics of Plasmodium vivax in Colombia reveals evidence of local bottle-necking and inter-country connectivity in the Americas. Sci Rep 2023; 13:19779. [PMID: 37957271 PMCID: PMC10643449 DOI: 10.1038/s41598-023-46076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: Chocó and Córdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. Chocó exhibited a higher frequency of polyclonal infections (23%) than Córdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation.
Collapse
Affiliation(s)
| | - Zuleima Pava
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Diego F Echeverry
- Departamento de Microbiología, Universidad del Valle, Cali, Colombia
- International Training and Medical Research Center (CIDEIM), Cali, Colombia
| | | | | | - Maria F Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), Universidad de Córdoba, Monteria, Colombia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Centro Internacional de Vacunas, Cali, Colombia
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
143
|
Catta-Preta CMC, Ferreira TR, Ghosh K, Paun A, Sacks D. HOP1 and HAP2 are conserved components of the meiosis-related machinery required for successful mating in Leishmania. Nat Commun 2023; 14:7159. [PMID: 37935664 PMCID: PMC10630298 DOI: 10.1038/s41467-023-42789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
Whole genome analysis of Leishmania hybrids generated experimentally in sand flies supports a meiotic mechanism of genetic exchange, with Mendelian segregation of the nuclear genome. Here, we perform functional analyses through the generation of double drug-resistant hybrids in vitro and in vivo (during sand fly infections) to assess the importance of conserved meiosis-related genes in recombination and plasmogamy. We report that HOP1 and a HAP2-paralog (HAP2-2) are essential components of the Leishmania meiosis machinery and cell-to-cell fusion mechanism, respectively, since deletion of either gene in one or both parents significantly reduces or completely abrogates mating competence. These findings significantly advance our understanding of sexual reproduction in Leishmania, with likely relevance to other trypanosomatids, by formally demonstrating the involvement of a meiotic protein homolog and a distinct fusogen that mediates non-canonical, bilateral fusion in the hybridizing cells.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
144
|
Klugherz I, Basch M, Ng N, Zhu Z, Wagener N, Wagener J. Only One of Three Bcs1 Homologs in Aspergillus fumigatus Confers Respiratory Growth. J Fungi (Basel) 2023; 9:1074. [PMID: 37998879 PMCID: PMC10672213 DOI: 10.3390/jof9111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The mitochondrial translocase Bcs1 is required for the correct assembly of complex III of the mitochondrial respiratory chain. Because of its importance, Bcs1 was recently proposed as a target for antifungal agents. The function of this AAA (ATPase Associated with diverse cellular Activities) protein has been extensively characterized in Saccharomyces cerevisiae. This yeast as well as previously studied mammals each encode only one homolog. In contrast, the pathogenic mold Aspergillus fumigatus encodes three putative Bcs1 homologs, none of which have been characterized to date. To study the role of these three homologs in A. fumigatus, conditional and deletion mutants of the respective genes AFUA_3G13000 (bcs1A), AFUA_4G01260 (bcs1B), and AFUA_2G14760 (bcs1C) were generated. A deletion or downregulation of bcs1A resulted in drastically reduced growth and sporulation rates and in a significantly altered susceptibility to azole antifungals. In contrast, mutants lacking Bcs1B or Bcs1C did not show any phenotypes differing from the wild type. Salicylhydroxamic acid-an inhibitor of the alternative oxidase that allows the respiratory chain to bypass complex III in some species-caused a complete growth arrest of the bcs1A deletion mutant. In a Galleria mellonella infection model, the deletion of bcs1A resulted in significantly decreased virulence. Only Bcs1A was able to partially complement a deletion of BCS1 in S. cerevisiae. The subcellular localization of Bcs1B and Bcs1C outside of mitochondria suggests that these Bcs1 homologs exert cellular functions different from that of Bcs1. Our data demonstrate that Bcs1A is the sole Bcs1 ortholog in A. fumigatus.
Collapse
Affiliation(s)
- Isabel Klugherz
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Marion Basch
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, St James’s Hospital Campus, D08 RX0X Dublin, Ireland
| | - Zhaojun Zhu
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
| | - Nikola Wagener
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, St James’s Hospital Campus, D08 RX0X Dublin, Ireland
| |
Collapse
|
145
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. PLoS Negl Trop Dis 2023; 17:e0011731. [PMID: 37917723 PMCID: PMC10656021 DOI: 10.1371/journal.pntd.0011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/17/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigotes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypanosomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
146
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
147
|
Shortt E, Hackett CG, Stadler RV, Kent RS, Herneisen AL, Ward GE, Lourido S. CDPK2A and CDPK1 form a signaling module upstream of Toxoplasma motility. mBio 2023; 14:e0135823. [PMID: 37610220 PMCID: PMC10653799 DOI: 10.1128/mbio.01358-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE This work uncovers interactions between various signaling pathways that govern Toxoplasma gondii egress. Specifically, we compare the function of three canonical calcium-dependent protein kinases (CDPKs) using chemical-genetic and conditional-depletion approaches. We describe the function of a previously uncharacterized CDPK, CDPK2A, in the Toxoplasma lytic cycle, demonstrating that it contributes to parasite fitness through regulation of microneme discharge, gliding motility, and egress from infected host cells. Comparison of analog-sensitive kinase alleles and conditionally depleted alleles uncovered epistasis between CDPK2A and CDPK1, implying a partial functional redundancy. Understanding the topology of signaling pathways underlying key events in the parasite life cycle can aid in efforts targeting kinases for anti-parasitic therapies.
Collapse
Affiliation(s)
- Emily Shortt
- Whitehead Institute, Cambridge, Massachusetts, USA
| | | | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
148
|
Hasan MM, Polino AJ, Mukherjee S, Vaupel B, Goldberg DE. The mature N-termini of Plasmodium effector proteins confer specificity of export. mBio 2023; 14:e0121523. [PMID: 37646514 PMCID: PMC10653839 DOI: 10.1128/mbio.01215-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many exported proteins and is thought to be a signal for export. However, the motif is cleaved inside the endoplasmic reticulum of the parasite, and mature proteins starting from the fourth PEXEL residue travel to the parasite periphery for export. We showed that the PEXEL motif is dispensable for export as long as identical mature proteins can be efficiently produced via alternative means in the ER. We also showed that the exported and non-exported proteins are differentiated at the parasite periphery based on their mature N-termini; however, any discernible export signal within that region remained cryptic. Our study resolves a longstanding paradox in PEXEL protein trafficking.
Collapse
Affiliation(s)
- Muhammad M. Hasan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J. Polino
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara Vaupel
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
149
|
Tusnády GE, Zeke A, Kálmán ZE, Fatoux M, Ricard-Blum S, Gibson TJ, Dobson L. LeishMANIAdb: a comparative resource for Leishmania proteins. Database (Oxford) 2023; 2023:baad074. [PMID: 37935582 PMCID: PMC10627299 DOI: 10.1093/database/baad074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/09/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
Leishmaniasis is a detrimental disease causing serious changes in quality of life and some forms can lead to death. The disease is spread by the parasite Leishmania transmitted by sandfly vectors and their primary hosts are vertebrates including humans. The pathogen penetrates host cells and secretes proteins (the secretome) to repurpose cells for pathogen growth and to alter cell signaling via host-pathogen protein-protein interactions). Here, we present LeishMANIAdb, a database specifically designed to investigate how Leishmania virulence factors may interfere with host proteins. Since the secretomes of different Leishmania species are only partially characterized, we collated various experimental evidence and used computational predictions to identify Leishmania secreted proteins to generate a user-friendly unified web resource allowing users to access all information available on experimental and predicted secretomes. In addition, we manually annotated host-pathogen interactions of 211 proteins and the localization/function of 3764 transmembrane (TM) proteins of different Leishmania species. We also enriched all proteins with automatic structural and functional predictions that can provide new insights in the molecular mechanisms of infection. Our database may provide novel insights into Leishmania host-pathogen interactions and help to identify new therapeutic targets for this neglected disease. Database URL https://leishmaniadb.ttk.hu/.
Collapse
Affiliation(s)
- Gábor E Tusnády
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - András Zeke
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
| | - Zsófia E Kálmán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Marie Fatoux
- ICBMS UMR CNRS 5246, University Lyon 1, Rue Victor Grignard, Villeurbanne 69622, France
- UMR CNRS 5086, University Lyon 1, 7 Passage du Vercors, Lyon 69367, France
| | - Sylvie Ricard-Blum
- ICBMS UMR CNRS 5246, University Lyon 1, Rue Victor Grignard, Villeurbanne 69622, France
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Laszlo Dobson
- Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest 1117, Hungary
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| |
Collapse
|
150
|
Cruz LNPD, Teles-de-Freitas R, Resck MEB, Fonseca ABDA, Padilha KP, Farnesi LC, Araripe LO, Bruno RV. Light and dark cycles modify the expression of clock genes in the ovaries of Aedes aegypti in a noncircadian manner. PLoS One 2023; 18:e0287237. [PMID: 37856474 PMCID: PMC10586701 DOI: 10.1371/journal.pone.0287237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/02/2023] [Indexed: 10/21/2023] Open
Abstract
Circadian oscillators (i.e., circadian clocks) are essential to producing the circadian rhythms observed in virtually all multicellular organisms. In arthropods, many rhythmic behaviors are generated by oscillations of the central pacemaker, specific groups of neurons of the protocerebrum in which the circadian oscillator molecular machinery is expressed and works; however, oscillators located in other tissues (i.e., peripheral clocks) could also contribute to certain rhythms, but are not well known in non-model organisms. Here, we investigated whether eight clock genes that likely constitute the Aedes aegypti clock are expressed in a circadian manner in the previtellogenic ovaries of this mosquito. Also, we asked if insemination by conspecific males would alter the expression profiles of these clock genes. We observed that the clock genes do not have a rhythmic expression profile in the ovaries of virgin (VF) or inseminated (IF) females, except for period, which showed a rhythmic expression profile in ovaries of IF kept in light and dark (LD) cycles, but not in constant darkness (DD). The mean expression of seven clock genes was affected by the insemination status (VF or IF) or the light condition (LD 12:12 or DD), among which five were affected solely by the light condition, one solely by the insemination status, and one by both factors. Our results suggest that a functional circadian clock is absent in the ovaries of A. aegypti. Still, their differential mean expression promoted by light conditions or insemination suggests roles other than circadian rhythms in this mosquito's ovaries.
Collapse
Affiliation(s)
| | - Rayane Teles-de-Freitas
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Maria Eduarda Barreto Resck
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | | | - Karine Pedreira Padilha
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Luciana Ordunha Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), CNPq, Rio de Janeiro- RJ, Brazil
| |
Collapse
|