101
|
Goodstal SM, Lin J, Crandall T, Crowley L, Bender AT, Pereira A, Soloviev M, Wesolowski JS, Iadevaia R, Schelhorn SE, Ross E, Morandi F, Ma J, Clark A. Preclinical evidence for the effective use of TL-895, a highly selective and potent second-generation BTK inhibitor, for the treatment of B-cell malignancies. Sci Rep 2023; 13:20412. [PMID: 37989777 PMCID: PMC10663516 DOI: 10.1038/s41598-023-47735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
TL-895 (formerly known as M7583) is a potent, highly selective, adenosine triphosphate (ATP)-competitive, second-generation, irreversible inhibitor of Bruton's tyrosine kinase (BTK). We characterized its biochemical and cellular effects in in vitro and in vivo models. TL-895 was evaluated preclinically for potency against BTK using IC50 concentration-response curves; selectivity using a 270-kinase panel; BTK phosphorylation in Ramos Burkitt's lymphoma cells by ProteinSimple Wes analysis of one study; anti-proliferative effects in primary chronic lymphocytic leukemia (CLL) blasts; cell viability effects in diffuse large B-cell lymphoma (DLBCL) and mantle-cell lymphoma (MCL) cell lines; effects on antibody-dependent cell-mediated cytotoxicity (ADCC) from Daudi cells and chromium-51 release from human tumor cell lines; and efficacy in vivo using four MCL xenograft model and 21 DLBCL patient-derived xenograft (PDX) models (subtypes: 9 ABC, 11 GCB, 1 Unclassified). TL-895 was active against recombinant BTK (average IC50 1.5 nM) and inhibited only three additional kinases with IC50 within tenfold of BTK activity. TL-895 inhibited BTK auto-phosphorylation at the Y223 phosphorylation site (IC50 1-10 nM). TL-895 inhibited the proliferation of primary CLL blasts in vitro and inhibited growth in a subset of activated DLBCL and MCL cell lines. TL-895 inhibited the ADCC mechanism of therapeutic antibodies only at supra-clinical exposure levels. TL-895 significantly inhibited tumor growth in the Mino MCL xenograft model and in 5/21 DLBCL PDX models relative to vehicle controls. These findings demonstrate the potency of TL-895 for BTK and its efficacy in models of B-cell lymphoma despite its refined selectivity.
Collapse
Affiliation(s)
- Samantha M Goodstal
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.
| | - Jing Lin
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Timothy Crandall
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Lindsey Crowley
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Andrew T Bender
- Research Unit Immunology, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Albertina Pereira
- Research Unit Immunology, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Maria Soloviev
- Protein Engineering Antibody Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - John S Wesolowski
- Protein Engineering Antibody Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Riham Iadevaia
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Sven-Eric Schelhorn
- Oncology Bioinformatics Quantitative Pharmacology and Drug Disposition (QPD) Biopharma, Merck KGaA, 64293, Darmstadt, Germany
| | - Edith Ross
- Oncology Bioinformatics Quantitative Pharmacology and Drug Disposition (QPD) Biopharma, Merck KGaA, 64293, Darmstadt, Germany
| | - Federica Morandi
- Discovery and Development Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Jianguo Ma
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Anderson Clark
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| |
Collapse
|
102
|
Garrison MA, Jang Y, Bae T, Cherskov A, Emery SB, Fasching L, Jones A, Moldovan JB, Molitor C, Pochareddy S, Peters MA, Shin JH, Wang Y, Yang X, Akbarian S, Chess A, Gage FH, Gleeson JG, Kidd JM, McConnell M, Mills RE, Moran JV, Park PJ, Sestan N, Urban AE, Vaccarino FM, Walsh CA, Weinberger DR, Wheelan SJ, Abyzov A. Genomic data resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases. Sci Data 2023; 10:813. [PMID: 37985666 PMCID: PMC10662356 DOI: 10.1038/s41597-023-02645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.
Collapse
Affiliation(s)
- McKinzie A Garrison
- Program in Biochemistry, Molecular and Cellular Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adriana Cherskov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Attila Jones
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John B Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cindy Molitor
- Sage Bionetworks, 2901 Third Ave., Suite 330, Seattle, WA, 98121, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mette A Peters
- Sage Bionetworks, 2901 Third Ave., Suite 330, Seattle, WA, 98121, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, 7910 Frost St., Suite #300, San Diego, CA, 92123, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Chess
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred H Gage
- Laboratory of Genetics LOG-G, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, 7910 Frost St., Suite #300, San Diego, CA, 92123, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | | | - Ryan E Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Flora M Vaccarino
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah J Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- National Human Genome Research Institute, National Institutes of Health, 6700B Rockledge Dr, Bethesda, MD, 20892, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
103
|
Vilela J, Martiniano H, Marques AR, Santos JX, Asif M, Rasga C, Oliveira G, Vicente AM. Identification of Neurotransmission and Synaptic Biological Processes Disrupted in Autism Spectrum Disorder Using Interaction Networks and Community Detection Analysis. Biomedicines 2023; 11:2971. [PMID: 38001974 PMCID: PMC10668950 DOI: 10.3390/biomedicines11112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by communication deficits and repetitive behavioral patterns. Hundreds of candidate genes have been implicated in ASD, including neurotransmission and synaptic (NS) genes; however, the genetic architecture of this disease is far from clear. In this study, we seek to clarify the biological processes affected by NS gene variants identified in individuals with ASD and the global networks that link those processes together. For a curated list of 1216 NS candidate genes, identified in multiple databases and the literature, we searched for ultra-rare (UR) loss-of-function (LoF) variants in the whole-exome sequencing dataset from the Autism Sequencing Consortium (N = 3938 cases). Filtering for population frequency was carried out using gnomAD (N = 60,146 controls). NS genes with UR LoF variants were used to construct a network of protein-protein interactions, and the network's biological communities were identified by applying the Leiden algorithm. We further explored the expression enrichment of network genes in specific brain regions. We identified 356 variants in 208 genes, with a preponderance of UR LoF variants in the PDE11A and SYTL3 genes. Expression enrichment analysis highlighted several subcortical structures, particularly the basal ganglia. The interaction network defined seven network communities, clustering synaptic and neurotransmitter pathways with several ubiquitous processes that occur in multiple organs and systems. This approach also uncovered biological pathways that are not usually associated with ASD, such as brain cytochromes P450 and brain mitochondrial metabolism. Overall, the community analysis suggests that ASD involves the disruption of synaptic and neurotransmitter pathways but also ubiquitous, but less frequently implicated, biological processes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
104
|
Azmi MB, Sehgal SA, Asif U, Musani S, Abedin MFE, Suri A, Ahmed SDH, Qureshi SA. Genetic insights into obesity: in silico identification of pathogenic SNPs in MBOAT4 gene and their structural molecular dynamics consequences. J Biomol Struct Dyn 2023; 42:13074-13090. [PMID: 37921712 DOI: 10.1080/07391102.2023.2274970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Membrane Bound O-Acyltransferase Domain-Containing 4 (MBOAT4) protein catalyzes ghrelin acylation, leading to prominent ghrelin activity, hence characterizing its role as an anti-obesity target. We extracted 625 exonic SNPs from the ENSEMBL database and one phenotype-based missense mutation associated with obesity (A46T) from the HGMD (Human Gene Mutation Database). These were differentiated on deleterious missense SNPs of the MBOAT4 gene through MAF (minor allele frequency: <0.01) cut-off criteria in relation to some bioinformatics-based supervised machine learning tools. We found 8 rare-coding and harmful missense SNPs. The consensus classifier (PredictSNP) tool predicted that the SNP (G57S, C: rs561065025) was the most pathogenic. Several trained in silico algorithms have predicted decreased protein stability [ΔΔG (kcal/mol)] function in the presence of these rare-coding pathogenic mutations in the MBOAT4 gene. Then, a stereochemical quality check (i.e. validation and assessment) of the 3D model was performed, followed by a blind cavity docking approach, used to search for druggable cavities and molecular interactions with citrus flavonoids of the Rutaceae family, ranked with energetic estimations. Significant interactions with Phloretin 3',5'-Di-C-Glucoside were also observed at R304, W306, N307, A311, L314 and H338 with (iGEMDOCK: -95.82 kcal/mol and AutoDock: -7.80 kcal/mol). The RMSD values and other variables of MD simulation analyses on this protein further validated its significant interactions with the above flavonoids. The MBOAT4 gene and its molecular interactions could serve as an interventional future anti-obesity target. The current study's findings will benefit future prospects for large population-based studies and drug development, particularly for generating personalized medicine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Bilal Azmi
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Uzma Asif
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sarah Musani
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Azeema Suri
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Danish Haseen Ahmed
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
105
|
Wu W, Xu J, Yin H, Fu C, Yao K, Chen X. Heterozygous variants c.781G>A and c.1066dup of serine protease 56 cause familial nanophthalmos by impairing serine-type endopeptidase activity. Br J Ophthalmol 2023; 107:1750-1756. [PMID: 35383051 DOI: 10.1136/bjophthalmol-2021-320909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Nanophthalmos is a rare developmental, bilateral, sporadic or hereditary form of microphthalmos. In this study, the heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene were identified in two patients with nanophthalmos. This study reports the clinical manifestation and the underlying pathogenic mechanism. METHODS Whole-exome sequencing was performed to identify the pathogenic genes in a Chinese family with nanophthalmos. The molecular simulation was used to predict the structures of wild-type or mutant PRSS56. The PRSS56 wild-type or mutation overexpression cellular models have been constructed accordingly. The subcellular localisation was then observed using immunofluorescence and Western-blot techniques. The Folin-Ciocalteu assay was carried out to evaluate serine-type endopeptidase activity, and a wound-healing assay was used to examine the cellular migratory ability. RESULTS The whole-exome sequencing revealed that heterozygous variants c.781G>A and c.1066dup of the PRSS56 gene might contribute to nanophthalmos. Both variants were not identified in the dbSNP, 1000 Genome project or ESP6500 databases. Furthermore, the variants were highly conserved and were involved in biological functions. The mutations result in destructive protein structure and impede serine-type endopeptidase activity, thereby impairing subcellular localisation and cellular migration. CONCLUSION The c.781G>A and c.1066dup variants of the PRSS56 gene might negatively affect protein structures, subcellular localisation, serine-type endopeptidase activity and cellular migratory ability. Together, these changes could lead to the development of nanophthalmos. This study identifies the PRSS56 gene as a potential target for nanophthalmos diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houfa Yin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxi Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
106
|
Yang Y, Wan Z, Zhang E, Piao Y. Genomic profiling and immune landscape of olfactory neuroblastoma in China. Front Oncol 2023; 13:1226494. [PMID: 38023213 PMCID: PMC10646513 DOI: 10.3389/fonc.2023.1226494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of the olfactory mucosa. The paucity of genomic data has prevented the development of individualized ONB treatments. Here, we investigated the genomic and immune landscape of ONB in Chinese patients. Methods Whole exome sequencing (WES) and multiplex immunofluorescence (MIF) analysis were performed on tissue samples from 19 Chinese ONB patients. Patients were divided into low- and high-grade groups. Results Overall, 929 nonsynonymous alterations were identified in 18 (94.74%) ONB cases. The most prevalent altered cancer-related genes were CTNNB1 (16%) and ZNRF3 (16%). The most mutated oncogenic pathways were the WNT and RAS pathways. The median tumor mutation burden (TMB) was 0.45, ranging from 0 to 3.25. Only one case expressed PD-L1 (> 1%) in the tumor region. The percentage of CD8+ tumor-infiltrating lymphocytes (TILs) in the tumor region ranged from 0.03% to 84.9%, with a median of 1.08%. No significant differences were observed between the low- and high-grade groups for clinicopathological features, mutant genes, mutant pathways, TMB, tumor neoantigen burden (TNB), mutant-allele tumor heterogeneity (MATH), PD-L1 expression levels, or CD8+ TIL percentage. However, the low-grade group showed significantly more CD68+ macrophages in both the tumor and total region than the high-grade group. Notably, CD68+CD163- macrophages accounted for an average of 80.5% of CD68+ macrophages. Conclusion This study presents data on the genomic and immune landscape of ONB cases in China. CTNNB1 and ZNRF3 were the most prevalent altered cancer-related genes. The results of TMB, PD-L1, and CD8+ Tils suggest that ONB may be insensitive to immunotherapy. M1 macrophages may be positively associated with the prognosis of ONB. Implications for Practice In this study, the most prevalent altered cancer-related genes were CTNNB1 (16%) and ZNRF3 (16%). The most mutated oncogenic pathways were the WNT and RAS pathways. The median tumor mutation burden (TMB) was 0.45, ranging from 0 to 3.25. Only one (1/15) case expressed PD-L1 (> 1%) in the tumor region. However, the low-grade group showed significantly more CD68+ macrophages in both the tumor and total region than the high-grade group. The higher level of CD68-related macrophages indicates that M1 macrophages potentially play an important role in ONB development that is possibly associated with prognosis.
Collapse
Affiliation(s)
- Yunyun Yang
- Department of Pathology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
- Department of Medicine, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, China
| | - Zhiyi Wan
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Enli Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Yingshi Piao
- Department of Pathology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
- Department of Medicine, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, China
| |
Collapse
|
107
|
Yang TL, Ting J, Lin MR, Chang WC, Shih CM. Identification of Genetic Variants Associated with Severe Myocardial Bridging through Whole-Exome Sequencing. J Pers Med 2023; 13:1509. [PMID: 37888120 PMCID: PMC10608235 DOI: 10.3390/jpm13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Myocardial bridging (MB) is a congenital coronary artery anomaly and an important cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed cases of severe MB and eight age- and sex-matched control patients were investigated. In total, 139 rare variants that are potentially pathogenic for severe MB were identified in 132 genes. Genes with multiple rare variants or co-predicted by ClinVar and CADD/REVEL for severe MB were collected, from which heart-specific genes were selected under the guidance of tissue expression levels. Functional annotation indicated significant genetic associations with abnormal skeletal muscle mass, cardiomyopathies, and transmembrane ion channels. Candidate genes were reviewed regarding the functions and locations of each individual gene product. Among the gene candidates for severe MB, rare variants in DMD, SGCA, and TTN were determined to be the most crucial. The results suggest that altered anchoring proteins on the cell membrane and intracellular sarcomere unit of cardiomyocytes play a role in the development of the missed trajectory of coronary vessels. Additional studies are required to support the diagnostic application of cardiac sarcoglycan and dystroglycan complexes in patients with severe MB.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
- Master’ Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chun-Ming Shih
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
108
|
Liu L, Niu L, Zheng X, Xiao F, Sun H, Deng W, Cai J. PD-L1 expression-related PI3K pathway correlates with immunotherapy efficacy in gastric cancer. Ther Adv Med Oncol 2023; 15:17588359231205853. [PMID: 37868079 PMCID: PMC10586003 DOI: 10.1177/17588359231205853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background The programed death ligand-1 combined positive score (PD-L1 CPS), the only FDA-approved biomarker for immune checkpoint inhibitor therapy in gastric cancer (GC) patients, is an important but imperfect predictive biomarker. The molecular characteristics of tumors that influence the PD-L1 CPS are largely unknown and would be helpful for screening patients who would benefit from immunotherapy. Methods PD-L1 immunohistochemistry (IHC) and targeted next-generation sequencing techniques were used to compare genomic alterations in 492 GC patients in two groups (PD-L1 CPS ⩾ 1, positive; CPS < 1, negative). Screened PD-L1 expression-related factors were analyzed for immunotherapy efficacy in three distinct GC cohorts from public databases. Results Positive PD-L1 expression occurred in 40% of GC patients and was associated with a higher proportion of phosphatidylinositol 3-kinase (PI3K), SWItch/Sucrose NonFermentable (SWI/SNF), lysine demethylase (KDM), and DNA (cytosine-5)-methyltransferase (DNMT) (all p < 0.01), pathway alterations. Compared to wild-type GC patients, those with PI3K pathway alterations had a higher response rate (p = 0.002) and durable clinical benefit rate with immunotherapy (p = 0.023, p = 0.038) as well as longer progression-free survival (p = 0.084, p = 0.0076) and overall survival (p = 0.2, p = 0.037) with immunotherapy. Conclusion This study revealed PD-L1 expression-related factors in the tumor genome in a GC cohort. Alterations in the PI3K pathway associated with PD-L1 positivity were shown to be associated with better immunotherapy efficacy in three distinct GC cohorts from public databases. Our results provide a potential avenue for patient selection and rational immune combination development for GC patients.
Collapse
Affiliation(s)
- Langbiao Liu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Niu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue Zheng
- Genecast Biotechnology Co., Ltd, Wuxi City, Jiangsu, China
| | - Fei Xiao
- Genecast Biotechnology Co., Ltd, Wuxi City, Jiangsu, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi City, Jiangsu, China
| | - Wei Deng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing 100050,China
| | - Jun Cai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong’an Road, Xicheng District, Beijing, 100050, China
| |
Collapse
|
109
|
Grigalionienė K, Burnytė B, Ambrozaitytė L, Utkus A. Wide diagnostic and genotypic spectrum in patients with suspected mitochondrial disease. Orphanet J Rare Dis 2023; 18:307. [PMID: 37784170 PMCID: PMC10544509 DOI: 10.1186/s13023-023-02921-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Mitochondrial Diseases (MDs) are a diverse group of neurometabolic disorders characterized by impaired mitochondrial oxidative phosphorylation and caused by pathogenic variants in more than 400 genes. The implementation of next-generation sequencing (NGS) technologies helps to increase the understanding of molecular basis and diagnostic yield of these conditions. The purpose of the study was to investigate diagnostic and genotypic spectrum in patients with suspected MD. The comprehensive analysis of mtDNA variants using Sanger sequencing was performed in the group of 83 unrelated individuals with clinically suspected mitochondrial disease. Additionally, targeted next generation sequencing or whole exome sequencing (WES) was performed for 30 patients of the study group. RESULTS The overall diagnostic rate was 21.7% for the patients with suspected MD, increasing to 36.7% in the group of patients where NGS methods were applied. Mitochondrial disease was confirmed in 11 patients (13.3%), including few classical mitochondrial syndromes (MELAS, MERRF, Leigh and Kearns-Sayre syndrome) caused by pathogenic mtDNA variants (8.4%) and MDs caused by pathogenic variants in five nDNA genes. Other neuromuscular diseases caused by pathogenic variants in seven nDNA genes, were confirmed in seven patients (23.3%). CONCLUSION The wide spectrum of identified rare mitochondrial or neurodevelopmental diseases proves that MD suspected patients would mostly benefit from an extensive genetic profiling allowing rapid diagnostics and improving the care of these patients.
Collapse
Affiliation(s)
- Kristina Grigalionienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania.
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| |
Collapse
|
110
|
Skoczylas S, Jakiel P, Płoszaj T, Gadzalska K, Borowiec M, Pastorczak A, Moczulska H, Malarska M, Eckersdorf-Mastalerz A, Budzyńska E, Zmysłowska A. Novel potentially pathogenic variants detected in genes causing intellectual disability and epilepsy in Polish families. Neurogenetics 2023; 24:221-229. [PMID: 37405542 PMCID: PMC10545623 DOI: 10.1007/s10048-023-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Intellectual disability (ID) affects 1-3% of the world population. The number of genes whose dysfunctions cause intellectual disability is increasing. In addition, new gene associations are constantly being discovered, as well as specific phenotypic features for already identified genetic alterations are being described. The aim of our study was to search for pathogenic variants in genes responsible for moderate to severe intellectual disability and epilepsy, using a panel of targeted next-generation sequencing (tNGS) for diagnosis. METHODS The group of 73 patients (ID, n=32; epilepsy, n=21; ID and epilepsy, n=18) was enrolled in the nucleus DNA (nuDNA) study using a tNGS panel (Agilent Technologies, USA). In addition, high coverage mitochondrial DNA (mtDNA) was extracted from the tNGS data for 54 patients. RESULTS Fifty-two rare nuDNA variants, as well as 10 rare and 1 novel mtDNA variants, were found in patients in the study group. The 10 most damaging nuDNA variants were subjected to a detailed clinical analysis. Finally, 7 nuDNA and 1 mtDNA were found to be the cause of the disease. CONCLUSIONS This shows that still a very large proportion of patients remain undiagnosed and may require further testing. The reason for the negative results of our analysis may be a non-genetic cause of the observed phenotypes or failure to detect the causative variant in the genome. In addition, the study clearly shows that analysis of the mtDNA genome is clinically relevant, as approximately 1% of patients with ID may have pathogenic variant in mitochondrial DNA.
Collapse
Affiliation(s)
- S Skoczylas
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland.
| | - P Jakiel
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - T Płoszaj
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - K Gadzalska
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M Borowiec
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A Pastorczak
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - H Moczulska
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M Malarska
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | | | - E Budzyńska
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A Zmysłowska
- 1Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
111
|
Diaz Perez KK, Curtis SW, Sanchis-Juan A, Zhao X, Head T, Ho S, Carter B, McHenry T, Bishop MR, Valencia-Ramirez LC, Restrepo C, Hecht JT, Uribe LM, Wehby G, Weinberg SM, Beaty TH, Murray JC, Feingold E, Marazita ML, Cutler DJ, Epstein MP, Brand H, Leslie EJ. Rare variants found in clinical gene panels illuminate the genetic and allelic architecture of orofacial clefting. Genet Med 2023; 25:100918. [PMID: 37330696 PMCID: PMC10592535 DOI: 10.1016/j.gim.2023.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Collapse
Affiliation(s)
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Bridget Carter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; Agnes Scott College, Decatur, GA
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Madison R Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX
| | - Lina M Uribe
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | - George Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
112
|
Zhou S, Zhang F, Xu M, Zhang L, Liu Z, Yang Q, Wang C, Wang B, Ma T, Feng J. Novel insights into molecular patterns of ROS1 fusions in a large Chinese NSCLC cohort: a multicenter study. Mol Oncol 2023; 17:2200-2212. [PMID: 37584407 PMCID: PMC10552890 DOI: 10.1002/1878-0261.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) rearrangements are a crucial therapeutic target in non-small cell lung cancer (NSCLC). However, there is limited comprehensive analysis of the molecular patterns of ROS1 fusions. This study aimed to address this gap by analysing 135 ROS1 fusions from 134 Chinese NSCLC patients using next-generation sequencing (NGS). The fusions were categorized into common and uncommon based on their incidence. Our study revealed, for the first time, a unique distribution preference of breakpoints within ROS1, with common fusions occurring in introns 31-33 and uncommon fusions occurring in introns 34 and 35. Additionally, we identified previously unknown breakpoints within intron 28 of ROS1. Furthermore, we identified a close association between the distribution patterns of fusion partners and breakpoints on ROS1, providing important insights into the molecular landscape of ROS1 fusions. We also confirmed the presence of inconsistent breakpoints in ROS1 fusions between DNA-based NGS and RNA-based NGS through rigorous validation methods. These inconsistencies were attributed to alternative splicing resulting in out-of-frame or exonic ROS1 fusions. These findings significantly contribute to our understanding of the molecular characteristics of ROS1 fusions, which have implications for panel design and the treatment of NSCLC patients with ROS1 rearrangements.
Collapse
Affiliation(s)
- Shengyu Zhou
- Clinical Nursing Department, School of Nursing and Rehabilitation, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Fayan Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Mengxiang Xu
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Lei Zhang
- Cancer Center, Daping HospitalArmy Medical UniversityChongqingChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Qiong Yang
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Chunyang Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Baoming Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Jiao Feng
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- School of PharmacyHangzhou Normal UniversityChina
| |
Collapse
|
113
|
Minskaia E, Maimaris J, Jenkins P, Albuquerque AS, Hong Y, Eleftheriou D, Gilmour KC, Grace R, Moreira F, Grimbacher B, Morris EC, Burns SO. Autosomal Dominant STAT6 Gain of Function Causes Severe Atopy Associated with Lymphoma. J Clin Immunol 2023; 43:1611-1622. [PMID: 37316763 PMCID: PMC10499697 DOI: 10.1007/s10875-023-01530-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis.245 words.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- University College London Institute of Immunity and Transplantation, London, UK
| | - Jesmeen Maimaris
- University College London Institute of Immunity and Transplantation, London, UK.
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK.
| | - Persephone Jenkins
- University College London Institute of Immunity and Transplantation, London, UK
| | | | - Ying Hong
- Inflammation and Rheumatology Section, University College London Institute of Child Health, London, UK
| | - Despina Eleftheriou
- Inflammation and Rheumatology Section, University College London Institute of Child Health, London, UK
- Rheumatology Department, Great Ormond Street Hospital National Health Service (NHS) Foundation Trust, London, UK
| | - Kimberly C Gilmour
- Clinical Immunology Laboratory, Great Ormond Street Hospital of Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Richard Grace
- Department of Haematology, East Sussex Healthcare NHS Trust, Saint Leonards-on-sea, UK
| | - Fernando Moreira
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
114
|
Jiang TT, Fang L, Wang K. Deciphering "the language of nature": A transformer-based language model for deleterious mutations in proteins. Innovation (N Y) 2023; 4:100487. [PMID: 37636282 PMCID: PMC10448337 DOI: 10.1016/j.xinn.2023.100487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Various machine-learning models, including deep neural network models, have already been developed to predict deleteriousness of missense (non-synonymous) mutations. Potential improvements to the current state of the art, however, may still benefit from a fresh look at the biological problem using more sophisticated self-adaptive machine-learning approaches. Recent advances in the field of natural language processing show that transformer models-a type of deep neural network-to be particularly powerful at modeling sequence information with context dependence. In this study, we introduce MutFormer, a transformer-based model for the prediction of deleterious missense mutations, which uses reference and mutated protein sequences from the human genome as the primary features. MutFormer takes advantage of a combination of self-attention layers and convolutional layers to learn both long-range and short-range dependencies between amino acid mutations in a protein sequence. We first pre-trained MutFormer on reference protein sequences and mutated protein sequences resulting from common genetic variants observed in human populations. We next examined different fine-tuning methods to successfully apply the model to deleteriousness prediction of missense mutations. Finally, we evaluated MutFormer's performance on multiple testing datasets. We found that MutFormer showed similar or improved performance over a variety of existing tools, including those that used conventional machine-learning approaches. In conclusion, MutFormer considers sequence features that are not explored in previous studies and can complement existing computational predictions or empirically generated functional scores to improve our understanding of disease variants.
Collapse
Affiliation(s)
- Theodore T. Jiang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Palisades Charter High School, Pacific Palisades, CA 90272, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
115
|
Ghoreyshi ZS, George JT. Quantitative approaches for decoding the specificity of the human T cell repertoire. Front Immunol 2023; 14:1228873. [PMID: 37781387 PMCID: PMC10539903 DOI: 10.3389/fimmu.2023.1228873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
Collapse
Affiliation(s)
- Zahra S. Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Engineering Medicine Program, Texas A&M University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
116
|
Tanwar NA, Malhotra R, Satheesh AP, Khuntia SP, Sreekanthreddy P, Varghese L, Kolla S, Chandrani P, Choughule A, Pange P, Gupta V, Noronha V, Patil VM, Pramanik R, Kumar S, Nayak SP, Babu S, Shetty R, Kantharaju M, Chinder PS, Korlimarla A, Srinath BS, Prabhash K, Rishi KD, Goswami HM, Veldore VH. Understanding the Impact of Population and Cancer Type on Tumor Mutation Burden Scores: A Comprehensive Whole-Exome Study in Cancer Patients From India. JCO Glob Oncol 2023; 9:e2300047. [PMID: 38085046 PMCID: PMC10846780 DOI: 10.1200/go.23.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The purpose of this study was to understand the impact of population diversity and geographic variation on tumor mutation burden (TMB) scores across cancers and its implication on stratification of patients for immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS This retrospective study used whole-exome sequencing (WES) to profile 1,233 Indian patients with cancer across 30 different cancer types and to estimate their TMB scores. A WES-based pipeline was adopted, along with an indigenously developed strategy for arriving at true somatic mutations. A robust unsupervised machine learning approach was used to understand the distribution of TMB scores across different populations and within the population. RESULTS The results of the study showed a biphasic distribution of TMB scores in most cancers, with different threshold scores across cancer types. Patients with cancer in India had higher TMB scores compared with the Caucasian patients. We also observed that the TMB score value at 90th percentile (predicting high efficacy to ICI) was high in four different cancer types (sarcoma, ovary, head and neck, and breast) in the Indian cohort as compared with The Cancer Genome Atlas or public cohort. However, in lung and colorectal cancers, the TMB score distribution was similar between the two population cohorts. CONCLUSION The findings of this study indicate that it is crucial to benchmark both cancer-specific and population-specific TMB distributions to establish a TMB threshold for each cancer in various populations. Additional prospective studies on much larger population across different cancers are warranted to validate this observation to become the standard of care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anuradha Choughule
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Priyanka Pange
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Vinod Gupta
- Medical Oncology Molecular Laboratory, Tata Memorial Centre, Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | | | - Suresh Babu
- Fortis Cancer Research Centre, Bangalore, India
| | | | | | | | - Aruna Korlimarla
- Sri Shankara Cancer Hospital & Research Centre, Bangalore, India
| | - BS Srinath
- Sri Shankara Cancer Hospital & Research Centre, Bangalore, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | |
Collapse
|
117
|
Wei X, Li H, Zhu T, Yao F, Sui R. FDXR-associated disease in a Chinese cohort: Unraveling expanded ocular phenotypes and genetic spectrum. Exp Eye Res 2023; 234:109600. [PMID: 37481223 DOI: 10.1016/j.exer.2023.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
FDXR: associated disease is characterized by optic atrophy, acoustic neuropathy, and developmental delays. This study evaluated the ocular phenotypes and genetic features of patients with biallelic FDXR variants. Five individuals from unrelated non-consanguineous Chinese families with biallelic FDXR variants were identified using whole exome sequencing, Sanger sequencing, and co-segregation validation. In addition to optic atrophy and diverse extraocular manifestations, all patients presented with retinal dystrophy, and electroretinogram showed severely impaired cone and rod functions in their first decades. Three of the five patients showed attenuated retinal vessels that appeared as white lines on the fundus, and fundus fluorescein angiography (FFA) further revealed vascular abnormalities including delayed filling, completely occluded retinal vasculature, and severe retinal vascular nonperfusion of the peripheral retina. Five novel FDXR variants were identified: c.383C > T (p.A128V), c.963delG (p.R322fs*7), c.1052_1053delTC (p.L351Pfs*12), c.394-11T > G and c.1002+1G > A. Retinal dystrophy with attenuated retinal vessels appearing as white lines was observed in this cohort, and the FFA images revealed that retinal vascular occlusion could be a distinct clinical characteristic of FDXR-associated disease. Probands with FDXR revealed severe early onset ophthalmic features with rapid-progression, indicating the importance of early diagnosis and treatment. Moreover, this is the first study to report FFA manifestations in an FDXR cohort, expanding the FDXR-associated ocular disease phenotype and genetic spectrum.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengxia Yao
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
118
|
Grunin M, de Jong S, Palmer EL, Jin B, Rinker D, Moth C, Capra A, Haines JL, Bush WS, den Hollander AI. Spatial Distribution of Missense Variants within Complement Proteins Associates with Age Related Macular Degeneration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294686. [PMID: 37693462 PMCID: PMC10491280 DOI: 10.1101/2023.08.28.23294686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Purpose Genetic variants in complement genes are associated with age-related macular degeneration (AMD). However, many rare variants have been identified in these genes, but have an unknown significance, and their impact on protein function and structure is still unknown. We set out to address this issue by evaluating the spatial placement and impact on protein structureof these variants by developing an analytical pipeline and applying it to the International AMD Genomics Consortium (IAMDGC) dataset (16,144 AMD cases, 17,832 controls). Methods The IAMDGC dataset was imputed using the Haplotype Reference Consortium (HRC), leading to an improvement of over 30% more imputed variants, over the original 1000 Genomes imputation. Variants were extracted for the CFH , CFI , CFB , C9 , and C3 genes, and filtered for missense variants in solved protein structures. We evaluated these variants as to their placement in the three-dimensional structure of the protein (i.e. spatial proximity in the protein), as well as AMD association. We applied several pipelines to a) calculate spatial proximity to known AMD variants versus gnomAD variants, b) assess a variant's likelihood of causing protein destabilization via calculation of predicted free energy change (ddG) using Rosetta, and c) whole gene-based testing to test for statistical associations. Gene-based testing using seqMeta was performed using a) all variants b) variants near known AMD variants or c) with a ddG >|2|. Further, we applied a structural kernel adaptation of SKAT testing (POKEMON) to confirm the association of spatial distributions of missense variants to AMD. Finally, we used logistic regression on known AMD variants in CFI to identify variants leading to >50% reduction in protein expression from known AMD patient carriers of CFI variants compared to wild type (as determined by in vitro experiments) to determine the pipeline's robustness in identifying AMD-relevant variants. These results were compared to functional impact scores, ie CADD values > 10, which indicate if a variant may have a large functional impact genomewide, to determine if our metrics have better discriminative power than existing variant assessment methods. Once our pipeline had been validated, we then performed a priori selection of variants using this pipeline methodology, and tested AMD patient cell lines that carried those selected variants from the EUGENDA cohort (n=34). We investigated complement pathway protein expression in vitro , looking at multiple components of the complement factor pathway in patient carriers of bioinformatically identified variants. Results Multiple variants were found with a ddG>|2| in each complement gene investigated. Gene-based tests using known and novel missense variants identified significant associations of the C3 , C9 , CFB , and CFH genes with AMD risk after controlling for age and sex (P=3.22×10 -5 ;7.58×10 -6 ;2.1×10 -3 ;1.2×10 -31 ). ddG filtering and SKAT-O tests indicate that missense variants that are predicted to destabilize the protein, in both CFI and CFH, are associated with AMD (P=CFH:0.05, CFI:0.01, threshold of 0.05 significance). Our structural kernel approach identified spatial associations for AMD risk within the protein structures for C3, C9, CFB, CFH, and CFI at a nominal p-value of 0.05. Both ddG and CADD scores were predictive of reduced CFI protein expression, with ROC curve analyses indicating ddG is a better predictor (AUCs of 0.76 and 0.69, respectively). A priori in vitro analysis of variants in all complement factor genes indicated that several variants identified via bioinformatics programs PathProx/POKEMON in our pipeline via in vitro experiments caused significant change in complement protein expression (P=0.04) in actual patient carriers of those variants, via ELISA testing of proteins in the complement factor pathway, and were previously unknown to contribute to AMD pathogenesis. Conclusion We demonstrate for the first time that missense variants in complement genes cluster together spatially and are associated with AMD case/control status. Using this method, we can identify CFI and CFH variants of previously unknown significance that are predicted to destabilize the proteins. These variants, both in and outside spatial clusters, can predict in-vitro tested CFI protein expression changes, and we hypothesize the same is true for CFH . A priori identification of variants that impact gene expression allow for classification for previously classified as VUS. Further investigation is needed to validate the models for additional variants and to be applied to all AMD-associated genes.
Collapse
|
119
|
Duan Y, Xiong J, Lai Z, Zhong Y, Tian C, Du Z, Luo Z, Yu J, Li W, Xu W, Wang Y, Ding T, Zhong X, Pan M, Qiu Y, Lan X, Chen T, Li P, Liu K, Gao M, Hu Y, Liu Z. Analysis of the genetic contribution to thoracic aortic aneurysm or dissection in a prospective cohort of patients with familial and sporadic cases in East China. Orphanet J Rare Dis 2023; 18:251. [PMID: 37644562 PMCID: PMC10466872 DOI: 10.1186/s13023-023-02855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm or dissections (TAADs) represent a group of life-threatening diseases. Genetic aetiology can affect the age of onset, clinical phenotype, and timing of intervention. We conducted a prospective trial to determine the prevalence of pathogenic variants in TAAD patients and to elucidate the traits related to harbouring the pathogenic variants. One hundred and one unrelated TAAD patients underwent genetic sequencing and analysis for 23 TAAD-associated genes using a targeted PCR and next-generation sequencing-based panel. RESULTS A total of 47 variants were identified in 52 TAAD patients (51.5%), including 5 pathogenic, 1 likely pathogenic and 41 variants of uncertain significance. The pathogenic or likely pathogenic (P/LP) variants in 4 disease-causing genes were carried by 1 patient with familial and 5 patients with sporadic TAAD (5.9%). In addition to harbouring one variant causing familial TAAD, the FBN1 gene harboured half of the P/LP variants causing sporadic TAAD. Individuals with an age of onset less than 50 years or normotension had a significantly increased genetic risk. CONCLUSIONS TAAD patients with a younger age at diagnosis or normotension were more likely to carry a P/LP variant; thus, routine genetic testing will be beneficial to a better prognosis through genetically personalized care prior to acute rupture or dissection.
Collapse
Affiliation(s)
- Yanyu Duan
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou, China
| | - Jianxian Xiong
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhenghong Lai
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiming Zhong
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou, China
| | - Chengnan Tian
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiming Du
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhifang Luo
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjian Yu
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wentong Li
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weichang Xu
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yabing Wang
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Ting Ding
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuehong Zhong
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengmeng Pan
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Qiu
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou, China
| | - Xuemei Lan
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou, China
| | - Taihua Chen
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peijun Li
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kang Liu
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Meng Gao
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanqiu Hu
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ziyou Liu
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
120
|
Zhao R, Xu Y, Chen Y, Zhang J, Teng F, Liao S, Chen S, Wu Q, Xiang C, Pang J, Shang Z, Zhao J, Bao H, Bao H, Shao Y, Lu S, Han Y. Clonal dynamics and Stereo-seq resolve origin and phenotypic plasticity of adenosquamous carcinoma. NPJ Precis Oncol 2023; 7:80. [PMID: 37634047 PMCID: PMC10460394 DOI: 10.1038/s41698-023-00430-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
The genomic origin and development of the biphasic lung adenosquamous carcinoma (ASC) remain inconclusive. Here, we derived potential evolutionary trajectory of ASC through whole-exome sequencing, Stereo-seq, and patient-derived xenografts. We showed that EGFR and MET activating mutations were the main drivers in ASCs. Phylogenetically, these drivers and passenger mutations found in both components were trunk clonal events, confirming monoclonal origination. Comparison of multiple lesions also revealed closer genomic distance between lymph node metastases and the ASC component with the same phenotype. However, as mutational signatures of EGFR-positive lung squamous carcinomas (LUSCs) were more comparable to EGFR-positive ASCs than to wild-type LUSCs, we postulated different origination of these LUSCs, with ASC being the potential intermediate state of driver-positive LUSCs. Spatial transcriptomic profiling inferred transformation from adenocarcinoma to squamous cell carcinoma, which was then histologically captured in vivo. Together, our results explained the development of ASC and provided insights into future clinical decisions.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yedan Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Jiajun Zhang
- BGI Research, Chongqing, 401329, PR China
- BGI Research, Shenzhen, 518083, PR China
| | - Fei Teng
- BGI Research, Shenzhen, 518083, PR China
| | - Sha Liao
- BGI Research, Chongqing, 401329, PR China
- BGI Research, Shenzhen, 518083, PR China
| | - Shengnan Chen
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Qian Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Zhanxian Shang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Jikai Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Hairong Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
- School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
121
|
Ferreira CS, Francisco Junior RDS, Gerber AL, Guimarães APDC, de Carvalho FAA, Dos Reis BCS, Pinto-Mariz F, de Souza MS, de Vasconcelos ZFM, Goudouris ES, Vasconcelos ATR. Genetic screening in a Brazilian cohort with inborn errors of immunity. BMC Genom Data 2023; 24:47. [PMID: 37592284 PMCID: PMC10433585 DOI: 10.1186/s12863-023-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.
Collapse
Affiliation(s)
- Cristina Santos Ferreira
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ronaldo da Silva Francisco Junior
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara Carvalho Santos Dos Reis
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernanda Pinto-Mariz
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Monica Soares de Souza
- Allergy and Immunology Sector of the Pediatric Service of the Federal Hospital of Rio de Janeiro State (HFSE) - Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratory of High Complexity of the Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ekaterini Simões Goudouris
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
122
|
Mu Y, Chen Y, Meng Y, Chen T, Fan X, Yuan J, Lin J, Pan J, Li G, Feng J, Diao K, Li Y, Yu S, Liu L. Machine learning models-based on integration of next-generation sequencing testing and tumor cell sizes improve subtype classification of mature B-cell neoplasms. Front Oncol 2023; 13:1160383. [PMID: 37601650 PMCID: PMC10436202 DOI: 10.3389/fonc.2023.1160383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Next-generation sequencing (NGS) panels for mature B-cell neoplasms (MBNs) are widely applied clinically but have yet to be routinely used in a manner that is suitable for subtype differential diagnosis. This study retrospectively investigated newly diagnosed cases of MBNs from our laboratory to investigate mutation landscapes in Chinese patients with MBNs and to combine mutational information and machine learning (ML) into clinical applications for MBNs, especially for subtype classification. Methods Samples from the Catalogue Of Somatic Mutations In Cancer (COSMIC) database were collected for ML model construction and cases from our laboratory were used for ML model validation. Five repeats of 10-fold cross-validation Random Forest algorithm was used for ML model construction. Mutation detection was performed by NGS and tumor cell size was confirmed by cell morphology and/or flow cytometry in our laboratory. Results Totally 849 newly diagnosed MBN cases from our laboratory were retrospectively identified and included in mutational landscape analyses. Patterns of gene mutations in a variety of MBN subtypes were found, important to investigate tumorigenesis in MBNs. A long list of novel mutations was revealed, valuable to both functional studies and clinical applications. By combining gene mutation information revealed by NGS and ML, we established ML models that provide valuable information for MBN subtype classification. In total, 8895 cases of 8 subtypes of MBNs in the COSMIC database were collected and utilized for ML model construction, and the models were validated on the 849 MBN cases from our laboratory. A series of ML models was constructed in this study, and the most efficient model, with an accuracy of 0.87, was based on integration of NGS testing and tumor cell sizes. Conclusions The ML models were of great significance in the differential diagnosis of all cases and different MBN subtypes. Additionally, using NGS results to assist in subtype classification of MBNs by method of ML has positive clinical potential.
Collapse
Affiliation(s)
- Yafei Mu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‐sen University and Sun Yat‐sen Institute of Hematology, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Yuxin Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Yuhuan Meng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Tao Chen
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jiecheng Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Junwei Lin
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jianhua Pan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Guibin Li
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
| | - Jinghua Feng
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Kaiyuan Diao
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Yinghua Li
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Shihui Yu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‐sen University and Sun Yat‐sen Institute of Hematology, Guangzhou, China
| |
Collapse
|
123
|
Lin R, Chen X, Su F, Wang H, Han B, Chen Y, Zhang C, Ma M. The germline HLA-A02B62 supertype is associated with a PD-L1-positive tumour immune microenvironment and poor prognosis in stage I lung cancer. Heliyon 2023; 9:e18948. [PMID: 37600368 PMCID: PMC10432705 DOI: 10.1016/j.heliyon.2023.e18948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Germline HLA class I molecule supertypes are shown to correlate with response to anti-PD-1 therapy. Here, we investigate the significance of germline HLA-A and HLA-B supertypes in tumour microenvironment of non-small-cell lung cancer. Methods Totally 278 NSCLC patients were collected retrospectively. HLA genotyping was conducted using next-generation sequencing. The evaluation of tumour-infiltrating lymphocytes was performed by multiplex immunohistochemistry assay. Correlations among HLA supertypes, tumour infiltrating lymphocytes, and clinicopathological characteristics were assessed. Results HLA-A03 and HLA-B62 were the supertypes with the highest proportions, at 69.1% and 52.2%, respectively. HLA-A02 or HLA-B62, but not HLA-A03, associated with higher PD-L1+ tumour and stromal cells levels, CD68+ cells, and CD68+PD-L1+ cells. Patients with both HLA-A02 and HLA-B62 supertypes displayed significantly higher PD-L1+ cells, CD68+ cells, and CD8+ cells levels than patients with other supertypes (P = 0.0301, P = 0.0479, P = 0.0192). These cells collectively constitute a hot but immunosuppressive tumour microenvironment. Accordingly, patients with both HLA-A02 and HLA-B62 supertypes had short progression-free survival after surgery (HR = 2.27, P = 0.0373). Conclusions The HLA-A02B62 supertype could serve as a possible indicator of poor prognosis in early-stage lung cancer. However, it may also act as a favorable prognostic factor for immunotherapy, given its association with a PD-L1-positive tumour microenvironment.
Collapse
Affiliation(s)
- Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohua Chen
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongbin Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanhui Chen
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Cuixiang Zhang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
124
|
Frigola G, Bühler M, Marginet M, Enjuanes A, Nadeu F, Papaleo N, Salido M, Haralambieva E, Alamo J, Garcia-Bragado F, Álvarez R, Ramos R, Aldecoa I, Campo E, Colomo L, Balagué O. MYC and TP53 Alterations but Not MAPK Pathway Mutations Are Common Oncogenic Mechanisms in Follicular Dendritic Cell Sarcomas. Arch Pathol Lab Med 2023; 147:896-906. [PMID: 36355424 DOI: 10.5858/arpa.2021-0517-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 07/28/2023]
Abstract
CONTEXT.— Despite their stromal origin, follicular dendritic cells (FDCs) share many functions with hematopoietic system cells. FDC neoplasms are currently classified by the World Health Organization along with those of a histiocytic nature. However, the molecular alterations driving oncogenesis in FDC sarcomas (FDCSs) are beginning to be unveiled and do not seem to concur with those described in histiocytic neoplasms, namely MAPK pathway activation. OBJECTIVE.— To identify molecular alterations driving tumorigenesis in FDCS. DESIGN.— We investigated the role of MYC and TP53 in FDC-derived tumor oncogenesis and assessed comprehensively the status of the MAPK pathway in 16 FDCSs, 6 inflammatory pseudotumor (IPT)-like FDCSs, and 8 IPTs. RESULTS.— MYC structural alterations (both amplifications and rearrangements) were identified in 5 of 14 FDCSs (35.7%), all associated with MYC overexpression. TP53 mutations were identified in 4 of 14 FDCSs (28.6%), all of which displayed intense and diffuse p53 expression. None of these alterations were identified in any IPT-like FDCSs or in IPT cases. No MAPK pathway gene alterations were identified in any of the cases studied. CONCLUSIONS.— The presence of MYC and TP53 alterations and the lack of association with Epstein-Barr virus segregate classical FDCS from IPT-like FDCS, pointing at different oncogenic mechanisms in both entities. Our results suggest a possible oncogenic role of MYC and TP53 alterations in FDCS. The absence of MAPK pathway alterations confirms the lack of a significant role of this pathway in the oncogenesis of FDC-derived neoplasms.
Collapse
Affiliation(s)
- Gerard Frigola
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
| | - Marco Bühler
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
- The Department of Pathology, University Hospital Zürich, Zürich, Switzerland (Bühler, Haralambieva)
| | - Marta Marginet
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
| | - Anna Enjuanes
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
| | - Ferran Nadeu
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
- The Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain (Nadeu, Campo, Balagué)
| | - Natalia Papaleo
- The Department of Pathology, Parc Taulí Hospital Universitari, Sabadell, Spain (Papaleo)
- The Department of Pathology, Hospital del Mar, Barcelona, Spain (Papaleo, Salido, Colomo)
- The Department of Diagnostic Fundamentals, University Pompeu Fabra, Barcelona, Spain (Papaleo, Colomo)
| | - Marta Salido
- The Department of Pathology, Hospital del Mar, Barcelona, Spain (Papaleo, Salido, Colomo)
| | - Eugenia Haralambieva
- The Department of Pathology, University Hospital Zürich, Zürich, Switzerland (Bühler, Haralambieva)
| | - José Alamo
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
| | - Federico Garcia-Bragado
- The Department of Pathology, Complejo Hospitalario de Navarra, Pamplona, Spain (Garcia-Bragado)
| | - Ramiro Álvarez
- The Department of Pathology, Hospital Universitario Miguel Servet, Zaragoza, Spain (Álvarez)
| | - Rafael Ramos
- The Department of Pathology, Hospital Universitari Son Espases, Palma de Mallorca, Spain (Ramos)
| | - Iban Aldecoa
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
| | - Elías Campo
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
- The Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain (Nadeu, Campo, Balagué)
- The Department of Clinical Fundamentals, University of Barcelona, Barcelona, Spain (Campo, Balagué)
| | - Lluis Colomo
- The Department of Pathology, Hospital del Mar, Barcelona, Spain (Papaleo, Salido, Colomo)
- The Department of Diagnostic Fundamentals, University Pompeu Fabra, Barcelona, Spain (Papaleo, Colomo)
| | - Olga Balagué
- From the Department of Pathology, Hospital Clínic of Barcelona, Barcelona, Spain (Frigola, Bühler, Marginet, Alamo, Aldecoa, Campo, Balagué)
- The Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (Frigola, Bühler, Enjuanes, Nadeu, Campo, Balagué)
- The Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain (Nadeu, Campo, Balagué)
- The Department of Clinical Fundamentals, University of Barcelona, Barcelona, Spain (Campo, Balagué)
| |
Collapse
|
125
|
Wang B, Lei X, Tian W, Perez-Rathke A, Tseng YY, Liang J. Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations. Brief Bioinform 2023; 24:bbad206. [PMID: 37332013 PMCID: PMC10359089 DOI: 10.1093/bib/bbad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 06/20/2023] Open
Abstract
We report the structure-based pathogenicity relationship identifier (SPRI), a novel computational tool for accurate evaluation of pathological effects of missense single mutations and prediction of higher-order spatially organized units of mutational clusters. SPRI can effectively extract properties determining pathogenicity encoded in protein structures, and can identify deleterious missense mutations of germ line origin associated with Mendelian diseases, as well as mutations of somatic origin associated with cancer drivers. It compares favorably to other methods in predicting deleterious mutations. Furthermore, SPRI can discover spatially organized pathogenic higher-order spatial clusters (patHOS) of deleterious mutations, including those of low recurrence, and can be used for discovery of candidate cancer driver genes and driver mutations. We further demonstrate that SPRI can take advantage of AlphaFold2 predicted structures and can be deployed for saturation mutation analysis of the whole human proteome.
Collapse
Affiliation(s)
- Boshen Wang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Xue Lei
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Wei Tian
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Alan Perez-Rathke
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Biochemistry and Molecular Biology Department, School of Medicine, Wayne State University, 540 E. Canfield Avenue, 48201MI, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA
| |
Collapse
|
126
|
Bitarafan F, Khodaeian M, Garrousi F, Khalesi R, Ghazi Nader D, Karimi B, Alibakhshi R, Garshasbi M. Reporting a novel growth hormone receptor gene variant in an Iranian consanguineous pedigree with Laron syndrome: a case report. BMC Endocr Disord 2023; 23:155. [PMID: 37474955 PMCID: PMC10357607 DOI: 10.1186/s12902-023-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Human growth hormone (hGH) plays a crucial role in growth by binding to growth hormone receptor (GHR) in target cells. Binding of GH molecules to their cognate receptors triggers downstream signaling pathways leading to the transcription of several genes, including insulin-like growth factor (IGF)-1. Pathogenic variants in the GHR gene can result in structural and functional defects in the GHR protein, leading to Laron Syndrome (LS) with the primary clinical manifestation of short stature. So far, around 100 GHR variants have been reported, mostly biallelic, as causing LS. CASE PRESENTATION We report on three siblings from an Iranian consanguineous family who presented with dwarfism. Whole-exome sequencing (WES) was performed on the proband, revealing a novel homozygous missense variant in the GHR gene (NM_000163.5; c.610 T > A, p.(Trp204Arg)) classified as a likely pathogenic variant according to the recommendation of the American College of Medical Genetics (ACMG). Co-segregation analysis was investigated using Sanger sequencing. CONCLUSIONS To date, approximately 400-500 LS cases with GHR biallelic variants, out of them 10 patients originating from Iran, have been described in the literature. Given the high rate of consanguineous marriages in the Iranian population, the frequency of LS is expected to be higher, which might be explained by undiagnosed cases. Early diagnosis of LS is very important, as treatment is available for this condition.
Collapse
Affiliation(s)
- Fatemeh Bitarafan
- Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | - Raziyeh Khalesi
- Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
| | - Donya Ghazi Nader
- Medical Genetics Laboratory of Dr. Alibakhshi, Sobhan Medical Complex, Kermanshah, Iran
| | - Behnam Karimi
- Medical Genetics Laboratory of Dr. Alibakhshi, Sobhan Medical Complex, Kermanshah, Iran
| | - Reza Alibakhshi
- Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
127
|
Evangelista JE, Clarke DJB, Xie Z, Marino GB, Utti V, Jenkins SL, Ahooyi TM, Bologa CG, Yang JJ, Binder JL, Kumar P, Lambert CG, Grethe JS, Wenger E, Taylor D, Oprea TI, de Bono B, Ma'ayan A. Toxicology knowledge graph for structural birth defects. COMMUNICATIONS MEDICINE 2023; 3:98. [PMID: 37460679 PMCID: PMC10352311 DOI: 10.1038/s43856-023-00329-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Birth defects are functional and structural abnormalities that impact about 1 in 33 births in the United States. They have been attributed to genetic and other factors such as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth defects there are no known causes. METHODS To further characterize associations between small molecule compounds and their potential to induce specific birth abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on associations between birth defects, drugs, and genes. Specifically, we gathered data from drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect associations from genetic studies, drug- and preclinical-compound-induced gene expression changes in cell lines, known drug targets, genetic burden scores for human genes, and placental crossing scores for small molecules. RESULTS Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 preclinical small molecules for their potential to cross the placenta and induce birth defects, and identified >500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-based user interface available at https://maayanlab.cloud/reprotox-kg . This site enables users to explore the associations between birth defects, approved and preclinical drugs, and all human genes. CONCLUSIONS ReproTox-KG provides a resource for exploring knowledge about the molecular mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical small molecules to induce birth defects.
Collapse
Affiliation(s)
- John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vivian Utti
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sherry L Jenkins
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Taha Mohseni Ahooyi
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Cristian G Bologa
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jeremy J Yang
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessica L Binder
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Praveen Kumar
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jeffrey S Grethe
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Wenger
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Department of Biomedical and Health Informatics; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tudor I Oprea
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bernard de Bono
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
128
|
Mohamed FE, Ghattas MA, Almansoori TM, Tabouni M, Baydoun I, Kizhakkedath P, John A, Alblooshi H, Shaukat Q, Al-Jasmi F. Novel compound heterozygous variants (c.971delA/c.542C > T) in SLC1A4 causes spastic tetraplegia, thin corpus callosum, and progressive microcephaly: a case report and mutational analysis. Front Pediatr 2023; 11:1183574. [PMID: 37502193 PMCID: PMC10369183 DOI: 10.3389/fped.2023.1183574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) are linked to SLC1A4 genetic variants since the first reported case in 2015. SLC1A4 encodes for the neutral amino acid transporter ASCT1 which is involved in the transportation of serine between astrocytes and neurons. Although most of the reported cases are of Ashkenazi Jewish ancestry, SPATCCM has also been reported in Irish, Italian, Czech, Palestinian, and Pakistani ethnicities. Herein, we report two Pakistani male siblings from a non-consanguineous marriage presented with global developmental delay associated with spastic quadriplegia, microcephaly, and infantile spasm. Since infancy, both siblings suffered from microcephaly with brain MRI demonstrating generalized atrophy of the frontal, temporal, and parietal lobes with a prominence of the subarachnoid spaces, widening of the Sylvian fissures, and enlargement of the ventricular system not compatible with the chronological age of both patients associated with thinning of the corpus callosum. Whole-exome sequencing of both affected brothers revealed novel compound heterozygous variants in the SLC1A4 gene (NM_003038) segregating from their parents. The maternal c.971delA (p.N324Tfs*29) deletion variant disturbs the transcript reading frame leading to the generation of a premature stop codon and its subsequent degradation by nonsense-mediated mRNA decay as detected through expression analysis. The paternal c.542C > T (p.S181F) missense variant was predicted deleterious via multiple in silico prediction tools as the amino acid substitution is speculated to affect the overall ASCT1 structural confirmation due to the loss of an H-bond at the core of the protein at this position which might affect its function as concluded from the simulation analysis. The presented cases expand the genetic and clinical spectrum of ASCT1 deficiency and support the importance of including SLC1A4 gene screening in infants with unexplained global neurodevelopmental delay regardless of ethnicity.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Taleb M. Almansoori
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Tabouni
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ibrahim Baydoun
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Qudsia Shaukat
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
129
|
Gracia-Diaz C, Zhou Y, Yang Q, Maroofian R, Espana-Bonilla P, Lee CH, Zhang S, Padilla N, Fueyo R, Waxman EA, Lei S, Otrimski G, Li D, Sheppard SE, Mark P, Harr MH, Hakonarson H, Rodan L, Jackson A, Vasudevan P, Powel C, Mohammed S, Maddirevula S, Alzaidan H, Faqeih EA, Efthymiou S, Turchetti V, Rahman F, Maqbool S, Salpietro V, Ibrahim SH, di Rosa G, Houlden H, Alharbi MN, Al-Sannaa NA, Bauer P, Zifarelli G, Estaras C, Hurst ACE, Thompson ML, Chassevent A, Smith-Hicks CL, de la Cruz X, Holtz AM, Elloumi HZ, Hajianpour MJ, Rieubland C, Braun D, Banka S, French DL, Heller EA, Saade M, Song H, Ming GL, Alkuraya FS, Agrawal PB, Reinberg D, Bhoj EJ, Martínez-Balbás MA, Akizu N. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat Commun 2023; 14:4109. [PMID: 37433783 PMCID: PMC10336078 DOI: 10.1038/s41467-023-39645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Paula Espana-Bonilla
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Chul-Hwan Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisa A Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Mark
- Department of Pediatrics, Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Margaret H Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | - Corrina Powel
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Fatima Rahman
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Shazia Maqbool
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Shahnaz H Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Gabriella di Rosa
- Child Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Messina, 98100, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Maha Nasser Alharbi
- Maternity and Children Hospital Buraidah, Qassim Health Cluster, Buraydah, Saudi Arabia
| | | | | | | | - Conchi Estaras
- Center for Translational Medicine, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Anna C E Hurst
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Anna Chassevent
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
| | - Constance L Smith-Hicks
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander M Holtz
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - M J Hajianpour
- Division of Medical Genetics and Genomics, Department of Pediatrics, Albany Medical College, Albany, NY, USA
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Deborah L French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murielle Saade
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami School of Medicine and Holtz Children's Hospital, Jackson Heath System, Miami, FL, USA
| | | | - Elizabeth J Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
130
|
Avila R, Rubinetti V, Zhou X, Hu D, Qian Z, Cano MA, Rodolpho E, Tsueng G, Greene C, Wu C. MyGeneset.info: an interactive and programmatic platform for community-curated and user-created collections of genes. Nucleic Acids Res 2023; 51:W350-W356. [PMID: 37070209 PMCID: PMC10481249 DOI: 10.1093/nar/gkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
Gene definitions and identifiers can be painful to manage-more so when trying to include gene function annotations as this can be highly context-dependent. Creating groups of genes or gene sets can help provide such context, but it compounds the issue as each gene within the gene set can map to multiple identifiers and have annotations derived from multiple sources. We developed MyGeneset.info to provide an API for integrated annotations for gene sets suitable for use in analytical pipelines or web servers. Leveraging our previous work with MyGene.info (a server that provides gene-centric annotations and identifiers), MyGeneset.info addresses the challenge of managing gene sets from multiple resources. With our API, users readily have read-only access to gene sets imported from commonly-used resources such as Wikipathways, CTD, Reactome, SMPDB, MSigDB, GO, and DO. In addition to supporting the access and reuse of approximately 180k gene sets from humans, common model organisms (mice, yeast, etc.), and less-common ones (e.g. black cottonwood tree), MyGeneset.info supports user-created gene sets, providing an important means for making gene sets more FAIR. User-created gene sets can serve as a way to store and manage collections for analysis or easy dissemination through a consistent API.
Collapse
Affiliation(s)
- Ricardo Avila
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vincent Rubinetti
- Department of Biochemistry and Molecular Genetics, Center for Health AI, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xinghua Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dongbo Hu
- Department of Biochemistry and Molecular Genetics, Center for Health AI, University of Colorado School of Medicine, Aurora, CO, USA
| | - Zhongchao Qian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marco Alvarado Cano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Everaldo Rodolpho
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ginger Tsueng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Casey Greene
- Department of Biochemistry and Molecular Genetics, Center for Health AI, University of Colorado School of Medicine, Aurora, CO, USA
| | - Chunlei Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
131
|
Hedgecoe A, Job K, Clarke A. Reflexive standardization and the resolution of uncertainty in the genomics clinic. SOCIAL STUDIES OF SCIENCE 2023; 53:358-378. [PMID: 36922706 PMCID: PMC7614615 DOI: 10.1177/03063127231154863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In genomics, the clinical application of Next Generation Sequencing technologies (such as Whole Genome or Exome Sequencing) has attracted considerable attention from UK policymakers, interested in the benefits such technologies could bring the National Health Service. However, this boosterism plays little attention to the challenges raised by a kind of result known as a Variant of Uncertain Significance, or VUS, which require clinical geneticists and related colleagues to classify ambiguous genomic variants as 'benign' or 'pathogenic'. With a rigorous analysis based on data gathered at 290 clinical meetings over a two-year period, this paper presents the first ethnographic account of decision-making around NGS technology in a NHS clinical genomics service, broadening our understanding of the role formal criteria play in the classification of VUS. Drawing on Stefan Timmermans' concept of 'reflexive standardisation' to explore the way in which clinical genetics staff classify such variants this paper explores the application of a set of criteria drafted by the American College of Medical Genetics and Genomics, highlighting the flexible way in which various resources - variant databases, computer programmes, the research literature - are drawn on to reach a decision. A crucial insight is how professionals' perception of, and trust in, the clinical practice at other genomics centres in the NHS, shapes their own application of criteria and the classification of a VUS as either benign or pathogenic.
Collapse
|
132
|
Ruf WP, Boros M, Freischmidt A, Brenner D, Grozdanov V, de Meirelles J, Meyer T, Grehl T, Petri S, Grosskreutz J, Weyen U, Guenther R, Regensburger M, Hagenacker T, Koch JC, Emmer A, Roediger A, Steinbach R, Wolf J, Weishaupt JH, Lingor P, Deschauer M, Cordts I, Klopstock T, Reilich P, Schoeberl F, Schrank B, Zeller D, Hermann A, Knehr A, Günther K, Dorst J, Schuster J, Siebert R, Ludolph AC, Müller K. Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun 2023; 5:fcad152. [PMID: 37223130 PMCID: PMC10202555 DOI: 10.1093/braincomms/fcad152] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Therapy of motoneuron diseases entered a new phase with the use of intrathecal antisense oligonucleotide therapies treating patients with specific gene mutations predominantly in the context of familial amyotrophic lateral sclerosis. With the majority of cases being sporadic, we conducted a cohort study to describe the mutational landscape of sporadic amyotrophic lateral sclerosis. We analysed genetic variants in amyotrophic lateral sclerosis-associated genes to assess and potentially increase the number of patients eligible for gene-specific therapies. We screened 2340 sporadic amyotrophic lateral sclerosis patients from the German Network for motor neuron diseases for variants in 36 amyotrophic lateral sclerosis-associated genes using targeted next-generation sequencing and for the C9orf72 hexanucleotide repeat expansion. The genetic analysis could be completed on 2267 patients. Clinical data included age at onset, disease progression rate and survival. In this study, we found 79 likely pathogenic Class 4 variants and 10 pathogenic Class 5 variants (without the C9orf72 hexanucleotide repeat expansion) according to the American College of Medical Genetics and Genomics guidelines, of which 31 variants are novel. Thus, including C9orf72 hexanucleotide repeat expansion, Class 4, and Class 5 variants, 296 patients, corresponding to ∼13% of our cohort, could be genetically resolved. We detected 437 variants of unknown significance of which 103 are novel. Corroborating the theory of oligogenic causation in amyotrophic lateral sclerosis, we found a co-occurrence of pathogenic variants in 10 patients (0.4%) with 7 being C9orf72 hexanucleotide repeat expansion carriers. In a gene-wise survival analysis, we found a higher hazard ratio of 1.47 (95% confidence interval 1.02-2.1) for death from any cause for patients with the C9orf72 hexanucleotide repeat expansion and a lower hazard ratio of 0.33 (95% confidence interval 0.12-0.9) for patients with pathogenic SOD1 variants than for patients without a causal gene mutation. In summary, the high yield of 296 patients (∼13%) harbouring a pathogenic variant and oncoming gene-specific therapies for SOD1/FUS/C9orf72, which would apply to 227 patients (∼10%) in this cohort, corroborates that genetic testing should be made available to all sporadic amyotrophic lateral sclerosis patients after respective counselling.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Correspondence to: Dr Wolfgang P. Ruf Department of Neurology Medical Faculty, Ulm University Albert-Einstein-Allee 23, Ulm 89081, Germany E-mail:
| | - Matej Boros
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | | | - Joao de Meirelles
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and other Motor Neuron Disorders, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 13353, Germany
| | - Torsten Grehl
- Department of Neurology, Alfried Krupp Hospital, Essen 45131, Germany
| | - Susanne Petri
- Department of Neurology, Medizinische Hochschule Hannover, Hannover 30625, Germany
| | | | - Ute Weyen
- Department of Neurology, University Hospital Bochum, Bochum 44789, Germany
| | - Rene Guenther
- Department of Neurology, Technische Universität Dresden, Dresden 01307, Germany
| | - Martin Regensburger
- Department of Neurology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Tim Hagenacker
- Department of Neurology Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Essen 45147, Germany
| | - Jan C Koch
- Department of Neurology, University Medical Center Goettingen, Goettingen 37075, Germany
| | - Alexander Emmer
- University Clinic and Polyclinic for Neurology, University Hospital Halle, Halle 06120, Germany
| | | | - Robert Steinbach
- Department of Neurology, University Hospital Jena, Jena 07747, Germany
| | - Joachim Wolf
- Department of Neurology, Diako Mannheim, Mannheim 68163, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University Hospital Mannheim, Mannheim 68167, Germany
| | - Paul Lingor
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Isabell Cordts
- Department of Neurology, Technical University Munich, Munich 80333, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Munich 81377, Germany
| | - Peter Reilich
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
| | - Florian Schoeberl
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-University, München 80336, Germany
| | - Berthold Schrank
- Department of Neurology, DKD Helios Clinics, Wiesbaden 65191, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section ‘Albrecht Kossel’, University Medical Center Rostock, Rostock 18146, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Rostock/Greifswald 17489, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm 89081, Germany
| | | | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Joachim Schuster
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
133
|
Kim MJ, Kim SY, Lee JS, Kang S, Park LJ, Choi W, Jung JY, Kim T, Park SS, Ko JM, Seong MW, Chae JH. Rapid Targeted Sequencing Using Dried Blood Spot Samples for Patients With Suspected Actionable Genetic Diseases. Ann Lab Med 2023; 43:280-289. [PMID: 36544340 PMCID: PMC9791005 DOI: 10.3343/alm.2023.43.3.280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/09/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background New genome sequencing technologies with enhanced diagnostic efficiency have emerged. Rapid and timely diagnosis of treatable rare genetic diseases can alter their medical management and clinical course. However, multiple factors, including ethical issues, must be considered. We designed a targeted sequencing platform to avoid ethical issues and reduce the turnaround time. Methods We designed an automated sequencing platform using dried blood spot samples and a NEOseq_ACTION panel comprising 254 genes associated with Mendelian diseases having curable or manageable treatment options. Retrospective validation was performed using data from 24 genetically and biochemically confirmed patients. Prospective validation was performed using data from 111 patients with suspected actionable genetic diseases. Results In prospective clinical validation, 13.5% patients presented with medically actionable diseases, including short- or medium-chain acyl-CoA dehydrogenase deficiencies (N=6), hyperphenylalaninemia (N=2), mucopolysaccharidosis type IVA (N=1), alpha thalassemia (N=1), 3-methylcrotonyl-CoA carboxylase 2 deficiency (N=1), propionic acidemia (N=1), glycogen storage disease, type IX(a) (N=1), congenital myasthenic syndrome (N=1), and citrullinemia, type II (N=1). Using the automated analytic pipeline, the turnaround time from blood collection to result reporting was <4 days. Conclusions This pilot study evaluated the possibility of rapid and timely diagnosis of treatable rare genetic diseases using a panel designed by a multidisciplinary team. The automated analytic pipeline maximized the clinical utility of rapid targeted sequencing for medically actionable genes, providing a strategy for appropriate and timely treatment of rare genetic diseases.
Collapse
Affiliation(s)
- Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | | | - Lae-Jeong Park
- Department of Electrical Engineering, Gangneung-Wonju National University, Gangneung, Korea
| | | | | | | | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea,Department of Pediatrics, Department of Genome Medicine and Science, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea,Corresponding author: Moon-Woo Seong, M.D., Ph.D. Department of Laboratory Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-4180 Fax: +82-2-747-0359 E-mail: ;
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea,Rare Disease Center, Seoul National University Hospital, Seoul, Korea,Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea,Co-corresponding author: Jong Hee Chae, M.D., Ph.D. Department of Genomic Medicine, Seoul National University Hospital, Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Rare Disease Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-3622 Fax: +82-2-2072-3917 E-mail:
| |
Collapse
|
134
|
Xu C, Wang Y, Hong Y, Yao R, Wu L, Shen X, Qu Y, Zhang Z, Zhu W, Yang Y, Chen W, Zhou Y, Liang Z. Identification of genetic and immune signatures for the recurrence of HER2-positive breast cancer after trastuzumab-based treatment. Breast Cancer Res Treat 2023; 199:603-615. [PMID: 37084155 DOI: 10.1007/s10549-023-06931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To determine the genetic and immune features associated with the recurrence of human epidermal growth factor receptor2-positive (HER2 +) breast cancer (BC) after trastuzumab-based treatment. METHODS A retrospective cohort study of 48 patients who received trastuzumab-based treatment was divided into recurrent and non-recurrent groups according to clinical follow-up. Baseline samples from all 48 patients were analyzed for genetic variation, HLA allele type, gene expression, and immune features, which were linked to HER2 + BC recurrence. Statistics included logistic regression models, Kaplan-Meier plots, and Univariate Cox proportional hazards models. RESULTS Compared with the non-recurrent group, the extracellular matrix-related pathway and 3 Hallmark gene sets were enriched in the recurrent group. The infiltration levels of immature B cells and activated B cells were significantly increased in the non-recurrent group, which correlated remarkably with improved overall survival (OS) in two other published gene expression datasets, including TCGA and METABRIC. In the TCGA cohort (n = 275), activated B cells (HR 0.23, 95%CI 0.13-0.43, p < 0.0001), and immature B cells (HR 0.26, 95%CI 0.12-0.59, p < 0.0001). In the METABRIC cohort (n = 236), activated B cells (HR 0.60, 95%CI 0.43-0.83, p = 0.002), and immature B cells (HR 0.65, 95%CI 0.47-0.91, p = 0.011). Cox regression suggested that immature B cells and activated B cells were protective factors for outcome OS. CONCLUSIONS Aberrant activation of multiple pathways and low baseline tumor-infiltrating B cells are related to HER2 + BC trastuzumab-based recurrence, which primarily affects the antitumor activity of trastuzumab.
Collapse
Affiliation(s)
- Chi Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Wang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yuanyuan Hong
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Xi Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Wei Zhu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Weizhi Chen
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
135
|
Bazgir N, Tahvildari A, Chavoshzade Z, Jamee M, Golchehre Z, Karimi A, Dara N, Fallahi M, Keramatipour M, Karamzade A, Sharafian S. A rare immunological disease, caspase 8 deficiency: case report and literature review. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:29. [PMID: 37038193 PMCID: PMC10084589 DOI: 10.1186/s13223-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/27/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Caspase-8 is a molecule in the FAS pathway that initiates apoptosis. One of the rarest autoimmune lymphoproliferative syndromes is caspase-8 deficiency. Immunodeficiency, splenomegaly, and lymphadenopathy are the common symptoms of this condition. CASE PRESENTATION A two-year-old boy entered this study with a fever of unknown origin (FUO) and dysentery. Moreover, he suffered from failure to thrive and was allergic to the cow's milk protein. His fever and dysentery did not respond to antibiotic therapy. The colonoscopy revealed diffuse ulcerations regions in the sigmoid along with skipped areas, mimicking Crohn's disease aphthous lesions. He represented very early-onset inflammatory bowel disease (IBD) and was diagnosed with the caspase-8 deficiency. CONCLUSION There can be diarrhea or dysentery as the first or main symptoms of inborn errors of immunity (IEIs). The cause of diarrhea and dysentery in this case was early-onset IBD. One of the symptoms of IEIs such as caspase-8 deficiency is early-onset of IBD. Patients with early-onset had normal T cell count and low or normal immunoglobulin levels with insufficient immune response.
Collapse
Affiliation(s)
- Narges Bazgir
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azin Tahvildari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzade
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Infectious Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infectious Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghi Dara
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazdak Fallahi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Watson Genetic Laboratory, North Kargar Street, Tehran, Iran
| | - Arezou Karamzade
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
136
|
Dong F, Ping P, Ma Y, Chen XF. Application of single-cell RNA sequencing on human testicular samples: a comprehensive review. Int J Biol Sci 2023; 19:2167-2197. [PMID: 37151874 PMCID: PMC10158017 DOI: 10.7150/ijbs.82191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
So far there has been no comprehensive review using systematic literature search strategies to show the application of single-cell RNA sequencing (scRNA-seq) in the human testis of the whole life cycle (from embryos to aging males). Here, we summarized the application of scRNA-seq analyses on various human testicular biological samples. A systematic search was conducted in PubMed and Gene Expression Omnibus (GEO), focusing on English researches published after 2009. Articles related to GEO data-series were also retrieved in PubMed or BioRxiv. 81 full-length studies were finally included in the review. ScRNA-seq has been widely used on different human testicular samples with various library strategies, and new cell subtypes such as State 0 spermatogonial stem cells (SSC) and stage_a/b/c Sertoli cells (SC) were identified. For the development of normal testes, scRNA-seq-based evidence showed dynamic transcriptional changes of both germ cells and somatic cells from embryos to adults. And dysregulated metabolic signaling or hedgehog signaling were revealed by scRNA-seq in aged SC or Leydig cells (LC), respectively. For infertile males, scRNA-seq studies revealed profound changes of testes, such as the increased proportion of immature SC/LC of Klinefelter syndrome, the somatic immaturity and altered germline autophagy of patients with non-obstructive azoospermia, and the repressed differentiation of SSC in trans-females receiving testosterone inhibition therapy. Besides, the re-analyzing of public scRNA-seq data made further discoveries such as the potential vulnerability of testicular SARS-CoV-2 infection, and both evolutionary conservatism and divergence among species. ScRNA-seq analyses would unveil mechanisms of testes' development and changes so as to help developing novel treatments for male infertility.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Ping
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
137
|
Cybulski C, Zamani N, Kluźniak W, Milano L, Wokołorczyk D, Stempa K, Rudnicka H, Zhang S, Zadeh M, Huzarski T, Jakubowska A, Dębniak T, Lener M, Szwiec M, Domagała P, Samani AA, Narod S, Gronwald J, Masson JY, Lubiński J, Akbari MR. Variants in ATRIP are associated with breast cancer susceptibility in the Polish population and UK Biobank. Am J Hum Genet 2023; 110:648-662. [PMID: 36977412 PMCID: PMC10119148 DOI: 10.1016/j.ajhg.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Several breast cancer susceptibility genes have been discovered, but more are likely to exist. To identify additional breast cancer susceptibility genes, we used the founder population of Poland and performed whole-exome sequencing on 510 women with familial breast cancer and 308 control subjects. We identified a rare mutation in ATRIP (GenBank: NM_130384.3: c.1152_1155del [p.Gly385Ter]) in two women with breast cancer. At the validation phase, we found this variant in 42/16,085 unselected Polish breast cancer-affected individuals and in 11/9,285 control subjects (OR = 2.14, 95% CI = 1.13-4.28, p = 0.02). By analyzing the sequence data of the UK Biobank study participants (450,000 individuals), we identified ATRIP loss-of-function variants among 13/15,643 breast cancer-affected individuals versus 40/157,943 control subjects (OR = 3.28, 95% CI = 1.76-6.14, p < 0.001). Immunohistochemistry and functional studies showed the ATRIP c.1152_1155del variant allele is weakly expressed compared to the wild-type allele, and truncated ATRIP fails to perform its normal function to prevent replicative stress. We showed that tumors of women with breast cancer who have a germline ATRIP mutation have loss of heterozygosity at the site of ATRIP mutation and genomic homologous recombination deficiency. ATRIP is a critical partner of ATR that binds to RPA coating single-stranded DNA at sites of stalled DNA replication forks. Proper activation of ATR-ATRIP elicits a DNA damage checkpoint crucial in regulating cellular responses to DNA replication stress. Based on our observations, we conclude ATRIP is a breast cancer susceptibility gene candidate linking DNA replication stress to breast cancer.
Collapse
Affiliation(s)
- Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Neda Zamani
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Larissa Milano
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Helena Rudnicka
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Shiyu Zhang
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Maryam Zadeh
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tomasz Huzarski
- Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland; Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Dębniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Domagała
- Department of Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Amir Abbas Samani
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Humber River Hospital, University of Toronto, Toronto, ON, Canada
| | - Steven Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
138
|
Roberts AM, DiStefano MT, Riggs ER, Josephs KS, Alkuraya FS, Amberger J, Amin M, Berg JS, Cunningham F, Eilbeck K, Firth HV, Foreman J, Hamosh A, Hay E, Leigh S, Martin CL, McDonagh EM, Perrett D, Ramos EM, Robinson PN, Rath A, van Sant D, Stark Z, Whiffin N, Rehm HL, Ware JS. Towards robust clinical genome interpretation: developing a consistent terminology to characterize disease-gene relationships - allelic requirement, inheritance modes and disease mechanisms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287948. [PMID: 37066232 PMCID: PMC10104222 DOI: 10.1101/2023.03.30.23287948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
PURPOSE The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
Collapse
Affiliation(s)
- Angharad M Roberts
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London. WC1N 3JH, UK
| | - Marina T DiStefano
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Rooney Riggs
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Katherine S Josephs
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, KFSHRC, Riyadh, Saudi Arabia
| | - Joanna Amberger
- Online Mendelian Inheritance in Man (OMIM), Johns Hopkins University School of Medicine, USA
| | | | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Helen V Firth
- Dept of Medical Genetics, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Ada Hamosh
- Online Mendelian Inheritance in Man (OMIM), Johns Hopkins University School of Medicine, USA
| | - Eleanor Hay
- Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London. WC1N 3JH, UK
| | - Sarah Leigh
- Genomics England, Queen Mary University of London, Dawson Hall, London, EC1M 6BQ, UK
| | | | - Ellen M McDonagh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
- Open Targets, Cambridge, UK
| | - Daniel Perrett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Erin M Ramos
- National Human Genome Research Institute, National Institutes of Health, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington CT 06032, USA
| | - Ana Rath
- INSERM, US14-Orphanet, Paris, France
| | - David van Sant
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Zornitza Stark
- Australian Genomics, Melbourne 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne 3052, Australia
- University of Melbourne, Melbourne 3052, Australia
| | - Nicola Whiffin
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James S Ware
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| |
Collapse
|
139
|
Mavura Y, Song H, Xie J, Tamayo P, Mohammed A, Lawal AT, Bello A, Ibrahim S, Faruk M, Huang FW. Transcriptomic profiling and genomic rearrangement landscape of Nigerian prostate cancer. Prostate 2023; 83:395-402. [PMID: 36598071 DOI: 10.1002/pros.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Men of African ancestry have disproportionately high incidence rates of prostate cancer (PCa) and have high mortality rates. While there is evidence for a higher genetic predisposition for incidence of PCa in men of African ancestry compared to men of European ancestry, there have been few transcriptomic studies on PCa in men of African ancestry in the African continent. OBJECTIVE We performed transcriptomic profiling and fusion analysis on bulk RNA sequencing (RNA-seq) samples from 24 Nigerian PCa patients to investigate the transcriptomic and genomic rearrangement landscape of PCa in Nigerian men. DESIGN Bulk RNA-seq was performed on 24 formalin-fixed paraffin-embeded (FFPE) prostatectomy specimens of Nigerian men. Transcriptomic analysis was performed on 11 high-quality samples. Arriba Fusion and STAR Fusion were used for fusion detection. RESULTS 4/11 (36%) of the samples harbored an erythroblast transformation-specific (ETS) fusion event; 1/11 (9%) had a TMPRSS2-ERG fusion; 2/11 had a TMPRSS2-ETV5 fusion, and 1/11 had a SLC45A3-SKIL fusion. Hierarchical clustering of normalized and mean-centered gene expression showed clustering of fusion positive samples. Furthermore, we developed gene set signatures for Nigerian PCa based on fusion events. By projecting the cancer genome atlas prostate adenocarcinoma (TCGA-PRAD) bulk RNA-seq data set onto the transcriptional space defined by these signatures derived from Nigerian PCa patients, we identified a positive correlation between the Nigerian fusion signature and fusion positive samples in the TCGA-PRAD data set. CONCLUSIONS Less frequent ETS fusion events other than TMPRSS2-ERG such as TMPRSS2-ETV5 and non-ETS fusion events such as SLC45A3-SKIL may be more common in PCa in Nigerian men. This study provides useful working transcriptomic signatures that characterize oncogenic states representative of specific gene fusion events in PCa from Nigerian men.
Collapse
Affiliation(s)
- Yusuph Mavura
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Hanbing Song
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Jamie Xie
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Abdullahi Mohammed
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Ahmad T Lawal
- Department of Surgery, Division of Urology, Faculty of Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Ahmad Bello
- Department of Surgery, Division of Urology, Faculty of Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Franklin W Huang
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
140
|
Barbosa-Gouveia S, Fernández-Crespo S, Lazaré-Iglesias H, González-Quintela A, Vázquez-Agra N, Hermida-Ameijeiras Á. Association of a Novel Homozygous Variant in ABCA1 Gene with Tangier Disease. J Clin Med 2023; 12:jcm12072596. [PMID: 37048678 PMCID: PMC10094818 DOI: 10.3390/jcm12072596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Tangier disease (TD) is a rare autosomal recessive disorder caused by a variant in the ABCA1 gene, characterized by significantly reduced levels of plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-I). TD typically leads to accumulation of cholesterol in the peripheral tissues and early coronary disease but with highly variable clinical expression. Herein, we describe a case study of a 59-year-old male patient with features typical of TD, in whom a likely pathogenic variant in the ABCA1 gene was identified by whole-exome sequencing (WES), identified for the first time as homozygous (NM_005502.4: c.4799A>G (p. His1600Arg)). In silico analysis including MutationTaster and DANN score were used to predict the pathogenicity of the variant and a protein model generated by SWISS-MODEL was built to determine how the homozygous variant detected in our patient may change the protein structure and impact on its function. This case study describes a homozygous variant of the ABCA1 gene, which is responsible for a severe form of TD and underlines the importance of using bioinformatics and genomics for linking genotype to phenotype and better understanding and accounting for the functional impact of genetic variations.
Collapse
|
141
|
Reid KM, Steel D, Nair S, Bhate S, Biassoni L, Sudhakar S, Heys M, Burke E, Kamsteeg EJ, Hameed B, Zech M, Mencacci NE, Barwick K, Topf M, Kurian MA, Genomics England Research Consortium. Loss-of-Function Variants in DRD1 in Infantile Parkinsonism-Dystonia. Cells 2023; 12:cells12071046. [PMID: 37048120 PMCID: PMC10093404 DOI: 10.3390/cells12071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.
Collapse
|
142
|
Jiang C, Lu Y, Liu H, Cai G, Peng Z, Feng W, Lin L. Clinical characterization and genomic landscape of gynecological cancers among patients attending a Chinese hospital. Front Oncol 2023; 13:1143876. [PMID: 37064128 PMCID: PMC10101327 DOI: 10.3389/fonc.2023.1143876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundGynecological cancers are the most lethal malignancies among females, most of which are associated with gene mutations. Few studies have compared the differences in the genomic landscape among various types of gynecological cancers. In this study, we evaluated the diversity of mutations in different gynecological cancers.MethodsA total of 184 patients with gynecological cancer, including ovarian, cervical, fallopian tube, and endometrial cancer, were included. Next-generation sequencing was performed to detect the mutations and tumor mutational burden (TMB). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were also conducted.ResultsWe found that 94.57% of patients had at least one mutation, among which single nucleotide variants, insertions and InDels were in the majority. TP53, PIK3CA, PTEN, KRAS, BRCA1, BRCA2, ARID1A, KMT2C, FGFR2, and FGFR3 were the top 10 most frequently mutated genes. Patients with ovarian cancer tended to have higher frequencies of BRCA1 and BRCA2 mutations, and the frequency of germline BRCA1 mutations (18/24, 75.00%) was higher than that of BRCA2 (11/19, 57.89%). A new mutation hotspot in BRCA2 (I770) was firstly discovered among Chinese patients with gynecological cancer. Patients with TP53, PIK3CA, PTEN, and FGFR3 mutations had significantly higher TMB values than those with wild-type genes. A significant cross was discovered between the enriched KEGG pathways of gynecological and breast cancers. GO enrichment revealed that the mutated genes were crucial for the cell cycle, neuronal apoptosis, and DNA repair.ConclusionVarious gynecological cancer types share similarities and differences both in clinical characterization and genomic mutations. Taken together with the results of TMB and enriched pathways, this study provided useful information on the molecular mechanism underlying gynecological cancers and the development of targeted drugs and precision medicine.
Collapse
Affiliation(s)
- Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiyi Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhao Peng
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weiwei Feng, ; Lin Lin,
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weiwei Feng, ; Lin Lin,
| |
Collapse
|
143
|
Liu Y, Jin B, Shen C, Gao X, Qi X, Ma M, Li H, Hao H, Tang Q, Yang K, Mi Y, Guan J, Feng X, He Z, Li H, Yu W. Somatic and germline aberrations in homologous recombination repair genes in Chinese prostate cancer patients. Front Oncol 2023; 13:1086517. [PMID: 37064136 PMCID: PMC10091863 DOI: 10.3389/fonc.2023.1086517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Simple summarySomatic and germline aberrations in homologous recombinant repair (HHR) genes are associated with increased incidence and poor prognosis for prostate cancer. Through next-generation sequencing of prostate cancer patients across all clinical states from north China, here the authors identified a somatic mutational rate of 3% and a germline mutational rate of 3.9% for HRR genes using 200 tumor tissues and 714 blood specimens. Thus, mutational rates in HRR genes were lower compared with previous studies.BackgroundHomologous recombination repair deficiency is associated with higher risk and poorer prognosis for prostate cancer. However, the landscapes of somatic and germline mutations in these genes remain poorly defined in Chinese patients, especially for those with localized disease and those from north part of China. In this study, we explore the genomic profiles of these patients.MethodsWe performed next-generation sequencing with 200 tumor tissues and 714 blood samples from prostate cancer patients at Peking University First Hospital, using a 32 gene panel including 19 homologous recombination repair genes.ResultsTP53, PTEN, KRAS were the most common somatic aberrations; BRCA2, NBN, ATM were the most common germline aberrations. In terms of HRR genes, 3% (6/200) patients harbored somatic aberrations, and 3.8% (28/714) patients harbored germline aberrations. 98.0% (196/200) somatic-tested and 72.7% (519/714) germline tested patients underwent prostatectomy, of which 28.6% and 42.0% had Gleason scores ≥8 respectively. Gleason scores at either biopsy or prostatectomy were predictive for somatic aberrations in general and in TP53; while age of onset <60 years old, PSA at diagnosis, and Gleason scores at biopsy were clinical factors associated with positive germline aberrations in BRCA2/ATM.ConclusionsOur results showed a distinct genomic profile in homologous recombination repair genes for patients with prostate cancer across all clinical states from north China. Clinicians may consider to expand the prostate cancer patients receiving genetic tests to include more individuals due to the weak guiding role by the clinical factors currently available.
Collapse
Affiliation(s)
- Yixiao Liu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Xianshu Gao
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Xin Qi
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Mingwei Ma
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Hongzhen Li
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Han Hao
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kaiwei Yang
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yue Mi
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jie Guan
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xuero Feng
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
- *Correspondence: Wei Yu, ; Haixia Li,
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
- *Correspondence: Wei Yu, ; Haixia Li,
| |
Collapse
|
144
|
Fairchild L, Whalen J, D'Aco K, Wu J, Gustafson CB, Solovieff N, Su F, Leary RJ, Campbell CD, Balbin OA. Clonal hematopoiesis detection in patients with cancer using cell-free DNA sequencing. Sci Transl Med 2023; 15:eabm8729. [PMID: 36989374 DOI: 10.1126/scitranslmed.abm8729] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In the context of cancer, clonal hematopoiesis of indeterminate potential (CHIP) is associated with the development of therapy-related myeloid neoplasms and shorter overall survival. Cell-free DNA (cfDNA) sequencing is becoming widely adopted for genomic screening of patients with cancer but has not been used extensively to determine CHIP status because of a requirement for matched blood and tumor sequencing. We present an accurate classification approach to determine the CH status from cfDNA sequencing alone, applying our model to 4324 oncology clinical cfDNA samples. Using this method, we determined that 30.3% of patients in this cohort have evidence of CH, and the incidence of CH varies by tumor type. Matched RNA sequencing data show evidence of increased inflammation, especially neutrophil activation, within the tumors and tumor microenvironments of patients with CH. In addition, patients with CH had evidence of neutrophil activation systemically, pointing to a potential mechanism of action for the worse outcomes associated with CH status. Neutrophil activation may be one of many mechanisms, however, because patients with estrogen receptor-positive breast cancer harboring TET2 frameshift mutations had worse outcomes but similar neutrophil frequencies to patients without CH. Together, these data show the feasibility of detecting CH through cfDNA sequencing alone and an application of this method, demonstrating increased inflammation in patients with CH both systemically and in the tumor microenvironment.
Collapse
Affiliation(s)
- Lauren Fairchild
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | - Jeanne Whalen
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | - Katie D'Aco
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | - Jincheng Wu
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | | | - Nadia Solovieff
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Rebecca J Leary
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| | | | - O Alejandro Balbin
- Novartis Institutes for BioMedical Research Inc., Cambridge, MA 02139, USA
| |
Collapse
|
145
|
Zacchia M, Capolongo G, Del Vecchio Blanco F, Secondulfo F, Gupta N, Blasio G, Pollastro RM, Cervesato A, Piluso G, Gigliotti G, Torella A, Nigro V, Perna AF, Capasso G, Trepiccione F. Next-Generation Sequencing (NGS) Analysis Illustrates the Phenotypic Variability of Collagen Type IV Nephropathies. Genes (Basel) 2023; 14:genes14030764. [PMID: 36981034 PMCID: PMC10048128 DOI: 10.3390/genes14030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in COL4A3-A5 cause a spectrum of glomerular disorders, including thin basement membrane nephropathy (TBMN) and Alport syndrome (AS). The wide application of next-generation sequencing (NGS) in the last few years has revealed that mutations in these genes are not limited to these clinical entities. In this study, 176 individuals with a clinical diagnosis of inherited kidney disorders underwent an NGS-based analysis to address the underlying cause; those who changed or perfected the clinical diagnosis after molecular analysis were selected. In 5 out of 83 individuals reaching a molecular diagnosis, the genetic result was unexpected: three individuals showed mutations in collagen type IV genes. These patients showed the following clinical pictures: (1) familial focal segmental glomerulosclerosis; (2) end-stage renal disease (ESRD) diagnosed incidentally in a 49-year-old man, with diffuse cortical calcifications on renal imaging; and (3) dysmorphic and asymmetric kidneys with multiple cysts and signs of tubule-interstitial defects. Genetic analysis revealed rare heterozygote/compound heterozygote COL4A4-A5 variants. Our study highlights the key role of NGS in the diagnosis of inherited renal disorders and shows the phenotype variability in patients carrying mutations in collagen type IV genes.
Collapse
Affiliation(s)
- Miriam Zacchia
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giovanna Capolongo
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Floriana Secondulfo
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Neha Gupta
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
- Biogem, Scarl, 83031 Ariano Irpino, Italy
| | - Giancarlo Blasio
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Rosa Maria Pollastro
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Angela Cervesato
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giuseppe Gigliotti
- UOC Nefrologia e Dialisi, Ospedale Civile di Eboli "MM.SS. Addolorata", 84025 Eboli, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Alessandra F Perna
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Francesco Trepiccione
- Department of Medical and Translational Sciences, University of Campania, Luigi Vanvitelli, 81100 Caserta, Italy
- Biogem, Scarl, 83031 Ariano Irpino, Italy
| |
Collapse
|
146
|
Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K. S. B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol 2023; 13:1002792. [PMID: 36994199 PMCID: PMC10040847 DOI: 10.3389/fonc.2023.1002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Collapse
Affiliation(s)
| | - Vyomesh Javle
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Pooja Gowda
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Linu Varghese
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Anju K
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Nupur Jaiswal
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | | | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | - Vidya H. Veldore
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
- *Correspondence: Vidya H. Veldore,
| |
Collapse
|
147
|
Khan I, Işık EB, Mahfooz S, Khan AM, Hatiboglu MA. Identification of Genetic Alterations in Rapid Progressive Glioblastoma by Use of Whole Exome Sequencing. Diagnostics (Basel) 2023; 13:diagnostics13061017. [PMID: 36980325 PMCID: PMC10047503 DOI: 10.3390/diagnostics13061017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Glioblastoma poses an inevitable threat to patients despite aggressive therapy regimes. It displays a great level of molecular heterogeneity and numerous substitutions in several genes have been documented. Next-generation sequencing techniques have identified various molecular signatures that have led to a better understanding of the molecular pathogenesis of glioblastoma. In this limited study, we sought to identify genetic variants in a small number of rare patients with aggressive glioblastoma. METHODS Five tumor tissue samples were isolated from four patients with rapidly growing glioblastoma. Genomic DNA was isolated and whole exome sequencing was used to study protein-coding regions. Generated FASTQ files were analyzed and variants were called for each sample. Variants were prioritized with different approaches and functional annotation was applied for the detrimental variants. RESULTS A total of 49,780 somatic variants were identified in the five glioblastoma samples studied, with the majority as missense substitutions. The top ten genes with the highest number of substitutions were MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1. Notably, variant prioritization after annotation indicated that the MTCH2 (Chr11: 47647265 A>G) gene sequence change was putative deleterious in all of the aggressive tumor samples. CONCLUSION The MTCH2 (Chr11: 47647265 A>G) gene substitution was identified as putative deleterious in highly aggressive glioblastomas, which merits further investigation. Moreover, a high tumor mutation burden was observed, with a signature of the highest substitutions in MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1 genes. The findings provide critical, initial data for the further rational design of genetic screening and diagnostic approaches against aggressive glioblastoma.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
| | - Esra Büşra Işık
- Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
| | - Asif M Khan
- Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur 50490, Malaysia
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, 34820 Istanbul, Turkey
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
148
|
Zhang P, Omanska A, Ander B, Gandal M, Stamova B, Schumann C. Neuron-specific transcriptomic signatures indicate neuroinflammation and altered neuronal activity in ASD temporal cortex. Proc Natl Acad Sci U S A 2023; 120:e2206758120. [PMID: 36862688 PMCID: PMC10013873 DOI: 10.1073/pnas.2206758120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder, yet transcriptomic profiling of bulk brain tissue has identified substantial convergence among dysregulated genes and pathways in ASD. However, this approach lacks cell-specific resolution. We performed comprehensive transcriptomic analyses on bulk tissue and laser-capture microdissected (LCM) neurons from 59 postmortem human brains (27 ASD and 32 controls) in the superior temporal gyrus (STG) of individuals ranging from 2 to 73 years of age. In bulk tissue, synaptic signaling, heat shock protein-related pathways, and RNA splicing were significantly altered in ASD. There was age-dependent dysregulation of genes involved in gamma aminobutyric acid (GABA) (GAD1 and GAD2) and glutamate (SLC38A1) signaling pathways. In LCM neurons, AP-1-mediated neuroinflammation and insulin/IGF-1 signaling pathways were upregulated in ASD, while mitochondrial function, ribosome, and spliceosome components were downregulated. GABA synthesizing enzymes GAD1 and GAD2 were both downregulated in ASD neurons. Mechanistic modeling suggested a direct link between inflammation and ASD in neurons, and prioritized inflammation-associated genes for future study. Alterations in small nucleolar RNAs (snoRNAs) associated with splicing events suggested interplay between snoRNA dysregulation and splicing disruption in neurons of individuals with ASD. Our findings supported the fundamental hypothesis of altered neuronal communication in ASD, demonstrated that inflammation was elevated at least in part in ASD neurons, and may reveal windows of opportunity for biotherapeutics to target the trajectory of gene expression and clinical manifestation of ASD throughout the human lifespan.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA90095
| | - Alicja Omanska
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA95817
- University of California, Davis, MIND Institute, Sacramento, CA95817
| | - Bradley P. Ander
- University of California, Davis, MIND Institute, Sacramento, CA95817
- Department of Neurology, University of California, Davis, School of Medicine, Sacramento, CA95817
| | - Michael J. Gandal
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA90095
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Boryana Stamova
- University of California, Davis, MIND Institute, Sacramento, CA95817
- Department of Neurology, University of California, Davis, School of Medicine, Sacramento, CA95817
| | - Cynthia M. Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA95817
- University of California, Davis, MIND Institute, Sacramento, CA95817
| |
Collapse
|
149
|
Schnidrig D, Garofoli A, Benjak A, Rätsch G, Rubin MA, Piscuoglio S, Ng CKY. PipeIT2: A tumor-only somatic variant calling workflow for molecular diagnostic Ion Torrent sequencing data. Genomics 2023; 115:110587. [PMID: 36796655 DOI: 10.1016/j.ygeno.2023.110587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Precision oncology relies on the accurate identification of somatic mutations in cancer patients. While the sequencing of the tumoral tissue is frequently part of routine clinical care, the healthy counterparts are rarely sequenced. We previously published PipeIT, a somatic variant calling workflow specific for Ion Torrent sequencing data enclosed in a Singularity container. PipeIT combines user-friendly execution, reproducibility and reliable mutation identification, but relies on matched germline sequencing data to exclude germline variants. Expanding on the original PipeIT, here we describe PipeIT2 to address the clinical need to define somatic mutations in the absence of germline control. We show that PipeIT2 achieves a > 95% recall for variants with variant allele fraction >10%, reliably detects driver and actionable mutations and filters out most of the germline mutations and sequencing artifacts. With its performance, reproducibility, and ease of execution, PipeIT2 is a valuable addition to molecular diagnostics laboratories.
Collapse
Affiliation(s)
- Desiree Schnidrig
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrea Garofoli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
| | - Andrej Benjak
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gunnar Rätsch
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Computer Science, ETH Zurich
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, Bern, Switzerland
| | | | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4001 Basel, Switzerland; Department of Biomedicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; Bern Center for Precision Medicine, Bern, Switzerland.
| |
Collapse
|
150
|
Wang X, Gan M, Dong X, Lu Y, Zhou W. An Integrated Pipeline for Trio-Rapid Genome Sequencing in Critically Ill Infants. Curr Protoc 2023; 3:e706. [PMID: 36971344 DOI: 10.1002/cpz1.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Trio-rapid genome sequencing (trio-rGS) can assist the genetic diagnosis of critically ill infants given its ability to detect a broad range of pathogenic variants, as well as microbes, simultaneously with high efficiency. To achieve more comprehensive clinical diagnoses, it is essential to propose a recommended protocol in clinical practice. Here, we introduced an integrated pipeline to detect germline variants and microorganisms simultaneously from trio-RGS in critically ill infants, which provides step-by-step criteria for the semi-automatic processing procedures. With this pipeline in clinical application, only 1 ml of peripheral blood is needed for clinicians to provide both genetic and infectious causal information to a patient. The establishment and clinical practice of the method is of great significance for further mining of high-throughput sequencing data and for assisting clinicians in promoting diagnosis efficiency and accuracy. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Experimental pipeline for rapid whole-genome sequencing for the simultaneous detection of germline variants and microorganisms Basic Protocol 2: Computational pipeline for rapid whole-genome sequencing for the simultaneous detection of germline variants and microorganisms.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mingyu Gan
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Center for Big Data in Clinical Research, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|