101
|
Kang JB, Shen AZ, Sakaue S, Luo Y, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta K, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.14.23287257. [PMID: 36993194 PMCID: PMC10055604 DOI: 10.1101/2023.03.14.23287257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B. Kang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z. Shen
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R. C. Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J. Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T. Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H. Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
102
|
Blandin L, Guidicelli G, Cargou M, Rouzaire P, Lemal R. Characterization of the novel HLA-B*15:01:01:65Q allele by sequencing-based typing. HLA 2023; 101:280-281. [PMID: 36433733 DOI: 10.1111/tan.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
HLA-B*15:01:01:65Q differs from HLA-B*15:01:01:01 by one nucleotide substitution in the splice site in the beginning of intron 3.
Collapse
Affiliation(s)
- Lucie Blandin
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,CNRS, ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Paul Rouzaire
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,EA(UR)7453 CHELTER/Université Clermont Auvergne, Clermont-Ferrand, France
| | - Richard Lemal
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,EA(UR)7453 CHELTER/Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
103
|
Cargou M, Elsermans V, Top I, Ralazamahaleo M, Visentin J. Characterization of the novel HLA-DPB1*1348:01 allele by sequencing-based typing. HLA 2023; 101:313-314. [PMID: 36394166 PMCID: PMC10100256 DOI: 10.1111/tan.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
HLA-DPB1*1348:01 differs from HLA-DPB1*14:01:01:01 by one nucleotide substitution in codon 147 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | | | - Isabelle Top
- CHU de Lille, Institut d'Immunologie-HLA, Lille, France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Université de Bordeaux, CNRS, Immuno Concept, Bordeaux, France
| |
Collapse
|
104
|
Cargou M, Elsermans V, Top I, Wojciechowski E, Visentin J. Characterization of the novel HLA-DPB1*11:01:06 allele by sequencing-based typing. HLA 2023; 101:311-312. [PMID: 36411507 PMCID: PMC10100016 DOI: 10.1111/tan.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
HLA-DPB1*11:01:06 differs from HLA-DPB1*11:01:01:01 by one nucleotide substitution in codon 21 in exon 2.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Vincent Elsermans
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Isabelle Top
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
105
|
Cargou M, Andreani M, Battarra M, Ralazamahaleo M, Visentin J. Characterization of the novel HLA-DQA1*05:05:14 allele by sequencing-based typing. HLA 2023; 101:299-300. [PMID: 36416663 PMCID: PMC10098539 DOI: 10.1111/tan.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
HLA-DQA1*05:05:14 differs from HLA-DQA1*05:05:01:04 by one nucleotide substitution in codon -8 in exon 1.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Mariarosa Battarra
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
106
|
Cargou M, Elsermans V, Top I, Wojciechowski E, Visentin J. Characterization of the novel HLA-B*08:302 allele by sequencing-based typing. HLA 2023; 101:278-280. [PMID: 36412840 PMCID: PMC10100224 DOI: 10.1111/tan.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
HLA-B*08:302 differs from HLA-B*08:01:01:01 by one nucleotide substitution in codon 116 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Vincent Elsermans
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Isabelle Top
- CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
107
|
Foy SP, Jacoby K, Bota DA, Hunter T, Pan Z, Stawiski E, Ma Y, Lu W, Peng S, Wang CL, Yuen B, Dalmas O, Heeringa K, Sennino B, Conroy A, Bethune MT, Mende I, White W, Kukreja M, Gunturu S, Humphrey E, Hussaini A, An D, Litterman AJ, Quach BB, Ng AHC, Lu Y, Smith C, Campbell KM, Anaya D, Skrdlant L, Huang EYH, Mendoza V, Mathur J, Dengler L, Purandare B, Moot R, Yi MC, Funke R, Sibley A, Stallings-Schmitt T, Oh DY, Chmielowski B, Abedi M, Yuan Y, Sosman JA, Lee SM, Schoenfeld AJ, Baltimore D, Heath JR, Franzusoff A, Ribas A, Rao AV, Mandl SJ. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 2023; 615:687-696. [PMID: 36356599 PMCID: PMC9768791 DOI: 10.1038/s41586-022-05531-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRβ). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.
Collapse
MESH Headings
- Humans
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biopsy
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cytokine Release Syndrome/complications
- Disease Progression
- Encephalitis/complications
- Gene Editing
- Gene Knock-In Techniques
- Gene Knockout Techniques
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Mutation
- Neoplasms/complications
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Patient Safety
- Precision Medicine/adverse effects
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transgenes/genetics
- HLA Antigens/immunology
- CRISPR-Cas Systems
Collapse
Affiliation(s)
| | | | - Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | | | - Zheng Pan
- PACT Pharma, South San Francisco, CA, USA
| | | | - Yan Ma
- PACT Pharma, South San Francisco, CA, USA
| | - William Lu
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | - Ines Mende
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | | | | | - Duo An
- PACT Pharma, South San Francisco, CA, USA
| | | | | | | | - Yue Lu
- Institute for Systems Biology, Seattle, WA, USA
| | - Chad Smith
- PACT Pharma, South San Francisco, CA, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | - Roel Funke
- PACT Pharma, South San Francisco, CA, USA
| | | | | | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bartosz Chmielowski
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Mehrdad Abedi
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Jeffrey A Sosman
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University, Evanston, IL, USA
| | - Sylvia M Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adam J Schoenfeld
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
108
|
Cargou M, Andreani M, Troiano M, Guidicelli G, Visentin J. Characterization of the novel HLA-DQA1*02:01:14 allele by sequencing-based typing. HLA 2023; 101:298-299. [PMID: 36403237 PMCID: PMC10099613 DOI: 10.1111/tan.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
HLA-DQA1*02:01:14 differs from HLA-DQA1*02:01:01:02 by one nucleotide substitution in codon 105 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Maria Troiano
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France.,CNRS, ImmunoConcEpT, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
109
|
Cargou M, Andreani M, Giustiniani P, Guidicelli G, Visentin J. Characterization of the novel HLA-DPA1*02:01:21 allele by sequencing-based typing. HLA 2023; 101:309-311. [PMID: 36401736 PMCID: PMC10099995 DOI: 10.1111/tan.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
HLA-DPA1*02:01:21 differs from HLA-DPA1*02:01:01:03 by one nucleotide substitution in codon 190 in exon 4.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Paola Giustiniani
- Laboratorio d'Immunogenetica dei Trapianti, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France.,Univ. Bordeaux, CNRS, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
110
|
Kaur A, Surnilla A, Zaitouna AJ, Basrur V, Mumphrey MB, Grigorova I, Cieslik M, Carrington M, Nesvizhskii AI, Raghavan M. Mass spectrometric profiling of HLA-B44 peptidomes provides evidence for tapasin-mediated tryptophan editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530125. [PMID: 36909546 PMCID: PMC10002704 DOI: 10.1101/2023.02.26.530125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Activation of CD8 + T cells against pathogens and cancers involves the recognition of antigenic peptides bound to human leukocyte antigen (HLA) class-I proteins. Peptide binding to HLA class I proteins is coordinated by a multi-protein complex called the peptide loading complex (PLC). Tapasin, a key PLC component, facilitates the binding and optimization of HLA class I peptides. However, different HLA class I allotypes have variable requirements for tapasin for their assembly and surface expression. HLA-B*44:02 and HLA-B*44:05, which differ only at residue 116 of their heavy chain sequences, fall at opposite ends of the tapasin-dependency spectrum. HLA-B*44:02 (D116) is highly tapasin-dependent, whereas HLA-B*44:05 (Y116) is highly tapasinindependent. Mass spectrometric comparisons of HLA-B*4405 and HLA-B*44:02 peptidomes were undertaken to better understand the influences of tapasin upon HLA-B44 peptidome compositions. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with the C-terminal tryptophan residues and those with higher predicted binding affinities are selected in the presence of tapasin. Additionally, when tapasin is present, C-terminal tryptophans are also more highly represented among peptides unique to B*44:02 and those shared between B*44:02 and B*44:05, compared with peptides unique to B*44:05. Overall, our findings demonstrate that tapasin influences the C-terminal composition of HLA class I-bound peptides and favors the binding of higher affinity peptides. For the HLA-B44 family, the presence of tapasin or high tapasin-dependence of an allotype results in better binding of peptides with C-terminal tryptophans, consistent with a role for tapasin in stabilizing an open conformation to accommodate bulky C-terminal residues.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Avrokin Surnilla
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anita J. Zaitouna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael B. Mumphrey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Irina Grigorova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
111
|
Devriese M, Usureau C, Carmagnat M, Da Silva S, Taupin JL. Identification of a novel HLA-A null allele, HLA-A*01:420N allele. HLA 2023; 101:143-145. [PMID: 36268577 DOI: 10.1111/tan.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/21/2023]
Abstract
The novel HLA-A*01:420N allele has two changes in exon 4 leading to premature stop codon.
Collapse
Affiliation(s)
- Magali Devriese
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France.,HIPI, Human Immunology, Physiopathology and Immunotherapy, INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Cedric Usureau
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France.,HIPI, Human Immunology, Physiopathology and Immunotherapy, INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | | | - Sephora Da Silva
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France.,HIPI, Human Immunology, Physiopathology and Immunotherapy, INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
112
|
Jiang N, Yu Y, Wu D, Wang S, Fang Y, Miao H, Ma P, Huang H, Zhang M, Zhang Y, Tang Y, Li N. HLA and tumour immunology: immune escape, immunotherapy and immune-related adverse events. J Cancer Res Clin Oncol 2023; 149:737-747. [PMID: 36662304 DOI: 10.1007/s00432-022-04493-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE As molecules responsible for presenting antigens to T lymphocytes, leukocytes antigens (HLAs) play a vital role in cancer immunology. This review aims to provide current understanding of HLAs in tumour immunology. METHODS Perspectives on how HLA alterations may contribute to the immune escape of cancer cells and resistance to immunotherapy, and potential methods to overcome HLA defects were summarized. In addition, we discussed the potential association between HLA and immune-related adverse events (irAEs), which has not been reviewed elsewhere. RESULTS Downregulation, loss of heterogeneity and entire loss of HLAs are responsible for the immune escape of tumour cells. The strategies to overcome the HLA defects can be effective therapies of cancer. Compared with classical HLA-I, non-classical HLA-I molecules, such as HLA-E and HLA-G, appear to be more reliable predictors of prognosis, as they tend to play immunosuppressive roles in antitumor response. Relative diversified or high expression of classical HLA-I are potential predictors of favourable response of immunotherapy. Certain HLA types may be associated to enhanced affinity to self-antigen-mimicked tumour-antigens, thus may positively correlated to irAEs triggered by checkpoint inhibitors. CONCLUSIONS Further studies exploring the relationship between HLAs and cancer may not only lead to the development of novel therapies but also bring about better management of irAEs.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yue Yu
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Dawei Wu
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shuhang Wang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuan Fang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Huilei Miao
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peiwen Ma
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Huiyao Huang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Yu Zhang
- Renke Beijing Biotechnology Co., Ltd, Beijing, China
| | - Yu Tang
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ning Li
- Department of Clinical Trials Center, Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
113
|
Bertinetto FE, Fiore R, Giordano A, Ferrero NM, Amoroso A. Two novel HLA class I alleles HLA-A*03:409 and -B*49:72 and the extension of the -B*40:19 allele sequence. HLA 2023; 101:150-151. [PMID: 36305175 DOI: 10.1111/tan.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/21/2023]
Abstract
Two novel HLA class I alleles, HLA-A*03:409 and -B*49:72 were characterized by next generation sequencing.
Collapse
Affiliation(s)
| | - Roberto Fiore
- S.C. Immunogenetica e Biologia dei Trapianti U., AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alberto Giordano
- S.C. Immunogenetica e Biologia dei Trapianti U., AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Norma Maria Ferrero
- S.C. Immunogenetica e Biologia dei Trapianti U., AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Antonio Amoroso
- S.C. Immunogenetica e Biologia dei Trapianti U., AOU Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
114
|
Chihab LY, Kuan R, Phillips EJ, Mallal SA, Rozot V, Davis MM, Scriba TJ, Sette A, Peters B, Lindestam Arlehamn CS, the SATVI Study Group. Expression of specific HLA class II alleles is associated with an increased risk for active tuberculosis and a distinct gene expression profile. HLA 2023; 101:124-137. [PMID: 36373948 PMCID: PMC10027422 DOI: 10.1111/tan.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Several HLA allelic variants have been associated with protection from or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mycobacterium tuberculosis (Mtb) infection outcomes. The HLA alleles present at the -A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci were determined in a cohort of 636 individuals with known Mtb infection outcomes from South Africa and the United States. Among these individuals, 203 were QuantiFERON (QFT) negative, and 433 were QFT positive, indicating Mtb exposure. Of these, 99 QFT positive participants either had active tuberculosis (TB) upon enrollment or were diagnosed in the past. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were significantly more frequent in individuals with active TB (susceptibility alleles), as judged by Odds Ratios and associated p-values, while DPB1*105:01 was associated with protection from active TB. Peripheral blood mononuclear cells (PMBCs) from a subset of individuals were stimulated with Mtb antigens, revealing individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses. Furthermore, we defined a gene signature associated with individuals expressing the susceptibility alleles that was characterized by lower expression of APC-related genes. In summary, we have identified specific HLA alleles associated with susceptibility to active TB and found that the expression of these alleles was associated with a decreased Mtb-specific T cell response and a specific gene expression signature. These results will help understand individual risk factors in progressing to active TB.
Collapse
Affiliation(s)
- Leila Y. Chihab
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca Kuan
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious DiseasesMurdoch UniversityPerthWestern AustraliaAustralia
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Simon A. Mallal
- Institute for Immunology and Infectious DiseasesMurdoch UniversityPerthWestern AustraliaAustralia
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Mark M. Davis
- Institute for Immunity, Transplantation and InfectionStanford University School of MedicineStanfordCaliforniaUSA
- Howard Hughes Medical InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of PathologyUniversity of Cape TownCape TownSouth Africa
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | |
Collapse
|
115
|
Sibbesen JA, Eizenga JM, Novak AM, Sirén J, Chang X, Garrison E, Paten B. Haplotype-aware pantranscriptome analyses using spliced pangenome graphs. Nat Methods 2023; 20:239-247. [PMID: 36646895 DOI: 10.1101/2021.03.26.437240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/28/2022] [Indexed: 05/24/2023]
Abstract
Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses population-level genome reference structures, typically consisting of a sequence graph, to mitigate reference bias and facilitate analyses that were challenging with previous reference-based methods. In this work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscriptome: a population-level transcriptomic reference. Our toolchain, which consists of additions to the VG toolkit and a standalone tool, RPVG, can construct spliced pangenome graphs, map RNA sequencing data to these graphs, and perform haplotype-aware expression quantification of transcripts in a pantranscriptome. We show that this workflow improves accuracy over state-of-the-art RNA sequencing mapping methods, and that it can efficiently quantify haplotype-specific transcript expression without needing to characterize the haplotypes of a sample beforehand.
Collapse
Affiliation(s)
| | | | - Adam M Novak
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Jouni Sirén
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Xian Chang
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Erik Garrison
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
116
|
Blandin L, Wojciechowski E, Ralazamahaleo M, Lemal R, Rouzaire P. Characterization of the novel HLA-DQB1*05:01:47 allele by sequencing-based typing. HLA 2023; 101:196-198. [PMID: 36287027 DOI: 10.1111/tan.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/25/2023]
Abstract
HLA-DQB1*05:01:47 differs from HLA-DQB1*05:01:01:03 by one nucleotide substitution in codon 144 in exon 3.
Collapse
Affiliation(s)
- Lucie Blandin
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Richard Lemal
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, EA7453 CHELTER, Clermont-Ferrand, France
| | - Paul Rouzaire
- Histocompatibility and Immunogenetics Laboratory, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.,Clermont-Auvergne University, EA7453 CHELTER, Clermont-Ferrand, France
| |
Collapse
|
117
|
Baek IC, Choi EJ, Kim HJ, Choi H, Kim TG. Distributions of 11-loci HLA alleles typed by amplicon-based next-generation sequencing in South Koreans. HLA 2023; 101:613-622. [PMID: 36720674 DOI: 10.1111/tan.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/11/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
The range of HLA typing for successful hematopoietic stem cell transplantation (HSCT) is gradually expanding with the next-generation sequencing (NGS)-based improvement in its quality. However, it is influenced by the allocation of finances and laboratory conditions. HLA-A, -B, -C, -DRB1/3/4/5, -DQA1, -DQB1, -DPA1, and -DPB1 alleles were genotyped at the 3-field level by amplicon-based NGS using MiSeqDx system and compared to our previous study employing long-range PCR and NGS using TruSight HLA v2 kit, in healthy donors from South Korea. Exon 2, exons 2/3, exons 2/3/4 or 5 of 11-loci were amplified by multiplex PCR. The sequence reads of over 53 depth counts were consistently obtained in each sample exon, depending on the target exon determined to match the reference sequence contained in the IPD-IMGT/HLA Database. HLA alleles were investigated by combinations of the determined exons. A total of 18 alleles with a frequency over 10% were found at the 11 HLA loci. Three ambiguities of HLA-A, -C, and -DRB1 were resolved. We observed a total of 26 HLA-A ~ C ~ B and 6 HLA-DRB1 ~ DQA1 ~ DQB1 ~ DPA1 ~ DPB1 haplotypes having significant linkage disequilibrium between alleles at all neighboring HLA loci. This result was compatible with the previous one, using TruSight HLA v2 kit. Advantages are simple and short progress time because one plate is used for each PCR step in one PCR machine and 11-loci HLA typing is possible even if only eight samples. These data suggested that expanded 11-loci HLA typing data by amplicon-based NGS might help perform HSCT.
Collapse
Affiliation(s)
- In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Jeong Choi
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung-Jae Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
118
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
119
|
Aguiar VRC, Castelli EC, Single RM, Bashirova A, Ramsuran V, Kulkarni S, Augusto DG, Martin MP, Gutierrez-Arcelus M, Carrington M, Meyer D. Comparison between qPCR and RNA-seq reveals challenges of quantifying HLA expression. Immunogenetics 2023; 75:249-262. [PMID: 36707444 PMCID: PMC9883133 DOI: 10.1007/s00251-023-01296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil ,Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erick C. Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University, Botucatu, SP Brazil
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Veron Ramsuran
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa ,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Smita Kulkarni
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Danillo G. Augusto
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC USA ,Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
120
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
121
|
Shkurnikov M, Nersisyan S, Averinskaya D, Chekova M, Polyakov F, Titov A, Doroshenko D, Vechorko V, Tonevitsky A. HLA-A*01:01 allele diminishing in COVID-19 patients population associated with non-structural epitope abundance in CD8+ T-cell repertoire. PeerJ 2023; 11:e14707. [PMID: 36691482 PMCID: PMC9864130 DOI: 10.7717/peerj.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Darya Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Fedor Polyakov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
122
|
Ji Y, Zhao J, Ma H, Wu D, Zhu F. Characterization of the novel HLA-B*35:502 allele. HLA 2023; 101:673-674. [PMID: 36627743 DOI: 10.1111/tan.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The novel HLA-B*35:502 allele differs from HLA-B*35:01:01:01 at one position in exon 2.
Collapse
Affiliation(s)
- Yongping Ji
- Medical Test Laboratory, Blood Station of Lishui, Lishui, China
| | - Jing Zhao
- Medical Test Laboratory, Blood Station of Lishui, Lishui, China
| | - Haiyong Ma
- Medical Test Laboratory, Blood Station of Lishui, Lishui, China
| | - Dan Wu
- Medical Test Laboratory, Blood Station of Lishui, Lishui, China
| | - Faming Zhu
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China.,HLA Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| |
Collapse
|
123
|
Hernández-Mejía DG, Páez-Gutiérrez IA, Dorsant Ardón V, Camacho Ramírez N, Mosquera M, Cendales PA, Camacho BA. Distributions of the HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 alleles and haplotype frequencies of 1763 stem cell donors in the Colombian Bone Marrow Registry typed by next-generation sequencing. Front Immunol 2023; 13:1057657. [PMID: 36700199 PMCID: PMC9869256 DOI: 10.3389/fimmu.2022.1057657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The HLA compatibility continues to be the main limitation when finding compatible donors, especially if an identical match is not found within the patient's family group. The creation of bone marrow registries allowed a therapeutic option by identifying 10/10 compatible unrelated donors (URD). However, the availability and frequency of haplotypes and HLA alleles are different among ethnic groups and geographical areas, increasing the difficulty of finding identical matches in international registries. In this study, the HLA-A, -B, -C, -DRB1, and -DQB1 loci of 1763 donors registered in the Colombian Bone Marrow Registry were typed by next-generation sequencing. A total of 52 HLA-A, 111 HLA-B, 41 HLA-C, 47 HLA-DRB1, and 20 HLA-DQB1 alleles were identified. The 3 most frequent alleles for each loci were A*24:02g (20,8%), A*02:01g (16,1%), A*01:01g (7.06%); B*35:43g (7.69%), B*40:02g (7.18%), B*44:03g (6.07%); C*04:01g (15.40%), C*01:02g (10.49%), C*07:02g (10.44%); DRB1*04:07g (11.03%), DRB1*07:01g (9.78%), DRB1*08:02g (6.72%); DQB1*03:02g (20.96%), DQB1*03:01g (17.78%) and DQB1*02:01g (16.05%). A total of 497 HLA-A-C-B-DRB1-DQB1 haplotypes were observed with a frequency greater than or equal to 0.05% (> 0.05%); the haplotypes with the highest frequency were A*24:02g~B*35:43g~C*01:02g~DQB1*03:02g~DRB1*04:07g (3.34%), A*29:02g~B*44:03g~C*16:01g~DQB1*02:01g~DRB1*07:01g (2.04%), and A*01:01g~B*08:01g~C*07:01g~DQB1*02:01g~DRB1*03:01g (1.83%). This data will allow the new Colombian Bone Marrow Donor Registry to assess the genetic heterogeneity of the Colombian population and serve as a tool of interest for future searches of unrelated donors in the country.
Collapse
|
124
|
Prinz JC. Immunogenic self-peptides - the great unknowns in autoimmunity: Identifying T-cell epitopes driving the autoimmune response in autoimmune diseases. Front Immunol 2023; 13:1097871. [PMID: 36700227 PMCID: PMC9868241 DOI: 10.3389/fimmu.2022.1097871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
HLA-associated autoimmune diseases likely arise from T-cell-mediated autoimmune responses against certain self-peptides from the broad HLA-presented immunopeptidomes. The limited knowledge of the autoimmune target peptides has so far compromised the basic understanding of autoimmune pathogenesis. This is due to the complexity of antigen processing and presentation as well as the polyspecificity of T-cell receptors (TCRs), which pose high methodological challenges on the discovery of immunogenic self-peptides. HLA-class I molecules present peptides to CD8+ T cells primarily derived from cytoplasmic proteins. Therefore, HLA-class I-restricted autoimmune responses should be directed against target cells expressing the corresponding parental protein. In HLA-class II-associated diseases, the origin of immunogenic peptides is not pre-specified, because peptides presented by HLA-class II molecules to CD4+ T cells may originate from both extracellular and cellular self-proteins. The different origins of HLA-class I and class II presented peptides determine the respective strategy for the discovery of immunogenic self-peptides in approaches based on the TCRs isolated from clonally expanded pathogenic T cells. Both involve identifying the respective restricting HLA allele as well as determining the recognition motif of the TCR under investigation by peptide library screening, which is required to search for homologous immunogenic self-peptides. In HLA-class I-associated autoimmune diseases, identification of the target cells allows for defining the restricting HLA allotype from the 6 different HLA-class I alleles of the individual HLA haplotype. It furthermore limits the search for immunogenic self-peptides to the transcriptome or immunopeptidome of the target cells, although neoepitopes generated by peptide splicing or translational errors may complicate identification. In HLA class II-associated autoimmune diseases, the lack of a defined target cell and differential antigen processing in different antigen-presenting cells complicate identification of the HLA restriction of autoreactive TCRs from CD4+ T cells. To avoid that all corresponding HLA-class II allotypes have to be included in the peptide discovery, autoantigens defined by autoantibodies can guide the search for immunogenic self-peptides presented by the respective HLA-class II risk allele. The objective of this article is to highlight important aspects to be considered in the discovery of immunogenic self-peptides in autoimmune diseases.
Collapse
|
125
|
Verboom M, Vergin L, Streich H, Hallensleben M. HLA-C*07:1044N a novel allele, caused by a single nucleotide deletion in exon 3 of HLA-C*07:01:01:01. HLA 2023; 101:687-688. [PMID: 36617998 DOI: 10.1111/tan.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
HLA-C*07:1044N differs from HLA-C*07:01:01:01 by a single nucleotide deletion in exon 3, codon 124, nt. 442.
Collapse
Affiliation(s)
- Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Lina Vergin
- Institute of Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Hannah Streich
- Institute of Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Michael Hallensleben
- Institute of Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| |
Collapse
|
126
|
Wang K, Sun Z, Zhu F, Xu Y, Zhou F. Development of a high-resolution mass-spectrometry-based method and software for human leukocyte antigen typing. Front Immunol 2023; 14:1188381. [PMID: 37187759 PMCID: PMC10175642 DOI: 10.3389/fimmu.2023.1188381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction The human leukocyte antigen (HLA) system plays a critical role in the human immune system and is strongly associated with immune recognition and rejection in organ transplantation. HLA typing method has been extensively studied to increase the success rates of clinical organ transplantation. However, while polymerase chain reaction sequence-based typing (PCR-SBT) remains the gold standard, cis/trans ambiguity and nucleotide sequencing signal overlay during heterozygous typing present a problem. The high cost and low processing speed of Next Generation Sequencing (NGS) also render this approach inadequate for HLA typing. Methods and materials To address these limitations of the current HLA typing methods, we developed a novel typing technology based on nucleic acid mass spectrometry (MS) of HLA. Our method takes advantage of the high-resolution mass analysis function of MS and HLAMSTTs (HLA MS Typing Tags, some short fragment PCR amplification target products) with precise primer combinations. Results We correctly typed HLA by measuring the molecular weights of HLAMSTTs with single nucleotide polymorphisms (SNPs). In addition, we developed a supporting HLA MS typing software to design PCR primers, construct the MS database, and select the best-matching HLA typing results. With this new method, we typed 16 HLA-DQA1 samples, including 6 homozygotes and 10 heterozygotes. The MS typing results were validated by PCR-SBT. Discussion The MS HLA typing method is rapid, efficient, accurate, and readily applicable to typing of homozygous and heterozygous samples.
Collapse
Affiliation(s)
- Kun Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zetao Sun
- Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Fei Zhu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunping Xu
- Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
- *Correspondence: Yunping Xu, ; Feng Zhou,
| | - Feng Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Minister of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Yunping Xu, ; Feng Zhou,
| |
Collapse
|
127
|
Arrieta-Bolaños E, Hernández-Zaragoza DI, Barquera R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 2023; 14:866407. [PMID: 37035735 PMCID: PMC10076764 DOI: 10.3389/fgene.2023.866407] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
HLA frequencies show widespread variation across human populations. Demographic factors as well as selection are thought to have shaped HLA variation across continents. In this study, a worldwide comparison of HLA class I and class II diversity was carried out. Multidimensional scaling techniques were applied to 50 HLA-A and HLA-B (class I) as well as 13 HLA-DRB1 (class II) first-field frequencies in 200 populations from all continents. Our results confirm a strong effect of geography on the distribution of HLA class I allele groups, with principal coordinates analysis closely resembling geographical location of populations, especially those of Africa-Eurasia. Conversely, class II frequencies stratify populations along a continuum of differentiation less clearly correlated to actual geographic location. Double clustering analysis revealed finer intra-continental sub-clusters (e.g., Northern and Western Europe vs. South East Europe, North Africa and Southwest Asia; South and East Africa vs. West Africa), and HLA allele group patterns characteristic of these clusters. Ancient (Austronesian expansion) and more recent (Romani people in Europe) migrations, as well as extreme differentiation (Taiwan indigenous peoples, Native Americans), and interregional gene flow (Sámi, Egyptians) are also reflected by the results. Barrier analysis comparing DST and geographic location identified genetic discontinuities caused by natural barriers or human behavior explaining inter and intra-continental HLA borders for class I and class II. Overall, a progressive reduction in HLA diversity from African to Oceanian and Native American populations is noted. This analysis of HLA frequencies in a unique set of worldwide populations confirms previous findings on the remarkable similarity of class I frequencies to geography, but also shows a more complex development for class II, with implications for both human evolutionary studies and biomedical research.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Heidelberg, Germany
- *Correspondence: Esteban Arrieta-Bolaños,
| | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| |
Collapse
|
128
|
Jacob V, Desoutter J, Guillaume N. Characterization of the novel HLA-DPB1*1359:01 allele by next generation sequencing. HLA 2023; 101:99-100. [PMID: 36086923 DOI: 10.1111/tan.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/13/2022]
Abstract
HLA-DPB1*1359:01 differs from HLA-DPB1*03:01:01 by one nucleotide substitution in codon 77 in exon 2.
Collapse
Affiliation(s)
- Valentine Jacob
- Department of Hematology and Histocompatibility, Amiens University Medical Center, Amiens, France.,EA HEMATIM 4666, Jules Verne University of Picardie, Amiens, France
| | - Judith Desoutter
- Department of Hematology and Histocompatibility, Amiens University Medical Center, Amiens, France
| | - Nicolas Guillaume
- Department of Hematology and Histocompatibility, Amiens University Medical Center, Amiens, France.,EA HEMATIM 4666, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
129
|
Medeiros FS, da Silva MC, da Silva NCH, Gomes TT, Gomes RG, Paiva LA, dos Santos Gomes FO, Peixoto CA, Rygaard MCV, Welkovic S, Menezes MLB, Donadi EA, Lucena-Silva N. The antigen processing-associated transporter gene polymorphism: Role on gene and protein expression in HPV-infected pre-cancerous cervical lesion. Front Cell Infect Microbiol 2022; 12:979800. [PMID: 36619767 PMCID: PMC9811671 DOI: 10.3389/fcimb.2022.979800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) is the major pathogen for cervical lesions. The evasion mechanism of the immune response and persistence of HPV infection can be influenced by polymorphisms (SNPs) in genes associated with transporter associated with antigen processing (TAP), which may change the peptide binding affinity or the TAP expression impacting the efficiency of peptide transport in the secretory pathway, and the presentation of peptides to cytotoxic T lymphocytes. This study aimed to evaluate the role of the TAP1 and TAP2 polymorphisms, TAP1, and TAP2 genes expressions, and protein levels in cervical cells presenting different degrees of pre-cancerous lesions in 296 immunocompetent women infected or not by HPV. TAP SNPs were genotyped by Sanger sequencing, and gene expression by real-time PCR. Aneuploidy was determined by DNA index using flow cytometry. TAP-1 and TAP-2 tissue expressions were evaluated by immunohistochemistry. The Asp697Gly SNP of TAP1 presented a risk for cellular aneuploidy (P=0.0244). HPV+ women had higher TAP-2 mRNA (P=0.0212) and protein (P<0.0001) levels. The TAP2D and TAP2E haplotypes were associated with the risk for aneuploidy and pre-cancerous lesions. In conclusion, nucleotide variability at the peptide binding region of peptide transporter genes, particularly of the TAP2 gene, may influence the HPV-peptide transportation from the cytosol to the endoplasmic reticulum, increasing the susceptibility to the development of high-grade cervical lesions.
Collapse
Affiliation(s)
- Fernanda Silva Medeiros
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Mauro César da Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | - Thailany Thays Gomes
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Renan Garcia Gomes
- Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil
| | | | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Department of Entomology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Maria Carolina Valença Rygaard
- Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil
| | - Stefan Welkovic
- Integrated Health Center Amaury de Medeiros (CISAM), University of Pernambuco, Recife, Brazil
| | | | - Eduardo Antônio Donadi
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil,Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil,*Correspondence: Norma Lucena-Silva, ;
| |
Collapse
|
130
|
Nørgaard M, Stenkjaer L, Pedersen KL, Staunstrup NH, Koefoed-Nielsen P. Identification of the novel HLA class I allele, HLA-A*31:215, identified by Next Generation Sequencing. HLA 2022; 101:533-535. [PMID: 36539960 DOI: 10.1111/tan.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The novel HLA allele HLA-A*31:215 differs from HLA-A*31:01:02:01 by one nucleotide substitution c.G832A in exon 4.
Collapse
Affiliation(s)
- Maja Nørgaard
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Liselotte Stenkjaer
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Nicklas Heine Staunstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
131
|
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
132
|
Cargou M, Elsermans V, Top I, Blandin L, Visentin J. Characterization of the novel HLA-A*11:422 allele by sequencing-based typing. HLA 2022; 100:624-625. [PMID: 35924325 PMCID: PMC9804577 DOI: 10.1111/tan.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
HLA-A*11:422 differs from HLA-A*11:01:01:01 by one nucleotide substitution in codon 285 in exon 5.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance
| | | | - Isabelle Top
- CHU de LilleInstitut d'Immunologie‐HLALilleFrance
| | - Lucie Blandin
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance,CNRS, ImmunoConcEpT, UMR 5164Univ. BordeauxBordeauxFrance
| |
Collapse
|
133
|
Cargou M, Elsermans V, Top I, Wojciechowski E, Visentin J. Characterization of the novel HLA-C*17:01:18 allele by sequencing-based typing. HLA 2022; 100:646-648. [PMID: 35920676 PMCID: PMC9804487 DOI: 10.1111/tan.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
HLA-C*17:01:18 differs from HLA-C*17:01:01:05 by one nucleotide substitution in codon 18 in exon 2.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance
| | - Vincent Elsermans
- CHU de LilleInstitut d'Immunologie‐HLA, Bd du Professeur Jules LeclercqLilleFrance
| | - Isabelle Top
- CHU de LilleInstitut d'Immunologie‐HLA, Bd du Professeur Jules LeclercqLilleFrance
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance,Univ. Bordeaux, CNRS, ImmunoConcEpTBordeauxFrance
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance,Univ. Bordeaux, CNRS, ImmunoConcEpTBordeauxFrance
| |
Collapse
|
134
|
Cargou M, Andreani M, Galluccio T, Blandin L, Visentin J. Characterization of the novel HLA-DRB3*02:179N allele by sequencing-based typing. HLA 2022; 100:658-659. [PMID: 35922968 PMCID: PMC9804616 DOI: 10.1111/tan.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
HLA-DRB3*02:179N differs from DRB3*02:02:01:02 by one nucleotide substitution in codon 98 in exon 3.
Collapse
Affiliation(s)
- Marine Cargou
- Laboratoire d'Immunologie et ImmunogénétiqueCHU de BordeauxBordeauxFrance,University Bordeaux, CNRS, ImmunoConcEpTBordeauxFrance
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei TrapiantiIRCCS Ospedale Pediatrico Bambino GesùRomaItaly
| | - Tiziana Galluccio
- Laboratorio d'Immunogenetica dei TrapiantiIRCCS Ospedale Pediatrico Bambino GesùRomaItaly
| | - Lucie Blandin
- Laboratoire d'Immunologie et ImmunogénétiqueCHU de BordeauxBordeauxFrance
| | - Jonathan Visentin
- Laboratoire d'Immunologie et ImmunogénétiqueCHU de BordeauxBordeauxFrance,University Bordeaux, CNRS, ImmunoConcEpTBordeauxFrance
| |
Collapse
|
135
|
Cargou M, Andreani M, Bianculli AG, Guidicelli G, Visentin J. Characterization of the novel HLA-DQA1*01:89 allele by sequencing-based typing. HLA 2022; 100:661-662. [PMID: 35925051 PMCID: PMC9804194 DOI: 10.1111/tan.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
HLA-DQA1*01:89 differs from HLA-DQA1*01:01:01:01 by one nucleotide substitution in codon -5 in exon 1.
Collapse
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei TrapiantiIRCCS Ospedale Pediatrico Bambino GesùRomaItaly
| | | | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et ImmunogénétiqueHôpital PellegrinBordeauxFrance,Univ. Bordeaux, CNRS, ImmunoConcEpTBordeauxFrance
| |
Collapse
|
136
|
Hu Q, Huang X, Jin Y, Zhang R, Zhao A, Wang Y, Zhou C, Liu W, Liu X, Li C, Fan G, Zhuo M, Wang X, Ling F, Luo W. Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biol Direct 2022; 17:36. [PMID: 36447238 PMCID: PMC9707422 DOI: 10.1186/s13062-022-00350-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Collapse
Affiliation(s)
- Qingxiu Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoqi Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, 528000, China
| | - Rui Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Aimin Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yiping Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chenyun Zhou
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Weixin Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xunwei Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chunhua Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Min Zhuo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wei Luo
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, 528000, China.
| |
Collapse
|
137
|
Thuesen NH, Klausen MS, Gopalakrishnan S, Trolle T, Renaud G. Benchmarking freely available HLA typing algorithms across varying genes, coverages and typing resolutions. Front Immunol 2022; 13:987655. [PMID: 36426357 PMCID: PMC9679531 DOI: 10.3389/fimmu.2022.987655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2023] Open
Abstract
Identifying the specific human leukocyte antigen (HLA) allele combination of an individual is crucial in organ donation, risk assessment of autoimmune and infectious diseases and cancer immunotherapy. However, due to the high genetic polymorphism in this region, HLA typing requires specialized methods. We investigated the performance of five next-generation sequencing (NGS) based HLA typing tools with a non-restricted license namely HLA*LA, Optitype, HISAT-genotype, Kourami and STC-Seq. This evaluation was done for the five HLA loci, HLA-A, -B, -C, -DRB1 and -DQB1 using whole-exome sequencing (WES) samples from 829 individuals. The robustness of the tools to lower depth of coverage (DOC) was evaluated by subsampling and HLA typing 230 WES samples at DOC ranging from 1X to 100X. The HLA typing accuracy was measured across four typing resolutions. Among these, we present two clinically-relevant typing resolutions (P group and pseudo-sequence), which specifically focus on the peptide binding region. On average, across the five HLA loci examined, HLA*LA was found to have the highest typing accuracy. For the individual loci, HLA-A, -B and -C, Optitype's typing accuracy was the highest and HLA*LA had the highest typing accuracy for HLA-DRB1 and -DQB1. The tools' robustness to lower DOC data varied widely and further depended on the specific HLA locus. For all Class I loci, Optitype had a typing accuracy above 95% (according to the modification of the amino acids in the functionally relevant portion of the HLA molecule) at 50X, but increasing the DOC beyond even 100X could still improve the typing accuracy of HISAT-genotype, Kourami, and STC-seq across all five HLA loci as well as HLA*LA's typing accuracy for HLA-DQB1. HLA typing is also used in studies of ancient DNA (aDNA), which is often based on sequencing data with lower quality and DOC. Interestingly, we found that Optitype's typing accuracy is not notably impaired by short read length or by DNA damage, which is typical of aDNA, as long as the DOC is sufficiently high.
Collapse
Affiliation(s)
- Nikolas Hallberg Thuesen
- Evaxion Biotech, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | | | - Shyam Gopalakrishnan
- Section for Hologenomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Gabriel Renaud
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
138
|
Koga S, Yamanaga S, Hidaka Y, Tanaka K, Kaba A, Toyoda M, Ochiai S, Takano Y, Yamamoto Y, Inadome A, Yokomizo H. Influence of Graft Ureter Length, a Donor-Related Factor, on Urinary Tract Infections After Living-Donor Kidney Transplantation: A Single-Center Analysis of 211 Cases. Transpl Int 2022; 35:10754. [PMID: 36406779 PMCID: PMC9666398 DOI: 10.3389/ti.2022.10754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Urinary tract infection (UTI) occurs in 25% of recipients of living-donor kidney transplantation (LDKT). Female sex, age, and anatomical abnormalities have been reported as recipient-related risk factors for UTI after LDKT; few studies have reported donor-related factors. We retrospectively examined UTI occurrence within 5 years of transplantation in recipients (n = 211) who underwent LDKT at our hospital between April 2011 and April 2021. All nephrectomies were performed using a retroperitoneal pure laparoscopic approach. The ureter was dissected at the lower level of the common iliac artery and trimmed to the shortest length, enough to reach the bladder using extra vesicular ureterocystoneostomy with a 3 cm submucosal tunnel. Twenty-nine recipients (13.7%) developed UTI within 5 years, and the median time to onset was 40.0 days. After adjusting for the well-known factors, including recipient sex, graft ureter length was an independent factor for UTI occurrence (HR 1.25, 95% CI 1.02∼1.53, p = 0.028) in the multivariate Cox regression analysis. The long ureter is usually trimmed, and the widest part is used for anastomosis, which may increase the possibility of reflux from the bladder to the ureter in the standard technique. The ureter length may be associated with the incidence of UTI after LDKT.
Collapse
Affiliation(s)
- Shoma Koga
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Shigeyoshi Yamanaga
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Yuji Hidaka
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Tanaka
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akari Kaba
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Mariko Toyoda
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Shintaro Ochiai
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Yuichi Takano
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Yasuhiro Yamamoto
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Akito Inadome
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Hiroshi Yokomizo
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| |
Collapse
|
139
|
Marsh SGE. Nomenclature for factors of the HLA system, update July, August and September 2022. Int J Immunogenet 2022; 49:385-416. [DOI: 10.1111/iji.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
140
|
Laustsen MM, Nørgaard M, Lam MQ, Koefoed‐Nielsen P, Staunstrup NH. The novel HLA class I allele, HLA-B*14:110, identified by next-generation sequencing. HLA 2022; 100:520-522. [PMID: 35734977 PMCID: PMC9796622 DOI: 10.1111/tan.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
The novel HLA-allele B*14:110, differs from B*14:02:01:01, by one nucleotide substitution, c.T247A in exon 2.
Collapse
Affiliation(s)
| | - Maja Nørgaard
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | - Marie Quach Lam
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | | | - Nicklas Heine Staunstrup
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark,Department of BiomedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
141
|
Artamonova OG, Karamova AE, Chikin VV, Kubanov AA. HLA-B27 and its role of the pathogenesis of psoriatic arthritis. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The literature review presents the characteristics of the human leukocyte antigen (HLA)-B27 as a factor contributing to the development of psoriatic arthritis. HLA-B27 is a class I surface antigen encoded by the major histocompatibility complex (MHC) B locus located on chromosome 6. The main function is to present antigenic peptides to the CD8+ T-cells. HLA-B27 is the most important genetic biomarker for psoriatic arthritis, as it provides phenotypic differentiation in the patient population. The prevalence of HLA-B27 in various population groups are presented. The structural features of the HLA-B27 molecule are described. The characteristics of methods for detecting HLA-B27 status and determining its subtypes are given. The main mechanisms of the HLA-B27 polymorphism influence on the development of psoriatic arthritis are considered, and hypotheses are analyzed that explain the pathogenic effect of HLA-B27: the arthritogenic peptide hypothesis, the misfolding hypothesis, the HLA-B27 heavy chain homodimer formation hypothesis. The features of the clinical manifestations and course of HLA-B27-positive psoriatic arthritis are presented, allowing the use of HLA-B27 to predict the development of psoriatic joint damage.
Collapse
|
142
|
Schachner LF, Phung W, Han G, Darwish M, Bell A, Mellors JS, Srzentic K, Huguet R, Blanchette C, Sandoval W. High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry. Anal Chem 2022; 94:14593-14602. [PMID: 36179215 PMCID: PMC9607865 DOI: 10.1021/acs.analchem.2c02423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Immune monitoring in cancer immunotherapy involves screening CD8+ T-cell responses against neoantigens, the tumor-specific peptides presented by Major histocompatibility complex Class I (MHCI) on the cell surface. High-throughput immune monitoring requires methods to produce and characterize small quantities of thousands of MHCI-peptide complexes that may be tested for a patient's T-cell response. MHCI synthesis has been achieved using a photocleavable peptide that is exchanged by the neoantigen; however, assays that measure peptide exchange currently disassemble the complex prior to analysis─precluding direct molecular characterization. Here, we use native mass spectrometry (MS) to profile intact recombinant MHCI complexes and directly measure peptide exchange. Coupled with size-exclusion chromatography or capillary-zone electrophoresis, the assay identified all tested human leukocyte antigen (HLA)/peptide combinations in the nanomole to picomole range with minimal run time, reconciling the synthetic and analytical requirements of MHCI-peptide screening with the downstream T-cell assays. We further show that the assay can be "multiplexed" by measuring exchange of multiple peptides simultaneously and also enables calculation of Vc50, a measure of gas-phase stability. Additionally, MHCI complexes were fragmented by top-down sequencing, demonstrating that the intact complex, peptide sequence, and their binding affinity can be determined in a single analysis. This screening tool for MHCI-neoantigen complexes represents a step toward the application of state-of-the-art MS technology in translational settings. Not only is this assay already informing on the viability of immunotherapy in practice, the platform also holds promise to inspire novel MS readouts for increasingly complex biomolecules used in the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Luis F. Schachner
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| | - Wilson Phung
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| | - Guanghui Han
- BGI
Americas, San Jose, California 95134, United States
| | - Martine Darwish
- Department
of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Ashley Bell
- 908
Devices, Carrboro, North Carolina 27510, United States
| | | | | | - Romain Huguet
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | - Craig Blanchette
- Department
of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
143
|
Webber AM, Bradstreet TR, Wang X, Guo H, Nelson CA, Fremont DH, Edelson BT, Liu C. Antigen-guided depletion of anti-HLA antibody-producing cells by HLA-Fc fusion proteins. Blood 2022; 140:1803-1815. [PMID: 36070233 PMCID: PMC9837442 DOI: 10.1182/blood.2022016376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
Platelet transfusion and transplantation of allogeneic stem cells and solid organs are life-saving therapies. Unwanted alloantibodies to nonself human leukocyte antigens (HLAs) on donor cells increase the immunological barrier to these therapies and are important causes of platelet transfusion refractoriness and graft rejection. Although the specificities of anti-HLA antibodies can be determined at the allelic level, traditional treatments for antibody-mediated rejection nonselectively suppress humoral immunity and are not universally successful. We designed HLA-Fc fusion proteins with a bivalent targeting module derived from extracellular domains of HLA and an Fc effector module from mouse IgG2a. We found that HLA-Fc with A2 (A2Fc) and B7 (B7Fc) antigens lowered HLA-A2- and HLA-B7-specific reactivities, respectively, in sera from HLA-sensitized patients. A2Fc and B7Fc bound to B-cell hybridomas bearing surface immunoglobulins with cognate specificities and triggered antigen-specific and Fc-dependent cytotoxicity in vitro. In immunodeficient mice carrying HLA-A2-specific hybridoma cells, A2Fc treatment lowered circulating anti-HLA-A2 levels, abolished the outgrowth of hybridoma cells, and prolonged survival compared with control groups. In an in vivo anti-HLA-A2-mediated platelet transfusion refractoriness model, A2Fc treatment mitigated refractoriness. These results support HLA-Fc being a novel strategy for antigen-specific humoral suppression to improve transfusion and transplantation outcomes. With the long-term goal of targeting HLA-specific memory B cells for desensitization, further studies of HLA-Fc's efficacy in immune-competent animal models are warranted.
Collapse
Affiliation(s)
- Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | | | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
144
|
Nguyen AT, Lau HMP, Sloane H, Jayasinghe D, Mifsud NA, Chatzileontiadou DSM, Grant EJ, Szeto C, Gras S. Homologous peptides derived from influenza A, B and C viruses induce variable CD8 + T cell responses with cross-reactive potential. Clin Transl Immunology 2022; 11:e1422. [PMID: 36275878 PMCID: PMC9581725 DOI: 10.1002/cti2.1422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265‐273, and its IBV and ICV homologues, presented by HLA‐A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265‐IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265‐IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross‐react towards these homologous peptides. Furthermore, we determined the structures of NP265‐IAV and NP323‐IBV peptides in complex with HLA‐A*03:01 by X‐ray crystallography. Results Our study provides a detailed characterisation of the CD8+ T cell response towards NP265‐IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265‐IAV that is associated with superior anti‐viral protection. Evidence of cross‐reactivity between the three different influenza virus strain‐derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion We show that while there is a potential to cross‐protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.
Collapse
Affiliation(s)
- Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Hiu Ming Peter Lau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| |
Collapse
|
145
|
Cargou M, Andreani M, Battarra M, Wojciechowski E, Visentin J. Characterization of the novel
HLA‐DPA1
*01:03:40
allele by sequencing‐based typing. HLA 2022; 100:403-404. [DOI: 10.1111/tan.14711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti IRCCS Ospedale Pediatrico Bambino Gesù Rome Italy
| | - Mariarosa Battarra
- Laboratorio d'Immunogenetica dei Trapianti IRCCS Ospedale Pediatrico Bambino Gesù Rome Italy
| | - Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
- CNRS, ImmunoConcEpT Univ. Bordeaux Bordeaux France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
- CNRS, ImmunoConcEpT Univ. Bordeaux Bordeaux France
| |
Collapse
|
146
|
Cargou M, Andreani M, Troiano M, Ralazamahaleo M, Visentin J. Characterization of the novel
HLA
‐
DQA1
*
05
:
53
allele by sequencing‐based typing. HLA 2022; 100:396-397. [DOI: 10.1111/tan.14705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
| | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti IRCCS Ospedale Pediatrico Bambino Gesù Roma Italy
| | - Maria Troiano
- Laboratorio d'Immunogenetica dei Trapianti IRCCS Ospedale Pediatrico Bambino Gesù Roma Italy
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
- University of Bordeaux CNRS, ImmunoConcEpT, UMR 5164 Bordeaux France
| |
Collapse
|
147
|
Cargou M, Elsermans V, Top I, Ralazamahaleo M, Visentin J. Characterization of the novel
HLA
‐
DQB1
*
02
:
200
allele by sequencing‐based typing. HLA 2022; 100:398-399. [DOI: 10.1111/tan.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
| | | | - Isabelle Top
- CHU de Lille Institut d'Immunologie‐HLA Lille France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin, Place Amélie Raba Léon Bordeaux France
- University of Bordeaux CNRS, ImmunoConcEpT, UMR 5164 Bordeaux France
| |
Collapse
|
148
|
Khor S, Omae Y, Tokunaga K. Genomic sequencing of the novel
HLA‐C*07:02:01:107
allele by next‐generation sequencing in two Japanese individuals. HLA 2022; 100:383-384. [DOI: 10.1111/tan.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Seik‐Soon Khor
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Yosuke Omae
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan
| |
Collapse
|
149
|
Cargou M, Elsermans V, Top I, Ralazamahaleo M, Visentin J. Characterization of the novel
HLA
‐
DPB1
*
02
:
01
:
63
allele by sequencing‐based typing. HLA 2022; 100:406-408. [DOI: 10.1111/tan.14703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
| | | | - Isabelle Top
- CHU de Lille Institut d'Immunologie‐HLA Lille France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
- Univ. Bordeaux CNRS Bordeaux France
| |
Collapse
|
150
|
Tesolin P, Bertinetto FE, Sonaglia A, Cappellani S, Concas MP, Morgan A, Ferrero NM, Zabotti A, Gasparini P, Amoroso A, Quartuccio L, Girotto G. High Throughput Genetic Characterisation of Caucasian Patients Affected by Multi-Drug Resistant Rheumatoid or Psoriatic Arthritis. J Pers Med 2022; 12:jpm12101618. [PMID: 36294757 PMCID: PMC9605087 DOI: 10.3390/jpm12101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel “drug-resistance” RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, “private” damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Francesca Eleonora Bertinetto
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Arianna Sonaglia
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-0403785539
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Norma Maria Ferrero
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Alen Zabotti
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Luca Quartuccio
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|