101
|
Guest DJ, Allen WR. Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev 2008; 16:789-96. [PMID: 17999600 DOI: 10.1089/scd.2007.0032] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryonic stem-like (ES-like) cells have now been derived from the inner cell mass (ICM) of horse embryos at the blastocyst stage. Because they have been shown to express cell-surface antigens found in both human and mouse ES cells, the present study investigated gene expression patterns in day-7 horse blastocysts from which the horse ES-like cells had been derived originally. The genes studied included Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-3, SSEA-4, tumor rejection antigen-1-60 (TRA-1-60), TRA-1-81, and alkaline phosphatase activity, and whereas all three of the SSEA antigens were expressed in both the ICM and the trophoblast on day 7, Oct-4, TRA-1-60, TRA-1-81, and alkaline phosphatase activity were localized mostly in the ICM. Upon in vitro differentiation of the horse ES-like cells, their expression of the stem cell markers was abolished. Therefore, the species-specific expression pattern of stem cell markers in horse ES-like cells reflects gene expression in the blastocysts from which they are derived.
Collapse
Affiliation(s)
- D J Guest
- Department of Veterinary Medicine Equine Fertility Unit, University of Cambridge, Newmarket, Suffolk, CB8 9BH, UK.
| | | |
Collapse
|
102
|
Ando T, Yamazoe H, Moriyasu K, Ueda Y, Iwata H. Induction of Dopamine-Releasing Cells from Primate Embryonic Stem Cells Enclosed in Agarose Microcapsules. ACTA ACUST UNITED AC 2007; 13:2539-47. [PMID: 17655488 DOI: 10.1089/ten.2007.0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dopamine-releasing cells derived from embryonic stem cells (ESCs) are potentially valuable in cell transplantation therapy for Parkinson's disease. There have been many recent investigations of the induction of dopamine-releasing cells from mouse and primate ESCs. However, there are major obstacles to application of dopamine-releasing ESC progeny to cell transplantation therapy, including host immune responses to transplanted cells and the difficulty of collecting dopamine-releasing cells from culture dishes undamaged. To overcome these obstacles, in the present study, cynomolgus monkey ES cell (cESC) aggregates enclosed in agarose microcapsules were cultured in 3 kinds of media: Glasgow minimum essential medium-based medium (GBM); GBM-containing conditioned medium of PA6 cells; and GBM supplemented with fibroblast growth factor (FGF)8, sonic hedgehog, and ascorbic acid (GBM(+)) under free-floating culture conditions. Of these 3 culture media, GBM(+) most efficiently induced dopamine-releasing cells. Addition of FGF8, sonic hedgehog, and ascorbic acid to the culture medium during culture days 10 to 15, days 12 to 15, and days 16 to 20, respectively, facilitated the generation of dopamine-releasing cells. Because various characteristics of cESCs are reported to be similar to those of human ESCs, we expect that the study using cESCs will provide useful information for cell transplantation therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Tomoko Ando
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
103
|
Brevini TAL, Antonini S, Cillo F, Crestan M, Gandolfi F. Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 2007; 68 Suppl 1:S206-13. [PMID: 17582486 DOI: 10.1016/j.theriogenology.2007.05.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Embryonic stem cells (ESCs) represent a promising tool for cell therapy, regenerative medicine and tissue repair. At the same time they constitute an invaluable model for basic investigations in developmental biology, nuclear reprogramming and differentiation process. ESCs are very unique due to their unlimited self-renewal ability and high plasticity that allow them to differentiate into all embryonic tissues. However, these properties have been so far only demonstrated in the mouse and, to a lesser extent, in man. Assessment of ESC capabilities in species different from the mouse is an ongoing topic of interest and is crucial in view of their potential use as experimental models in pre-clinical applications. The mouse model is not adequate when long-term effects of cell replacement need to be evaluated. The pig has been considered for a long time among the best models for pre-clinical development of therapeutic approaches and represents an innovative model due to its morphological and functional affinity with man; therefore, pig ESCs are attracting renewed interest. However, a number of open questions need to be addressed since no validated protocols for the derivation and maintenance of pig ESCs have yet been established. In the present paper data from the literature will be presented together with experimental evidence recently obtained in our laboratory. We will discuss aspects related to the timing of isolation, the initiation of primary cultures, the use of different culture conditions and cytokines. The identification of pluripotency-related molecular markers in the pig will also be examined. Finally, the ability to respond to specifically formulated medium with spontaneous as well as induced differentiation will be assessed.
Collapse
Affiliation(s)
- T A L Brevini
- Biomedical Embryology Unit, Department of Animal Science, Centre for Stem Cell Research, University of Milan, via Celoria 10, Milan, Italy.
| | | | | | | | | |
Collapse
|
104
|
Habermann FA, Wuensch A, Sinowatz F, Wolf E. Reporter genes for embryogenesis research in livestock species. Theriogenology 2007; 68 Suppl 1:S116-24. [PMID: 17583783 DOI: 10.1016/j.theriogenology.2007.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Currently, our knowledge of early mammalian embryogenesis, stem cell differentiation and development is largely based on studies performed in mouse models. However, in important aspects, e.g. the timing of epigenetic reprogramming and embryonic genome activation, livestock species probably reflect far more closely the situation in men and other non-rodent mammals. A major challenge is the fact that in mammals, the development of individual zygotes is highly variable and vulnerable, and the outcome is uncertain. Valid indicators of the highly heterogeneous development and health status, and the actual developmental potential of individual oocytes, zygotes or embryos would be crucially important to tap the full power of holistic transcriptome and proteome analyses. Fluorescent reporter proteins opened new vistas for embryology and stem cell research: they can be used as reporters for the activity of gene promoters or tagged to functional proteins to study their intracellular localization in living cells, tissues and organisms. Fluorescent reporter genes may be used to microscopically observe key processes of early development. Thus, novel information related to developmental potential can be obtained from living embryos before processing them, e.g. for "-omic" studies. This review summarizes the main current reporter gene techniques and gene transfer approaches, which might be suitable for the investigation of early embryogenesis in livestock mammals. The potential of promoter reporter genes is exemplified by a bovine model system for quantitative monitoring of transcriptional reactivation of the so-called pluripotency gene POU5F1 in cloned bovine embryos.
Collapse
Affiliation(s)
- F A Habermann
- Institute of Veterinary Anatomy, Histology and Embryology, LMU Munich, Germany
| | | | | | | |
Collapse
|
105
|
Long JE, Cai X, He LQ. Gene profiling of cattle blastocysts derived from nuclear transfer, in vitro fertilization and in vivo development based on cDNA library. Anim Reprod Sci 2007; 100:243-56. [PMID: 16930874 DOI: 10.1016/j.anireprosci.2006.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/28/2006] [Accepted: 07/07/2006] [Indexed: 11/18/2022]
Abstract
Gene expression analysis of cloned embryos would enable us to better understand the early biological events during preimplantation after NT (nuclear transfer). Routine RT-PCR and Northern-blot were limited because it could not analyze tens of thousands of genes at one time and were impeded by minimum material. Based on the developed RT-PCR methodology, we previously constructed cDNA libraries with equivalent to single embryo from the pooled AI-blastocysts (artificial insemination and in vivo developed blastocysts) of cattle. To identify gene expression profiles in NT- and IVF (in vitro fertilized)-blastocysts, and search for new candidate genes involved during this period, here we created cDNA sources from three types of blastocysts (AI-, IVF- and NT-blastocysts). The expressions of 60 genes previously identified from cDNA library were compared in three types of blastocyst. Results showed that the gene expression profile of NT-blastocysts was more similar to that of AI-blastocysts than that of created from IVF-blastocysts. Several important genes, such as Oct-4 and IFN-iota, only detected in the early embryonic development, were highly expressed in three types of blastocysts and showed no significant difference, it indicated that the donor nuclear undergone efficient reprogramming by the blastocyst stage and gained totipotential after nuclear transfer. The gene expression profiles in three types of blastocysts suggested that nuclear transfer and in vitro culture environments impaired the viability of embryos in different ways.
Collapse
Affiliation(s)
- Jian-Er Long
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, 24/1400 West Beijing R., Shanghai 200040, PR China.
| | | | | |
Collapse
|
106
|
Wuensch A, Habermann FA, Kurosaka S, Klose R, Zakhartchenko V, Reichenbach HD, Sinowatz F, McLaughlin KJ, Wolf E. Quantitative Monitoring of Pluripotency Gene Activation after Somatic Cloning in Cattle1. Biol Reprod 2007; 76:983-91. [PMID: 17314316 DOI: 10.1095/biolreprod.106.058776] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The development of somatic cell nuclear transfer (SCNT) embryos critically depends on appropriate reprogramming and expression of pluripotency genes, such as Pou5f1/POU5F1 (previously known as Oct4/OCT4). To study POU5F1 transcription activation in living bovine SCNT embryos without interference by maternal POU5F1 mRNA, we generated chromosomally normal fetal fibroblast donor cells stably carrying a mouse Pou5f1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a single integration site without detectable EGFP expression. Morphologic and quantitative analyses of whole-mount SCNT embryos by confocal microscopy revealed robust initial activation of the Pou5f1 reporter gene during the fourth cell cycle. In Day 6 SCNT embryos EGFP expression levels were markedly higher than in Day 4 embryos but varied substantially between individual embryos, even at comparable cell numbers. Embryos with low EGFP levels had far more morphologically abnormal cell nuclei than those with high EGFP levels. Our data strongly suggest that bovine SCNT embryos consistently start activation of the POU5F1 promoter during the fourth cell cycle, whereas later in development the expression level substantially differs between individual embryos, which may be associated with developmental potential. In fibroblasts from phenotypically normal SCNT fetuses recovered on Day 34, the Pou5f1 reporter promoter was silent but was activated by a second round of SCNT. The restoration of pluripotency can be directly observed in living cells or SCNT embryos from such Pou5f1-EGFP transgenic fetuses, providing an attractive model for systematic investigation of epigenetic reprogramming in large mammals.
Collapse
Affiliation(s)
- Annegret Wuensch
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University, Feodor-Lynen-Strasse 22, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Brevini TAL, Cillo F, Antonini S, Tosetti V, Gandolfi F. Temporal and spatial control of gene expression in early embryos of farm animals. Reprod Fertil Dev 2007; 19:35-42. [PMID: 17389133 DOI: 10.1071/rd06119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A gradual transition from oocyte-derived mRNA and proteins to full embryonic transcription characterises early embryonic development. Messenger RNAs and proteins of maternal origin are accumulated into the oocyte throughout its growth inthe ovary. Upon fertilisation, sev eral mechanisms ar e activated that controlthe appropriate use of such material and prepare for the synthesis of new products. The present review will describe some of the mechanisms active in early embryos of domestic species. Data will be presented on the control of gene expression by the 3' untranslated regions and their interaction with specialised sequences at the 5' cap end. The process of RNA sorting and localisation, initially described in different cell types and in oocytes of lower species, will also be discussed, particularly in relation to its possible role in regulating early pig development. Finally, specific genes involved in the activation of cattle embryonic transcription will be described. This brief overview will provide some suggestions on how these different mechanisms may be integrated and cooperate to ensure the correct initiation of embryonic development.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Anatomy of Domestic Animals, School of Veterinary Medicine, University of Milan, Italy.
| | | | | | | | | |
Collapse
|
108
|
Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, Goswami SL, Chauhan MS. Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 2007; 74:520-9. [PMID: 17034054 DOI: 10.1002/mrd.20645] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was carried out to isolate and characterize buffalo embryonic stem (ES) cell-like cells from in vitro-produced embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 120 blastocysts whereas 28 morulae were used for the isolation of blastomeres mechanically. The ICM cells/ blastomeres were cultured on mitomycin-C-treated feeder layer. Primary cell colony formation was higher (P < 0.05) for hatched blastocysts (73.1%, 30/41) than that for early/expanded blastocysts (25.3%, 20/79). However, no primary cell colonies were formed when blastomeres obtained from morulae were cultured. Primary colonies were formed in 14.1% (12/85) of intact blastocyst culture, which was significantly lower (P < 0.05) than that of 41.6% for ICM culture. These colonies were separated by enzymatic or mechanical disaggregation. Using mechanical disaggregation method, the cells remained undifferentiated and two buffalo ES cell-like cell lines (bES1, bES2) continued to grow in culture up to eight passages. However, disassociation through enzymatic method resulted in differentiation. Undifferentiated cells exhibited stem cell morphological features, normal chromosomal morphology, and expressed specific markers such as alkaline phosphatase (AP) and Oct-4. Cells formed embryoid bodies (EBs) in suspension culture; extended culture of EBs resulted in formation of cystic EBs. Following prolonged in vitro culture, these cells differentiated into several types of cells including neuron-like and epithelium-like cells. Furthermore, the vitrified-thawed ES cell-like cells also exhibited typical stem cell characteristics. In conclusion, buffalo ES cell-like cells could be isolated from in vitro-produced blastocysts and maintained in vitro for prolonged periods of time.
Collapse
Affiliation(s)
- V Verma
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | |
Collapse
|
109
|
VACKOVA I, UNGROVA A, LOPES F. Putative Embryonic Stem Cell Lines from Pig Embryos. J Reprod Dev 2007; 53:1137-49. [DOI: 10.1262/jrd.19108] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Irena VACKOVA
- Institute of Animal Science
- Center for Cell Therapy and Tissue Repair, Charles University
| | | | - Federica LOPES
- Dipartimento di Scienze Biomediche Comparate, Teramo University
| |
Collapse
|
110
|
Long JE, He LQ, Cai X, Ren ZR, Huang SZ, Zeng YT. Construction and characteristics of 3-end enriched cDNA library from individual embryos of cattle. Anim Reprod Sci 2006; 96:104-15. [PMID: 16413976 DOI: 10.1016/j.anireprosci.2005.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Accepted: 11/28/2005] [Indexed: 01/25/2023]
Abstract
To analyze stage-specific gene expression profiles of pre-implantation embryos and evaluate potential viability, techniques were adapted to generate 3-end enriched cDNA libraries from individual embryos of cattle based on RT-PCR methodology. The reproducibility of constructing a cDNA library was tested by five independent PCR experiments with specific primers for the presence of several rare genes such as DNMT1 (DNA methylation transferase 1), DNMT2, DNMT3A, Oct-4/3 (octmer-binding transcription factor), IFN-iota, IGF-2r (insulin like growth factor 2 receptor), and the housekeeping genes, H2A and beta-actin. Results indicated repeatability and that a proportion of expressed genes in the cDNA library from an individual embryo was not affected by limited PCR amplification. From the cDNA library, 134 clones were randomly selected for sequencing and showed that structure related elements accounted for 33.5% of transcripts and the energy- and metabolism-related genes were also an important component being 11.9% in the cDNA library. Approximately 14% of genes in the library were functionally unknown including greater than 5% of genes that were likely novel because there was no identity in Genbank. The frequency of structure-related genes such as beta-actin and ribosomal proteins in the cDNA library corresponded to other reports and suggested that the cDNA library constructed by RT-PCR might be proportional to the mRNA populations. The cDNA libraries constructed from different stage embryos will provide a powerful tool to explore novel genes relevant to embryogenesis, determine the profiling of stage-specific gene expression, and evaluate the potential viability of embryos.
Collapse
Affiliation(s)
- Jian-Er Long
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiaotong University, 24/1400 West Beijing Road, Shanghai 200040, PR China
| | | | | | | | | | | |
Collapse
|
111
|
Misica-Turner PM, Oback FC, Eichenlaub M, Wells DN, Oback B. Aggregating embryonic but not somatic nuclear transfer embryos increases cloning efficiency in cattle. Biol Reprod 2006; 76:268-78. [PMID: 17050861 DOI: 10.1095/biolreprod.106.050922] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our objectives were to compare the cellular and molecular effects of aggregating bovine embryonic vs. somatic cell nuclear transfer (ECNT vs. SCNT) embryos and to determine whether aggregation can improve cattle cloning efficiency. We reconstructed cloned embryos from: 1) morula-derived blastomeres, 2) six adult male ear skin fibroblast lines, 3) one fetal female lung fibroblast line (BFF), and 4) two transgenic clonal strains derived from BFF. Embryos were cultured either singularly (1X) or as aggregates of three (3X). In vitro-fertilized (IVF) 1X and 3X embryos served as controls. After aggregation, the in vitro development of ECNT but not that of SCNT or IVF embryos was strongly compromised. The inner cell mass (ICM), total cell (TC) numbers, and ICM:TC ratios significantly increased for all the aggregates. The relative concentration of the key embryonic transcript POU5F1 (or OCT4) did not correlate with these increases, remaining unchanged in the ECNT and IVF aggregates and decreasing significantly in the SCNT aggregates. Overall, the IVF and 3X ECNT but not the 1X ECNT embryos had significantly higher relative POU5F1 levels than the SCNT embryos. High POU5F1 levels correlated with high in vivo survival, while no such correlation was noted for the ICM:TC ratios. Development to weaning was more than doubled in the ECNT aggregates (10/51 or 20% vs. 7/85 or 8% for 3X vs. 1X, respectively; P < 0.05). In contrast, the SCNT and IVF controls showed no improvement in survival. These data reveal striking biological differences between embryonic and somatic clones in response to aggregation.
Collapse
Affiliation(s)
- Pavla M Misica-Turner
- AgResearch, Ruakura Research Centre, Reproductive Technologies, Private Bag 3123, Hamilton, New Zealand
| | | | | | | | | |
Collapse
|
112
|
Keefer CL, Pant D, Blomberg L, Talbot NC. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 2006; 98:147-68. [PMID: 17097839 DOI: 10.1016/j.anireprosci.2006.10.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Embryonic stem (ES) cell lines provide an invaluable research tool for genetic engineering, developmental biology and disease models. These cells can be maintained indefinitely in culture and yet maintain competence to produce all the cells within a fetus. While mouse ES cell lines were first established over two decades ago and primate ES cells in the 1990 s, validated ES cell lines have yet to be established in ungulates. Why competent, pluripotent ES cells can be established from certain strains of mice and from primates, and not from cows, sheep, goats or pigs is an on-going topic of interest to animal reproduction scientists. The identification of appropriate stem cell markers, functional cytokine pathways, and key pluripotency-maintaining factors along with the release of more comprehensive bovine and porcine genomes, provide encouragement for establishment of ungulate ES cell lines in the near future.
Collapse
Affiliation(s)
- C L Keefer
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742-2311, USA.
| | | | | | | |
Collapse
|
113
|
He S, Pant D, Schiffmacher A, Bischoff S, Melican D, Gavin W, Keefer C. Developmental expression of pluripotency determining factors in caprine embryos: Novel pattern of NANOG protein localization in the nucleolus. Mol Reprod Dev 2006; 73:1512-22. [PMID: 16894532 DOI: 10.1002/mrd.20525] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcription factors, POU5F1/OCT4 and NANOG, whose expression is restricted to the inner cell mass (ICM) in mouse and human blastocysts, are used to characterize undifferentiated embryonic stem cells (ESC) in vitro. However, POU5F1 may not be a useful marker in domestic animals due to its expression in both ICM and trophectoderm (TE), while NANOG mRNA and protein expression have only been described fully in mice. In an effort to identify ESC markers for domestic animals, expression patterns of NANOG, POU5F1, and the cell surface markers (SSEA1, SSEA4, TRA-1-60, TRA-1-81) were examined in preimplantation goat embryos, a species that has proven to be a superior choice for the production of transgenic proteins in milk (biopharming). Our results indicate that while goat embryos express POU5F1, SSEA1, and SSEA4 proteins, their expression is not strictly restricted to the ICM. In a unique staining pattern, NANOG protein was localized to the nucleoplasm and nucleoli in ICM cells, but was localized strictly to nucleoli in TE. This pattern may reflect down-regulation of protein by sequestration/degradation utilizing a nucleolar mechanism known to operate in stem cells. Furthermore, NANOG mRNA in TE was also significantly down-regulated as compared with that in ICM. Taken together, this novel expression pattern of NANOG in goat preimplantation embryos suggests that NANOG could serve as marker of pluripotency in goats and may be useful in derivation and characterization of caprine ESC. This study is the first to characterize both NANOG mRNA and protein expression in any species other than the mouse.
Collapse
Affiliation(s)
- Shuyang He
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Yang HM, Do HJ, Oh JH, Kim JH, Choi SY, Cha KY, Chung HM, Kim JH. Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter. J Cell Biochem 2006; 96:821-30. [PMID: 16149048 DOI: 10.1002/jcb.20588] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Octamer-binding transcription factor-4 (Oct4), a member of the POU domain transcription factors, is crucial for both early embryonic development and the maintenance of stem cell pluripotency. The human Oct4 (hOct4) 5' upstream sequence contains four conserved regions (CR1, 2, 3, 4) that are homologous in the murine. In this study, we constructed a series of deletion mutants of the hOct4 5' upstream region and identified cis-regulatory elements that may be important determinants for the transcriptional activity of the hOct4 promoter. Our studies showed that CR2, 3, and 4 each acted as positive cis-regulatory elements in hOct4 promoter activity. We also newly identified a putative negative cis-acting element located between CR1 and CR2. In addition, the sequence -380/-1 at CR1 that contains a GC box was sufficient to provide the minimal promoter activity. Site-directed mutagenesis and electrophoretic mobility shift assays revealed the GC box located in the -380/-1 region may play a critical role in controlling the transcriptional activity of hOct4 by the direct binding of Sp1 or Sp3 transcription factors to the GC box. An overexpression study showed that Sp1 and Sp3 positively and negatively regulate hOct4 promoter activity. Thus, the hOct4 promoter upstream region contains multiple regulatory elements, one of which, the GC box, may be an important cis-regulatory element that regulates the transcription of the hOct4 promoter by the binding of Sp family transcription factors.
Collapse
Affiliation(s)
- Heung-Mo Yang
- Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, 606-13, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Kremenskoy M, Kremenska Y, Suzuki M, Imai K, Takahashi S, Hashizume K, Yagi S, Shiota K. Epigenetic characterization of the CpG islands of bovine Leptin and POU5F1 genes in cloned bovine fetuses. J Reprod Dev 2006; 52:277-85. [PMID: 16474211 DOI: 10.1262/jrd.17100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abnormal development and fetal loss during postimplantation period are concerns for production of nuclear transferred animals. Aberrant DNA methylation is one of the reasons for poor survival of cloned animals. In mammalian genome DNA, CpG islands are preferentially located at the start of transcription of housekeeping genes and are associated with tissue-specific genes. The correct and consecutive mechanisms of DNA methylation in the CpG islands are necessary for selective gene expressions that determine the properties of individual cells, tissues, and organs. In this study, we investigated the methylation status of the CpG islands of the bovine Leptin and POU5F1 genes in fetal and placental tissues from fetuses produced by artificial insemination (AI) and nuclear transfer (NT) at days 48 and 59 of pregnancy. Altered DNA methylation was observed in the normal and cloned fetal, placental, and endometrial tissues using bisulfite sequencing and pyrosequencing. Different tissue-specific methylated regions in the bovine Leptin and POU5F1 genes show a variable methylation status in NT fetuses compared to AI control.
Collapse
Affiliation(s)
- Maksym Kremenskoy
- Laboratory of Cellular Biochemistry, Animal Resource Science/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Vejlsted M, Offenberg H, Thorup F, Maddox-Hyttel P. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation. Mol Reprod Dev 2006; 73:709-18. [PMID: 16541449 DOI: 10.1002/mrd.20461] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around gastrulation, days 8-17 postinsemination, introducing a stereomicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers was observed at defined stages, suggesting correlations to lineage specification. In the endoderm, clearance of OCT4 was apparent from early during its formation at the primitive streak stage. The endoderm harbored progenitors of the "fourth germ layer," the primordial germ cells (PGCs), the only cells maintaining expression of OCT4 at the end of gastrulation. In the ectodermal and mesodermal cell lineages, OCT4 became undetectable at the neural groove and somite stage, respectively. As in the mouse, PGCs showed onset of c-kit expression when located in extraembryonal compartments. They appeared to follow the endoderm during extraembryonal allocation and the mesoderm on return to the genital ridge.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
117
|
Degrelle SA, Campion E, Cabau C, Piumi F, Reinaud P, Richard C, Renard JP, Hue I. Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev Biol 2005; 288:448-60. [PMID: 16289134 DOI: 10.1016/j.ydbio.2005.09.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/20/2005] [Accepted: 09/22/2005] [Indexed: 01/12/2023]
Abstract
Embryonic and extra-embryonic lineages are separated at the blastocyst stage in the mouse at the onset of implantation but well ahead of implantation in most mammals. To provide information on the development of the trophoblast lineage in late-implanting bovine embryos, we combined the use of molecular markers defining embryonic and extra-embryonic lineages in the mouse with a transcriptomic approach dedicated to the early steps of the elongation process, a characteristic feature of blastocyst development in ruminants. In this study, we present molecular evidence for differences between the cow and the mouse in the programming of trophoblast differentiation. This different programming encompasses: (i) the expression of epiblast specifying genes (Oct-4, Nanog) in bovine trophoblast cells at the onset of elongation, (ii) the transcription of proliferation markers in early elongating blastocysts, (iii) the early detection of trophoblast-specific transcripts related to extra-embryonic tissue's differentiation (Hand1, Ets2, IFN-tau) and (iv) the identification of a new transcript (c12) which displays a reciprocal pattern to that of Oct-4 and Nanog genes in the embryonic cells and for which no equivalent has thus far been found in the mouse. Altogether, these results tended to show that early elongation is a critical transition in bovine trophoblast development.
Collapse
Affiliation(s)
- Séverine A Degrelle
- UMR INRA/ENVA/CNRS Biologie du Développement et de la Reproduction, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Yadav PS, Kues WA, Herrmann D, Carnwath JW, Niemann H. Bovine ICM derived cells express the Oct4 ortholog. Mol Reprod Dev 2005; 72:182-90. [PMID: 15973686 DOI: 10.1002/mrd.20343] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The goal of this study was to define conditions for the successful isolation of embryonic stem cells from bovine blastocysts. Expression of the Pit-Oct-Unc (POU) transcription factor Oct4 was employed to monitor the pluripotent status of cultured cells. No expression of the previously identified bovine Oct4 pseudogene was found, and transcription of the Oct4 ortholog correlated with the proliferative potential of bovine ICM derived cells. Two methods to isolate pluripotent inner cell mass were compared; 90% of trypsin isolated ICMs formed growing cultures, whereas only 12%-23% of the ICMs isolated by immunosurgery attached and grew. Colony formation from complete blastocysts was 55%. The bovine ICM derived cells could be grown for 4-7 passages. However, Oct4 transcripts were only present in the primary cultures, indicating that the initial culture period of bovine ICM derived cells is critical and needs to be optimized to yield true ES cells. In contrast to bovine ICMs, murine ICMs yielded rapidly growing cells, which proliferated for more than 60 passages.
Collapse
Affiliation(s)
- Prem S Yadav
- Department of Biotechnology, Institute for Animal Breeding (FAL) Mariensee, Neustadt, Germany
| | | | | | | | | |
Collapse
|
119
|
Pébay A, Wong RCB, Pitson SM, Wolvetang EJ, Peh GSL, Filipczyk A, Koh KLL, Tellis I, Nguyen LTV, Pera MF. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 2005; 23:1541-8. [PMID: 16081668 DOI: 10.1634/stemcells.2004-0338] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human embryonic stem cells (hESCs) have great potential for use in research and regenerative medicine, but very little is known about the factors that maintain these cells in the pluripotent state. We investigated the role of three major mitogenic agents present in serum--sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF)--in maintaining hESCs. We show here that although LPA does not affect hESC growth or differentiation, coincubation of S1P and PDGF in a serum-free culture medium successfully maintains hESCs in an undifferentiated state. Our studies indicate that signaling pathways activated by tyrosine kinase receptors act synergistically with those downstream from lysophospholipid receptors to maintain hESCs in the undifferentiated state. This study is the first demonstration of a role for lysophospholipid receptor signaling in the maintenance of stem cell pluri-potentiality.
Collapse
Affiliation(s)
- Alice Pébay
- Monash Institute of Medical Research, Laboratory of Embryonic Stem Cell Biology, Australian Stem Cell Centre, STRIP Monash University, Clayton VIC 3800, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Brevini TAL, Cillo F, Colleoni S, Lazzari G, Galli C, Gandolfi F. Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos. Mol Reprod Dev 2005; 69:375-80. [PMID: 15457515 DOI: 10.1002/mrd.20140] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zygote arrest 1 (Zar1) is an ovary-specific maternal factor that plays an essential role during the oocyte-to-embryo transition in mouse. In this species, Zar1 expression is strictly limited to the oocyte, the zygote and, at a lower level, the 2-cell embryo. Aim of the present study was to analyze the presence and the expression pattern of the Zar1 ortholog in bovine tissues and embryos. Reverse transcription (RT)-polymerase chain reaction (PCR) analysis was performed in a panel of bovine tissues, in oocytes and pre-implantation in vitro produced embryos. The results demonstrated that a Zar1 ortholog is present in cattle. In the adult, the gene is expressed in ovary, testis, muscle, and myocardium. The gene is also expressed in the oocyte, the zygote, and in all the stages of embryonic development until blastocyst formation. A semi-quantitative RT-PCR analysis revealed that Zar1 levels are constant through in vitro development with the exception of the 4-cell stage, when a significant increase is observed. The exposure of fertilized oocytes to the RNA polymerase II inhibitor alpha-amanitin was able to suppress this Zar1 increase indicating that transcription of this gene occurs at the 4-cell stage. Zar1 is conserved in cattle but has an expression pattern different from the mouse. In particular, Zar1 expression in the adult is not limited to the ovary and in the embryo is expressed well beyond the oocyte to embryo transition. Moreover, the identification of Zar1 transcription at the 4-cell stage represents the first characterization of one of the genes expressed in cattle embryos before the major onset of embryonic transcription.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Anatomy of Domestic Animals, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
121
|
Chang HC, Liu H, Zhang J, Grifo J, Krey LC. Developmental incompetency of denuded mouse oocytes undergoing maturation in vitro is ooplasmic in nature and is associated with aberrant Oct-4 expression. Hum Reprod 2005; 20:1958-68. [PMID: 15817588 DOI: 10.1093/humrep/dei003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Germinal vesicle (GV) oocytes constitute a potential resource but their developmental competence is questionable especially when surrounding cumulus cells are removed. The intercellular factors/mechanisms underlying such poor embryonic competence may originate at a nuclear and/or ooplasmic level. METHODS Immature or mature oocytes were obtained from three mouse strains following pregnant mare serum gonadotropin (PMSG) or PMSG+ human chorionic gonadotropin (hCG) treatment. Immature oocytes were denuded of cumulus cells prior to in vitro maturation. Pronuclear (PN) transfer was used to examine nuclear-ooplasmic interplay on resultant embryonic development and Oct-4 immuno-staining patterns. RESULTS Embryos arising from ooplasts of in vivo matured oocytes displayed significant increases in blastocyst formation rates and total blastomere numbers when compared to those created from ooplasts of denuded oocytes. Oct-4 staining was more pronounced and restricted to the inner cell mass (ICM) in blastocysts arising from the ooplasm of in vivo matured zygotes than in those created from denuded oocytes. CONCLUSIONS Developmental defect(s) appear to develop primarily in the ooplasm of oocytes that are denuded of their cumulus cells prior to in vitro maturation. Such oocytes result in embryos with poor developmental competence. These defects result in anomalies in cell number and Oct-4 expression during the morula-blastocyst developmental transition.
Collapse
Affiliation(s)
- Hung Chi Chang
- Program for In Vitro Fertilization, Reproductive Surgery and Infertility, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
122
|
Vejlsted M, Avery B, Schmidt M, Greve T, Alexopoulos N, Maddox-Hyttel P. Ultrastructural and Immunohistochemical Characterization of the Bovine Epiblast1. Biol Reprod 2005; 72:678-86. [PMID: 15537864 DOI: 10.1095/biolreprod.104.034348] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epiblast represents the final embryonic founder cell population with the potential for giving rise to all cell types of the adult body. The pluripotency of the epiblast is lost during the process of gastrulation. Large animal species have a lack of specific markers for pluripotency. The aim of the present study was to characterize the bovine epiblast cell population and to provide such markers. Bovine Day 12 and Day 14 embryos were processed for transmission-electron microscopy or immunohistochemistry. In Day 12 embryos, two cell populations of the epiblast were identified: one constituting a distinctive basal layer apposing the hypoblast, and one arranged inside or above the former layer, including cells apposing the Rauber layer. Immunohistochemically, staining for the octamer-binding transcription factor 4 (OCT4, also known as POU5F1), revealed a specific and exclusive staining of nuclei of the complete epiblast. Colocalization of vimentin and OCT4 was demonstrated. Only trophectodermal cells stained for alkaline phosphatase. Staining for the proliferation marker Ki-67 was localized to most nuclei throughout the epiblast. A continuous staining for zonula occludens-1 protein was found between cells of the trophectoderm and hypoblast but was not evident in the epiblast. A basement membrane, detected by staining for laminin, formed a "cup-like" structure in which the epiblast was located. The ventrolateral sides of the cup appeared to be incomplete. In conclusion, the bovine epiblast includes at least two cell subpopulations, and OCT4 was shown, to our knowledge for the first time, to be localized exclusively to epiblast cells in this species.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
123
|
Vejlsted M, Avery B, Gjorret JO, Maddox-Hyttel P. Effect of leukemia inhibitory factor (LIF) on in vitro produced bovine embryos and their outgrowth colonies. Mol Reprod Dev 2005; 70:445-54. [PMID: 15685635 DOI: 10.1002/mrd.20221] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vitro produced (IVP) bovine embryos were subjected to in vitro culture with or without 1000 U/ml human recombinant leukemia inhibitory factor (LIF) added to the culture medium from Days 5 to 8 post insemination (p.i.). Resulting blastocysts were subsequently plated intact on mouse feeder cells in a medium with or without LIF. Significantly more embryos reached the hatched blastocyst stage, and the number of blastocysts with excellent morphology was significantly higher, when LIF was omitted. At Day 8 p.i., total cell count (TCC) and inner cell mass (ICM) cell count was significantly higher in embryos cultured without LIF. In embryos cultured with LIF, cytoplasmic vesicles and lipid droplets were abundant and a decreased expression of both Oct4 and laminin could be observed. Initial hypoblast formation was revealed in almost 1/3 of the LIF-cultured blastocysts whereas this feature was evident in 2/3 of the blastocysts cultured in the absence of LIF. Overall, almost 60% of the blastocysts cultured without LIF formed outgrowth colonies (OCs) when plated on feeders, whereas this phenomenon was only observed in 30% of the blastocysts cultured in the presence of LIF. A tendency for retaining a tightly packed central growth of putative ICM-derived cells was observed, when attachment to the feeder layer was initiated close to the embryonic pole of the blastocyst. At Day 8 of outgrowth culture, approximately 20% of the colonies contained a central core of putative ICM-derived cells appearing large enough for mechanical isolation and further subculture. Immunohistochemical labeling for Oct4 revealed staining of both trophectodermal and ICM-derived cells. The presence of LIF in the outgrowth culture medium did not have any apparent effect on the plating efficiency or colony type. In conclusion, LIF had an adverse effect on in vitro embryonic development when added to the culture medium in the period from Days 5 to 8 p.i., whereas it had no apparent effect on the OCs subsequently formed from such embryos.
Collapse
Affiliation(s)
- Morten Vejlsted
- Department of Animal and Veterinary Basic Sciences, Anatomy and Cell Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
124
|
Gjørret JO, Maddox-Hyttel P. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev 2005; 17:113-24. [PMID: 15745636 DOI: 10.1071/rd04117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022] Open
Abstract
Current knowledge on the biology of mammalian embryonic stem cells (ESC) is stunningly sparse in light of their potential value in studies of development, functional genomics, generation of transgenic animals and human medicine. Despite many efforts to derive ESC from other mammalian species, ESC that retain their capacity for germ line transmission have only been verified in the mouse. However, the criterion of germ line transmission may not need to be fulfilled for exploitation of other abilities of these cells. Promising results with human ESC-like cells and adult stem cells have nourished great expectations for their potential use in regenerative medicine. However, such an application is far from reality and substantial research is required to elucidate aspects of the basic biology of pluripotent cells, as well as safety issues associated with the use of such cells in therapy. In this context, methods for the derivation, propagation and differentiation of ESC-like cultures from domestic animals would be highly desirable as biologically relevant models. Here, we review previously published efforts to establish bovine ESC-like cells and describe a procedure used in attempts to derive similar cells from bovine Day 12 embryos.
Collapse
Affiliation(s)
- Jakob O Gjørret
- Department of Animal and Veterinary Sciences, Royal Veterinary and Agricultural University, Denmark.
| | | |
Collapse
|
125
|
Ushizawa K, Takahashi T, Kaneyama K, Tokunaga T, Tsunoda Y, Hashizume K. Gene Expression Profiles of Bovine Trophoblastic Cell Line (BT-1) Analyzed by a Custom cDNA Microarray. J Reprod Dev 2005; 51:211-20. [PMID: 15613779 DOI: 10.1262/jrd.16072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression of bovine trophoblast cell line (BT-1) was analyzed with a custom utero-placenta complementary DNA microarray. Expression comparison with in vivo tissues of trophoblast derivation was performed to investigate characteristics of the expression in BT-1. BT-1 is a cell line established without feeder cells using trophoblast cells that are separated from bovine blastocysts. The bovine in vivo tissues of the trophoblast derivation were collected on day 17 through 56 of gestation. Of 1,773 genes, 933 exhibited an expression difference exceeding two-fold between BT-1 and in vivo tissues. These genes were analyzed by the k-means clustering method and were distributed into six clusters. Some genes, such as placental lactogen, interferon-tau and pregnancy-associated glycoproteins, all known as trophoblast-specific genes, were detected in BT-1 as well as in vivo tissues throughout the experiment period. These trophoblast-specific genes and octamer-binding transcription factor-4, known as a marker for undifferentiation of cells in mice, were detected by RT-PCR in both BT-1 and in vivo trophoblast tissues. The overall gene expression profile in BT-1 suggests that this cell line contains trophoblast-specific characteristics and is similar to trophoblast cells around the implantation period.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology and Technology Laboratory, Developmental Biology Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Kurosaka S, Eckardt S, McLaughlin KJ. Pluripotent Lineage Definition in Bovine Embryos by Oct4 Transcript Localization1. Biol Reprod 2004; 71:1578-82. [PMID: 15229144 DOI: 10.1095/biolreprod.104.029322] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The POU-domain transcription factor Pou5f1 (Oct4) is restricted to pluripotent embryonic cells and the germ line of the mouse and is required for the maintenance of pluripotency of cells within the inner cell mass of the mouse blastocyst. Despite highly conserved genomic organization and regulatory regions between the mouse Oct4 gene and its bovine orthologue, bovine Oct4 protein is not restricted to the inner cell mass of blastocyst-stage embryos, suggesting that Oct4 may not be a key regulator of pluripotency in the bovine. We analyze the temporal and spatial distribution of Oct4 transcript in bovine oocytes and preimplantation-stage embryos, and in contrast to protein distribution, we find strong conservation between bovine and mouse. Oct4 transcript is present at low levels in the bovine oocyte. Similar to mouse, bovine Oct4 transcription begins one to two cell cycles after zygotic genome activation, followed by a sharp increase in transcription subsequent to compaction. Oct4 transcript is ubiquitously present in all cells of embryos at the morula stage; however, in Day 7 bovine blastocysts, Oct4 signal is not visible in the trophectoderm by in situ hybridization, indicating that transcriptional downregulation of Oct4 on differentiation is similar to that observed in mouse and other mammals. These results indicate that in contrast to protein distribution, regulation of Oct4 transcription is conserved between mammalian species.
Collapse
Affiliation(s)
- Satoshi Kurosaka
- Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | | | | |
Collapse
|
127
|
Abstract
The first developmental lineage allocation during the generation of the mouse blastocyst is to outer trophoblast or to inner pluriblast (inner cell mass; ICM) cells. This allocation seems to be initiated at the 8-cell stage, when blastomeres polarise. Polarisation is followed by differentiative divisions at the subsequent two cleavage divisions to generate polar outer and non-polar inner 16- and 32-cells. The key events in polarisation are regulated post-translationally through a cell contact-mediated pathway, which imposes a heritable determinant-like organisation on the blastomere cortex. Two proteins in particular, E-cadherin and ezrin, are intimately involved in the generation and stabilisation of developmentally significant information. Transcriptional differences between lineages appear to follow and may coincide with the lineage commitment of cells.
Collapse
|
128
|
Roberts RM, Ezashi T, Das P. Trophoblast gene expression: transcription factors in the specification of early trophoblast. Reprod Biol Endocrinol 2004; 2:47. [PMID: 15236655 PMCID: PMC471566 DOI: 10.1186/1477-7827-2-47] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 07/05/2004] [Indexed: 01/06/2023] Open
Abstract
Azone of trophoblast specification is established when the embryo is a morula, presumably reflecting a unique combination of transcription factors in that zone of cells and the influence of various environmental cues and growth factors on them. A key first step in this process of specification is the down-regulation of Oct4, a transcription factor that acts as a negative regulator of trophoblast specification and of genes normally up-regulated as the trophectoderm first forms. The transcription factors believed to have a positive association with trophectoderm specification have been inferred primarily in two ways: by their expression patterns in embryos, ES cells and TS cells and by the consequences of gene disruption on embryonic development. Many of these transcription factors also control the expression of genes characteristically expressed in trophoblast but not in the epiblast, primitive endoderm and their derivatives. ES and TS cells from the mouse and other species are beginning to provide insights into the changes in gene expression that accompany lineage specification and the subsequent post-specification events that lead to functional trophoblast derivatives.
Collapse
Affiliation(s)
- R Michael Roberts
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Toshihiko Ezashi
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Padmalaya Das
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
129
|
Liu L, Czerwiec E, Keefe DL. Effect of ploidy and parental genome composition on expression of Oct-4 protein in mouse embryos. Gene Expr Patterns 2004; 4:433-41. [PMID: 15183310 DOI: 10.1016/j.modgep.2004.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 01/06/2004] [Accepted: 01/07/2004] [Indexed: 11/24/2022]
Abstract
The transcription factor Oct-4 is expressed in germ cells and also is considered as a marker for pluripotency of stem cells. We first examined dynamics of Oct-4 protein expression during preimplantation development using both Western blot analysis, and immunofluorescence staining. We show that intact Oct-4 protein is not detected in either ovulated mature oocytes, or in zygotes and 2-4-cell embryos, which are the only known totipotent cell types in mammals. This finding is unexpected, since Oct-4 has been proposed to play a role in the control of totipotency. The results suggest that Oct-4 is not indispensable for fertilization and early cleavage. Rather, expression of Oct-4 protein is first detected in the nuclei of 8-16 cell morula, increases in early blastocysts, and declines in late blastocysts, in which most Oct-4 protein is confined to the inner cell mass (ICM) region, consistent with previous findings. We further compared Oct-4 protein expression in diploid and tetraploid blastocysts derived from normal fertilization or parthenogenesis, as well as expression in diploid androgenetic blastocysts. Expression levels and localization of Oct-4 protein are similar in both diploid and tetraploid early blastocysts, regardless of whether blastocysts are derived from fertilization or parthenogenesis. Androgenetic diploid blastocysts also express similar levels of Oct-4. Late blastocysts generated by both fertilization and parthenogenesis show a similar pattern of Oct-4 expression, suggesting that paternal genome activation is not required for Oct-4 expression. Expression of Oct-4 protein does not differ between diploid and tetraploid embryos, indicating that tetraploidy does not influence Oct-4 expression. Thus, expression of Oct-4 protein is initiated at morula stage in preimplantation embryos and completely controlled by a mechanism activated in oocytes. Downregulation of Oct-4 expression coincides with differentiation of trophectoderm. Similar profiles of Oct-4 expression observed in embryos with different ploidy and genome composition, are suggestive of Oct-4 being necessary but not sufficient for developmental potency.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics/Gynecology, Women and Infants Hospital, Brown Medical School, Providence, RI 02905, USA.
| | | | | |
Collapse
|
130
|
Vigneault C, McGraw S, Massicotte L, Sirard MA. Transcription Factor Expression Patterns in Bovine In Vitro-Derived Embryos Prior to Maternal-Zygotic Transition1. Biol Reprod 2004; 70:1701-9. [PMID: 14960490 DOI: 10.1095/biolreprod.103.022970] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Maternal-zygotic transition (MZT) is a complex phenomenon characterized by the initiation of transcription in the embryo and the replacement of maternal mRNA with embryonic mRNA. In order for this to occur, transcriptional activation requires various factors and conditions. Our hypothesis is that the lack of transcription in the bovine pre-MZT embryo is due, in part, to an incomplete or dormant transcriptional apparatus. Therefore, in accordance with this hypothesis, functioning transcriptional mechanisms should appear in the eight-cell bovine embryo to facilitate embryonic transcription during the MZT. With this in mind, we examined the presence of selected transcription factors during preimplantation embryo development to establish how their transcript levels change in bovine pre-MZT embryos. To achieve this goal, real-time reverse transcription-polymerase chain reaction was used to quantify the mRNA level of several different transcription factors (YY1, HMGA1, RY-1, P300, CREB, YAP65, HMGN1, HMGB1, NFAR, OCT-4, TEAD2, ATF-1, HMGN2, MSY2, and TBP) in germinal vesicle (GV) and metaphase II (MII) bovine oocytes and in two-, four-, eight-cell, and blastocyst stage embryos produced in vitro. Our results demonstrate that all genes examined can be grouped into five different categories according to their mRNA expression patterns at the developmental stages observed. To summarize, all transcription factors studied were present in pre-MZT embryos and the expression pattern of many of them suggest a potential role in MZT.
Collapse
Affiliation(s)
- Christian Vigneault
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval,Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
131
|
Cauffman G, Van de Velde H, Liebaers I, Van Steirteghem A. Oct-4 mRNA and protein expression during human preimplantation development. ACTA ACUST UNITED AC 2004; 11:173-81. [PMID: 15695770 DOI: 10.1093/molehr/gah155] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factor OCT-4 is regarded as a critical factor in controlling mammalian early embryonic development because of its role in toti-/pluripotency. In human preimplantation embryos, OCT-4 studies are limited to RNA analysis of abnormally developing embryos. This study thoroughly investigated the expression pattern of OCT-4 throughout the human preimplantation development. Expression was examined by single-cell RT-PCR or indirect immunocytochemistry in 36 single oocytes of various maturity and 112 normally developing preimplantation embryos at the level of single blastomeres, morulas, blastocysts, or inner cell mass (ICM) and trophectoderm (TE) samples. Oocytes and cleavage stage embryos revealed a variable OCT-4 expression pattern, concomitant with a pure cytoplasmic localization of the protein. During compaction, the variability in expression faded away indicating embryonic OCT-4 expression and the protein appeared in the nucleus implying biological activity. In blastocysts, OCT-4 transcripts and proteins were present in the ICM and the TE. At protein level, blastocysts displayed different spatial expression patterns within a cell for the splice variants of OCT-4, which may endow them with different functional properties. As OCT-4 transcripts were also found in various differentiated cells, the presence of OCT-4 transcripts or proteins may not be sufficient for identifying undifferentiated cell lines in humans. Further, we suggest to examine the localization of OCT-4 proteins within a cell rather than to look for the presence and/or amount of transcripts.
Collapse
Affiliation(s)
- G Cauffman
- Research Centre Genetics and Reproduction, University Hospital and Medical School, Brussels Free University, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
132
|
Stewart R, Christie VB, Przyborski SA. Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem Cells 2004; 21:248-56. [PMID: 12743319 DOI: 10.1634/stemcells.21-3-248] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are few reliable cell systems available to study the process of human neural development. Embryonal carcinoma (EC) cells are pluripotent stem cells derived from teratocarcinomas and offer a robust culture system to research cell differentiation in a manner pertinent to embryogenesis. Here, we describe the recent development of a series of culture procedures that together can be used to induce the differentiation of human EC stem cells, resulting in the formation of either pure populations of differentiated neurons, populations of differentiated astrocytes, or populations of immature neuronal cell types. Cell-type-specific markers were used to examine the induction of EC stem cell differentiation by retinoic acid. In direct response to manipulation of the culture environment, the expression of cell type markers correlated with the differentiation and appearance of distinct neural cell types, including neurons and astrocytes. These experiments demonstrate that cultured human EC stem cells provide a robust model cell system capable of reproducibly forming neural subtypes for research purposes.
Collapse
Affiliation(s)
- Rebecca Stewart
- School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | | | | |
Collapse
|
133
|
Przyborski SA, Smith S, Wood A. Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells 2004; 21:459-71. [PMID: 12832699 DOI: 10.1634/stemcells.21-4-459] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pluripotent stem cell lines can be induced to differentiate into a range of somatic cell types in response to various stimuli. Such cell-based systems provide powerful tools for the investigation of molecules that modulate cellular development. For instance, the formation of the nervous system is a highly regulated process, controlled by molecular pathways that determine the expression of specific proteins involved in cell differentiation. To begin to decipher this mechanism in humans, we used oligonucleotide microarrays to profile the complex patterns of gene expression during the differentiation of neurons from pluripotent human stem cells. Samples of mRNA were isolated from cultured NTERA2 human embryonal carcinoma stem cells and their retinoic-acid-induced derivatives and were prepared for hybridization on custom microarrays designed to detect the expression of genes primarily associated with the neural lineage. In response to retinoic acid, human NTERA2 cells coordinately regulate the expression of large numbers of neural transcripts simultaneously. Transcriptional profiles of many individual genes aligned closely with expression patterns previously recorded by developing neural cells in vitro and in vivo, demonstrating that cultured human pluripotent stem cells appear to form neurons in a conserved manner. These experiments have produced many new expression data concerning neuronal differentiation from human stem cells in vitro. Of particular interest was the regulated expression of Pax6 and Nkx6.1 mRNA and the absence of Pax7 transcription, indicating that neurons derived from NTERA2 pluripotent stem cells are characteristic of neuroectodermal cells of the ventral phenotype.
Collapse
|
134
|
Mitalipov SM, Kuo HC, Hennebold JD, Wolf DP. Oct-4 expression in pluripotent cells of the rhesus monkey. Biol Reprod 2003; 69:1785-92. [PMID: 12890723 DOI: 10.1095/biolreprod.103.019455] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The POU (Pit-Oct-Unc)-domain transcription factor, Oct-4, has become a useful marker of pluripotency in the mouse. It is found exclusively in mouse preimplantation-stage embryos after embryonic genome activation and is a characteristic of mouse embryonic stem (ES) cells, and its absence in knockout mice precludes inner cell mass (ICM) formation in blastocysts. Expression of Oct-4 has also been associated with pluripotency in primate cells. Here, we undertook a systematic study of Oct-4 expression in rhesus macaque preimplantation embryos produced by intracytoplasmic sperm injection and in ES cells before and after exposure to differentiating conditions in vitro. We also evaluated Oct-4 expression as a means of monitoring the extent of reprogramming following somatic cell nuclear transfer. Oct-4 was detected by reverse transcription-polymerase chain reaction and immunocytochemistry with a monoclonal antibody. Monkey pronuclear-stage zygotes and cleaving embryos up to the 8-cell stage showed no detectable Oct-4. Nuclear staining for Oct-4 first became obvious at the 16-cell stage, and a strong signal was observed in morula and compact morula stages. Both ICM and trophectodermal cell nuclei of monkey early blastocysts were positive for Oct-4. However, the signal was diminished in trophectodermal cells of expanded blastocysts, whereas expression remained high in ICM nuclei. Similar to the mouse, hatched monkey blastocysts showed strong Oct-4 expression in the ICM, with no detectable signal in the trophectoderm. Undifferentiated monkey ES cells derived from the ICM of in vitro-produced blastocysts expressed Oct-4, consistent with their pluripotent nature, whereas ES cell differentiation was associated with signal loss. Therefore, Oct-4 expression in the monkey, as in the mouse, provides a useful marker for pluripotency after activation of the embryonic genome. Finally, the observed lack or abnormal expression of Oct-4 in monkey nuclear transfer embryos suggests inadequate nuclear reprogramming.
Collapse
|
135
|
Brevini TAL, Lonergan P, Cillo F, Francisci C, Favetta LA, Fair T, Gandolfi F. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol Reprod Dev 2002; 63:510-7. [PMID: 12412054 DOI: 10.1002/mrd.10191] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we analyzed the pattern of polyadenylation changes that takes place between the resumption of meiosis and the first cleavage of bovine oocytes. Moreover, we investigated whether the delayed occurrence of the first cleavage division, which characterizes embryos of low developmental competence, is accompanied by an altered polyadenylation pattern of individual transcripts. We determined the polyadenylation status of a group of genes that characterize physiological processes, involved in early differentiation (Oct-4), compaction, and cavitation (beta-actin, plakophilin, connexin-32, connexin-43), energy metabolism (glucose transporter type 1, pyruvate dehydrogenase phosphatase), RNA processing (RNA poly(A) polymerase), and stress (heat shock protein 70). RNA was isolated from pools of 20 oocytes or embryos at the germinal vesicle (GV) stage, at the end of in vitro maturation, at the end of in vitro fertilization, and at the time of the first cleavage. Cleavage was assessed 27, 30, 36, 42 hr post insemination (hpi), and at the latter time the remaining uncleaved oocytes were retained as a group. Between oocyte isolation and first cleavage at 27 hpi (best quality embryos), the poly(A) tail of individual transcripts followed four patterns: no changes (beta-actin, PDP); gradual reduction (Cx-43, Oct-4, Plako); gradual elongation (Cx-32, TPA); reduction followed by elongation (PAP, HSP-70, Glut-1). If the interval between insemination and first cleavage was longer than 27 hpi (progressively lower quality embryos) further changes of polyadenylation were observed, which differed for each gene considered. These data indicated that specific changes in polyadenylation contribute to the modulation of gene expression in bovine embryos at this stage of development. Defective developmental competence is accompanied by abnormal polyadenylation levels of specific maternal mRNAs with synchrony between polyadenylation and cleavage emerging as an apparently important factor.
Collapse
Affiliation(s)
- T A L Brevini
- Department of Anatomy of Domestic Animals, University of Milan, via Celoria, 10-20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
136
|
Ponsuksili S, Wimmers K, Adjaye J, Schellander K. A source for expression profiling in single preimplantation bovine embryos. Theriogenology 2002; 57:1611-24. [PMID: 12035973 DOI: 10.1016/s0093-691x(02)00661-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our knowledge of the genes active during normal preimplantation development in cattle is limited, despite the importance for further improvement of fertility and applicability of biotechniques, like in vitro production and embryo transfer. We report on the construction of cDNA libraries as a source for expression profiling in oocytes and single preimplantation cattle embryos. cDNAs were prepared from two unfertilized oocytes, single two-cell, four-cell and eight-cell, morula, and blastocyst stage embryos, respectively. The oocytes, eight-cell, morula, and blastocyst stage embryo-derived cDNAs were ligated to a lambda-based expression vector and these have complexities of 8 x 10(5), 5 x 10(5), 1 x 10(6) and 2 x 10(6) independent clones, respectively. A total of 48 clones were picked and sequenced, 62.5% (30/48) of the sequence were homologous to known transcripts from human and mouse, 18.75% (9/48) to expressed sequence tags (ESTs) of human and mouse origin. Novel sequences were detected at a frequency of 14.58% (7/48). PCR analyses of the embryonic libraries for specific genes revealed transcripts for genes including housekeeping genes (GAPDH and beta-actin), developmental genes (OCT-4, IGF-I receptor and homeodomain sequences) and genes coding for metabolic and protective enzymes (manganese superoxide dismutase, glutamine synthetase, flavin-containing mono-oxygenase, glutamate dehydrogenase, alpha-2-macroglobulin). These cDNA libraries are a valuable resource for the isolation of clones representing genes active at these early developmental stages. The ability to construct cDNA expression libraries from only a few cells will allow gene expression analyses from embryo biopsies and embryos derived by nuclear transfer procedures.
Collapse
|
137
|
Abstract
Embryonal carcinoma cells are pluripotent stem cells derived from germ cell tumors and can be used to study cell differentiation in vitro. This report describes an approach designed to isolate pluripotent stem cells from primary/parent stock cultures of explanted tumor material. Cells expressing the pluripotent stem cell marker, SSEA-3, were isolated from heterogeneous stock cultures of the human teratoma line, TERA2, using immunomagnetic isolation. Single cell selection was performed on isolated SSEA-3+ cells and clonal lines were established. Each line was ultimately grown as a homogeneous monolayer, independent of feeder cells and expressed high levels of markers for pluripotent stem cells. In response to retinoic acid, clone TERA2.cl.SP-12 cells displayed enhanced neural differentiation compared to previously isolated TERA2 sublines and formed both neurons and glia. Deriving human pluripotent stem cell lines that differentiate into a range of cell types will provide useful tools to understand the molecular mechanisms controlling cell differentiation in a manner pertinent to human embryonic development.
Collapse
Affiliation(s)
- S A Przyborski
- Department Biological Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
138
|
Abstract
The Oct-4 POU transcription factor is expressed in mouse totipotent embryonic stem and germ cells. Differentiation of totipotent cells to somatic lineages occurs at the blastocyst stage and during gastrulation, simultaneously with Oct-4 downregulation. Stem cell lines derived from the inner cell mass and the epiblast of the mouse embryo express Oct-4 only if undifferentiated. When embryonic stem cells are triggered to differentiate, Oct-4 is downregulated thus providing a model for the early events linked to somatic differentiation in the developing embryo. In vivo mutagenesis has shown that loss of Oct-4 at the blastocyst stage causes the cells of the inner cell mass to differentiate into trophectoderm cells. Recent experiments indicate that an Oct-4 expression level of roughly 50%-150% of the endogenous amount in embryonic stem cells is permissive for self-renewal and maintenance of totipotency. However, upregulation above these levels causes stem cells to express genes involved in the lineage differentiation of primitive endoderm. These novel advances along with latest findings on Oct-4-associated factors, target genes, and dimerization ability, provide new insights into the understanding of the early steps regulating mammalian embryogenesis.
Collapse
Affiliation(s)
- M Pesce
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata, Rome, Italy
| | | |
Collapse
|
139
|
Ezashi T, Ghosh D, Roberts RM. Repression of Ets-2-induced transactivation of the tau interferon promoter by Oct-4. Mol Cell Biol 2001; 21:7883-91. [PMID: 11689681 PMCID: PMC99954 DOI: 10.1128/mcb.21.23.7883-7891.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oct-4 is a POU family transcription factor associated with potentially totipotent cells. Genes expressed in the trophectoderm but not in embryos prior to blastocyst formation may be targets for silencing by Oct-4. Here, we have tested this hypothesis with the tau interferon genes (IFNT genes), which are expressed exclusively in the trophectoderm of bovine embryos. IFNT promoters contain an Ets-2 enhancer, located at -79 to -70, and are up-regulated about 20-fold by the overexpression of Ets-2 in human JAr choriocarcinoma cells, which are permissive for IFNT expression. This enhancement was reversed in a dose-dependent manner by coexpression of Oct-4 but not either Oct-1 or Oct-2. When cells were transfected with truncated bovine IFNT promoters designed to eliminate potential octamer sites sequentially, luciferase reporter expression from each construct was still silenced by Oct-4. Full repression required both the N-terminal and POU domains of Oct-4, but neither domain used alone was an effective silencer. Oct-4 and Ets-2 formed a complex in vitro in the absence of DNA through binding of the POU domain of Oct-4 to a site located between the "pointed" and DNA binding domains of Ets-2. The two transcription factors were also coimmunoprecipitated after being expressed together in JAr cells. Oct-4, therefore, silences IFNT promoters by quenching Ets-2 transactivation. The POU domain most probably binds to Ets-2 directly, while the N-terminal domain inhibits transcription. These findings provide further evidence that the developmental switch to the trophectoderm is accompanied by the loss of Oct-4 silencing of key genes.
Collapse
Affiliation(s)
- T Ezashi
- Department of Animal Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
140
|
Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19:1134-40. [PMID: 11731782 DOI: 10.1038/nbt1201-1134] [Citation(s) in RCA: 756] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages--astrocytes, oligodendrocytes, and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution, and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- B E Reubinoff
- The Goldyne Savad Institute of Gene Therapy, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Type 1 diabetes generally results from autoimmune destruction of pancreatic islet beta-cells, with consequent absolute insulin deficiency and complete dependence on exogenous insulin treatment. The relative paucity of donations for pancreas or islet allograft transplantation has prompted the search for alternative sources for beta-cell replacement therapy. In the current study, we used pluripotent undifferentiated human embryonic stem (hES) cells as a model system for lineage-specific differentiation. Using hES cells in both adherent and suspension culture conditions, we observed spontaneous in vitro differentiation that included the generation of cells with characteristics of insulin-producing beta-cells. Immunohistochemical staining for insulin was observed in a surprisingly high percentage of cells. Secretion of insulin into the medium was observed in a differentiation-dependent manner and was associated with the appearance of other beta-cell markers. These findings validate the hES cell model system as a potential basis for enrichment of human beta-cells or their precursors, as a possible future source for cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- S Assady
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, and. Rambam Medical Center, Bat-Galim, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
Embryonic stem (ES) cells are pluripotent cells directly derived from early stage embryos that retain the ability to differentiate into all cell types. This unique feature is the basis of various applications of ES cell technology such as in vitro models of mammalian development, germline transgenesis to make knockout mice, and a generic source for cell therapy in regenerative medicine. To achieve success in these applications, the pluripotency of ES cells has to be kept stable during long-term culture in vitro, leading to the necessity of determining the molecular basis for maintaining ES self-renewal. This paper summarizes the recent progress in this area, focusing mainly on the LIF signaling pathway and the transcription factor Oct-3/4. Although it is still unclear how these components works together, a model is presented here that provides a plan to solve this problem.
Collapse
Affiliation(s)
- H Niwa
- Stem Cell Regulation Research, Area of Molecular Therapeutics, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
143
|
Abstract
Several morphological features of early development differ between marsupials and eutherians. These include early overt conceptus polarity, the mode of segregation of pluriblast and trophoblast lineages, and the superficial position of the pluriblast within the unilaminar blastocyst epithelium. Knowledge of the molecular mechanisms of early development is lacking in marsupials. We have cloned from the brushtail possum, Trichosurus vulpecula, the partial cDNA of a marsupial homologue of mammalian POU5F1, which encodes octamer-binding transcription factor-4 (Oct-4). The 579 bp cloned coding sequence of possum POU5F1 (tvPOU5F1) shares 74, 78, and 79% identity with murine Pou5f1, human POU5F1, and bovine bPOU5F1, respectively, at the protein level. The mRNA for tvPOU5F1 was detected by in situ hybridization in oogonia and in oocytes of growing follicles, but not in early meiotic oocytes. In a gastrulation-stage conceptus, high tvPOU5F1 expression was found in the embryonic ectoderm, with low or undetectable expression in other cell types. These results are comparable with those of murine and bovine expression studies, and suggest that the putative role of POU5F1 in totipotent and pluripotent cells is conserved among mammals.
Collapse
Affiliation(s)
- S Frankenberg
- Department of Zoology, La Trobe University, Victoria, Australia
| | | | | |
Collapse
|
144
|
Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 2000; 63:1698-705. [PMID: 11090438 DOI: 10.1095/biolreprod63.6.1698] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
POU transcription factors are involved in transcriptional regulation during early embryonic development and cell differentiation. Oct-4, a member of this family, has been shown to be under strict regulation during murine development. The expression of Oct-4 correlates with the undifferentiated cell phenotype of the mouse preimplantation embryo. In this study, expression of a gene construct consisting of selected parts of the region upstream from the murine Oct-4 gene as promoter/enhancer, enhanced green fluorescent protein (EGFP) as reporter and the five exons of the murine Oct-4 gene (GOF18-delta PE EGFP) was evaluated in murine, porcine, and bovine preimplantation embryos. For comparison, expression of the endogenous Oct-4 gene was also analyzed in all three species by immunocytochemistry. The transgene construct was microinjected into zygotes cultured in vitro to various developmental stages. The EGFP fluorescence was visualized in developing embryos by excitation with blue light at different days following microinjection and showed similar expression patterns in all three species. Most embryos displayed a mosaic pattern of transgene expression. The EGFP fluorescence was not restricted to the inner cell mass (ICM) but was also seen in trophoblastic cells. An affinity-purified polyclonal antibody specific to Oct-4 was used for immunocytochemical analysis of in vivo- and in vitro-derived bovine and porcine blastocysts and also of in vivo-derived murine blastocysts. In the in vivo-derived murine embryos, Oct-4 protein was detectable in the ICM but not the trophectoderm, whereas in porcine and bovine blastocysts, derived in vivo or in vitro, Oct-4 protein was detected in both the ICM and the trophectoderm. Thus, in the two large animal species, Oct-4 expression from the endogenous gene was clearly not restricted to the pluripotent cells of the early embryo. These results show that Oct-4 regulation differs between these species and that the presence of Oct-4 protein may not be sufficient for selection of undifferentiated cell lines in domestic animals.
Collapse
Affiliation(s)
- N Kirchhof
- Department of Biotechnology, Institute for Animal Science and Animal Behaviour (FAL), Mariensee, Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
145
|
Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 2000; 63:1034-40. [PMID: 10993824 DOI: 10.1095/biolreprod63.4.1034] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low efficiency of animal production using somatic cell nuclear transfer procedures is considered to be the result of an incomplete reprogramming of the donor somatic cell nucleus, which leads to a lack of, or abnormal expression of developmentally important genes. However, our current understanding of the process of somatic cell nuclear reprogramming and its effect on gene expression is limited. In this study, we compare the transcription patterns of six developmentally important genes, Oct4, IL6, FGF2, FGF4, FGFr2, and gp130 in single in vitro fertilized (IVF) and nuclear transfer embryos reconstructed using granulosa cells for the donor nuclei. Similar patterns of transcription were detected for Oct4, FGF2, and gp130 in IVF and nuclear transfer embryos during the preimplantation stages of development. However, a number of morula- and blastocyst-stage embryos derived from nuclear transfer procedures showed abnormal transcription of IL6, FGF4, and FGFr2. Previous studies have demonstrated that these three genes play an important role in implantation, early postimplantation development, or both in the mouse. Therefore, the aberrant transcription patterns detected in nuclear transfer embryos may lead to a reduction in embryo viability.
Collapse
Affiliation(s)
- R Daniels
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
146
|
Abstract
The transcription factor Oct-4 is expressed in totipotent embryonic cells and germ cells. As totipotent cells differentiate to form somatic and/or extraembryonic tissues, the Oct-4 gene is downregulated. Primordial germ cells are the only cells in which Oct-4 expression is maintained after postgastrulation. Recent in vivo ablation of the Oct-4 function has shown that the absence of this transcription factor causes early embryonic lethality due to trophectodermal differentiation of cells which normally would give rise to the inner cell mass of the blastocyst. This result strongly suggests that Oct-4 is necessary for the maintenance of the totipotent phenotype of embryonic cells and that this factor likely plays a role as a determinant of the totipotency of germ cells by preventing their differentiation to a somatic cell phenotype during gastrulation. The involvement of Oct-4 in the biology of totipotent and germ cells is here discussed in view of new understanding about Oct-4 function.
Collapse
Affiliation(s)
- M Pesce
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Università di Roma "Tor Vergata," sezione di Istologia ed Embriologia, Rome, Italy
| | | |
Collapse
|
147
|
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18:399-404. [PMID: 10748519 DOI: 10.1038/74447] [Citation(s) in RCA: 1869] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines give rise to teratomas containing derivatives of all three embryonic germ layers. Both cell lines differentiate in vitro into extraembryonic and somatic cell lineages. Neural progenitor cells may be isolated from differentiating ES cell cultures and induced to form mature neurons. Embryonic stem cells provide a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.
Collapse
Affiliation(s)
- B E Reubinoff
- Monash Institute of Reproduction & Development, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
148
|
Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 2000; 53:21-34. [PMID: 10735059 DOI: 10.1016/s0093-691x(99)00237-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Recent advances in molecular technology and in vitro production of bovine embryos have enabled studies of gene transcription in preimplantation embryos. On the basis of knowledge of the sequence of the selected gene, various modifications of Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) technology have been employed. Several lines of evidence in mouse and cattle indicate that expression patterns of genes from in vitro-produced embryos are not necessarily representative of those of in vivo embryos. An important gene that has been found to be expressed by in vivo-derived bovine blastocysts, but not in their in vitro-produced counterparts, is the Connexin43 gene that is crucial for maintenance of compaction. The bovine leukemia inhibitory factor (bLIF) and LIF-receptor-beta (LR-beta) genes were expressed by in vitro-produced embryos, but not in their in vivo counterparts. The heat shock protein gene 70.1 (Hsp 70.1) was upregulated by blastocysts produced in vitro compared to in vivo embryos, while the glucose transporter-1 mRNA (Glut-1) was downregulated by morulae produced in vitro as compared to in vivo-derived morulae. Furthermore, mRNA expression levels of a set of "marker genes" were shown to be affected by the presence or absence of serum in the culture medium. Most embryos grown under serum-free conditions had higher mRNA abundances than those cultured in serum-enriched medium. It is hypothesized that persistent alterations of the normal gene expression patterns may be responsible for the large offspring syndrome that is observed in approximately one third of the calves resulting from the transfer of in vitro-produced embryos. A primary candidate for such deviations may be an altered methylation pattern that can either lead to silencing or induction of a specific gene. Messenger RNA phenotyping of genes essential in early development provides a useful tool to assess the normality of the produced embryos and a tool to optimize in vitro culture conditions for bovine embryos.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Neustadt, Germany
| | | |
Collapse
|