101
|
|
102
|
Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014; 66:24-35. [PMID: 23747930 PMCID: PMC3852196 DOI: 10.1016/j.freeradbiomed.2013.05.045] [Citation(s) in RCA: 487] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 02/07/2023]
Abstract
We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of nonradical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of "nucleophilic tone," by a mechanism that can be called "para-hormesis," provides a means for regulating physiological nontoxic concentrations of the nonradical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health.
Collapse
Affiliation(s)
- Henry J Forman
- University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Andrus Gerontology Center of the Davis School of Gerontology, University of Southern, California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Andrus Gerontology Center of the Davis School of Gerontology, University of Southern, California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, I-35121, Padova, Italy.
| |
Collapse
|
103
|
Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M, Tardito S, Gatti R, Uggeri J, Bettuzzi S. Polyphenon E(R), a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 2013; 35:828-39. [PMID: 24343359 DOI: 10.1093/carcin/bgt481] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increasing doses of Polyphenon E®, a standardized green tea extract, were given to PNT1a and PC3 prostate epithelial cells mimicking initial and advanced stages of prostate cancer (PCa), respectively. Cell death occurred in both cell lines, with PNT1a being more sensitive [half-maximal inhibitory concentration (IC50) = 35 μg/ml] than PC3 (IC50 = 145 μg/ml) to Polyphenon E®. Cell cycle arrest occurred at G0/G1 checkpoint for PNT1a, and G2/M for PC3 cells. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) occurred in both cell lines, with each exhibiting different timing in response to Polyphenon E®. Autophagy was transiently activated in PNT1a cells within 12 h after treatment as a survival response to overcome ERS; then activation of caspases and cleavage of poly (ADP ribose) polymerase 1 occurred, committing cells to anoikis death. Polyphenon E® induced severe ERS in PC3 cells, causing a dramatic enlargement of the ER; persistent activation of UPR produced strong upregulation of GADD153/CHOP, a key protein of ERS-mediated cell death. Thereafter, GADD153/CHOP activated Puma, a BH3-only protein, committing cells to necroptosis, a programmed caspase-independent mechanism of cell death. Our results provide a foundation for the identification of novel targets and strategies aimed at sensitizing apoptosis-resistant cells to alternative death pathways.
Collapse
Affiliation(s)
- Federica Rizzi
- Department of Biomedicine, Biotechnology and Translational Research and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lee IC, Kim SH, Baek HS, Moon C, Kang SS, Kim SH, Kim YB, Shin IS, Kim JC. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food Chem Toxicol 2013; 63:174-85. [PMID: 24246655 DOI: 10.1016/j.fct.2013.11.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
This study investigated the potential effect of diallyl disulfide (DADS) against carbon tetrachloride (CCl4)-induced oxidative hepatic damage and inflammatory response in rat liver. DADS at doses of 50 and 100 mg/kg/day was administered orally once daily for 5 days, prior to CCl4 administration. Pretreatment with DADS attenuated CCl4-induced elevated serum transaminase activities and histopathological alterations in liver. It prevented the hepatocellular apoptotic changes with induction of Bcl-2-associated X (Bax), cytochrome c, and caspase-3 caused by CCl4. An increase in the nuclear translocation of nuclear factor-kappaB (NF-κB) and phosphorylation of I kappaB alpha (IκBα) was observed in the livers of CCl4-treated rats that coincided with induction of inflammatory mediators or cytokines. In contrast, DADS inhibited NF-κB translocation and IκBα phosphorylation, and that subsequently decreased inflammatory mediators. Furthermore, DADS prevented CCl4-induced depletion of cytosolic nuclear factor E2-related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2, which, in turn, up-regulated phase II/antioxidant enzyme activities. Taken together, these results demonstrate that DADS increases the expression of phase II/antioxidant enzymes and simultaneously decreases the expression of inflammatory mediators in CCl4-induced liver injury. These findings indicate that DADS induces antioxidant defense mechanism by activating Nrf2 pathway and reduces inflammatory response by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- In-Chul Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Hwan Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyung-Seon Baek
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seong-Soo Kang
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - In-Sik Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 363-883, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
105
|
Kim HL, Lee JH, Kwon BJ, Lee MH, Han DW, Hyon SH, Park JC. Promotion of Full-Thickness Wound Healing Using Epigallocatechin-3-O-Gallate/Poly (Lactic-Co-Glycolic Acid) Membrane as Temporary Wound Dressing. Artif Organs 2013; 38:411-7. [DOI: 10.1111/aor.12190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hye-Lee Kim
- Department of Medical Engineering; Yonsei University College of Medicine; Seoul Republic of Korea
- Brain Korea 21 Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Jeong-Hyun Lee
- Department of Medical Engineering; Yonsei University College of Medicine; Seoul Republic of Korea
- Brain Korea 21 Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Byeong Ju Kwon
- Department of Medical Engineering; Yonsei University College of Medicine; Seoul Republic of Korea
- Brain Korea 21 Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Mi Hee Lee
- Department of Medical Engineering; Yonsei University College of Medicine; Seoul Republic of Korea
| | - Dong-Wook Han
- Department of Nanomedical Engineering; College of Nanoscience & Nanotechnology; Pusan National University; Busan Republic of Korea
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science; Kyoto Institute of Technology; Kyoto Japan
| | - Jong-Chul Park
- Department of Medical Engineering; Yonsei University College of Medicine; Seoul Republic of Korea
- Brain Korea 21 Project for Medical Science; Yonsei University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
106
|
Tapias V, Cannon JR, Greenamyre JT. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging 2013; 35:1162-76. [PMID: 24315037 DOI: 10.1016/j.neurobiolaging.2013.10.077] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/07/2013] [Accepted: 10/12/2013] [Indexed: 12/28/2022]
Abstract
Numerous factors contribute to the death of substantia nigra (SN) dopamine (DA) neurons in Parkinson's disease (PD). Compelling evidence implicates mitochondrial deficiency, oxidative stress, and inflammation as important pathogenic factors in PD. Chronic exposure of rats to rotenone causes a PD-like syndrome, in part by causing oxidative damage and inflammation in substantia nigra. Pomegranate juice (PJ) has the greatest composite antioxidant potency index among beverages, and it has been demonstrated to have protective effects in a transgenic model of Alzheimer's disease. The present study was designed to examine the potential neuroprotective effects of PJ in the rotenone model of PD. Oral administration of PJ did not mitigate or prevent experimental PD but instead increased nigrostriatal terminal depletion, DA neuron loss, the inflammatory response, and caspase activation, thereby heightening neurodegeneration. The mechanisms underlying this effect are uncertain, but the finding that PJ per se enhanced nitrotyrosine, inducible nitric oxide synthase, and activated caspase-3 expression in nigral DA neurons is consistent with its potential pro-oxidant activity.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
107
|
Khan HY, Zubair H, Faisal M, Ullah MF, Farhan M, Sarkar FH, Ahmad A, Hadi SM. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol Nutr Food Res 2013; 58:437-46. [PMID: 24123728 DOI: 10.1002/mnfr.201300417] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022]
Abstract
SCOPE Anticancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as antioxidants, but can be prooxidants in the presence of copper ions. We earlier proposed a mechanism for such activity of polyphenols and now we provide data in multiple cancer cell lines in support of our hypothesis. METHODS AND RESULTS Through multiple assays, we show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition. CONCLUSION Since the concentration of copper is significantly elevated in cancer cells, our results strengthen the idea that an important anticancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this prooxidant chemopreventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.
Collapse
Affiliation(s)
- Husain Yar Khan
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Varatharajan R, Sattar MZA, Chung I, Abdulla MA, Kassim NM, Abdullah NA. Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: a duration-dependent outcome. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:242. [PMID: 24074026 PMCID: PMC3829664 DOI: 10.1186/1472-6882-13-242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Background Catechins-rich oil palm (Elaeis guineensis) leaves extract (OPLE) is known to have antioxidant activity. Several polyphenolic compounds reported as antioxidants such as quercetin, catechins and gallic acid have been highlighted to have pro-oxidant activity at high doses. Therefore, the present study was conducted to investigate the antioxidant and pro-oxidant effects of chronically administering high dose of OPLE (1000 mg kg-1) in an animal model of diabetic nephropathy (DN). Methods Animal body weight, indexes of glycaemia, renal function and morphology were assessed in diabetic animals with and without OPLE (1000 mg kg-1) for 4 and 12 weeks respectively. Oxidative stress was quantified by measuring levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), lipid peroxides (LPO) and reduced glutathione (GSH). Transforming growth factor-beta1 (TGF-β1), a key mediator of extracellular matrix accumulation, was analysed in plasma. The mechanisms of OPLE action were evaluated by assessing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (p22phox and p67phox) expression. Results Oral administration with high dose of catechins-rich OPLE (1000 mg kg-1) to STZ-induced diabetic rats for 4 weeks attenuated renal dysfunction (hyperfiltration, proteinuria) and development of glomerulosclerosis and tubulointerstitial fibrosis, features that are associated with DN. Suppression of increases in oxidative stress markers (8-OHdG, LPO) and the fibrotic cytokine, TGF-β1 was observed. OPLE also reduced renal expression of NADPH oxidase subunits p22phox and p67phox. In contrast and surprisingly, identical dose of OPLE when administered to diabetic animals for 12 weeks caused worsening of renal dysfunction, histopathology in addition to further elevation of oxidative stress marker (LPO) and TGF-β1. These unfavourable effects of prolonged treatment with 1000 mg kg-1 OPLE were accompanied by increase expression of one of the NADPH oxidase subunits, p22phox. Conclusion Our study indicates that chronic administration of 1000 mg kg-1 OPLE exerts both antioxidant and pro-oxidant effects in DN depending on the duration of treatment. The present study also reveals that the antioxidant/pro-oxidant effects of OPLE are in part, due to modulation of NADPH activity.
Collapse
|
109
|
Tuominen A, Sundman T. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:424-35. [PMID: 23798544 DOI: 10.1002/pca.2456] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 05/08/2023]
Abstract
INTRODUCTION Hydrolysable tannins occur in plants that are used for food or medicine by humans or herbivores. Basic conditions can alter the structures of tannins, that is, the oxidation of phenolic groups can lead to the formation of toxic quinones. Previously, these labile quinones and other oxidation products have been studied with colorimetric or electron paramagnetic resonance methods, which give limited information about products. OBJECTIVE To study the stability and oxidation products of hydrolysable tannins in basic conditions using HPLC with a diode-array detector (DAD) combined with electrospray ionisation (ESI) and quadrupole time-of-flight (QTOF) MS. METHODS Three galloyl glucoses, four galloyl derivatives with different polyols and three ellagitannins were purified from plants. The incubation reactions of tannins were monitored by HPLC/DAD at five pH values and in reduced oxygen conditions. Reaction products were identified based on UV spectra and mass spectral fragmentation obtained with the high-resolution HPLC/DAD-ESI/QTOF/MS. The use of a base-resistant HPLC column enabled injections without the sample pre-treatment and thus detection of short-lived products. RESULTS Hydrolysable tannins were unstable in basic conditions and half-lives were mostly less than 10 min at pH 10. Degradation rates were faster at pH 11 but slower at milder pH. The HPLC analyses revealed that various products were formed and identified to be the result of hydrolysis, deprotonation and oxidation. Interestingly, the main hydrolysis product was ellagic acid; it was also formed from galloyl glucoses that do not contain oxidatively coupled galloyl groups in their initial structures. CONCLUSION HPLD/DAD-ESI/QTOF/MS was an efficient method for the identification of polyphenol oxidation products and showed how different pH conditions determine the fate of hydrolysable tannins.
Collapse
Affiliation(s)
- Anu Tuominen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, FI-20014 University of Turku, Finland
| | | |
Collapse
|
110
|
Yagi H, Tan J, Tuan RS. Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 2013. [PMID: 23192437 DOI: 10.1002/jcb.24459] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are considered a highly promising candidate cell type for cell-based tissue engineering and regeneration because of their self-renewal and multi-lineage differentiation characteristics. Increased levels of reactive oxygen/nitrogen species (ROS/RNS) are associated with tissue injury and inflammation, impact a number of cellular processes, including cell adhesion, migration, and proliferation, and have been linked to cellular senescence in MSCs, potentially compromising their activities. Naturally occurring polyphenolic compounds (polyphenols), epigallocatechin-3-gallate (EGCG), and curcumin, block ROS/RNS and are potent inflammation-modulating agents. However, their potential protective effects against oxidative stress in hMSCs have not been examined. In this study, we carried out a systematic analysis of the effects of polyphenols on hMSCs in their response to oxidative stress in the form of treatment with H(2)O(2) and S-nitroso-N-acetylpenicillamine (SNAP), respectively. Parameters measured included colony forming activity, apoptosis, and the levels of antioxidant enzymes and free reactive species. We found that polyphenols reversed H(2)O(2) -induced loss of colony forming activity in hMSCs. In a dose-dependent manner, polyphenols inhibited increased levels of ROS and NO, produced by H(2)O(2) or SNAP, respectively, in MSCs. Notably, polyphenols rapidly and almost completely blocked H(2)O(2) -induced ROS in the absence of significant direct effect on H(2)O(2) itself. Polyphenols also protected the antioxidant enzymes and reduced apoptotic cell death caused by H(2)O(2) exposure. Taken together, these findings demonstrate that EGCG and curcumin are capable of suppressing inducible oxidative stress in hMSCs, and suggest a possible new approach to maintain MSC viability and potency for clinical application.
Collapse
Affiliation(s)
- Haruyo Yagi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
111
|
Palhano FL, Lee J, Grimster NP, Kelly JW. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc 2013; 135:7503-10. [PMID: 23611538 DOI: 10.1021/ja3115696] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein misfolding and/or aggregation has been implicated as the cause of several human diseases, such as Alzheimer's and Parkinson's diseases and familial amyloid polyneuropathy. These maladies are referred to as amyloid diseases, named after the cross-β-sheet amyloid fibril aggregates or deposits common to these disorders. Epigallocatechin-3-gallate (EGCG), the principal polyphenol present in green tea, has been shown to be effective at preventing aggregation and is able to remodel amyloid fibrils comprising different amyloidogenic proteins, although the mechanistic underpinnings are unclear. Herein, we work toward an understanding of the molecular mechanism(s) by which EGCG remodels mature amyloid fibrils made up of Aβ(1-40), IAPP(8-24), or Sup35NM(7-16). We show that EGCG amyloid remodeling activity in vitro is dependent on auto-oxidation of the EGCG. Oxidized and unoxidized EGCG binds to amyloid fibrils, preventing the binding of thioflavin T. This engagement of the hydrophobic binding sites in Aβ(1-40), IAPP(8-24), or Sup35NM(Ac7-16) Y→F amyloid fibrils seems to be sufficient to explain the majority of the amyloid remodeling observed by EGCG treatment, although how EGCG oxidation drives remodeling remains unclear. Oxidized EGCG molecules react with free amines within the amyloid fibril through the formation of Schiff bases, cross-linking the fibrils, which may prevent dissociation and toxicity, but these aberrant post-translational modifications do not appear to be the major driving force for amyloid remodeling by EGCG treatment. These insights into the molecular mechanism of action of EGCG provide boundary conditions for exploring amyloid remodeling in more detail.
Collapse
Affiliation(s)
- Fernando L Palhano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
112
|
Chung JH, Kim S, Lee SJ, Chung JO, Oh YJ, Shim SM. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins. J Food Sci 2013; 78:C685-90. [PMID: 23551173 DOI: 10.1111/1750-3841.12112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/09/2013] [Indexed: 11/30/2022]
Abstract
The effect of green tea formulated with vitamin C and xylitol on intestinal cell transport of gallated and nongallated catechin was studied. The transport of catechins from both apical to basolateral and basolateral to apical directions was measured. The effect of vitamin C (4, 10, 20 ppm), xylitol (11, 27.5, 55 ppm), and combinations of both on the intestinal transport rate of catechins was examined. The efflux value (Pb→a/Pa→b) of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), and (-)-epicatechin gallate (ECG) was 0.26, 0.22, 1.22, and 0.17, respectively, indicating that EC appeared to be less absorbed compared with other catechins. The addition of xylitol (11, 27.5, 55 ppm) and vitamin C (4, 10, 20 ppm) and in combination enhanced transport rate of nongallated catechins such as EC and EGC. For EC, vitamin C was revealed to be the most effective on intestinal transport, implying the inhibition of the efflux transport mechanism of EC. Intestinal transport of gallated catechins significantly increased from catechins formulated with vitamin C and xylitol in a dose-dependent manner compared to the catechin-only formulation. Results provide a potential strategy to enhance the delivery and bioavailability of catechins in humans by modulating green tea formulation with vitamin C and xylitol.
Collapse
Affiliation(s)
- Jae-Hwan Chung
- Dept. of Food Science & Technology and Carbohydrate Bioproduct Research Center, Sejong Univ., 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
113
|
Mähler A, Mandel S, Lorenz M, Ruegg U, Wanker EE, Boschmann M, Paul F. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J 2013; 4:5. [PMID: 23418936 PMCID: PMC3585739 DOI: 10.1186/1878-5085-4-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/25/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations.
Collapse
Affiliation(s)
- Anja Mähler
- Experimental and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, D-13125, Germany.
| | | | | | | | | | | | | |
Collapse
|
114
|
Festa M, Caputo M, Cipolla C, D'Acunto CW, Rossi AG, Tecce MF, Capasso A. The involvement of xanthohumol in the expression of annexin in human malignant glioblastoma cells. Open Biochem J 2013; 7:1-10. [PMID: 23407460 PMCID: PMC3568876 DOI: 10.2174/1874091x01307010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant and resistant tumor of the central nervous system in humans and new therapeutic strategies are urgently required. Recently, we have shown that the potential chemotherapeutic polyphenol xanthohumol (XH), isolated from Humulus Lupulus, induces apoptosis of human T98G glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. Then we have found, by western blotting and microscopic analysis, that XH up-regulates cytosolic levels of ANXA1 and induces translocation of the protein on the cell membrane of T98G cells in a time-dependent manner with significant effects observed after 24 h. On the basis of the above evidence, the aim of this work was to investigate the role of intracellular and cell membrane localized ANXA1 in GBM cells. RT-PCR analysis has shown that XH up-regulates mRNA levels of ANXA1 after 16 h treatment. To demonstrate the involvement of ANXA1 in apoptosis of GBM cells we down-regulated ANXA1 expression with small interfering RNA (siRNA) and then analysed apoptosis in the presence and absence of apoptotic stimuli. Importantly, apoptosis induced by XH was reduced in siRNA-ANXA1 transfected cells where western blot analysis shows a significant reduction of ANXA1 protein levels. To investigate the role of ANXA1 expression on the cell membrane of T98G cells as potential "eat-me" signal we studied phagocytosis of apoptotic cells by human macrophages. We incubated apoptotic T98G cells with human blood monocyte derived macrophages (M=). After co-incubation period we analysed the percentage of M= phagocytosing the apoptotic cells by cytofluorimetric FACS analysis and by confocal microscopy. Our results show that XH induces phagocytosis of apoptotic T98G cells by human M= in a concentration-effect manner, a processes that is dependent on caspase mediated apoptosis. ANXA1 acts as an "eat-me" signal on the cell membrane of T98G cells, and interestingly, apoptotic siRNA-ANXA1 transfected cells are not completely ingested by M=. These results were confirmed by incubating apoptotic cells with a neutralizing anti-ANXA1 antiboby and ANXA1 membrane depletion by EDTA washing. ANXA1 was also detected in supernatants of apoptotic cells and the incubation of enriched supernatants enhanced the percentage of phagocytosis by M=. These results demonstrated that ANXA1 is involved both in the apoptosis and phagocytosis of glioblastoma cells. This study shows a possible role of ANXA1 in maintenance of brain homeostasis and may lead to novel therapeutic approaches for neuro-inflammatory diseases and chemotherapy targets in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- M Festa
- University of Salerno, Department of Pharmacy, Italy
| | - M Caputo
- University of Salerno, Department of Pharmacy, Italy
| | - C Cipolla
- University of Salerno, Department of Pharmacy, Italy
| | - CW D'Acunto
- University of Salerno, Department of Pharmacy, Italy
| | - AG Rossi
- University of Edinburgh, MRC Centre for Inflammation Research, UK
| | - MF Tecce
- University of Salerno, Department of Pharmacy, Italy
| | - A Capasso
- University of Salerno, Department of Pharmacy, Italy
| |
Collapse
|
115
|
Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, Zhou S, Yang T, Mei Q. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 2013; 8:e54505. [PMID: 23342161 PMCID: PMC3546968 DOI: 10.1371/journal.pone.0054505] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022] Open
Abstract
Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Cui
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| | - Tiehong Yang
- National Key Lab Of Gastrointestinal Pharmacology of Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| | - Qibing Mei
- National Key Lab Of Gastrointestinal Pharmacology of Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (SZ); (TY); (QM)
| |
Collapse
|
116
|
Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, Shen HM. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 2012; 7:e46749. [PMID: 23056433 PMCID: PMC3466311 DOI: 10.1371/journal.pone.0046749] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nai-Di Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Zhou
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Ting Shen
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Jing Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yin Shi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Qiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
- * E-mail: (XQZ); (HMS)
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (XQZ); (HMS)
| |
Collapse
|
117
|
Babich H, Selevan AR, Ravkin ER. Glutathione as a mediator of the in vitro cytotoxicity of a green tea polyphenol extract. Toxicol Mech Methods 2012; 17:357-69. [PMID: 20020959 DOI: 10.1080/15376510601091384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT The 24-hr cytotoxicities of a green tea polyphenol (GTP) extract to cell lines derived from the human oral cavity were assessed using the neutral red (NR) assay. The sequence of sensitivity was carcinoma HSC-2 cells > immortalized gingival GT1 fibroblasts > normal gingival HGF-2 fibroblasts. The GTP extract generated hydrogen peroxide (H(2)O(2)) in cell culture medium and in phosphate buffer, albeit to a lesser extent. A 3-hr exposure to the GTP extract lowered the intracellular glutathione (GSH) content of the HSC-2 cells, but stimulated that of the GT1 and HGF-2 fibroblasts. The cytotoxicity of a 4-hr exposure of the GTP extract to the HSC-2 and GT1, but not to the HGF-2, cells was lessened in the presence of 2.5 mM GSH. Conversely, a 0.5 hr preexposure to the glutathione depleter, 1-chloro-2-dinotrobenzene (CDNB) at 25 muM, potentiated the 24-hr cytotoxicity of the GTP extract to the HSC-2 and GT1, but not to the HGF-2, cells. Using a cell-free system, it was shown that the GTP extract quickly depleted GSH, with depletion greatly enhanced at an alkaline pH, thus, correlating with the enhanced generation of H(2)O(2) by the GTP extract observed at alkaline pH. Apparently, a mode of cytotoxicity of the GTP extract, in particular to the carcinoma HSC-2 cells, was to induce oxidative stress, as noted by the generation of H(2)O(2), the depletion of intracellular GSH, the protection afforded by extracellular GSH, and cell hypersensitivity after pretreatment with CDNB.
Collapse
Affiliation(s)
- H Babich
- Department of Biology, Stern College for Women, 245 Lexington Avenue, NYUSA
| | | | | |
Collapse
|
118
|
Alotaibi A, Bhatnagar P, Najafzadeh M, Gupta KC, Anderson D. Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine (Lond) 2012; 8:389-401. [PMID: 22943128 DOI: 10.2217/nnm.12.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tea catechin epigallocatechin-3-gallate (EGCG) and other polyphenols, such as theaflavins (TFs), are increasingly proving useful as chemopreventives in a number of human cancers. They can also affect normal cells. The polyphenols in tea are known to have antioxidant properties that can quench free radical species, and pro-oxidant activities that appear to be responsible for the induction of apoptosis in tumor cells. The bioavailability of these natural compounds is an important factor that determines their efficacy. Nanoparticle (NP)-mediated delivery techniques of EGCG and TFs have been found to improve their bioavailability to a level that could benefit their effectiveness as chemopreventives. AIM The present study was conducted to compare the effects of TFs and EGCG, when used in the bulk form and in the polymer (poly[lactic-co-glycolic acid])-based NP form, in oxaliplatin- and satraplatin-treated lymphocytes as surrogate cells from colorectal cancer patients and healthy volunteers. MATERIALS & METHODS NPs were examined for their size distribution, surface morphology, entrapment efficiency and release profile. Lymphocytes were treated in the Comet assay with oxaliplatin and satraplatin, washed and treated with bulk or NP forms of tea phenols, washed and then treated with hydrogen peroxide to determine single-strand breaks after crosslinking. RESULTS The results of DNA damage measurements by the Comet assay revealed opposite trends in bulk and NP forms of TFs, as well as EGCG. Both the compounds in the bulk form produced statistically significant concentration-dependent reductions in DNA damage in oxaliplatin- or satraplatin-treated lymphocytes. In contrast, when used in the NP form both TFs and EGCG, although initially causing a reduction, produced a concentration-dependent statistically significant increase in DNA damage in the lymphocytes. DISCUSSION These observations support the notion that TFs and EGCG act as both antioxidants and pro-oxidants, depending on the form in which they are administered under the conditions of investigation.
Collapse
Affiliation(s)
- Amal Alotaibi
- Division of Medical Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire, BD7 1DP, UK
| | | | | | | | | |
Collapse
|
119
|
Chuang SM, Wang HF, Hsiao CC, Cherng SH. Zinc ion enhances GABA tea-mediated oxidative DNA damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1586-1594. [PMID: 22264004 DOI: 10.1021/jf2044263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.
Collapse
Affiliation(s)
- Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
120
|
Sánchez-Tena S, Fernández-Cachón ML, Carreras A, Mateos-Martín ML, Costoya N, Moyer MP, Nuñez MJ, Torres JL, Cascante M. Hamamelitannin from witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells. JOURNAL OF NATURAL PRODUCTS 2012; 75:26-33. [PMID: 22216935 DOI: 10.1021/np200426k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hamamelis virginiana (witch hazel) bark is a rich source of condensed and hydrolyzable tannins reported to exert a protective action against colon cancer. The present study characterizes different witch hazel tannins as selective cytotoxic agents against colon cancer. To cover the structural diversity of the tannins that occur in H. virginiana bark, the hydrolyzable tannins, hamamelitannin and pentagalloylglucose, together with a proanthocyanidin-rich fraction (F800H4) were selected for the study. Treatment with these compounds reduced tumor viability and induced apoptosis, necrosis, and S-phase arrest in the cell cycle of HT29 cells, with hamamelitannin being the most efficient. Owing to polyphenol-mediated H(2)O(2) formation in the incubation media, the antiproliferative effect was determined in the presence and absence of catalase to rule out any such interference. The presence of catalase significantly changed the IC(50) only for F800H4. Furthermore, at concentrations that inhibit the growth of HT29 cells by 50%, hamamelitannin had no harmful effects on NCM460 normal colonocytes, whereas pentagalloylglucose inhibited both cancerous and normal cell growth. Using the TNPTM assay, we identified a highly reactive phenolic position in hamamelitannin, which may explain its efficacy at inhibiting colon cancer growth.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Faculty of Biology, Universitat de Barcelona, IBUB, Unit Associated with CSIC, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Enhanced anti-inflammatory effect of resveratrol and EPA in treated endotoxin-activated RAW 264.7 macrophages. Br J Nutr 2012; 108:1562-73. [DOI: 10.1017/s0007114511007057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.
Collapse
|
122
|
The effects of oxaloacetate on hydrogen peroxide generation from ascorbate and epigallocatechin gallate in cell culture media: potential for altering cell metabolism. Biochem Biophys Res Commun 2011; 417:446-50. [PMID: 22166196 DOI: 10.1016/j.bbrc.2011.11.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/03/2023]
Abstract
Several phenolic compounds as well as ascorbate can oxidise in certain cell culture media (especially Dulbecco's modified Eagle's medium (DMEM)) to generate hydrogen peroxide. Addition of oxaloacetate decreased the levels of H(2)O(2) detected and the oxaloacetate was depleted. Oxaloacetate was approximately as effective as pyruvate in decreasing H(2)O(2) levels and more effective than α-ketoglutarate. Our data raise important issues to consider when interpreting the behaviour and metabolism of cells in culture (which are both altered by the oxidative stress of cell culture) and their apparent response to addition of autooxidisable compounds such as ascorbate and epigallocatechin gallate.
Collapse
|
123
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase – a target for hypercholesterolemic therapy. Biol Chem 2011; 392:1053-75. [DOI: 10.1515/bc.2011.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes’ inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
|
124
|
Belter A, Skupinska M, Giel-Pietraszuk M, Grabarkiewicz T, Rychlewski L, Barciszewski J. Squalene monooxygenase - a target for hypercholesterolemic therapy. Biol Chem 2011. [PMID: 22050222 DOI: 10.1515/bc-2011-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
125
|
Novaes RD, Gonçalves RV, Marques DCS, Cupertino MDC, Peluzio MDCG, Leite JPV, Maldonado IRDSC. Effect of Bark Extract of Bathysa cuspidata on Hepatic Oxidative Damage and Blood Glucose Kinetics in Rats Exposed to Paraquat. Toxicol Pathol 2011; 40:62-70. [DOI: 10.1177/0192623311425059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of bark extract of Bathysa cuspidata on hepatic oxidative damage and blood glucose kinetics in rats exposed to paraquat. Wistar rats were exposed to a single dose of paraquat (30 mg/kg, i.p.) and treated with an ethanolic extract of Bathysa cuspidata (200 and 400 mg/kg). Analyses were conducted of liver edema, blood glucose, serum transaminases, alkaline phosphatase, collagen, malondialdehyde, catalase, superoxide dismutase, and histomorphometry. In the animals intoxicated with paraquat and treated with 400 mg/kg of extract, edema, hypertrophy of the nucleus of hepatocytes, serum transaminases, alkaline phosphatase, and malondialdehyde levels decreased significantly ( p < .05). Catalase and superoxide dismutase activity, the number of hepatocytes per unit volume, and the glycogen proportion were maintained. The increase followed by progressive reduction of blood glucose observed in paraquat-exposed groups was significantly attenuated in the group treated with 400 mg/kg of extract ( p < .05). Phytochemical analysis of the extract revealed the presence of flavonoids, proanthocyanidins, and phenolic compounds. The bark extract of Bathysa cuspidata was able to inhibit large variations in blood glucose and reduce hepatic damage in rats exposed to paraquat. This finding suggests a contribution of the extract in reducing lipid peroxidation and the morphofunctional damage to the liver parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | - João Paulo Viana Leite
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa MG, Brazil
| | | |
Collapse
|
126
|
Hwang JY, Choi SC, Park JH, Kang SW. The Use of Green Tea Extract as a Storage Medium for the Avulsed Tooth. J Endod 2011; 37:962-7. [DOI: 10.1016/j.joen.2011.03.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 01/14/2023]
|
127
|
Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals. J Toxicol 2011; 2011:467305. [PMID: 21776260 PMCID: PMC3135211 DOI: 10.1155/2011/467305] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/12/2011] [Indexed: 12/13/2022] Open
Abstract
Polyphenols of phytochemicals are thought to exhibit chemopreventive effects against cancer. These plant-derived antioxidant polyphenols have a dual nature, also acting as pro-oxidants, generating reactive oxygen species (ROS), and causing oxidative stress. When studying the overall cytotoxicity of polyphenols, research strategies need to distinguish the cytotoxic component derived from the polyphenol per se from that derived from the generated ROS. Such strategies include (a) identifying hallmarks of oxidative damage, such as depletion of intracellular glutathione and lipid peroxidation, (b) classical manipulations, such as polyphenol exposures in the absence and presence of antioxidant enzymes (i.e., catalase and superoxide dismutase) and of antioxidants (e.g., glutathione and N-acetylcysteine) and cotreatments with glutathione depleters, and (c) more recent manipulations, such as divalent cobalt and pyruvate to scavenge ROS. Attention also must be directed to the influence of iron and copper ions and to the level of polyphenols, which mediate oxidative stress.
Collapse
|
128
|
Elbling L, Herbacek I, Weiss RM, Gerner C, Heffeter P, Jantschitsch C, Trautinger F, Grusch M, Pangratz H, Berger W. EGCG-meditated cyto- and genotoxicity in HaCat keratinocytes is impaired by cell-mediated clearance of auto-oxidation-derived H2O2: an algorithm for experimental setting correction. Toxicol Lett 2011; 205:173-82. [PMID: 21704138 DOI: 10.1016/j.toxlet.2011.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 01/29/2023]
Abstract
Several lines of evidence suggest that besides antioxidant also prooxidant properties are crucially involved in cytotoxic and protective activities of the major green tea catechin epigallocatechin-3-gallate (EGCG) in vitro (Elbling et al., 2011). Furthermore recent data suggest that EGCG induces oxidative stress also in vivo (Li et al., 2010). Here we set out to identify factors modulating cellular effects of EGCG in vitro. Using the HaCat keratinocytes model, we demonstrate that the cytotoxic, genotoxic and signal-activating effects of EGCG are significantly dependent on the ratio of cell number to working volume. Treatment with identical EGCG concentrations at altered experimental settings resulted in IC(50) values differing up to orders of magnitude and could even exert contradictory effects. This effect was based on cell-mediated clearance of autooxidation-derived H(2)O(2) from the supernatant. In order to estimate EGCG/H(2)O(2) concentrations equally effective under different settings, we have rationally derived and experimentally verified a simple algorithm relating concentration, working volume, cell number and - indirectly - exposure time. Algorithm application resulted in similar H(2)O(2) clearance curves from cell supernatants as well as comparable EGCG/H(2)O(2) effects at different settings. Our results demonstrate the importance of standardized experimental settings when investigating cytotoxic and/or beneficial effects of autooxidizing compounds.
Collapse
Affiliation(s)
- Leonilla Elbling
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Genotoxic Effects of Green Tea Extract on Human Laryngeal Carcinoma Cells In Vitro. Arh Hig Rada Toksikol 2011; 62:139-46. [DOI: 10.2478/10004-1254-62-2011-2105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Genotoxic Effects of Green Tea Extract on Human Laryngeal Carcinoma Cells In VitroGreen tea (Camellia sinensis) contains several bioactive compounds which protect the cell and prevent tumour development. Phytochemicals in green tea extract (mostly flavonoids) scavenge free radicals, but also induce pro-oxidative reactions in the cell. In this study, we evaluated the potential cytotoxic and prooxidative effects of green tea extract and its two main flavonoid constituents epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) on human laryngeal carcinoma cell line (HEp2) and its cross-resistant cell line CK2. The aim was to see if the extract and its two flavonoids could increase the sensitivity of the cisplatin-resistant cell line CK2 in comparison to the parental cell line. The results show that EGCG and green tea extract increased the DNA damage in the CK2 cell line during short exposure. The cytotoxicity of EGCG and ECG increased with the time of incubation. Green tea extract induced lipid peroxidation in the CK2 cell line. The pro-oxidant effect of green tea was determined at concentrations higher than those found in traditionally prepared green tea infusions.
Collapse
|
130
|
Forester SC, Lambert JD. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res 2011; 55:844-54. [PMID: 21538850 DOI: 10.1002/mnfr.201000641] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 12/21/2022]
Abstract
Consumption of green tea (Camellia sinensis) may provide protection against chronic diseases, including cancer. Green tea polyphenols are believed to be responsible for this cancer preventive effect, and the antioxidant activity of the green tea polyphenols has been implicated as a potential mechanism. This hypothesis has been difficult to study in vivo due to metabolism of these compounds and poor understanding of the redox environment in vivo. Green tea polyphenols can be direct antioxidants by scavenging reactive oxygen species or chelating transition metals as has been demonstrated in vitro. Alternatively, they may act indirectly by upregulating phase II antioxidant enzymes. Evidence of this latter effect has been observed in vivo, yet more work is required to determine under which conditions these mechanisms occur. Green tea polyphenols can also be potent pro-oxidants, both in vitro and in vivo, leading to the formation of hydrogen peroxide, the hydroxyl radical, and superoxide anion. The potential role of these pro-oxidant effects in the cancer preventive activity of green tea is not well understood. The evidence for not only the antioxidant, but also pro-oxidant, properties of green tea is discussed in the present review.
Collapse
Affiliation(s)
- Sarah C Forester
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
131
|
A synergistic effect of GABA tea and copper(II) on DNA breakage in human peripheral lymphocytes. Food Chem Toxicol 2011; 49:955-62. [DOI: 10.1016/j.fct.2010.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/03/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022]
|
132
|
Fabiani R, Rosignoli P, De Bartolomeo A, Fuccelli R, Servili M, Morozzi G. The production of hydrogen peroxide is not a common mechanism by which olive oil phenols induce apoptosis on HL60 cells. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
133
|
Lopez-Lazaro M, Calderon-Montano JM, Burgos-Moron E, Austin CA. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide. Mutagenesis 2011; 26:489-98. [DOI: 10.1093/mutage/ger006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
134
|
Perron NR, García CR, Pinzón JR, Chaur MN, Brumaghim JL. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. J Inorg Biochem 2011; 105:745-53. [PMID: 21481816 DOI: 10.1016/j.jinorgbio.2011.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, United States
| | | | | | | | | |
Collapse
|
135
|
Long LH, Halliwell B. Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 2011; 406:20-4. [PMID: 21281600 DOI: 10.1016/j.bbrc.2011.01.091] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 12/20/2022]
Abstract
Ascorbate and several phenolic compounds readily oxidise in cell culture media to generate hydrogen peroxide. However, addition of α-ketoglutarate, which is known to be released by several cell types, decreased the levels of H(2)O(2), and the α-ketoglutarate was depleted and converted to succinate. These observations could account for previous reports of the protective effects of α-ketoglutarate in promoting the growth of cells in culture, and may contribute to explaining some of the variability in the literature in reported rates of H(2)O(2) production from autoxidisable compounds in cell culture systems.
Collapse
Affiliation(s)
- Lee Hua Long
- Department of Biochemistry, National University of Singapore, Singapore
| | | |
Collapse
|
136
|
Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch Biochem Biophys 2011; 507:343-9. [PMID: 21211509 DOI: 10.1016/j.abb.2010.12.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 12/29/2010] [Accepted: 12/29/2010] [Indexed: 11/23/2022]
Abstract
Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS-PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.
Collapse
|
137
|
Lee TC, Cheng IC, Shue JJ, Wang T. Cytotoxicity of arsenic trioxide is enhanced by (−)-epigallocatechin-3-gallate via suppression of ferritin in cancer cells. Toxicol Appl Pharmacol 2011; 250:69-77. [DOI: 10.1016/j.taap.2010.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/11/2022]
|
138
|
Mei X, Wu YY, Mao X, Tu YY. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:164-168. [PMID: 20932619 DOI: 10.1016/j.envpol.2010.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/25/2010] [Accepted: 09/06/2010] [Indexed: 05/30/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.
Collapse
Affiliation(s)
- Xin Mei
- Department of Tea Science, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Horticultural Plant Growth Development & Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029, China
| | - Yuan-Yuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310029, China
| | - Xiao Mao
- Department of Tea Science, Zhejiang University, Hangzhou 310029, China
| | - You-Ying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
139
|
Covalent binding of tea catechins to protein thiols: the relationship between stability and electrophilic reactivity. Biosci Biotechnol Biochem 2010; 74:2451-6. [PMID: 21150116 DOI: 10.1271/bbb.100509] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the relationship between the stability of catechins and their electrophilic reactivity with proteins. The stability of catechins was evaluated by HPLC analysis. Catechol-type catechins were stable in a neutral buffer, but pyrogallol-type catechins, such as (-)-epigallocatechin gallate (EGCg), were unstable. The electrophilic reactivity of catechins with thiol groups in a model peptide and a protein was confirmed by both mass spectrometry and electrophoresis/blotting with redox-cycling staining. In a comparison of several catechins, pyrogallol-type catechins had higher reactivity with protein thiols than catechol-type catechins. The instability and reactivity of EGCg were enhanced in an alkaline pH buffer. The reactivity of EGCg was reduced by antioxidants due to their ability to prevent EGCg autoxidation. These results indicate that the instability against oxidation of catechins is profoundly related to their electrophilic reactivity. Consequently, the difference in these properties of tea catechins can contribute to the magnitude of their biological activities.
Collapse
|
140
|
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15:7313-52. [PMID: 20966876 PMCID: PMC6259146 DOI: 10.3390/molecules15107313] [Citation(s) in RCA: 1768] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023] Open
Abstract
Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
Collapse
Affiliation(s)
- Jin Dai
- Four Tigers LLC, 1501 Bull Lea Road, Suite 105, Lexington, Kentucky 40511 USA; (J.D.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Russell J. Mumper
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-966-1271; Fax: +1-919-966-6919
| |
Collapse
|
141
|
Hori H, Takayanagi T, Kamada Y, Shimoyoshi S, Ono Y, Kitagawa Y, Shibata H, Nagao M, Fujii W, Sakakibara Y. Genotoxicity evaluation of sesamin and episesamin. Mutat Res 2010; 719:21-8. [PMID: 20937410 DOI: 10.1016/j.mrgentox.2010.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/15/2010] [Accepted: 10/03/2010] [Indexed: 10/19/2022]
Abstract
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.
Collapse
Affiliation(s)
- Hisako Hori
- Suntory Business Expert Limited, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Lambert JD, Sang S, Hong J, Yang CS. Anticancer and anti-inflammatory effects of cysteine metabolites of the green tea polyphenol, (-)-epigallocatechin-3-gallate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10016-10019. [PMID: 20718469 PMCID: PMC3045820 DOI: 10.1021/jf102311t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown to have cancer preventive activity in vitro and in vivo. We have previously shown that EGCG can undergo conjugation to cysteine to form 2'-cysteinyl-EGCG and 2''-cysteinyl-EGCG. Studies of thiol-conjugated metabolites of methamphetamine indicate that such metabolites are not detoxified but retain biological activity. Here, we examined the growth inhibitory, pro-oxidant, and anti-inflammatory activities of the cysteine metabolites of EGCG. Both compounds dose-dependently inhibited the growth of colon cancer and intestinal cell lines. Both metabolites prevented aberrant arachidonic acid release and nitric oxide production by lipopolysaccharide-stimulated RAW264.7 cells. Under cell culture conditions, 2''-cysteinyl-EGCG produced H2O2 at a faster rate than EGCG. The results of the present study show that cysteine conjugates of EGCG retain the growth inhibitory, anti-inflammatory, and pro-oxidant activities of EGCG in vitro and may play a role in disease prevention in vivo. These results remain to be confirmed in vivo.
Collapse
Affiliation(s)
- Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, 332 Food Science Building, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
143
|
Suzuki K, Kori S, Morikawa M, Takagi A, Namiki H. Oxidative stress-mediated bimodal regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds. Int Immunopharmacol 2010; 10:1448-55. [PMID: 20837173 DOI: 10.1016/j.intimp.2010.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/05/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022]
Abstract
Pyrogallol-bearing polyphenolic compounds induce spreading of polymorphonuclear leukocytes (PMNL), although their optimal concentrations for induction of spreading are quite different (2000, 200, and 2 μM for pyrogallol, (-)-epigallocatechin gallate (EGCG), and tannic acid (TA), respectively), and TA tends to inhibit spreading at higher concentrations. In this study, we examined the involvement of oxidative stress in the regulation of PMNL spreading by these compounds. All three compounds in solution generated H(2)O(2) to a similar extent. Adsorption of the polyphenols to cell surfaces and their accumulation within cells were assessed by detection of the H(2)O(2) precursor O(2)(-) produced by the compounds through reduction of cytochrome c and p-nitro-blue tetrazolium, respectively. TA showed the highest degree of adsorption. EGCG adhered only to PMNL pre-fixed by paraformaldehyde, whereas pyrogallol did not adhere. None of the compounds caused intracellular O(2)(-) generation. A non-pyrogallic compound, 1,2,4-benzenetriol (BT), also produced H(2)O(2); it had no stimulatory effect on PMNL spreading, but inhibited spreading induced by other stimuli. BT did not adhere to PMNL but accumulated within them, and generated O(2)(-) in the presence of glycine. Thiol antioxidants abrogated all of the above spreading-regulatory effects of the polyphenolic compounds. We conclude that H(2)O(2)-generating polyphenols bimodally regulate the spreading of PMNL by subjecting them to oxidative stress. The ability of polyphenol to adhere to, or accumulate within, PMNL may govern the nature of the oxidative stress and determine the optimal concentration of each compound for induction of spreading, as well as whether spreading is promoted or inhibited.
Collapse
Affiliation(s)
- Kingo Suzuki
- Department of Biology, School of Education, Waseda University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
144
|
Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T. Berries: improving human health and healthy aging, and promoting quality life--a review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:299-308. [PMID: 20645129 DOI: 10.1007/s11130-010-0177-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The importance of the diet in relation to human health has increased the interest of consumers on nutraceuticals rich foods, and especially on fruits and vegetables. Berries are rich sources of a wide variety of antioxidant phenolics; these phytochemicals include flavonoids, stilbenes, tannins, and phenolic acids. Reactive oxidant species and free radicals are produced in an extensive range of physiological processes. In addition to the antioxidant defenses produced in the body, there are exogenous sources supplied by the diet; this is the case of berry fruits, among others. The insufficiency of antioxidant defense mechanisms is associated to the pathology of chronic disorders such as cardiovascular diseases, inflammation, and diabetes. Therefore, the enforcement of the latter mechanisms is of the utmost importance. The isolation and characterization of compounds that may delay the onset of aging is receiving intense research attention; some berry phenolics are being associated with this functional performance. Berry phenolics may also act as antimicrobials which may be of help in the control of the wild spectra of pathogens, in view of recent problems associated with antibiotic resistance. Most of the research works on the antioxidant activity of bioactive constituents of berries has been carried out using in vitro assays. In view of this, the human studies investigating the bioavailability and potential toxicity of phenolics are receiving more attention. Finally, we would like to emphasize the necessity of associating new plant breeding and genetic studies of berries with the expression and overexpression of compounds for human health and healthy aging.
Collapse
Affiliation(s)
- Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libr. Norte Carr. Irapuato-León, Apdo., Postal 629, Irapuato, Guanajuato 36821, Mexico
| | | | | | | |
Collapse
|
145
|
Kim JS, Kim JM, O JJ, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci 2010; 17:1165-8. [DOI: 10.1016/j.jocn.2010.01.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/22/2009] [Accepted: 01/01/2010] [Indexed: 01/01/2023]
|
146
|
Grassi D, Desideri G, Ferri C. Flavonoids: antioxidants against atherosclerosis. Nutrients 2010; 2:889-902. [PMID: 22254061 PMCID: PMC3257706 DOI: 10.3390/nu2080889] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species and limited antioxidant defences. Endothelium and nitric oxide (NO) are key regulators of vascular health. NO bioavailability is modulated by ROS that degrade NO, uncouple NO synthase, and inhibit synthesis. Cardiovascular risk conditions contribute to oxidative stress, causing an imbalance between NO and ROS, with a relative decrease in NO bioavailability. Dietary flavonoids represent a range of polyphenolic compounds naturally occurring in plant foods. Flavonoids are potentially involved in cardiovascular prevention mainly by decreasing oxidative stress and increasing NO bioavailability.
Collapse
Affiliation(s)
- Davide Grassi
- Department of Internal Medicine and Public Health, University of L’Aquila, L’Aquila, 67100 Italy; (G.D.); (C.F.)
- University of L’Aquila Department of Internal Medicine and Public Health Viale S. Salvatore, Delta 6 Medicina, 67100 Coppito, L’Aquila, Italy
- Author to whom correspondence should be addressed: ; Tel.: +39 0862 434749; Fax: +39 0862 434749
| | - Giovambattista Desideri
- Department of Internal Medicine and Public Health, University of L’Aquila, L’Aquila, 67100 Italy; (G.D.); (C.F.)
| | - Claudio Ferri
- Department of Internal Medicine and Public Health, University of L’Aquila, L’Aquila, 67100 Italy; (G.D.); (C.F.)
| |
Collapse
|
147
|
The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 2010; 501:65-72. [PMID: 20558130 DOI: 10.1016/j.abb.2010.06.013] [Citation(s) in RCA: 533] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 06/01/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023]
Abstract
Green tea (Camellia sinensis) is rich in catechins, of which (-)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review, we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.
Collapse
|
148
|
Chepelev NL, Bennitz JD, Wright JS, Smith JC, Willmore WG. Oxidative modification of citrate synthase by peroxyl radicals and protection with novel antioxidants. J Enzyme Inhib Med Chem 2010; 24:1319-31. [PMID: 19795928 DOI: 10.3109/14756360902852586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, aging is linked to a decline in the activity of citrate synthase (CS; E.C. 2.3.3.1), the first enzyme of the citric acid cycle. We used 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), a water-soluble generator of peroxyl and alkoxyl radicals, to investigate the susceptibility of CS to oxidative damage. Treatment of isolated mitochondria with AAPH for 8-24 h led to CS inactivation; however, the activity of aconitase, a mitochondrial enzyme routinely used as an oxidative stress marker, was unaffected. In addition to enzyme inactivation, AAPH treatment of purified CS resulted in dityrosine formation, increased protein surface hydrophobicity, and loss of tryptophan fluorescence. Propyl gallate, 1,8-naphthalenediol, 2,3-naphthalenediol, ascorbic acid, glutathione, and oxaloacetate protected CS from AAPH-mediated inactivation, with IC(50) values of 9, 14, 34, 37, 150, and 160 muM, respectively. Surprisingly, the antioxidant epigallocatechin gallate offered no protection against AAPH, but instead caused CS inactivation. Our results suggest that the current practice of using the enzymatic activity of CS as an index of mitochondrial abundance and the use of aconitase activity as an oxidative stress marker may be inappropriate, especially in oxidative stress-related studies, during which alkyl peroxyl and alkoxyl radicals can be generated.
Collapse
|
149
|
Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 2010; 48:239-250. [PMID: 20210857 DOI: 10.1111/j.1600-079x.2010.00748.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melatonin exhibits a wide variety of biological effects, including antioxidant and anti-inflammatory functions. Its antioxidant role impedes the etiopathogenesis of pancreatitis, but little is known about the signaling pathway of melatonin in the induction of antioxidant enzymes in acute pancreatitis (AP). The aim of this study was to determine whether melatonin could prevent cerulein-induced AP through nuclear factor erythroid 2-related factor 2 (Nrf2) and curtail inflammation by inhibition of NF-kappaB. AP was induced by two intraperitoneal (i.p.) injections of cerulein at 2 h intervals (50 microg/kg) in Sprague-Dawley rats. Melatonin (10 or 50 mg/kg/daily, i.p.) was administered 24 h before each injection of cerulein. The rats were killed 12 h after the last injection. Acinar cell degeneration, pancreatic edema, and inflammatory infiltration were significantly different in cerulein- and melatonin-treated rats. Melatonin significantly reduced amylase, lipase, MPO, and MDA levels, and increased antioxidant enzyme activities including SOD and GPx, which were decreased in AP (P < 0.05). Melatonin increased the expression of NQO1, HO-1, and SOD2 when compared with the cerulein-induced AP group (P < 0.05). In addition, melatonin increased Nrf2 expression, and reduced expressions of tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, and iNOS. The elevated nuclear binding of NF-kappaB in the cerulein-induced pancreatitis group was inhibited by melatonin. These results show that melatonin increases antioxidant enzymes and Nrf2 expression, and limits inflammatory mediators in cerulein-induced AP. It is proposed that melatonin may play an important role in oxidative stress via the Nrf2 pathway in parallel with reduction of inflammation by NF-kappaB inhibition.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Sang-Won Hong
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hong-Mei Zheng
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hee-Seung Lee
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hyunseung Lee
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Don-Haeng Lee
- Department of Internal Medicine and Utah-Inha Drug Delivery and Advanced Therapeutics Global R&D Center, College of Medicine, Inha University, Incheon Korea
| | - Sang Yoon Lee
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, Inha University, Incheon Korea
| |
Collapse
|
150
|
Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochem Biophys Res Commun 2010; 394:1-5. [DOI: 10.1016/j.bbrc.2010.02.137] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
|