101
|
Laycock H, Valente J, Bantel C, Nagy I. Peripheral mechanisms of burn injury-associated pain. Eur J Pharmacol 2013; 716:169-78. [DOI: 10.1016/j.ejphar.2013.01.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
|
102
|
Andersen H, Olsen R, Møller H, Eskelund P, Gazerani P, Arendt-Nielsen L. A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur J Pain 2013; 18:315-25. [DOI: 10.1002/j.1532-2149.2013.00380.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Affiliation(s)
- H.H. Andersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - R.V. Olsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - H.G. Møller
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P.W. Eskelund
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - P. Gazerani
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
103
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Al Kury L, Shuba Y, Mahgoub M, Howarth FC, Sadek B, Shehu A, Kabbani N, Oz M. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors. PLoS One 2013; 8:e67674. [PMID: 23935840 PMCID: PMC3720735 DOI: 10.1371/journal.pone.0067674] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/21/2013] [Indexed: 11/27/2022] Open
Abstract
Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.
Collapse
Affiliation(s)
- Abrar Ashoor
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Jacob C. Nordman
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel Veltri
- School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Lina Al Kury
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Yaroslav Shuba
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohamed Mahgoub
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Frank C. Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Nadine Kabbani
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, United States of America
| | - Murat Oz
- Departments of Pharmacology Laboratory of Functional Lipidomics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
104
|
Hoffmann T, Kistner K, Miermeister F, Winkelmann R, Wittmann J, Fischer MJM, Weidner C, Reeh PW. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain 2013; 17:1472-82. [PMID: 23720338 DOI: 10.1002/j.1532-2149.2013.00331.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Two transient receptor potential (TRP) channels, TRPV1 and TRPA1, have been physiologically studied with regard to noxious heat transduction. Evidence argues against these channels as sole transducers of noxious heat or cold, respectively. Moreover, in submammalian species the TRPA1 orthologue shows heat sensitivity. METHODS In vitro, single-fibre and compound action potential recordings from C-fibres as well as measurements of stimulated cutaneous CGRP release are combined with behavioural experiments to assess heat responsiveness in wild type mice, TRPA1 and TRPV1 as well as double-null mutants. RESULTS Heat thresholds of cutaneous C-mechano-heat sensitive fibres were significantly higher in TRPA1-/- (43 °C) than +/+ (40 °C) mice, and averaged heat responses were clearly weaker, whereas TRPV1-/- showed normal heat thresholds and responses (up to 46 °C). Compound action potential recordings revealed much less activity-dependent slowing of conduction velocity upon noxious heat stimulation in TRPA1-/- and a delayed deficit in TRPV1-/- in comparison to controls. Heat-induced calcitonin gene-related peptide release was reduced in TRPV1-/- but not TRPA1-/- animals. Paw withdrawal latencies to radiant heat were significantly elevated in TRPA1-/-, more so in TRPV1-/- animals. In general, double-null mutants were similar to TRPV1-/- except for the single-fibre heat responses which appeared as weak as in TRPA1-/-. CONCLUSIONS Our results indicate that in addition to TRPV1, TRPA1 plays a role in heat nociception, in particular in definition of the heat threshold, and might therefore serve as a therapeutic target in acute inflammatory pain.
Collapse
Affiliation(s)
- T Hoffmann
- Institute for Physiology and Pathophysiology, Universitaetsstrasse 17, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Nickel F, Ott S, Möhringer S, Saake M, Dörfler A, Seifert F, Maihöfner C. Brain correlates of short-term habituation to repetitive electrical noxious stimulation. Eur J Pain 2013; 18:56-66. [DOI: 10.1002/j.1532-2149.2013.00339.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 01/06/2023]
Affiliation(s)
- F.T. Nickel
- Department of Neurology; University of Erlangen-Nuremberg; Erlangen Germany
| | - S. Ott
- Department of Neurology; University of Erlangen-Nuremberg; Erlangen Germany
| | - S. Möhringer
- Department of Neurology; University of Erlangen-Nuremberg; Erlangen Germany
| | - M. Saake
- Department of Neuroradiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - A. Dörfler
- Department of Neuroradiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - F. Seifert
- Department of Neurology; University of Erlangen-Nuremberg; Erlangen Germany
| | - C. Maihöfner
- Department of Neurology; University of Erlangen-Nuremberg; Erlangen Germany
- Institute of Physiology and Experimental Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
106
|
Plevkova J, Kollarik M, Poliacek I, Brozmanova M, Surdenikova L, Tatar M, Mori N, Canning BJ. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J Appl Physiol (1985) 2013; 115:268-74. [PMID: 23640596 DOI: 10.1152/japplphysiol.01144.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.
Collapse
Affiliation(s)
- J Plevkova
- Department of Pathophysiology, Jessenius School of Medicine, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
The transient receptor potential (TRP) superfamily consists of 28 members in mammals (27 in human) that act as polymodal sensors and ion channels. They regulate cellular calcium influx, generate depolarization thereby triggering voltage dependent cellular processes, and in turn they are critical in inducing the metabolic activities of cells. It is increasingly apparent that many of the inflammatory mediators released in allergic reactions involve at least two of these ion channels, the 'Vanilloid' TRPV1 and the 'Ankyrin" TRPA1. This review mainly focuses on TRPV1 and TRPA1 and the role they have in the allergic response and how these receptors may be influenced in exercise-induced anaphylaxis. The threshold to react to an allergen for mast cells and lymphocytes can be reduced by activating the melastatin channel TRPM4. This channel is briefly discussed in the context of allergy.
Collapse
|
108
|
Wei H, Viisanen H, Amorim D, Koivisto A, Pertovaara A. Dissociated modulation of conditioned place-preference and mechanical hypersensitivity by a TRPA1 channel antagonist in peripheral neuropathy. Pharmacol Biochem Behav 2013; 104:90-6. [DOI: 10.1016/j.pbb.2012.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
|
109
|
The effects of menthol on cold allodynia and wind-up-like pain in upper limb amputees with different levels of phantom limb pain. Neurosci Lett 2013; 534:52-7. [DOI: 10.1016/j.neulet.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/22/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022]
|
110
|
It’s not cool to reduce the skin temperature and activate the TRPM8 ion channel after spinal injury. Scand J Pain 2013; 4:31-32. [DOI: 10.1016/j.sjpain.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
111
|
Tang Z, Kim A, Masuch T, Park K, Weng H, Wetzel C, Dong X. Pirt functions as an endogenous regulator of TRPM8. Nat Commun 2013; 4:2179. [PMID: 23863968 PMCID: PMC3748931 DOI: 10.1038/ncomms3179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/21/2013] [Indexed: 12/02/2022] Open
Abstract
Pirt is a membrane protein that is specifically expressed in the peripheral nervous system, where it has been shown to increase the sensitivity of the transient receptor potential vanilloid 1 channel and modulate its role in heat pain. The broad expression of Pirt among dorsal root ganglion neurons suggests it may modulate other transient receptor potentials, such as the menthol and cooling sensor TRPM8. The discrepancies in the channel properties of TRPM8 in native neurons versus heterologous cells indicate the existence of endogenous modulators of the channel. Here we show that Pirt regulates the function of TRPM8 and its role in detecting cold. Pirt(-/-) mice exhibit decreased behavioural responses to cold and cool temperatures, and Pirt increases the sensitivity of TRPM8 to menthol and cool temperature. Our data suggest Pirt is an endogenous regulator of TRPM8.
Collapse
Affiliation(s)
- Zongxiang Tang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, PR China
| | - Andrew Kim
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Thorsten Masuch
- Department of Cell Physiology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Kyoungsook Park
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - HaoJui Weng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Christian Wetzel
- Department of Cell Physiology, Ruhr University Bochum, D-44780 Bochum, Germany
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, 93053 Regensburg, Germany
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology Johns Hopkins University, School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute
| |
Collapse
|
112
|
Alpizar YA, Gees M, Sanchez A, Apetrei A, Voets T, Nilius B, Talavera K. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1. Pflugers Arch 2012; 465:853-64. [DOI: 10.1007/s00424-012-1204-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/01/2023]
|
113
|
Abstract
The somatic sensory system includes a variety of sensory modalities, such as touch, pain, itch, and temperature sensitivity. The coding of these modalities appears to be best explained by the population-coding theory, which is composed of the following features. First, an individual somatic sensory afferent is connected with a specific neural circuit or network (for simplicity, a sensory-labeled line), whose isolated activation is sufficient to generate one specific sensation under normal conditions. Second, labeled lines are interconnected through local excitatory and inhibitory interneurons. As a result, activation of one labeled line could modulate, or provide gate control of, another labeled line. Third, most sensory fibers are polymodal, such that a given stimulus placed onto the skin often activates two or multiple sensory-labeled lines; crosstalk among them is needed to generate one dominant sensation. Fourth and under pathological conditions, a disruption of the antagonistic interaction among labeled lines could open normally masked neuronal pathways, and allow a given sensory stimulus to evoke a new sensation, such as pain evoked by innocuous mechanical or thermal stimuli and itch evoked by painful stimuli. As a result of this, some sensory fibers operate along distinct labeled lines under normal versus pathological conditions. Thus, a better understanding of the neural network underlying labeled line crosstalk may provide new strategies to treat chronic pain and itch.
Collapse
|
114
|
Averbeck B, Rucker F, Laubender R, Carr R. Thermal grill-evoked sensations of heat correlate with cold pain threshold and are enhanced by menthol and cinnamaldehyde. Eur J Pain 2012; 17:724-34. [DOI: 10.1002/j.1532-2149.2012.00239.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2012] [Indexed: 11/11/2022]
Affiliation(s)
- B. Averbeck
- Department of Physiology; University of Munich; Germany
| | - F. Rucker
- Department of Physiology; University of Munich; Germany
| | - R.P. Laubender
- Institute of Medical Informatics, Biometry and Epidemiology; University of Munich; Germany
| | - R.W. Carr
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty Mannheim; Heidelberg University; Mannheim; Germany
| |
Collapse
|
115
|
Abstract
Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis. Primary afferent sensory neurons that innervate target organs release inflammatory neuropeptides in the local area of tissue damage to promote vascular leakage, the recruitment of immune cells, and hypersensitivity to mechanical and thermal stimuli. TRPA1 channels are required for neuronal excitation, the release of inflammatory neuropeptides, and subsequent pain hypersensitivity. TRPA1 is also activated by the release of inflammatory agents from nonneuronal cells in the area of tissue injury or disease. This dual function of TRPA1 as a detector and instigator of inflammatory agents makes TRPA1 a gatekeeper of chronic inflammatory disorders of the skin, airways, and gastrointestinal tract.
Collapse
Affiliation(s)
- Diana M Bautista
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
116
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
117
|
Klein AH, Sawyer CM, Takechi K, Davoodi A, Ivanov MA, Carstens MI, Carstens E. Topical hindpaw application of L-menthol decreases responsiveness to heat with biphasic effects on cold sensitivity of rat lumbar dorsal horn neurons. Neuroscience 2012; 219:234-42. [PMID: 22687951 PMCID: PMC3402706 DOI: 10.1016/j.neuroscience.2012.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/17/2022]
Abstract
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glabrous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10%, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations.
Collapse
Affiliation(s)
- Amanda H. Klein
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Carolyn M. Sawyer
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Kenichi Takechi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Auva Davoodi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Margaret A. Ivanov
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| |
Collapse
|
118
|
Vallin KS, Sterky KJ, Nyman E, Bernström J, From R, Linde C, Minidis AB, Nolting A, Närhi K, Santangelo EM, Sehgelmeble FW, Sohn D, Strindlund J, Weigelt D. N-1-Alkyl-2-oxo-2-aryl amides as novel antagonists of the TRPA1 receptor. Bioorg Med Chem Lett 2012; 22:5485-92. [DOI: 10.1016/j.bmcl.2012.07.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022]
|
119
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
120
|
Li JX, Zhang Y. Emerging drug targets for pain treatment. Eur J Pharmacol 2012; 681:1-5. [DOI: 10.1016/j.ejphar.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/25/2011] [Accepted: 01/18/2012] [Indexed: 11/30/2022]
|
121
|
Hans M, Wilhelm M, Swandulla D. Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation. Chem Senses 2012; 37:463-9. [PMID: 22281529 PMCID: PMC3348174 DOI: 10.1093/chemse/bjr128] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs.
Collapse
Affiliation(s)
- M Hans
- Department of Physiology, University of Bonn, Nussallee 11, D-53115 Bonn, Germany.
| | | | | |
Collapse
|
122
|
Test Order of Quantitative Sensory Testing Facilitates Mechanical Hyperalgesia in Healthy Volunteers. THE JOURNAL OF PAIN 2012; 13:73-80. [DOI: 10.1016/j.jpain.2011.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 10/10/2011] [Accepted: 10/18/2011] [Indexed: 11/21/2022]
|
123
|
|
124
|
Behavioral Testing of the Effects of Thermosensitive TRP Channel Agonists on Touch, Temperature, and Pain Sensations. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
125
|
Abstract
On analyzing the traditional societies' plant lore by treatment and plant categories, one cannot but notice the greater weight given to treatment of digestive disturbances and ailments compared to modern Western pharmacopoeias, and the blurred boundaries between medicines and foods, in contrast to the clear-cut distinction made in contemporary industrialized societies. Hence, there is an interest in exploring the issue of multifunctional food and traditional ingredients with digestive properties. In this paper, I examine the coevolutionary foundations for digestive activities, the problems and ambiguities that emerge in the analysis of traditional data, and the possible biological mechanisms underlying the actions of bitter, aromatic and pungent compounds. After these premises, this paper presents a short review of those plants with a significant body of research supporting the claims that they have a digestive action, with particular emphasis on clinical data. The plants that have a substantial body of data in support of their digestion-enhancing activities mainly belong to one of three groups: bitter, aromatic and pungent plants. Amongst the most important we can find ginger, peppermint, aniseed and fennel, citrus fruits, dandelion and artichoke, melissa and chamomile, but many more have a significant body of experimental data available.
Collapse
Affiliation(s)
- Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association, 25 Lincoln Close, Tewkesbury, GL20 5TY, UK.
| |
Collapse
|
126
|
Bodkin JV, Brain SD. Transient receptor potential ankyrin 1: emerging pharmacology and indications for cardiovascular biology. Acta Physiol (Oxf) 2011; 203:87-98. [PMID: 20950342 DOI: 10.1111/j.1748-1716.2010.02203.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transient receptor potential anykrin 1 (TRPA1) is a member of the TRP superfamily, representing the sole member of the TRPA subfamily. It has many identified endogenous and exogenous agonists, comprising largely of chemical irritants and products of oxidative stress. Classically located on sensory neurone endings, TRPA1 has developed a strong presence in pain and inflammatory studies, where it is now becoming an intriguing clinical drug target. TRPA1 is increasingly recognized in a growing number of neuronal and non-neuronal locations with expanding expression and activity profiles providing evidence of a role for TRPA1 in other systems. Interest in discovering the pharmacological and functional roles of TRPA1 is increasing and diversifying into many areas. Historically, compounds now known as TRPA1 agonists have demonstrated cardiovascular activity, modulating activities in both the heart and the vasculature. Now TRPA1 has been identified as the receptor via which these compounds can act, these studies are being revisited and expanded on using current techniques. It is therefore timely to review the current knowledge of TRPA1 receptor presence and activities of relevance to the cardiovascular system, summarizing findings to date and identifying potential areas for future investigation.
Collapse
Affiliation(s)
- J V Bodkin
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK
| | | |
Collapse
|
127
|
Recent advances in the biology and medicinal chemistry of TRPA1. Future Med Chem 2011; 2:843-58. [PMID: 21426205 DOI: 10.4155/fmc.10.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is a nonselective cation channel that is highly expressed in small-diameter sensory neurons, where it functions as a polymodal receptor, responsible for detecting potentially harmful chemicals, mechanical forces and temperatures. TRPA1 is also activated and/or sensitized by multiple endogenous inflammatory mediators. As such, TRPA1 likely mediates the pain and neurogenic inflammation caused by exposure to reactive chemicals. In addition, it is also possible that this channel may mediate some of the symptoms of chronic inflammatory conditions such as asthma. We review recent advances in the biology of TRPA1 and summarize the evidence for TRPA1 as a therapeutic drug target. In addition, we provide an update on TRPA1 medicinal chemistry and the progress in the search for novel TRPA1 antagonists.
Collapse
|
128
|
A novel human volunteer pain model using contact heat evoked potentials (CHEP) following topical skin application of transient receptor potential agonists capsaicin, menthol and cinnamaldehyde. J Clin Neurosci 2011; 18:926-32. [DOI: 10.1016/j.jocn.2010.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 01/06/2023]
|
129
|
Klein A, Carstens MI, Carstens E. Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons. J Neurophysiol 2011; 106:1078-88. [PMID: 21653727 DOI: 10.1152/jn.00302.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated whether intradermal cheek injection of pruritogens or algogens differentially elicits hindlimb scratches or forelimb wipes in Sprague-Dawley rats, as recently reported in mice. We also investigated responses of primary sensory trigeminal ganglion (TG) and dorsal root ganglion (DRG) cells, as well as second-order neurons in trigeminal subnucleus caudalis (Vc), to pruritic and algesic stimuli. 5-HT was the most effective chemical to elicit dose-dependent bouts of hindlimb scratches directed to the cheek, with significantly less forelimb wiping, consistent with itch. Chloroquine also elicited significant scratching but not wiping. Allyl isothiocyanate (AITC; mustard oil) elicited dose-dependent wiping with no significant scratching. Capsaicin elicited equivalent numbers of scratch bouts and wipes, suggesting a mixed itch and pain sensation. By calcium imaging, ∼ 6% of cultured TG and DRG cells responded to 5-HT. The majority of 5-HT-sensitive cells also responded to chloroquine, AITC, and/or capsaicin, and one-third responded to histamine. Using a chemical search strategy, we identified single units in Vc that responded to intradermal cheek injection of 5-HT. Most were wide dynamic range (WDR) or nociceptive specific (NS), and a few were mechanically insensitive. The large majority additionally responded to AITC and/or capsaicin and thus were not pruritogen selective. These results suggest that primary and second-order neurons responsive to pruritogens and algogens may utilize a population coding mechanism to distinguish between itch and pain, sensations that are behaviorally manifested by distinct hindlimb scratching and forelimb wiping responses.
Collapse
Affiliation(s)
- Amanda Klein
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
130
|
Gibson PG, Ryan NM. Cough pharmacotherapy: current and future status. Expert Opin Pharmacother 2011; 12:1745-55. [PMID: 21524236 DOI: 10.1517/14656566.2011.576249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chronic cough is responsible for a significant illness burden in the community. Refractory cough causes substantial quality-of-life impairment in people with this problem. Neuromodulators for sensory neuropathic cough and new compounds to block transient receptor potential (TRP) receptors hold promise for chronic cough and upper airway hypersensitivity. AREAS COVERED The authors examine current evidence on the new concepts of chronic cough that relate to the study of idiopathic/refractory cough, the role of central nervous system control of cough and the role of laryngeal irritability and sensory neuropathy in cough. Compounds in development to block TRP receptors, treatment for a neuropathic disorder with neuromodulators and cough suppression with opioids, especially codeine and morphine, are investigated. Relevant randomized control trials and case reports were identified through a PubMed search of English-language literature referring to these concepts. EXPERT OPINION The concept that sensory neuropathic disorder may underlie some cases of chronic cough is useful in characterizing cough, understanding its mechanisms and guiding drug development.
Collapse
Affiliation(s)
- Peter G Gibson
- University of Newcastle, School of Medicine and Public Health, Centre for Asthma and Respiratory Diseases, Newcastle, NSW 2308, Australia.
| | | |
Collapse
|
131
|
Klein AH, Iodi Carstens M, McCluskey TS, Blancher G, Simons CT, Slack JP, Furrer S, Carstens E. Novel menthol-derived cooling compounds activate primary and second-order trigeminal sensory neurons and modulate lingual thermosensitivity. Chem Senses 2011; 36:649-58. [PMID: 21511802 DOI: 10.1093/chemse/bjr029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We presently investigated 2 novel menthol derivatives GIV1 and GIV2, which exhibit strong cooling effects. In previous human psychophysical studies, GIV1 delivered in a toothpaste medium elicited a cooling sensation that was longer lasting compared with GIV2 and menthol carboxamide (WS-3). In the current study, we investigated the molecular and cellular effects of these cooling agents. In calcium flux studies of TRPM8 expressed in HEK cells, both GIV1 and GIV2 were approximately 40- to 200-fold more potent than menthol and WS-3. GIV1 and GIV2 also activated TRPA1 but at levels that were 400 times greater than those required for TRPM8 activation. In calcium imaging studies, subpopulations of cultured rat trigeminal ganglion and dorsal root ganglion cells responded to GIV1 and/or GIV2; the majority of these were also activated by menthol and some were additionally activated by the TRPA1 agonist cinnamaldehyde and/or the TRPV1 agonist capsaicin. We also made in vivo single-unit recordings from cold-sensitive neurons in rat trigeminal subnucleus caudalis (Vc). GIV 1 and GIV2 directly excited some Vc neurons, GIV1 significantly enhanced their responses to cooling, and both GIV1 and GIV2 reduced responses to noxious heat. These novel cooling compounds provide additional molecular tools to investigate the neural processes of cold sensation.
Collapse
Affiliation(s)
- Amanda H Klein
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa. Pain 2011; 151:516-521. [PMID: 20817356 DOI: 10.1016/j.pain.2010.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/01/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
Abstract
The study was designed to provide a topographical map of the sensitivity of the human nasal respiratory epithelium towards trigeminal chemosensory stimuli. As an electrophysiological measure of intranasal trigeminal activation at the level of the epithelium, we used the so-called negative mucosa potential (NMP), a measure that represents the sum of generator potentials of trigeminal receptor neurons after chemical stimulation. Sixty subjects participated (30 men and 30 women; mean age 23.5 years). Measurements were made in response to stimulation with menthol, CO(2), ethanol, and cinnamaldehyde, which are known to activate trigeminal receptors to various degrees. Recordings of the NMP were made from five intranasal sites: the anterior septum, the posterior septum, the tip of the middle turbinate, the tip of the lower turbinate, and the lateral side wall of the posterior nasal cavity. The recording electrode was positioned under endoscopic control. The largest NMP amplitudes were recorded at the anterior septum in response to stimulation with CO(2). Comparing all recording sites, significant differences were observed between responses at the posterior septum and the lateral side wall of the posterior nasal cavity in response to stimulation by ethanol, menthol, and CO(2). These findings suggest that the presence of topographical and chemosensory differences in the responsiveness of the nasal mucosa to irritants.
Collapse
|
133
|
Liu Y, Qin N. TRPM8 in health and disease: cold sensing and beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:185-208. [PMID: 21290296 DOI: 10.1007/978-94-007-0265-3_10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on TRPM8, one of the approximately 30 members of the diverse family of transient receptor potential (TRP) ion channels. Initially identified from the prostate, TRPM8 has been studied more extensively in the sensory system and is best established as a major transducer of environmental cold temperatures. An increasing body of evidence suggests that it may also be an important player in various chronic conditions, such as inflammatory/neuropathic pain and prostate cancer. Small molecule compounds that selectively modulate TRPM8 are beginning to emerge and will be critically valuable for better understanding the role of this channel in both physiological and pathological states, on which the prospects of TRPM8 as a viable therapeutic target rest.
Collapse
Affiliation(s)
- Yi Liu
- Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, CA 92121, USA.
| | | |
Collapse
|
134
|
Maffei ME, Gertsch J, Appendino G. Plant volatiles: Production, function and pharmacology. Nat Prod Rep 2011; 28:1359-80. [DOI: 10.1039/c1np00021g] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
135
|
Kleggetveit IP, Jørum E. Large and Small Fiber Dysfunction in Peripheral Nerve Injuries With or Without Spontaneous Pain. THE JOURNAL OF PAIN 2010; 11:1305-10. [DOI: 10.1016/j.jpain.2010.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/23/2010] [Accepted: 03/05/2010] [Indexed: 11/15/2022]
|
136
|
Klein AH, Carstens MI, Zanotto KL, Sawyer CM, Ivanov M, Cheung S, Carstens E. Self- and cross-desensitization of oral irritation by menthol and cinnamaldehyde (CA) via peripheral interactions at trigeminal sensory neurons. Chem Senses 2010; 36:199-208. [PMID: 21059698 DOI: 10.1093/chemse/bjq115] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Menthol and cinnamaldehyde (CA) are plant-derived spices commonly used in oral hygiene products, chewing gum, and many other applications. However, little is known regarding their sensory interactions in the oral cavity. We used a human psychophysics approach to investigate the temporal dynamics of oral irritation elicited by sequential application of menthol and/or CA, and ratiometric calcium imaging methods to investigate activation of rat trigeminal ganglion (TG) cells by these agents. Irritancy decreased significantly with sequential oral application of menthol and CA (self-desensitization). Menthol cross-desensitized irritation elicited by CA, and vice versa, over a time course of at least 60 min. Seventeen and 19% of TG cells were activated by menthol and CA, respectively, with ∼50% responding to both. TG cells exhibited significant self-desensitization to menthol applied at a 5, but not 10, min interval. They also exhibited significant self-desensitization to CA at 400 but not 200 μM. Menthol cross-desensitized TG cell responses to CA. CA at a concentration of 400 but not 200 μM also cross-desensitized menthol-evoked responses. The results support the argument that the perceived reductions in oral irritancy and cross-interactions between menthol and CA and menthol observed (at least at short interstimulus intervals) can be largely accounted for by the properties of trigeminal sensory neurons innervating the tongue.
Collapse
Affiliation(s)
- Amanda H Klein
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Ma Q. Labeled lines meet and talk: population coding of somatic sensations. J Clin Invest 2010; 120:3773-8. [PMID: 21041959 DOI: 10.1172/jci43426] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The somatic sensory system responds to stimuli of distinct modalities, including touch, pain, itch, and temperature sensitivity. In the past century, great progress has been made in understanding the coding of these sensory modalities. From this work, two major features have emerged. First, there are specific neuronal circuits or labeled lines transmitting specific sensory information from the skin to the brain. Second, the generation of specific sensations often involves crosstalk among distinct labeled lines. These features suggest that population coding is the mechanism underlying somatic sensation.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
138
|
NPPB structure-specifically activates TRPA1 channels. Biochem Pharmacol 2010; 80:113-21. [DOI: 10.1016/j.bcp.2010.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
|
139
|
Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD. Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovasc Res 2010; 87:760-8. [PMID: 20442136 DOI: 10.1093/cvr/cvq118] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS The aim of the study is to investigate transient receptor potential ankyrin 1 (TRPA1)-induced responses in the vasculature and on blood pressure and heart rate (HR), in response to TRPA1 agonists using wild-type (WT) and TRPA1 knockout (KO) mice. METHODS AND RESULTS TRPA1 agonists allyl isothiocyanate and cinnamaldehyde (CA) significantly increased blood flow in the skin of anaesthetized WT, but not in TRPA1 KO mice. CA also induced TRPA1-dependent relaxation of mesenteric arteries. Intravenously injected CA induced a transient hypotensive response accompanied by decreased HR that was, depending on genotype and dose, followed by a more sustained dose-dependent pressor response (10-320 micromol/kg). CA (80 micromol/kg) induced a depressor response that was significantly less in TRPA1 KO mice, with minimal pressor effects. The pressor response of a higher CA dose (320 micromol/kg) was observed in WT but not in TRPA1 KO mice, indicating involvement of TRPA1. Experiments using TRP vanilloid 1 (TRPV1) KO and calcitonin gene-related peptide (CGRP) KO mice provided little evidence for the involvement of TRPV1 or CGRP, nor did blocking substance P receptors affect responses. However, the cholinergic antagonist atropine sulphate (5 mg/kg) significantly inhibited the depressor response and slowed HR with CA (80 micromol/kg), but had no effect on pressor responses. The pressor response remained unaffected, even in the presence of the ganglion blocker hexamethonium bromide (1 mg/kg). The alpha-adrenergic blocker prazosin hydrochloride (1 mg/kg) significantly inhibited both components, but not slowed HR. CONCLUSION TRPA1 is involved in mediating vasodilation. TRPA1 can also influence changes in blood pressure of possible relevance to autonomic system reflexes and potentially to vasovagal/neurocardiogenic syncope disorders.
Collapse
Affiliation(s)
- Gabor Pozsgai
- King's College London British Heart Foundation Centre, Cardiovascular Division and Centre of Integrative Biomedicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
140
|
Klein AH, Sawyer CM, Carstens MI, Tsagareli MG, Tsiklauri N, Carstens E. Topical application of L-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats. Behav Brain Res 2010; 212:179-86. [PMID: 20398704 DOI: 10.1016/j.bbr.2010.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/03/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Menthol is used in analgesic balms and also in foods and oral hygiene products for its fresh cooling sensation. Menthol enhances cooling by interacting with the cold-sensitive thermoTRP channel TRPM8, but its effect on pain is less well understood. We presently used behavioral methods to investigate effects of topical menthol on thermal (hot and cold) pain and innocuous cold and mechanical sensitivity in rats. Menthol dose-dependently increased the latency for noxious heat-evoked withdrawal of the treated hindpaw with a weak mirror-image effect, indicating antinociception. Menthol at the highest concentration (40%) reduced mechanical withdrawal thresholds, with no effect at lower concentrations. Menthol had a biphasic effect on cold avoidance. At high concentrations (10% and 40%) menthol reduced avoidance of colder temperatures (15 degrees C and 20 degrees C) compared to 30 degrees C, while at lower concentrations (0.01-1%) menthol enhanced cold avoidance. In a -5 degrees C cold plate test, 40% menthol significantly increased the nocifensive response latency (cold hypoalgesia) while lower concentrations were not different from vehicle controls. These results are generally consistent with neurophysiological and human psychophysical data and support TRPM8 as a potential peripheral target of pain modulation.
Collapse
Affiliation(s)
- Amanda H Klein
- Section of Neurobiology, Physiology and Behavior, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
141
|
Tsagareli MG, Tsiklauri N, Zanotto KL, Carstens MI, Klein AH, Sawyer CM, Gurtskaia G, Abzianidze E, Carstens E. Behavioral evidence of thermal hyperalgesia and mechanical allodynia induced by intradermal cinnamaldehyde in rats. Neurosci Lett 2010; 473:233-6. [PMID: 20219630 PMCID: PMC2853256 DOI: 10.1016/j.neulet.2010.02.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/19/2010] [Accepted: 02/21/2010] [Indexed: 01/25/2023]
Abstract
TRPA1 agonists cinnamaldehyde (CA) and mustard oil (allyl isothiocyanate=AITC) induce heat hyperalgesia and mechanical allodynia in human skin, and sensitize responses of spinal and trigeminal dorsal horn neurons to noxious skin heating in rats. TRPA1 is also implicated in cold nociception. We presently used behavioral methods to investigate if CA affects sensitivity to thermal and mechanical stimuli in rats. Unilateral intraplantar injection of CA (5-20%) induced a significant, concentration-dependent reduction in latency for ipsilateral paw withdrawal from a noxious heat stimulus, peaking (61.7% of pre-injection baseline) by 30 min with partial recovery at 120 min. The highest dose of CA also significantly reduced the contralateral paw withdrawal latency. CA significantly reduced mechanical withdrawal thresholds of the injected paw that peaked sooner (3 min) and was more profound (44.4% of baseline), with no effect contralaterally. Bilateral intraplantar injections of CA resulted in a significant cold hyperalgesia (cold plate test) and a weak enhancement of innocuous cold avoidance (thermal preference test). The data are consistent with roles for TRPA1 in thermal (hot and cold) hyperalgesia and mechanical allodynia.
Collapse
Affiliation(s)
- Merab G Tsagareli
- Department of Neurophysiology, Beritashvili Inst. Physiology, Tbilisi, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol Pain 2010; 6:14. [PMID: 20205719 PMCID: PMC2841076 DOI: 10.1186/1744-8069-6-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background There is growing evidence supporting a role for TRPA1 receptors in the neurotransmission of peripheral mechanical stimulation. In order to enhance understanding of TRPA1 contributions to mechanotransmission, we examined the effects a selective TRPA1 receptor antagonist, A-967079, on spinal neuronal activity following peripheral mechanical stimulation in uninjured, CFA-inflamed, and osteoarthritc (OA) rats. Results Systemic injection of A-967079 (30 μmol/kg, i.v.) decreased the responses of wide dynamic range (WDR), and nociceptive specific (NS) neurons following noxious pinch stimulation of the ipsilateral hind paw in uninjured and CFA-inflamed rats. Similarly, A-967079 reduced the responses of WDR neurons to high-intensity mechanical stimulation (300 g von Frey hair) of the knee joint in both OA and OA-sham rats. WDR neuronal responses to low-intensity mechanical stimulation (10 g von Frey hair) were also reduced by A-967079 administration to CFA-inflamed rats, but no effect was observed in uninjured rats. Additionally, the spontaneous activity of WDR neurons was decreased after A-967079 injection in CFA-inflamed rats but was unaltered in uninjured, OA, and OA-sham animals. Conclusions Blockade of TRPA1 receptors disrupts transmission of high-intensity mechanical stimulation to the spinal cord in both uninjured and injured rats indicating that TRPA1 receptors have an important role in noxious mechanosensation in both normal and pathological conditions. TRPA1 receptors also contribute to the transmission of low-intensity mechanical stimulation, and to the modulation of spontaneous WDR firing, but only after an inflammatory injury.
Collapse
Affiliation(s)
- Steve McGaraughty
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|
143
|
Dunham J, Leith J, Lumb B, Donaldson L. Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors. Neuroscience 2010; 165:1412-9. [PMID: 19961905 PMCID: PMC2860241 DOI: 10.1016/j.neuroscience.2009.11.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 01/25/2023]
Abstract
The role of transient receptor potential channel A1 (TRPA1) in noxious cold sensation remains unclear. Some data support the hypothesis that TRPA1 is a transducer of noxious cold whilst other data contest it. In this study we investigated the role of TRPA1 in cold detection in cutaneous nociceptors in vivo using complementary experimental approaches. We used noxious withdrawal reflex electromyography, and single fibre recordings in vivo, to test the hypothesis that TRPA1-expressing primary afferents mediate noxious cold responses in anaesthetised rats. TRPV1 and TRPM8 agonists sensitise their cognate receptors to heat and cold stimuli respectively. Herein we show that the TRPA1 agonist cinnamaldehyde applied to the skin in anaesthetised rats did not sensitise noxious cold evoked hind limb withdrawal. In contrast, cinnamaldehyde did sensitise the C fibre-mediated noxious heat withdrawal, indicated by a significant drop in the withdrawal temperature. TRPA1 agonist thus sensitised the noxious reflex withdrawal to heat, but not cold. Thermal stimuli also sensitise transient receptor potential (TRP) channels to agonist. Activity evoked by capsaicin in teased primary afferent fibres showed a significant positive correlation with receptive field temperature, in both normal and Freund's complete adjuvant-induced cutaneous inflammation. Altering the temperature of the receptive field did not modulate TRPA1 agonist evoked-activity in cutaneous primary afferents, in either normal or inflamed skin. In addition, block of the TRPA1 channel with Ruthenium Red did not inhibit cold evoked activity in either cinnamaldehyde sensitive or insensitive cold responsive nociceptors. In cinnamaldehyde-sensitive-cold-sensitive afferents, although TRPA1 agonist-evoked activity was totally abolished by Ruthenium Red, cold evoked activity was unaffected by channel blockade. We conclude that these results do not support the hypothesis that TRPA1-expressing cutaneous afferents play an important role in noxious cold responses.
Collapse
Affiliation(s)
| | | | | | - L.F. Donaldson
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
144
|
Campero M, Bostock H. Unmyelinated afferents in human skin and their responsiveness to low temperature. Neurosci Lett 2010; 470:188-92. [DOI: 10.1016/j.neulet.2009.06.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|
145
|
Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 2010; 6:4. [PMID: 20092626 PMCID: PMC2822744 DOI: 10.1186/1744-8069-6-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Background The cooling agents menthol and icilin act as agonists at TRPM8 and TRPA1. In vitro, activation of TRPM8 by icilin and cold, but not menthol, is dependent on the activity of a sub-type of phospholipase A2, iPLA2. Lysophospholipids (e.g. LPC) produced by PLA2 activity can also activate TRPM8. The role of TRPA1 as a primary cold sensor in vitro is controversial, although there is evidence that TRPA1 plays a role in behavioural responses to noxious cold stimuli. In this study, we have investigated the roles of TRPM8 and TRPA1 and the influence of iPLA2 on noxious cold sensitivities in naïve animals and after local administration of menthol, icilin and LPC. The roles of the channels in cold sensitivity were investigated in mice lacking either TRPM8 (Trpm8-/-) or TRPA1 (Trpa1-/-). Results Intraplantar administration of icilin evoked a dose-dependent increase in sensitivity to a 10°C stimulus that was inhibited by iPLA2 inhibition with BEL. In contrast the cold hypersensitivities elicited by intraplantar menthol and LPC were not inhibited by BEL treatment. BEL had no effect on basal cold sensitivity and mechanical hypersensitivities induced by the TRPV1 agonist, capsaicin, and the P2X3 agonist α,β-methylene ATP. Both Trpm8-/- and Trpa1-/- mice showed longer latencies for paw withdrawal from a 10°C stimulus than wild-type littermates. Cold hypersensitivities induced by either icilin or LPC were absent in Trpm8-/- mice but were retained in Trpa1-/- mice. In contrast, cold hypersensitivity evoked by menthol was present in Trpm8-/- mice but was lost in Trpa1-/- mice. Conclusions The findings that iPLA2 inhibition blocked the development of cold hypersensitivity after administration of icilin but failed to affect menthol-induced hypersensitivity agree well with our earlier in vitro data showing a differential effect of iPLA2 inhibition on the agonist activities of these agents. The ability of LPC to induce cold hypersensitivity supports a role for iPLA2 in modulating TRPM8 activity in vivo. Studies on genetically modified mice demonstrated that the effects of icilin and LPC were mediated by TRPM8 and not TRPA1. In contrast, menthol-induced cold hypersensitivity was dependent on expression of TRPA1 and not TRPM8.
Collapse
Affiliation(s)
- Clive Gentry
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | | | |
Collapse
|
146
|
Altis K, Schmidtko A, Angioni C, Kuczka K, Schmidt H, Geisslinger G, Lötsch J, Tegeder I. Analgesic efficacy of tramadol, pregabalin and ibuprofen in menthol-evoked cold hyperalgesia. Pain 2009; 147:116-21. [PMID: 19762153 DOI: 10.1016/j.pain.2009.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/28/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
Abstract
We investigated the analgesic efficacy of single doses of ibuprofen, tramadol and pregabalin in menthol-evoked cold pain in a randomized, placebo-controlled four-way cross-over study in 20 healthy volunteers. Tramadol 100mg significantly reduced menthol-evoked cold hyperalgesia. Effects of ibuprofen 600mg and pregabalin 100mg were not significant. Analgesic effects of tramadol were associated with minor side effects, particularly fatigue and nausea. Minor side effects also accompanied analgesic effects of pregabalin and ibuprofen in subjects responding to these drugs, mostly fatigue, dizziness and difficulties to concentrate for pregabalin and gastric upset for ibuprofen. Five out of 18 subjects had a 50% reduction of cold hyperalgesia with tramadol, three of these additionally responded to pregabalin, and two with all three drugs. The numbers needed to treat (NNT >or= 50% for tramadol 4.5, for pregabalin 9) largely agree with the reported efficacy of tramadol and of moderate dosages of pregabalin in patients with peripheral or central neuropathic pain suggesting that menthol-evoked cold pain hypersensitivity may represent a valid model for neuropathic pain, particularly cold allodynia.
Collapse
Affiliation(s)
- Kosta Altis
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
147
|
C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain 2009; 147:46-53. [DOI: 10.1016/j.pain.2009.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/08/2009] [Accepted: 07/22/2009] [Indexed: 11/15/2022]
|
148
|
Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol 2009; 587:5633-52. [PMID: 19822550 DOI: 10.1113/jphysiol.2009.176040] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Differential A-fibre block of human peripheral nerves changes the sensation evoked by innocuous cooling (approximately 24 degrees C) of the skin from 'cold' to 'hot' or 'burning', and this has been attributed to activity in unidentified unmyelinated fibres that is normally masked or inhibited by activity in Adelta cold fibres. Application of the TRPM8 agonist menthol to the skin evokes 'burning/stinging' as well as 'cold', and the unpleasant sensations are also enhanced by A-fibre block. In this study we used microneurography to search for C fibres in human skin activated by cooling and menthol, which could be responsible for these phenomena. Afferent C fibres were classified by activity-dependent slowing as Type 1A (polymodal nociceptor), Type 1B (mechanically insensitive nociceptor) or Type 2 (cold sensitive), and their responses to heating and cooling ramps were measured before and after topical application of menthol preparations (2-50%). The only C fibres activated by menthol were the Type 2 fibres, which discharged vigorously with innocuous cooling and were strongly activated and sensitized to cooling by menthol. Unlike an Adelta cold fibre, they continued to discharge at skin temperatures down to 0 degrees C, and most (13/15) were also activated by heating. We propose that the Type 2 C fibres, although resembling Adelta cold fibres in their responses to innocuous cooling and menthol, have a more complex sensory function, colouring with a 'hot-burning' quality the perceptions of low and high temperatures. Their bimodal thermoreceptive properties may help account for several puzzling psychophysical phenomena, such as 'innocuous cold nociception', 'paradoxical heat' and the thermal grill illusion, and also for some neuropathic pains.
Collapse
Affiliation(s)
- M Campero
- Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | | | | | | |
Collapse
|
149
|
Caspani O, Zurborg S, Labuz D, Heppenstall PA. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 2009; 4:e7383. [PMID: 19812688 PMCID: PMC2753652 DOI: 10.1371/journal.pone.0007383] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/14/2009] [Indexed: 11/18/2022] Open
Abstract
Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI) model of neuropathic pain in mice. In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced. Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.
Collapse
Affiliation(s)
- Ombretta Caspani
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Sandra Zurborg
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Dominika Labuz
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Paul A. Heppenstall
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- * E-mail:
| |
Collapse
|
150
|
Sawyer CM, Carstens MI, Carstens E. Mustard oil enhances spinal neuronal responses to noxious heat but not cooling. Neurosci Lett 2009; 461:271-4. [PMID: 19545607 PMCID: PMC2733335 DOI: 10.1016/j.neulet.2009.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/29/2009] [Accepted: 06/13/2009] [Indexed: 10/20/2022]
Abstract
The TRPA1 agonist mustard oil (allyl isothiocyanate=AITC) induces heat hyperalgesia and mechanical allodynia in human skin and sensitizes rat spinal wide dynamic range (WDR) neuronal responses to noxious skin heating. We presently used electrophysiological methods to investigate if AITC affects the responsiveness of individual spinal WDR neurons to intense skin cooling. Recordings were made from cold-sensitive WDR neurons in lamina I and deeper dorsal horn; 21/23 also responded to noxious skin heating. Topical application of AITC excited 8/18 units and significantly enhanced their responses to noxious heat while not significantly affecting responses to the cold stimulus. Vehicle (mineral oil) had no effect on thermal responses. The data confirm a role for the TRPA1 agonist AITC in enhancing heat nociception without significantly affecting cold sensitivity.
Collapse
Affiliation(s)
- Carolyn M Sawyer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|