101
|
Parmar S, Stingl JC, Huber-Wechselberger A, Kainz A, Renner W, Langsenlehner U, Krippl P, Brockmöller J, Haschke-Becher E. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer. Breast Cancer Res 2011; 13:R57. [PMID: 21658222 PMCID: PMC3218946 DOI: 10.1186/bcr2894] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/15/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Epirubicin is a common adjuvant treatment for breast cancer. It is mainly eliminated after glucuronidation through uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7). The present study aimed to describe the impact of the UGT2B7(His268Tyr) polymorphism on invasive disease-free survival in breast cancer patients after epirubicin treatment. METHODS This is a pharmacogenetic study based on samples collected from 745 breast cancer patients of the Austrian Tumor of breast tissue: Incidence, Genetics, and Environmental Risk factors (TIGER) cohort who did not present metastases at baseline. This cohort included 205 women with epirubicin-based combination chemotherapy, 113 patients having received chemotherapy without epirubicin and 427 patients having received no chemotherapy at all. Of the epirubicin-treated subgroup, 120 were subsequently treated with tamoxifen. For all women UGT2B7(His268Tyr) was genotyped. Invasive disease-free survival was assessed using Kaplan-Meier and Cox's proportional hazard regression analysis. RESULTS Among the 205 epirubicin-treated patients, carriers of two UGT2B7(268Tyr) alleles had a mean invasive disease-free survival of 8.6 (95% confidence interval (CI) 7.9 to 9.3) years as compared to 7.5 (95% CI 6.9 to 8.0) years in carriers of at least one UGT2B7(268His) allele (adjusted hazard ratio (HR) = 2.64 (95% CI 1.22 to 5.71); P = 0.014). In addition, the impact of the UGT2B7(His268Tyr) polymorphism became even more pronounced in patients subsequently treated with tamoxifen (adjusted HR = 5.22 (95% CI 1.67 to 26.04); P = 0.015) whereas no such difference in invasive disease-free survival was observed in patients not receiving epirubicin. CONCLUSIONS Breast cancer patients carrying the UGT2B7(268Tyr/Tyr) genotype may benefit most from adjuvant epirubicin-based chemotherapy. These results warrant confirmation in further studies.
Collapse
Affiliation(s)
- Sumit Parmar
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University Ulm, Helmholtzstrasse 20, Ulm, 89081, Germany
| | - Julia Carolin Stingl
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University Ulm, Helmholtzstrasse 20, Ulm, 89081, Germany
| | - Ariana Huber-Wechselberger
- Institute of Medical and Laboratory Diagnostics, Elisabethinen Hospital Linz, Fadingerstrasse 1, Linz, 4020, Austria
| | - Alexander Kainz
- Department of Nephrology and Dialysis, Medical University Vienna, Währingergürtel 18-20, Vienna, 1090, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Auenbruggerplatz 15, Graz, 8036, Austria
| | - Uwe Langsenlehner
- Department of Internal Medicine, Hospital of Fürstenfeld, Krankenhausgasse 1, Fürstenfeld, 8280, Austria
| | - Peter Krippl
- Department of Internal Medicine, Hospital of Fürstenfeld, Krankenhausgasse 1, Fürstenfeld, 8280, Austria
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Göttingen, Robert-Koch-Strasse 40, Göttingen, 37075, Germany
| | - Elisabeth Haschke-Becher
- Institute of Medical and Laboratory Diagnostics, Elisabethinen Hospital Linz, Fadingerstrasse 1, Linz, 4020, Austria
- Christian Doppler Clinic, Private Paracelsus Medical University Salzburg, Ignaz Harrerstrasse 79, Salzburg, 5020, Austria
| |
Collapse
|
102
|
Abstract
Interindividual variability in the disposition and action associated with similar doses of a given medication is an inherent characteristic of both adult and pediatric populations. Genotype-phenotype relationships in infants and children must take into account the role that ontogeny plays in producing variability in both pharmacokinetics and pharmacodynamics. This review explores pharmacogenomics in the context of ontogeny and relates these to the expression of drug-metabolizing enzymes and transporters and the consequent effect on the exposure-response relationship in the early years of life.
Collapse
Affiliation(s)
- Kathleen A Neville
- Department of Pediatrics, University of Missouri - Kansas City, Kansas City, MO, USA.
| | | | | | | |
Collapse
|
103
|
Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit 2011; 32:688-99. [PMID: 21068645 DOI: 10.1097/ftd.0b013e3181f6502d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclosporine, tacrolimus, sirolimus, and mycophenolate mofetil are the primary immunosuppressants used on pediatric organ transplantation. Therapeutic drug monitoring is used in daily practice, because their clinical use is hampered by a narrow therapeutic index and large variability. Tailoring immunosuppressive therapy to the individual patient to optimize efficacy and minimize toxicity is therefore essential. Because research in pharmacogenetics already identified polymorphisms impacting their pharmacokinetic parameters in adults, developmental pharmacogenetics of immunosuppressants holds promises for optimizing dosage regimens and improving clinical outcome in children. In this review, we focus on the impact of age and pharmacogenetics on these immunosuppressants in children undergoing organ transplantation.
Collapse
|
104
|
Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol 2011; 40:575-619. [PMID: 20662711 DOI: 10.3109/10408441003742895] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic polymorphisms in xenobiotic metabolizing enzymes can have profound influence on enzyme function, with implications for chemical clearance and internal dose. The effects of polymorphisms have been evaluated for certain therapeutic drugs but there has been relatively little investigation with environmental toxicants. Polymorphisms can also affect the function of host defense mechanisms and thus modify the pharmacodynamic response. This review and analysis explores the feasibility of using polymorphism data in human health risk assessment for four enzymes, two involved in conjugation (uridine diphosphoglucuronosyltransferases [UGTs], sulfotransferases [SULTs]), and two involved in detoxification (microsomal epoxide hydrolase [EPHX1], NADPH quinone oxidoreductase I [NQO1]). This set of evaluations complements our previous analyses with oxidative and conjugating enzymes. Of the numerous UGT and SULT enzymes, the greatest likelihood for polymorphism effect on conjugation function are for SULT1A1 (*2 polymorphism), UGT1A1 (*6, *7, *28 polymorphisms), UGT1A7 (*3 polymorphism), UGT2B15 (*2 polymorphism), and UGT2B17 (null polymorphism). The null polymorphism in NQO1 has the potential to impair host defense. These highlighted polymorphisms are of sufficient frequency to be prioritized for consideration in chemical risk assessments. In contrast, SNPs in EPHX1 are not sufficiently influential or defined for inclusion in risk models. The current analysis is an important first step in bringing the highlighted polymorphisms into a physiologically based pharmacokinetic (PBPK) modeling framework.
Collapse
Affiliation(s)
- Gary Ginsberg
- Connecticut Department of Public Health, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Bae SK, Jeong YJ, Lee C, Liu KH. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica 2011; 41:437-44. [DOI: 10.3109/00498254.2011.551849] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
106
|
Hwang MS, Lee SJ, Jeong HE, Lee S, Yoo MA, Shin JG. Genetic variations in UDP-glucuronosyltransferase 2B7 gene (UGT2B7) in a Korean population. Drug Metab Pharmacokinet 2010; 25:398-402. [PMID: 20814162 DOI: 10.2133/dmpk.dmpk-10-sc-021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucuronidation by UDP-glucuronosyltransferase 2B7 (UGT2B7) has been identified as an important pathway for the elimination of its substrate drugs in humans. Alterations in UGT2B7 function or expression may influence individual variations in drug responses. In an effort to screen for UGT2B7 single nucleotide polymorphisms (SNPs) in Koreans, the UGT2B7 gene was directly sequenced in 50 normal subjects. A total of 19 genetic variations were found: seven in exons, eight in introns, and four in the 5'-untranslated region. The order of the frequency distribution of UGT2B7 variations was: -900A>G, -327G>A, -161C>T, 10539A>G, 10711G>C and 10806T>A (40%); 2099T>A, 2100C>T, 2283A>G and 2316A>G (39%); 12029T>A (37%); 10928C>A (33%); 10541G>A (28%); 10897insA (24%); 372A>G (13%) and 211G>T (12%), as well as other minor alleles with less than 10% frequency. Nineteen variations were used to characterize linkage disequilibrium (LD) structures at the UGT2B7 locus. Eight tagging SNPs in UGT2B7 were determined. Identification of UGT2B7 SNPs with LD and the tagging SNPs lays the foundation for investigating UGT2B7-related genotype/phenotype association studies for Koreans as well as other populations.
Collapse
Affiliation(s)
- Mi-Sun Hwang
- Department of Pharmacology and Pharmacogenomics Research Center, Busan, Korea
| | | | | | | | | | | |
Collapse
|
107
|
Dostalek M, Court MH, Hazarika S, Akhlaghi F. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab Dispos 2010; 39:448-55. [PMID: 21123165 DOI: 10.1124/dmd.110.036608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.
Collapse
Affiliation(s)
- Miroslav Dostalek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
108
|
Saruwatari J, Ishitsu T, Nakagawa K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals (Basel) 2010; 3:2709-2732. [PMID: 27713373 PMCID: PMC4033946 DOI: 10.3390/ph3082709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed.
Collapse
Affiliation(s)
- Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| | - Takateru Ishitsu
- Kumamoto Saishunso National Hospital, Kumamoto, Suya 2659, Koshi, Japan.
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| |
Collapse
|
109
|
Raungrut P, Uchaipichat V, Elliot DJ, Janchawee B, Somogyi AA, Miners JO. In Vitro–In Vivo Extrapolation Predicts Drug–Drug Interactions Arising from Inhibition of Codeine Glucuronidation by Dextropropoxyphene, Fluconazole, Ketoconazole, and Methadone in Humans. J Pharmacol Exp Ther 2010; 334:609-18. [DOI: 10.1124/jpet.110.167916] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
110
|
Heydel JM, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon AM. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 2010; 42:74-97. [PMID: 20067364 DOI: 10.3109/03602530903208363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to the brain through the nasal pathway, circumventing the blood-brain barrier, olfactory UGTs doubtlessly share the common function of detoxification, but they are also involved in the metabolism and turnover of exogenous or endogenous compounds critical for physiological olfactory processing in these tissues. The function of olfactory UGTs will be discussed with a special focus on their participation in the perireceptor events involved in the modulation of olfactory perception.
Collapse
|
111
|
UGT2B7_−161C>T Polymorphism Is Associated With Lamotrigine Concentration-to-Dose Ratio in a Multivariate Study. Ther Drug Monit 2010; 32:177-84. [DOI: 10.1097/ftd.0b013e3181ceecc6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Ramírez J, Ratain MJ, Innocenti F. Uridine 5'-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010; 6:563-85. [PMID: 20373870 PMCID: PMC3102300 DOI: 10.2217/fon.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in the uridine 5'-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function allele variants can predict the risk of severe toxicity and help identify cancer patients who could benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have also been identified in vitro, although the functional consequences of these variants still need to be tested in the clinical setting. Future approaches in uridine 5'-diphosphoglucuronosyltransferase pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-escalation studies, study of genetic variation at the haplotype level and genome-wide studies.
Collapse
Affiliation(s)
- Jacqueline Ramírez
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2451, Fax: +1 773 702 9268,
| | - Mark J Ratain
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 702 4400, Fax: +1 773 702 3969,
| | - Federico Innocenti
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2452, Fax: +1 773 702 9268,
| |
Collapse
|
113
|
Schulze JJ, Rane A, Ekström L. Genetic variation in androgen disposition: implications in clinical medicine including testosterone abuse. Expert Opin Drug Metab Toxicol 2010; 5:731-44. [PMID: 19442030 DOI: 10.1517/17425250902976862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Testosterone replacement therapy in hypogonadal men has been used for > 60 years. The use of testosterone substitution is continuously growing and is given to aging men to improve the quality of life. Because testosterone use is associated with muscle strength enhancing effects, it has become a popular drug to abuse. Doping with anabolic steroids, such as testosterone, is a severe challenge to the vision, moral and ethics in sports and has also become a significant and increasing problem in society. OBJECTIVE The primary aim of this review is to summarize and discuss the contribution of genetic components to inter-individual variation in androgen disposition. CONCLUSION Genetic variation has a large impact on androgen disposition. This variation is of the utmost importance for the interpretation of doping test results and may modulate the effects of testosterone replacement therapy and testosterone doping.
Collapse
Affiliation(s)
- Jenny J Schulze
- Karolinska Institutet, Division of Clinical Pharmacology, Stockholm, Sweden
| | | | | |
Collapse
|
114
|
Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics 2010; 11:369-90. [PMID: 20235793 DOI: 10.2217/pgs.10.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycophenolic acid (MPA) is a cornerstone immunosuppressant therapy in solid organ transplantation. MPA is metabolized by uridine diphosphate glucuronosyltransferase to inactive 7-O-MPA-glucuronide (MPAG). At least three minor metabolites are also formed, including a pharmacologically active acyl-glucuronide. MPA and MPAG are subject to enterohepatic recirculation. Biliary excretion of MPA/MPAG involves several transporters, including organic anion transporting polypeptides and multidrug resistant protein-2 (MRP-2). MPA metabolites are also excreted via the kidney, at least in part by MRP-2. MPA exerts its immunosuppressive effect through the inhibition of inosine-5-monophosphate dehydrogenase. Several SNPs have been identified in the genes encoding for uridine diphosphate glucuronosyltransferase, organic anion transporting polypeptides, MRP-2 and inosine-5-monophosphate dehydrogenase. This article provides an extensive overview of the known effects of these SNPs on the pharmacokinetics and pharmacodynamics of MPA.
Collapse
Affiliation(s)
- Katherine A Barraclough
- Department of Nephrology, Level 2, ARTS Building, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Qld 4102, Australia.
| | | | | |
Collapse
|
115
|
Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of Human UGT2B7 as the Major Isoform Involved in the O-Glucuronidation of Chloramphenicol. Drug Metab Dispos 2009; 38:368-75. [DOI: 10.1124/dmd.109.029900] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
116
|
Lötsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther 2009; 124:168-84. [DOI: 10.1016/j.pharmthera.2009.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/15/2022]
|
117
|
Abstract
OBJECTIVES The dose of carbamazepine required to achieve optimal seizure control varies widely from patient to patient. We investigated polymorphic variants in various genes involved in the pharmacokinetics and pharmacodynamics of carbamazepine in an effort to identify predictors of maintenance dose. METHODS : A total of 70 patients with epilepsy (49% were males; median age, 34 years; range, 14-72 years) who had benefited (>50% reduction in seizure frequency for at least 12 months) from treatment with carbamazepine monotherapy were included in the analysis. Known variants in drug-metabolizing enzyme genes, including those encoding cytochrome P450s, uridine 5'-diphosphate-glycosyltransferase, and microsomal epoxide hydrolase, together with a sodium channel polymorphism in SCN2A, were screened using polymerase chain reaction-restriction fragment length polymorphism or direct sequencing. Associations between demographic and genetic variables and carbamazepine dose were identified by univariate and multivariate regression analyses. RESULTS All genotype frequencies were consistent with Hardy-Weinberg equilibrium (P > 0.05). No single demographic or genetic variable was of sufficient strength to independently influence carbamazepine dosing requirements. However, a multivariate model, incorporating patient age and specific genotypes (c.337T>C, c.416A>G) of the EPHX1 gene encoding microsomal epoxide hydrolase, revealed a significant association with the maintenance dose of carbamazepine (r(2) = 0.362, P= 0.002). CONCLUSIONS This proof-of-principle study suggests that genetic variants in EPHX1 can be used to predict maintenance doses of carbamazepine. A large-scale prospective investigation of genetic influences on drug dosing strategies in epilepsy, with specific focus on whole gene variability for those proteins involved in the pharmacokinetics and pharmacodynamics of antiepileptic agents, is warranted.
Collapse
|
118
|
Abstract
BACKGROUND Opioid therapy is the standard treatment for moderate-to-severe cancer pain and is becoming a more frequent treatment for moderate-to-severe chronic noncancer pain. Response to opioids varies significantly between patients and even within the individual patient at different stages of treatment. Finding an opioid at a dose that provides adequate long-term analgesia with minimal adverse effects can be difficult. Opioid switching and opioid rotation, at different stages of therapy, represent two clinical strategies used to optimize opioid response for patients with moderate-to-severe pain. OBJECTIVES Review the theoretical and clinical evidence supporting the concepts of opioid switching and rotation, outline the conditions under which these practices should be considered, and briefly suggest practical steps for their implementation. SCOPE Clinical literature, clinical practice and guideline databases, and professional society websites were searched for articles or reports describing opioid switching or opioid rotation in chronic pain therapy; variability in patient response to opioid therapy; physiologic, pharmacologic, and genetic factors that affect clinical response to opioids; and practical approaches to maximizing analgesia and minimizing adverse effects in opioid therapy. It is outside the scope of this review to evaluate the pharmacoeconomic aspects that affect changes in opioid therapy. FINDINGS The variability in de novo clinical response to opioids likely represents the interaction of the varying properties of the individual opioids with the variability in individual patient biology. This interaction forms the rationale for opioid switching and explains its clinical utility. As with opioid switching, success with opioid rotation is related to the myriad of factors determining an individual patient's response to a specific opioid. However, the benefits of opioid rotation also derive from a partial reversal of tolerance at the mu-opioid receptor and the response of different micro-opioid receptor subtypes to the different opioids.
Collapse
Affiliation(s)
- Neal E Slatkin
- California Cancer Specialists Medical Group, Pasadena, CA 91105, USA.
| |
Collapse
|
119
|
Tojcic J, Benoit-Biancamano MO, Court MH, Straka RJ, Caron P, Guillemette C. In vitro glucuronidation of fenofibric acid by human UDP-glucuronosyltransferases and liver microsomes. Drug Metab Dispos 2009; 37:2236-43. [PMID: 19661212 DOI: 10.1124/dmd.109.029058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fenofibric acid (FA), the active moiety of fenofibrate, is an agonist of the peroxisome proliferator-activated nuclear receptor alpha that modulates triglyceride and cholesterol profiles. Lipid response to fenofibrate and FA serum concentrations is highly variable. Although FA is reported to be almost exclusively inactivated by UDP-glucuronosyltransferases (UGTs) into FA-glucuronide (FA-G), the contribution of UGT isoenzymes has never been systematically assessed. Heterologously expressed human UGT1A and UGT2B and their coding variants were tested for FA glucuronidation using liquid chromatography/mass spectrometry. Recombinant UGT2B7 presented the highest V(max)/K(m) value (2.10 microl/min/mg), 16-fold higher than the activity of other reactive UGTs, namely, UGT1A3, UGT1A6, and UGT1A9 (0.13, 0.09, and 0.02 microl/min/mg, respectively). UGT2B7.1 (His(268)) and UGT2B7.2 (Tyr(268)) enzyme activity was similar, whereas UGT1A3.2 (R(11)A(47)), UGT1A3.3 (Trp(11)), and UGT1A9.3 (Thr(33)) showed 61 to 96% reduced V(max)/K(m) values compared with the respective (1) reference proteins. FA-G formation by a human liver bank (n = 48) varied by 10-fold, but the rate of formation was not associated with common genetic variations in UGT1A3, UGT1A6, UGT1A9, and UGT2B7. Correlation with activities for the probe substrates zidovudine (UGT2B7; r(2) = 0.75), mycophenolic acid (UGT1A9; r(2) = 0.42), fulvestrant (UGT1A3; r(2) = 0.36), but not serotonin (UGT1A6; r(2) = 0.06) indicated a primary role for UGT2B7 and lesser roles of UGT1A9 and UGT1A3 in hepatic FA glucuronidation. This was confirmed by a strong correlation of FA-G formation with UGT2B7 protein content and inhibition by fluconazole, a known UGT2B7 selective inhibitor. Additional studies are required to identify genetic factors contributing to the observed FA glucuronidation variability.
Collapse
Affiliation(s)
- Jelena Tojcic
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de L'Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
120
|
Abacavir and metabolite pharmacokinetics in HIV-1-infected children and adolescents. J Acquir Immune Defic Syndr 2009; 51:54-9. [PMID: 19282779 DOI: 10.1097/qai.0b013e31819a2257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Abacavir (ABC) oral clearance, adjusted for body size, is approximately 2 times higher for children than adults with a corresponding difference in dose regimens. However, there are limited data available in the adolescent population. The pharmacokinetics (PKs) of ABC and primary metabolites were determined in HIV-1-infected children and adolescents to evaluate age and patient characteristics as a basis for adjusting ABC dose regimens and to assess the influence of metabolite formation on PK parameters. METHODS Pediatric subjects 9-18 years of age receiving antiretroviral therapy for HIV-1 infection were stratified by Tanner stage and given a single 8 mg/kg dose of ABC oral solution. Blood samples (n = 10) were obtained over 8 hours and measured for ABC, glucuronide, and carboxylate metabolites using high-performance liquid chromatography. PK parameters for children (Tanner stages 1-2; TS1) and adolescents (Tanner stages 3-5; TS2) were compared. RESULTS Twenty-five subjects were enrolled. ABC mean (range) maximum concentration (Cmax; microg/mL), area under the curve (microg.hr/mL), half-life (hours), and apparent clearance (CL/F; mL/min per kg) for TS1 and TS2 were 3.5 (1.2-5.6) vs 3.4 (1.8-5.9), 8.0 (2.1-18.6) vs 8.9 (3.1-17.2), 1.3 (0.7-2.5) vs 1.4 (0.9-1.9), and 22.1 (7.0-59.2) vs 18.4 (7.7-42.9) and not significantly different. Age, Tanner stage, and sex were not correlated with ABC clearance by univariate analysis. The ratios of metabolites to ABC area under the curve were correlated with ABC clearance as were the ratios of metabolites to ABC concentrations at the 6-hour time point. CONCLUSIONS ABC oral clearance in HIV-1-infected pediatric patients does not change during puberty, is similar to younger children, and is higher than previously published in adults. Therefore, dosing adolescents as adults should be reexamined. Intersubject PK variability is substantial and is not correlated with body size or age but more likely due to differences in metabolite formation that may be genetic in origin.
Collapse
|
121
|
Affiliation(s)
- Caroline F Thorn
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
122
|
|
123
|
Affiliation(s)
- Howard S Smith
- Department of Anesthesiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
124
|
Abstract
Clinicians understand that individual patients differ in their response to specific opioid analgesics and that patients may require trials of several opioids before finding an agent that provides effective analgesia with acceptable tolerability. Reasons for this variability include factors that are not clearly understood, such as allelic variants that dictate the complement of opioid receptors and subtle differences in the receptor-binding profiles of opioids. However, altered opioid metabolism may also influence response in terms of efficacy and tolerability, and several factors contributing to this metabolic variability have been identified. For example, the risk of drug interactions with an opioid is determined largely by which enzyme systems metabolize the opioid. The rate and pathways of opioid metabolism may also be influenced by genetic factors, race, and medical conditions (most notably liver or kidney disease). This review describes the basics of opioid metabolism as well as the factors influencing it and provides recommendations for addressing metabolic issues that may compromise effective pain management. Articles cited in this review were identified via a search of MEDLINE, EMBASE, and PubMed. Articles selected for inclusion discussed general physiologic aspects of opioid metabolism, metabolic characteristics of specific opioids, patient-specific factors influencing drug metabolism, drug interactions, and adverse events.
Collapse
Affiliation(s)
- Howard S Smith
- Department of Anesthesiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
125
|
Phan VH, Moore MM, McLachlan AJ, Piquette-Miller M, Xu H, Clarke SJ. Ethnic differences in drug metabolism and toxicity from chemotherapy. Expert Opin Drug Metab Toxicol 2009; 5:243-57. [PMID: 19331590 DOI: 10.1517/17425250902800153] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
126
|
Muscat JE, Chen G, Knipe A, Stellman SD, Lazarus P, Richie JP. Effects of menthol on tobacco smoke exposure, nicotine dependence, and NNAL glucuronidation. Cancer Epidemiol Biomarkers Prev 2009; 18:35-41. [PMID: 19124478 DOI: 10.1158/1055-9965.epi-08-0744] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Menthol is a controversial cigarette additive because its physiologic or pharmacologic effects may possibly increase the risk for cancer and its targeted market is the Black community. In a community-based cross-sectional study on 525 Black and White volunteers, we compared levels of urinary and plasma cotinine, plasma thiocyanate, urinary 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanol (NNAL), and its detoxified form (NNAL-Gluc) between menthol and nonmenthol smokers. In regression models that adjusted for daily cigarette intake, no significant differences were observed in the concentration of these biomarkers by menthol status in both races. There was no significant association between high Fagerstrom nicotine dependence scores and the use of menthol cigarettes (odds ratio, 1.1; 95% confidence interval, 0.6-2.0), but an increased risk was observed with smoking a cigarette soon (<or=30 minutes) after waking (odds ratio, 2.1; 95% confidence interval, 1.0-3.8). The ratio of NNAL-Gluc to NNAL, a possible indicator of lung cancer risk, was significantly lower in menthol versus nonmenthol smokers. The NNAL-Gluc/NNAL ratio was 34% lower in Whites (P < 0.01) and 22% lower in Blacks. In subsequent human liver microsome studies, menthol inhibited the rate of NNAL-O-glucuronidation and NNAL-N-glucuronidation. Collectively, these results show that menthol does not affect biological exposure to tobacco smoke constituents but indicates that menthol might inhibit the detoxification of the potent lung carcinogen NNAL.
Collapse
Affiliation(s)
- Joshua E Muscat
- Penn State College of Medicine, Department of Public Health Science, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 2008; 18:683-97. [PMID: 18622261 DOI: 10.1097/fpc.0b013e3283037fe4] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE UDP-glucuronosyltransferase 2B7 (UGT2B7) plays a central role in the liver-mediated biotransformation of endogenous and exogenous compounds. The genetic basis of interindividual variability in UGT2B7 function is unknown. This study aimed to discover novel gene variants of functional significance. METHODS Caucasian human livers (n=54) were used. UGT2B7 was resequenced in 12 samples [(six highest and six lowest for the formation of morphine-3-glucuronide (M3G)]. Haplotype-tagging single nucleotide polymorphisms were genotyped in the entire sample set. Samples were phenotyped for mRNA expression. RESULTS 10 haplotype-tagging single nucleotide polymorphisms were identified and their haplotypes were inferred. Haplotype 4 (-45597G; -6682_-6683A; 372A; IVS1+9_IVS1+10A; IVS1+829T; IVS1+985G; IVS1+999C; IVS1+1250G; 801T; IVS4+185C) (frequency of 0.12) was associated with an increase in enzyme activity and gene expression. The 1/4 and 4/6 diplotypes had higher M3G formation compared with 1/1 (P<0.05) and 2/3 (P<0.01) diplotypes. Diplotypes containing haplotype 4 resulted in a significant 45% average increase in the formation of M3G compared with diplotypes without haplotype 4 (P=0.002). There was also an association between haplotype 4 and increased mRNA expression. IVS1+985A>G, 735A>G, and 1062C>T are the putative functional variants of haplotype 4. We also identified two mRNA splicing variants (UGT2B7_v2 and UGT2B7_v3) splicing out exon 1, 4, 5, and 6 but sharing exons 2 and 3 with the involvement of additional 5' exons. UGT2B7_v2 was detected in all livers tested, but UGT2B7_v3 was present at much lower levels compared with UGT2B7_v2. The UGT2B7 reference sequence mRNA is now named UGT2B7_v1. CONCLUSION UGT2B7 haplotype 4 is functional and its effects on the biotransformation of UGT2B7 substrates should be tested in controlled clinical trials. Biochemical studies should investigate the functional role of the newly discovered mRNA splicing variants.
Collapse
|
129
|
Zhang WX, Chen B, Jin Z, Yu Z, Wang X, Chen H, Mao A, Cai W. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 2008; 38:1422-36. [DOI: 10.1080/00498250802488585] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
130
|
Madadi P, Koren G. Pharmacogenetic insights into codeine analgesia: implications to pediatric codeine use. Pharmacogenomics 2008; 9:1267-84. [DOI: 10.2217/14622416.9.9.1267] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Codeine has been used medicinally since the 1800s as an analgesic and antitussive agent. Although very few studies have methodically examined the safety of codeine use in the pediatric age group, it is nonetheless commonly prescribed to children and breastfeeding mothers. Empirical evidence over the last century has suggested variability in the efficacy of codeine, and recent genomic advancements have shed important light on the mechanisms leading to such variability. Aside from evaluating the role of genetic variability in drug-metabolizing enzymes, receptors and transporters, the development of the blood–brain-barrier and the ontogeny of drug-metabolizing enzymes must also be considered in newborns and young children.
Collapse
Affiliation(s)
- Parvaz Madadi
- Department of Physiology & Pharmacology and The Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Gideon Koren
- Department of Physiology & Pharmacology and The Ivey Chair in Molecular Toxicology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
- Motherisk Program, The Hospital for Sick Children, Toronto, Canada
- The University of Toronto, Toronto, Canada
| |
Collapse
|
131
|
Pharmacogenetics of Neonatal Opioid Toxicity Following Maternal Use of Codeine During Breastfeeding: A Case–Control Study. Clin Pharmacol Ther 2008; 85:31-5. [DOI: 10.1038/clpt.2008.157] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Genetic aspects of epitestosterone formation and androgen disposition: influence of polymorphisms in CYP17 and UGT2B enzymes. Pharmacogenet Genomics 2008; 18:477-85. [PMID: 18496127 DOI: 10.1097/fpc.0b013e3282fad38a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Testosterone is a commonly abused androgen in sports and in the gym culture of the society. Its abuse is conventionally disclosed by urinary assay of the testosterone/epitestosterone (T/E) glucuronide ratio, which should not exceed 4. A noteworthy number of athletes, however, have higher natural ratios than 4, most likely because of decreased excretion of epitestosterone glucuronide. Falsely positive doping test results are of great concern for the legal rights of the sportsman. Our objective was to study the genetic aspects of epitestosterone formation, and to elucidate the impact of genetic variation in androgen-metabolizing enzymes. METHODS Urine from different study populations was analysed for androgen glucuronides by gas chromatography-mass spectrometry. All men were genotyped for the uridine diphospho-glucuronosyltransferase (UGT) 2B17 deletion polymorphism and single nucleotide polymorphisms in the cytochrome P-450c17alpha (CYP17), UGT2B15 and UGT2B7 genes. Expression of UGT2B15 mRNA in human liver samples was analysed using real-time PCR. RESULTS A T>C (A1>A2) promoter polymorphism in the CYP17 gene was associated with the urinary glucuronide levels of epitestosterone and its putative precursor androstene-3beta, 17alpha-diol, resulting in 64% higher T/E ratios in A1/A1 homozygotes. Individuals devoid of UGT2B17 had significantly higher UGT2B15 mRNA levels in liver than individuals carrying two functional UGT2B17 alleles. CONCLUSION The CYP17 promoter polymorphism may partly explain high natural (>4) T/E ratios. Our data indicate that 5-androstene-3beta, 17alpha-diol is an important precursor of epitestosterone and that CYP17 is involved in its production. In addition, we found that lack of the UGT2B17 enzyme may be compensated for by increase in UGT2B15 transcription.
Collapse
|
133
|
Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol 2008; 4:879-94. [DOI: 10.1517/17425255.4.7.879] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
134
|
The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther 2008; 84:417-23. [PMID: 18615002 DOI: 10.1038/clpt.2008.141] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ethnicity is one factor that may account for the observed differences in both pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, resulting in variability in response to drug therapy. Given that the applicability of clinical study results to the treatment of an individual patient is a critical consideration in a physician's choice of drug therapy, drug development should seek to ensure that a clinical pharmacologic evaluation includes a population that is representative of the target therapeutic population. Ethnic diversity in drug response with respect to safety and efficacy and the resulting differences in recommended doses have been well described for some drugs. Some of these differential responses may be related to the pharmacogenomics of a particular drug. Pharmacogenomic techniques have recently enjoyed widespread use in studies of drug exposure and response. The clinical relevance of variability in drug response due to pharmacogenomics of drug-metabolizing enzymes was considered at a September 2004 workshop cosponsored by the US Food and Drug Administration (FDA), Johns Hopkins University, and the Pharmaceutical Research and Manufacturers of America (http://www.fda.gov/cder/Offices/OCPB/workshops.htm).
Collapse
|
135
|
Schulze JJ, Lundmark J, Garle M, Skilving I, Ekström L, Rane A. Doping test results dependent on genotype of uridine diphospho-glucuronosyl transferase 2B17, the major enzyme for testosterone glucuronidation. J Clin Endocrinol Metab 2008; 93:2500-6. [PMID: 18334593 DOI: 10.1210/jc.2008-0218] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. The large variation in testosterone glucuronide (TG) excretion and its strong association with a deletion polymorphism in the uridine diphospho-glucuronosyl transferase (UGT) 2B17 gene challenge the accuracy of the T/E ratio test. OBJECTIVE Our objective was to investigate whether genotype-based cutoff values will improve the sensitivity and specificity of the test. DESIGN This was an open three-armed comparative study. PARTICIPANTS A total of 55 healthy male volunteers with either two, one, or no allele [insertion/insertion, insertion/deletion, or deletion/deletion (del/del)] of the UGT2B17 gene was included in the study. INTERVENTION A single im dose of 500 mg testosterone enanthate was administered. MAIN OUTCOME MEASURES Urinary excretion of TG after dose and the T/E ratio during 15 d were calculated. RESULTS The degree and rate of increase in the TG excretion rate were highly dependent on the UGT2B17 genotype with a 20-fold higher average maximum increase in the insertion/insertion group compared with the del/del group. Of the del/del subjects, 40% never reached the T/E ratio of 4.0 on any of the 15 d after the dose. When differentiated cutoff levels for the del/del (1.0) and the other genotypes (6.0) were applied, the sensitivity increased substantially for the del/del group, and false positives in the other genotypes were eliminated. CONCLUSIONS Consideration of the genetic variation in disposition of androgens will improve the sensitivity and specificity of the testosterone doping test. This is of interest not only for combating androgen doping in sports, but also for detecting and preventing androgen abuse in society.
Collapse
|
136
|
Kerdpin O, Knights KM, Elliot DJ, Miners JO. In vitro characterisation of human renal and hepatic frusemide glucuronidation and identification of the UDP-glucuronosyltransferase enzymes involved in this pathway. Biochem Pharmacol 2008; 76:249-57. [DOI: 10.1016/j.bcp.2008.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/16/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
|
137
|
Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, Remuzzi G, Cattaneo D. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 2008; 8:1127-41. [PMID: 17924828 DOI: 10.2217/14622416.8.9.1127] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The immunosuppressive agent mycophenolic acid (MPA) is metabolized by uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9) to 7-O-glucuronide (MPAG) and excreted by multidrug resistance-associated protein 2 in the bile. By contrast, the production of the acyl MPAG, a minor MPA metabolite, was ascribed to UGT2B7 and UGT1A8. Several polymorphisms in the genes encoding for UGT1A9, UGT2B7 and MRP2 proteins have been described. However, their functional role in vivo on MPA metabolism remains poorly defined. METHODS A total of 40 Caucasian kidney transplant patients, given induction therapies (with Campath-(1)H or the combination basiliximab/rabbit antithymocyte globulin) and on maintenance immunosuppression with cyclosporine in combination with mycophenolate mofetil (MMF) in a steroid-free regimen, were enrolled in the pharmacogenetic study. Patients had clinical and hematochemical evaluations at month 6 after transplantation, as well as complete MPA pharmacokinetic assessment. They were genotyped for SNPs in UGT1A9 C-2152T, T-1887G, C-665T, C-440T, T-331C, T-275A, T98C, for the nonsynonymous C802T SNP in UGT2B7, and for ABCC2 SNPs C-24T and G1249A. The association of these polymorphisms with MPA pharmacokinetic parameters was investigated. RESULTS Differences in the MPA pharmacokinetic profiles confirmed large interpatient variability of MPA exposure, with AUC(0-12) values ranging from 7.9 to 50.1 mg*h/ml. MPA AUC(0-12) was significantly associated with the presence of UGT1A9 -440/-331 genotypes (TT/CC: 61.5 +/- 2.7 mg*h/ml/g MMF; TC/CT: 45.4 +/- 14.0 mg*h/ml/g MMF; CC/TT: 40.8 +/- 10.8 mg*h/ml/g MMF; p = 0.005), whereas MPAG exposure was mainly influenced by renal function. The positive association between MPA AUC and SNPs in position -440/-331 found in kidney transplant patients confirmed previous in vitro findings showing that the abovementioned SNPs had a significant impact on UGT1A9 protein content in the liver. The presence of ABCC2 promoter C-24T and exon 10 G1249A SNPs did not cause any significant variation in MPA and MPAG pharmacokinetic parameters. CONCLUSION The study demonstrated a significant impact of C-440T/T-331C SNPs in the promoter region of the UGT1A9 gene on MPA pharmacokinetics in renal allograft recipients.
Collapse
Affiliation(s)
- Sara Baldelli
- Mario Negri Institute for Pharmacological Research, Department of Medicine and Transplantation, Via Gavazzeni, 11-24125 Bergamo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Shord SS, Chew L, Villano J. Evaluation of opioid induced nausea and vomiting in sickle cell disease. Am J Hematol 2008; 83:196-9. [PMID: 17724690 DOI: 10.1002/ajh.21031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A common side effect of opioids is nausea and vomiting; however, the incidence in hospitalized patients receiving opioids for acute pain is unknown. We performed a retrospective study in adult patients with sickle cell disease admitted for an acute pain crisis during a six-month period to evaluate the incidence of nausea and vomiting and characterize the prescribing of antiemetics. Eligibility included normal hepatic and renal function. Thirty-four subjects with a total of 97 admissions were evaluated. As expected, opioids were prescribed during all admissions. Fifty percent of the subjects experienced nausea or vomiting during the study period and these same patients accounted for the majority of the admissions, 17 subjects with 71 admissions (Group I). Nausea was reported in 18 (25%) of these admissions and vomiting was reported in 24 (34%) of these admissions. The most common antiemetics prescribed were: prochlorperazine, metoclopramide, and promethazine and antiemetics were ordered during 22 (23%) separate admissions for all subjects included in the study. The clinical benefit of these medications is limited due to uneven documentation. In conclusion, many of our patients experienced nausea or vomiting with antiemetics infrequently prescribed on an as needed basis. This suggests a need for better approaches to manage nausea and vomiting in patients receiving opioids.
Collapse
|
139
|
Zimmermann A, Blaszkewicz M, Roth G, Seidel T, Dietrich H, Schutschkow O, Bolt HM, Golka K. UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism in bladder cancer cases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:911-914. [PMID: 18569595 DOI: 10.1080/15287390801988772] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A study of Chinese benzidine workers indicated elevated levels of UDP-glucuronosyltransferase (UGT) 2B7 T/T activity in carriers for development of bladder cancer. The present study was designed to investigate the possible impact of the presence of UGT2B7 genotype on bladder cancer risk in Caucasians. UGT2B7 polymorphism at locus C(802)T (His(268)Tyr) was detected using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based procedure. The study group consisted of 211 bladder cancer cases and 210 controls suffering from different urological diseases, but without any history of cancer. Both groups were recruited from a Department of Urology located in a center of former chemical and rubber industries in Germany. Furthermore, 171 bladder cancer cases with a history of occupational exposure to aromatic amines surveyed for compensation due to an occupational disease were investigated. T/T genotype frequencies in bladder cancer cases, urological controls, and exposed patients appeared similar (27 vs. 35 vs. 25%). This study indicated that there were ethnic differences between Caucasian and Chinese general populations with respect to the UGT2B7 genotype. Furthermore, in contrast to an earlier investigation in benzidine-exposed Chinese bladder cancer patients, no relevant differences between bladder cancer patients and urological hospital controls were observed in Germany.
Collapse
Affiliation(s)
- Anna Zimmermann
- Leibniz Research Centre for Working Environment and Human Factors, Institute for Occupational Physiology at the University of Dortmund (IfADo), Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Kadiev E, Patel V, Rad P, Thankachan L, Tram A, Weinlein M, Woodfin K, Raffa RB, Nagar S. Role of pharmacogenetics in variable response to drugs: focus on opioids. Expert Opin Drug Metab Toxicol 2007; 4:77-91. [DOI: 10.1517/17425255.4.1.77] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
141
|
Candidate gene polymorphisms predicting individual sensitivity to opioids. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:269-81. [DOI: 10.1007/s00210-007-0205-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
|
142
|
Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara M. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull 2007; 30:537-42. [PMID: 17329852 DOI: 10.1248/bpb.30.537] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our previous study it was observed that the frequencies of UGT1A1*6, UGT2B7*3 and CYP2D6*10 in patients who have a low level ability of glucuronidation were significantly higher than those in patients with a high level of ability of glucuronidation. The same tendency was found in the frequency of CYP2D6*5, though there was no significant difference. The purpose of this study was to evaluate the effects of the polymorphism on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Population pharmacokinetic analysis was performed using 373 plasma concentrations from 41 patients with chronic heart failure or angina pectoris. A one compartment pharmacokinetic model with first-order absorption (for oral dosing) was used to describe the concentration-versus-time data for carvedilol. We examined the effects of various clinical and genetic covariables in the regression models for clearance and volume of distribution. The results suggested that the factors of interindividual variation for carvedilol clearance were creatinine clearance and polymorphisms of UGT2B7 and CYP2D6 in the Japanese population with heart disease. It was estimated that UGT2B7*3 decreased the clearance of carvedilol by 37%, but UGT2B7*2 did not show any effect. Clearance in the patients who have intermediate activity of CYP2D6 was decreased by 39%.
Collapse
Affiliation(s)
- Yoh Takekuma
- Laboratory of Pharmcotherapeutic Information, Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ. Pharmacokinetic and Pharmacodynamic Interaction of Lorazepam and Valproic Acid in Relation to UGT2B7 Genetic Polymorphism in Healthy Subjects. Clin Pharmacol Ther 2007; 83:595-600. [PMID: 17687269 DOI: 10.1038/sj.clpt.6100324] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic and pharmacodynamic profiles of lorazepam and valproate were analyzed according to uridine 5'-diphosphate-glucuronosyltransferase (UGT)2B7 genotype in 14 healthy subjects with UGT2B15*2/*2 genotype. Systemic clearance of lorazepam (2 mg intravenously) and area under the concentration-time curve (AUC) of valproate (600 mg once daily for 4 days) were analyzed as pharmacokinetic parameters, and area under the effect-time curve (AUEC) of psychomotor coordination tests (Vienna) was used for pharmacodynamic parameter. No significant differences were found in systemic clearances of lorazepam by UGT2B7 genotype. AUCs of valproate showed an increasing tendency as the number of UGT2B7*2 alleles increased, but the difference was insignificant. Psychometric results were significant among the UGT2B7 genotype group (AUEC_tracking 261.5+/-298.9 in *1/*1, and 3,396.8+/-947 in *2/*2, P=0.047) when the two drugs were coadministered. Our study suggests that the UGT2B7 genotype probably affects lorazepam-valproate pharmacodynamic interaction, especially in subjects who have homovariant genotypes of UGT2B7 and UGT2B15, although the effects on the pharmacokinetics are less significant.
Collapse
Affiliation(s)
- J-Y Chung
- Department of Pharmacology and Clinical Pharmacology Unit, Seoul National University College of Medicine and Hospital, Chongro-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Veal G, Rowbotham S, Boddy A. Pharmacokinetics and pharmacogenetics of 13-cis-retinoic acid in the treatment of neuroblastoma. Therapie 2007; 62:91-3. [PMID: 17582307 DOI: 10.2515/therapie:2007020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are a number of factors relating to the clinical pharmacology of 13-cis-Retinoic Acid (13-cisRA) which, taken together, provide a strong case for the potential benefit of a therapeutic monitoring approach to ensure that uniform plasma concentrations of 13-cisRA are achieved in all patients. Firstly, low dose, continuous use of 13-cisRA has been shown to provide limited or no clinical benefit in neuroblastoma patients, whereas a high-dose, intermittent regimen resulted in a significant improvement in event-free survival. This suggests that dose levels and therefore plasma concentrations of drug are important determinants of 13-cisRA efficacy. Secondly, the currently used 13-cisRA dosing regimen of 160 mg/m(2)/day results in a >10-fold variation in plasma concentrations, with plasma concentrations observed in a significant percentage of patients below those required for activity in neuroblastoma cells in vitro. Importantly, there would appear to be limited intra-patient variation in 13-cisRA plasma concentrations, i.e. those patients with lower 13-cisRA plasma concentrations following a single dose of 13-cisRA are likely to have similarly low concentrations following all doses of 13-cisRA on subsequent courses. As 13-cisRA is given as chronic treatment, those patients experiencing lower plasma concentrations on the current dosing regimen will potentially be exposed to sub-therapeutic concentrations of drug for the entire 6 month treatment period. While this type of pharmacokinetic monitoring approach may prove to be beneficial in the short term, an increased knowledge of pharmacogenetic factors influencing to the metabolism of 13-cisRA may ultimately allow us to identify patients who may be less likely to benefit from treatment due to an increased rate of parent drug metabolism. In this respect, pharmacogenetic studies assessing the relative expression levels or mutations in enzymes such as cytochrome P450 (CYP) and particularly CYP26 are needed to assess any potential association with rate of metabolism in vivo.
Collapse
Affiliation(s)
- Gareth Veal
- Northern Institute for Cancer Research, Newcastle University, Framington Place, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
145
|
Peterkin VC, Bauman JN, Goosen TC, Menning L, Man MZ, Paulauskis JD, Williams JA, Myrand SP. Limited influence of UGT1A1*28 and no effect of UGT2B7*2 polymorphisms on UGT1A1 or UGT2B7 activities and protein expression in human liver microsomes. Br J Clin Pharmacol 2007; 64:458-68. [PMID: 17555467 PMCID: PMC2048551 DOI: 10.1111/j.1365-2125.2007.02923.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS UGT1A1 and UGT2B7 are enzymes that commonly contribute to drug glucuronidation. Since genetic factors have been suggested to contribute to variability in activities and expression levels of these enzymes, a quantitative assessment of the influence of the major genotypes (UGT1A1*28 or UGT2B7*2) on enzyme activities was conducted. METHODS Using a bank of microsomal samples from 59 human livers, the effect of UGT1A1*28 or UGT2B7*2 polymorphisms were investigated on rates of estradiol 3-glucuronidation (a marker of UGT1A1 enzyme activity) or zidovudine glucuronidation (a marker of UGT2B7 enzyme activity) and levels of immunoreactive protein for each enzyme. Glucuronidation rates for both enzymes were measured at K(m)/S(50) and 10 times K(m)/S(50) concentrations. RESULTS UGT1A1 and UGT2B7 enzyme activities varied up to 16-fold and sixfold, respectively. Rates at K(m)/S(50) concentration closely correlated with rates at 10 times K(m)/S(50) concentration for both enzymes (but not at 1/10th K(m) for UGT2B7). Enzyme activities correlated with relative levels of immunoreactive protein for UGT1A1 and UGT2B7. Furthermore, rates of zidovudine glucuronidation correlated well with rates of glucuronidation of the UGT2B7 substrate gemcabene, but did not correlate with UGT1A1 enzyme activities. For the UGT1A1*28 polymorphism, consistent with levels of UGT1A1 immunoreactive protein, mean UGT1A1 activity was 2.5- and 3.2-fold lower for TA(6)/TA(7) (P < 0.05) and TA(7)/TA(7) (P < 0.001) genotypes in comparison with the TA(6)/TA(6) genotype. CONCLUSIONS Relative to the observed 16-fold variability in UGT1A1 activity, these data indicate only a partial (approximately 40%) contribution of the UGT1A1*28 polymorphism to variability of interindividual differences in UGT1A1 enzyme activity. For the UGT2B7*2 polymorphism, genotype had no influence on immunoreactive UGT2B7 protein or the rate of 3'-azido-3'-deoxythymidine glucuronidation.
Collapse
Affiliation(s)
- Vincent C Peterkin
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Sweeney BP. Pharmacogenomics and anaesthesia: explaining the variability in response to opiates. Eur J Anaesthesiol 2007; 24:209-12. [PMID: 17378023 DOI: 10.1017/s0265021506002316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
147
|
Djebli N, Picard N, Rérolle JP, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007; 17:321-30. [PMID: 17429314 DOI: 10.1097/fpc.0b013e32801430f8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The polymorphic enzyme UGT2B7 metabolizes mycophenolic acid into acyl-mycophenolic acid-glucuronide (AcMPAG), a presumably toxic metabolite. This study aimed at investigating in vitro and in vivo the impact on AcMPAG production of: (i) the UGT2B7 gene G-842A single nucleotide polymorphism, in complete linkage disequilibrium with most other known single nucleotide polymorphisms in the promoter region of this gene and with the C802T single nucleotide polymorphism in exon 2 (UGT2B*2); and (ii) of the other immunosuppressants given to renal transplant patients in association with mycophenolate mofetil. METHODS We compared the production of AcMPAG by human liver microsomes genotyped for the UGT2B7 G-842A and C802T single nucleotide polymorphisms, and plasma AcMPAG concentrations in genotyped renal transplant patients administered mycophenolate mofetil associated with sirolimus (n=40), tacrolimus (n=24) or cyclosporin (n=28) and decreasing doses of corticosteroids, over the first 3 months after transplant. The effect of corticosteroids was also investigated in vitro using rats' liver microsomes. RESULTS The two polymorphisms studied were in complete reverse linkage disequilibrium. AcMPAG production was 1.25 and 1.56-fold higher in G-842A and -842AA human liver microsomes, respectively, compared with GG-842 human liver microsomes (P=0.01). Enzyme kinetics showed 1.4 and 3.7-fold higher Vmax in the respective pools of human liver microsomes. Km values were 0.20, 0.25 and 0.44 mmol/l for the GG-842, G-842A and -842AA genotypes, respectively. This clear increase in Vmax is in favor of the implication of the promoter region polymorphisms, whereas the slighter increase in Km might be due to the UGT2B7*2 single nucleotide polymorphism. Consistently, the UGT2B7 genotype significantly influenced AcMPAG area under the curve (AUC0-9 h)/dose in patients on sirolimus at months 1 and 3 after transplant (P=0.04 for both). No effect was observed in patients on tacrolimus and possibly also on cyclosporin, maybe owing to pharmacokinetic interaction with mycophenolate. AcMPAG production was increased in corticosteroid-induced rat liver microsomes, consistent with the observed in-vivo decrease of mycophenolic acid metabolites AUC0-9 h/dose with time after transplant. CONCLUSION Both UGT2B7 polymorphisms and co-medications significantly influenced AcMPAG production, but cyclosporin and tacrolimus hindered the phenotypic impact of this trait.
Collapse
Affiliation(s)
- Nassim Djebli
- Laboratory of Pharmacology, Faculty of Medicine, Limoges University, Limoges University Hospital, 2 Avenue Martin-Luther King, 87042 Limoges, France
| | | | | | | | | |
Collapse
|
148
|
Ramírez J, Mirkov S, Zhang W, Chen P, Das S, Liu W, Ratain MJ, Innocenti F. Hepatocyte nuclear factor-1 alpha is associated with UGT1A1, UGT1A9 and UGT2B7 mRNA expression in human liver. THE PHARMACOGENOMICS JOURNAL 2007; 8:152-61. [PMID: 17440429 DOI: 10.1038/sj.tpj.6500454] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental evidence suggests HNF1alpha regulates UGT expression. This study investigates (1) whether the variability in HNF1alpha expression is associated with the variability in UGT1A1, UGT1A9 and UGT2B7 expression in human livers and (2) the functionality of 12 HNF1alpha variants using mRNA expression as phenotype. Controlling for known UGT variation in cis-acting elements known to affect UGT expression, we demonstrate that a combination of HNF1alpha mRNA levels and UGT genotype predicts variance in UGT expression to a higher extent than UGT genotype alone. None of the HNF1alpha polymorphisms studied, however, seem to have an effect on HNF1alpha, UGT1A1, UGT1A9 and UGT2B7 expression, ruling out their functional role. Our data provide evidence for HNF1alpha being a determinant of UGT1A1, UGT1A9 and UGT2B7 mRNA expression. However, the amount of UGT intergenotype variability explained by HNF1alpha expression appears to be modest, and further studies should investigate the role of multiple transcription factors.
Collapse
Affiliation(s)
- J Ramírez
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Opioids are used for acute and chronic pain and dependency. They have a narrow therapeutic index and large interpatient variability in response. Genetic factors regulating their pharmacokinetics (metabolizing enzymes, transporters) and pharmacodynamics (receptors and signal transduction elements) are contributors to such variability. The polymorphic CYP2D6 regulates the O-demethylation of codeine and other weak opioids to more potent metabolites with poor metabolizers having reduced antinociception in some cases. Some opioids are P-glycoprotein substrates, whereas, ABCB1 genotypes inconsistently influence opioid pharmacodynamics and dosage requirements. Single-nucleotide polymorphisms in the mu opioid receptor gene are associated with increasing morphine, but not methadone dosage requirements and altered efficacy of mu opioid agonists and antagonists. As knowledge regarding the interplay between genes affecting opioid pharmacokinetics including cerebral kinetics and pharmacodynamics increases, our understanding of the role of pharmacogenomics in mediating interpatient variability in efficacy and side effects to this important class of drugs will be better informed. Opioid drugs as a group have withstood the test of time in their ability to attenuate acute and chronic pain. Since the isolation of morphine in the early 1800s by Friedrich Sertürner, a large number of opioid drugs beginning with modification of the 4,5-epoxymorphinan ring structure were developed in order to improve their therapeutic margin, including reducing dependence and tolerance, ultimately without success.
Collapse
Affiliation(s)
- Andrew A Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | | | |
Collapse
|
150
|
Kagaya H, Inoue K, Miura M, Satoh S, Saito M, Tada H, Habuchi T, Suzuki T. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007; 63:279-88. [PMID: 17211619 DOI: 10.1007/s00228-006-0248-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE UGT1A8 and UGT2B7 are important uridine diphosphate-glucuronosyltransferase isoforms for the glucuronidation of mycophenolic acid (MPA). The aim of this investigation was to elucidate MPA pharmacokinetics in UGT1A8 and UGT2B7 genotypes in Japanese renal transplant recipients. METHODS Seventy-two recipients received repeated doses of mycophenolate mofetil and tacrolimus. On day 28 after renal transplantation, plasma MPA concentrations were measured for the next 24 h using high-performance liquid chromatography. UGT1A8*2 (A(173)G) and UGT2B7*2 (Y(268)) were detected using a PCR-RFLP-based procedure. RESULTS There were no significant differences in daytime and nighttime pharmacokinetics of MPA between UGT1A8 or UGT2B7 genotypes. The mean daytime dose-adjusted AUC(0-12) of MPA in UGT1A8*1/*1, *1/*2 and *2/*2 were 2.47, 2.33 and 2.57 ng.h/ml/mg/kg (P = 0.7711), and the mean nighttime AUC(0-12) were 2.15, 2.00 and 2.08 ng.h/ml/mg/kg (P = 0.4656). The mean daytime and nighttime dose-adjusted AUC(0-12) of MPA in UGT2B7*1/*1, *1/*2 and *2/*2 were 2.61, 2.24 and 2.03 ng.h/ml/mg/kg and 2.18, 1.94, and 1.45 ng.h/ml/mg/kg, respectively (P = 0.3475 and 0.2575). The mean nighttime C(max), t(max), and AUC(6-12)/AUC(0-12) ratio (enterohepatic circulation and recirculation ratio) of MPA in all UGT1A8 and UGT2B7 genotypes were lower, longer, and higher, respectively, than the daytime values. CONCLUSIONS Both UGT1A8 and UGT2B7 allelic variants seem not to affect Japanese interindividual variability for plasma MPA concentration. Regardless of UGT1A8 and UGT2B7 genetic polymorphisms, the absorption of MPA through enterohepatic recirculation is higher at night.
Collapse
Affiliation(s)
- Hideaki Kagaya
- Department of Pharmacy, Akita University Hospital, 1-1-1 Hondo, Akita, 010-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|