101
|
Shehata HM, Murphy AJ, Lee MKS, Gardiner CM, Crowe SM, Sanjabi S, Finlay DK, Palmer CS. Sugar or Fat?-Metabolic Requirements for Immunity to Viral Infections. Front Immunol 2017; 8:1311. [PMID: 29085369 PMCID: PMC5649203 DOI: 10.3389/fimmu.2017.01311] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
The realization that an intricate link exists between the metabolic state of immune cells and the nature of the elicited immune responses has brought a dramatic evolution to the field of immunology. We will focus on how metabolic reprogramming through the use of glycolysis and fatty-acid oxidation (sugar or fat) regulates the capacity of immune cells to mount robust and effective immune responses. We will also discuss how fine-tuning sugar and fat metabolism may be exploited as a novel immunotherapeutic strategy to fight viral infections or improve vaccine efficacy.
Collapse
Affiliation(s)
- Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, United States
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Clovis Steve Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
102
|
Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, Zhou J, Simar D, Lewin SR, Ostrowski M, McCune JM, Crowe SM. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett 2017; 591:3319-3332. [PMID: 28892135 PMCID: PMC5658250 DOI: 10.1002/1873-3468.12843] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/04/2022]
Abstract
High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3‐kinases (PI3K) activation measured by p‐Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K‐mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)‐treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in ‘virologically suppressed’ cART‐treated HIV+ persons.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Gabriel A Duette
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Suah Saleh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Candida Pereira
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Matias Ostrowski
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
103
|
Lugongolo MY, Manoto SL, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P. The effects of low level laser therapy on both HIV-1 infected and uninfected TZM-bl cells. JOURNAL OF BIOPHOTONICS 2017; 10:1335-1344. [PMID: 28128530 DOI: 10.1002/jbio.201600217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Human immunodeficiency virus (HIV-1) infection remains a major health problem despite the use of highly active antiretroviral therapy (HAART), which has greatly reduced mortality rates. Due to the unavailability of an effective vaccine and treatment that would completely eradicate the virus in infected individuals, the quest for new therapies continues. Low level laser therapy (LLLT) involves the exposure of cells to low levels of red or infrared light. LLLT has been widely used in different medical conditions, but not in HIV-1 infection. This study aimed to determine the effects of LLLT on HIV-1 infected and uninfected TZM-bl cells. Both infected and uninfected cells were irradiated at a wavelength of 660 nm with different fluences from 2 J/cm2 to 10 J/cm2 . Changes in cellular responses were assessed using cell morphology, viability, proliferation, cytotoxicity and luciferase activity assays. Upon data analysis, uninfected irradiated cells showed no changes in cell morphology, viability, proliferation and cytotoxicity, while the infected irradiated cells did. In addition, laser irradiation reduced luciferase activity in infected cells. Finally, laser irradiation had no inhibitory effect in uninfected cells, whereas it induced cell damage in a dose dependent manner in infected cells.
Collapse
Affiliation(s)
- Masixole Yvonne Lugongolo
- Council of Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Building 46A, Pretoria, 0001, South Africa
- Department of Physics, University of South Africa, Science Campus, Florida, 1710, South Africa
| | - Sello Lebohang Manoto
- Council of Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Building 46A, Pretoria, 0001, South Africa
| | - Saturnin Ombinda-Lemboumba
- Council of Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Building 46A, Pretoria, 0001, South Africa
| | - Malik Maaza
- Department of Physics, University of South Africa, Science Campus, Florida, 1710, South Africa
| | - Patience Mthunzi-Kufa
- Council of Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Building 46A, Pretoria, 0001, South Africa
- Department of Physics, University of South Africa, Science Campus, Florida, 1710, South Africa
| |
Collapse
|
104
|
Palmer CS, Henstridge DC, Yu D, Singh A, Balderson B, Duette G, Cherry CL, Anzinger JJ, Ostrowski M, Crowe SM. Emerging Role and Characterization of Immunometabolism: Relevance to HIV Pathogenesis, Serious Non-AIDS Events, and a Cure. THE JOURNAL OF IMMUNOLOGY 2017; 196:4437-44. [PMID: 27207806 DOI: 10.4049/jimmunol.1600120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 01/18/2023]
Abstract
Immune cells cycle between a resting and an activated state. Their metabolism is tightly linked to their activation status and, consequently, functions. Ag recognition induces T lymphocyte activation and proliferation and acquisition of effector functions that require and depend on cellular metabolic reprogramming. Likewise, recognition of pathogen-associated molecular patterns by monocytes and macrophages induces changes in cellular metabolism. As obligate intracellular parasites, viruses manipulate the metabolism of infected cells to meet their structural and functional requirements. For example, HIV-induced changes in immune cell metabolism and redox state are associated with CD4(+) T cell depletion, immune activation, and inflammation. In this review, we highlight how HIV modifies immunometabolism with potential implications for cure research and pathogenesis of comorbidities observed in HIV-infected patients, including those with virologic suppression. In addition, we highlight recently described key methods that can be applied to study the metabolic dysregulation of immune cells in disease states.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia;
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Di Yu
- Laboratory of Molecular Immunomodulation, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research, Indian Institute of Science, Bangalore 560012, India
| | - Brad Balderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Gabriel Duette
- Instituto de Investigaciones Biomedicas en Retrovirus y SIDA, Facultad de Medicina, C1121ABG Buenos Aires, Argentina
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Victoria 3004, Australia; School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2000, South Africa; and
| | - Joshua J Anzinger
- Department of Microbiology, University of the West Indies, Mona, Jamaica
| | - Matias Ostrowski
- Instituto de Investigaciones Biomedicas en Retrovirus y SIDA, Facultad de Medicina, C1121ABG Buenos Aires, Argentina
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| |
Collapse
|
105
|
Ahmed D, Cassol E. Role of cellular metabolism in regulating type I interferon responses: Implications for tumour immunology and treatment. Cancer Lett 2017; 409:20-29. [PMID: 28888999 DOI: 10.1016/j.canlet.2017.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are increasingly recognized for their role in regulating anti-tumour immune responses. However, chronic activation of these pathways can result in immunosuppression and has been linked to poor responses to genotoxic and radiotoxic therapies. Emerging evidence suggests energy, lipid and amino acid metabolism play an important role in regulating and fine tuning type I IFN responses. Further, dysregulation of these processes has been implicated in the pathogenesis of chronic viral infections and autoimmune disorders. Systematic evaluation of these interrelationships in cancer models and patients may have important implications for the development of targeted IFN based anti-cancer therapeutics with minimal toxicity and limited off target effects.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
106
|
Masson JJR, Murphy AJ, Lee MKS, Ostrowski M, Crowe SM, Palmer CS. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS One 2017; 12:e0183931. [PMID: 28854263 PMCID: PMC5576743 DOI: 10.1371/journal.pone.0183931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.
Collapse
Affiliation(s)
- Jesse J. R. Masson
- James Cook University, Cairns, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | | | - Man K. S. Lee
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Matias Ostrowski
- Instituto de Investigaciones Biome´dicas en Retrovirus y SIDA. Facultad de Medicina, Buenos Aires, Argentina
| | - Suzanne M. Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Clovis S. Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
107
|
Hyperglycaemia does not affect antigen-specific activation and cytolytic killing by CD8 + T cells in vivo. Biosci Rep 2017; 37:BSR20171079. [PMID: 28798194 PMCID: PMC5634402 DOI: 10.1042/bsr20171079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Metabolism is of central importance for T cell survival and differentiation. It
is well known that T cells cannot function in the absence of glucose, but it is
less clear how they respond to excessive levels of glucose. In the present
study, we investigated how increasing levels of glucose affect T-cell-mediated
immune responses. We examined the effects of increased levels of glucose on
CD8+ T-cell behaviour in vitro by assessing
activation and cytokine production, as well as oxygen consumption rate (OCR),
extracellular acidification rate (ECAR) and intracellular signalling. In
addition, we assessed in vivo proliferation, cytokine
production and cytolytic activity of cells in chemically induced diabetic
C57BL/6 mice. Elevated levels of glucose in in vitro cultures
had modest effects on proliferation and cytokine production, while in
vivo hyperglycaemia had no effect on CD8+ T-cell
proliferation, interferon γ (IFNγ) production or cytolytic
killing.
Collapse
|
108
|
Cohen J, D'Agostino L, Wilson J, Tuzer F, Torres C. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs. Front Aging Neurosci 2017; 9:281. [PMID: 28900395 PMCID: PMC5581874 DOI: 10.3389/fnagi.2017.00281] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/11/2017] [Indexed: 12/03/2022] Open
Abstract
With the advent of highly active antiretroviral therapy (HAART) survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND) still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD), we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs). Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Luca D'Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Joel Wilson
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| |
Collapse
|
109
|
Masson JJ, Billings HW, Palmer CS. Metabolic reprogramming during hepatitis B disease progression offers novel diagnostic and therapeutic opportunities. Antivir Chem Chemother 2017; 25:53-57. [PMID: 28768434 PMCID: PMC5890528 DOI: 10.1177/2040206617701372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metabolic remodeling occurs in immune cells during an infection. Host cells must upregulate energy production for growth, proliferation, and effector functions to limit the damage imposed by pathogens. One example, the hepatitis B virus, induces hepatic injury in human hepatocytes through dysregulation of aerobic glycolysis and lipid metabolism. Increased glycolytic metabolism mediated by elevated expression of Glut1, glucose influx, and lactate secretion is associated with this Warburg phenotype, a classic metabolic signature also observed in cancer cells. This article brings into focus the tight interaction between HBV infection and metabolic dysfunction and how these processes facilitate the progression of end-stage liver diseases, such as hepatocellular carcinoma. We also provide evidence and models by which other viruses such as HIV and Zika disrupt their host metabolic machinery. The emergence of the immunometabolism field provides novel opportunities to take advantage of intermediary metabolites and key metabolic pathways for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Jesse Jr Masson
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Hugh Ww Billings
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Clovis S Palmer
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,2 Department of Infectious Diseases, Monash University, Melbourne, Australia.,3 Department of Microbiology and Immunology, University of, Melbourne, Melbourne, Australia
| |
Collapse
|
110
|
Yeoh HL, Cheng AC, Cherry CL, Weir JM, Meikle PJ, Hoy JF, Crowe SM, Palmer CS. Immunometabolic and Lipidomic Markers Associated With the Frailty Index and Quality of Life in Aging HIV+ Men on Antiretroviral Therapy. EBioMedicine 2017; 22:112-121. [PMID: 28754302 PMCID: PMC5552224 DOI: 10.1016/j.ebiom.2017.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Chronic immune activation persists despite antiretroviral therapy (ART) in HIV+ individuals and underpins an increased risk of age-related co-morbidities. We assessed the Frailty Index in older HIV+ Australian men on ART. Immunometabolic markers on monocytes and T cells were analyzed using flow cytometry, plasma innate immune activation markers by ELISA, and lipidomic profiling by mass spectrometry. The study population consisted of 80 HIV+ men with a median age of 59 (IQR, 56-65), and most had an undetectable viral load (92%). 24% were frail, and 76% were non-frail. Frailty was associated with elevated Glucose transporter-1 (Glut1) expression on the total monocytes (p=0.04), increased plasma levels of innate immune activation marker sCD163 (OR, 4.8; CI 1.4-15.9, p=0.01), phosphatidylethanolamine PE(36:3) (OR, 5.1; CI 1.7-15.5, p=0.004) and triacylglycerol TG(16:1_18:1_18:1) (OR, 3.4; CI 1.3-9.2, p=0.02), but decreased expression of GM3 ganglioside, GM3(d18:1/18:0) (OR, 0.1; CI 0.0-0.6, p=0.01) and monohexosylceramide HexCerd(d18:1/22:0) (OR, 0.1; CI 0.0-0.5, p=0.004). There is a strong inverse correlation between quality of life and the concentration of PE(36:3) (ρ=-0.33, p=0.004) and PE(36:4) (ρ=-0.37, p=0.001). These data suggest that frailty is associated with increased innate immune activation and abnormal lipidomic profile. These markers should be investigated in larger, longitudinal studies to determine their potential as biomarkers for frailty.
Collapse
Affiliation(s)
- Hui-Ling Yeoh
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Allen C Cheng
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Level 6, The Alfred Centre (Alfred Hospital), 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Catherine L Cherry
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; School of Physiology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Jennifer F Hoy
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Suzanne M Crowe
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Clovis S Palmer
- Department of Infectious Diseases, The Alfred and Monash University, Level 2, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
111
|
Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 2017; 12:e0175549. [PMID: 28426686 PMCID: PMC5398529 DOI: 10.1371/journal.pone.0175549] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Collapse
|
112
|
Increased glucose transporter-1 expression on intermediate monocytes from HIV-infected women with subclinical cardiovascular disease. AIDS 2017; 31:199-205. [PMID: 27835618 DOI: 10.1097/qad.0000000000001320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE People living with HIV (PLWH) have chronic immune activation and increased cardiovascular disease (CVD) risk. Activation of monocytes and T lymphocytes causes upregulation of glucose transporter-1 (GLUT1) for efficient function. PLWH have an increased percentage of GLUT1-expressing monocytes and T lymphocytes, but it is unclear if these cells are associated with CVD. We evaluated the expression of GLUT1 and CD38 on monocyte and T lymphocyte populations from HIV-infected women with subclinical CVD. METHODS Participants with more than 75th percentile (n = 15) and less than 25th percentile (n = 15) age-adjusted intima-media thickness (IMT) at the right common carotid artery and bifurcation were identified from the Women's Interagency HIV Study. Groups were matched by age, race/ethnicity, smoking status, and CD4 cell count. All women were receiving suppressive antiretroviral therapy except for one high and one low IMT participant. Monocyte and T lymphocyte populations were evaluated for GLUT1 and CD38 expression using flow cytometry. RESULTS Intermediate monocytes from high IMT women had significantly increased expression of GLUT1 (310 MFI vs. 210 MFI, P = 0.024) (66.4% vs. 48.5%, P = 0.031) and CD38 (339 MFI vs. 211 MFI, P = 0.002) (10.5% vs. 3.8%, P = 0.0002) compared with women with low IMT. High and low IMT participants showed no differences in GLUT1 or CD38 expression on classical monocytes, nonclassical monocytes, CD4 and CD8 T lymphocytes. CONCLUSION GLUT1-expressing intermediate monocytes are elevated in HIV-infected women with subclinical CVD. These cells may contribute to development of CVD in PLWH and could be a novel target to limit inflammation.
Collapse
|
113
|
Immunometabolism may provide new insights into novel mechanisms of HIV reservoir persistence. AIDS 2016; 30:2895-2896. [PMID: 27824628 DOI: 10.1097/qad.0000000000001114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
114
|
Dimeloe S, Burgener AV, Grählert J, Hess C. T-cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology 2016; 150:35-44. [PMID: 27479920 DOI: 10.1111/imm.12655] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
T lymphocytes are a critical component of the adaptive immune system mediating protection against infection and malignancy, but also implicated in many immune pathologies. Upon recognition of specific antigens T cells clonally expand, traffic to inflamed sites and acquire effector functions, such as the capacity to kill infected and malignantly transformed cells and secrete cytokines to coordinate the immune response. These processes have significant bioenergetic and biosynthetic demands, which are met by dynamic changes in T-cell metabolism, specifically increases in glucose uptake and metabolism; mitochondrial function; amino acid uptake, and cholesterol and lipid synthesis. These metabolic changes are coordinate by key cellular kinases and transcription factors. Dysregulated T-cell metabolism is associated with impaired immunity in chronic infection and cancer and conversely with excessive T-cell activity in autoimmune and inflammatory pathologies. Here we review the key aspects of T-cell metabolism relevant to their immune function, and discuss evidence for the potential to therapeutically modulate T-cell metabolism in disease.
Collapse
Affiliation(s)
- Sarah Dimeloe
- Immunobiology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anne-Valérie Burgener
- Immunobiology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jasmin Grählert
- Immunobiology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
115
|
Palmer CS, Anzinger JJ, Butterfield TR, McCune JM, Crowe SM. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood. J Vis Exp 2016. [PMID: 27584036 DOI: 10.3791/54255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health; Department of Infectious Diseases, Monash University; Department of Microbiology and Immunology, University of Melbourne;
| | | | | | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco
| | - Suzanne M Crowe
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health; Department of Infectious Diseases, Monash University; Department of Medicine, Monash University
| |
Collapse
|
116
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
117
|
Palmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine 2016; 6:31-41. [PMID: 27211546 PMCID: PMC4856752 DOI: 10.1016/j.ebiom.2016.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein-Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia.
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Australia; School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Isabel Sada-Ovalle
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, India
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
118
|
CD38 Expression in a Subset of Memory T Cells Is Independent of Cell Cycling as a Correlate of HIV Disease Progression. DISEASE MARKERS 2016; 2016:9510756. [PMID: 27064238 PMCID: PMC4808674 DOI: 10.1155/2016/9510756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/05/2023]
Abstract
In order to determine if the expression of the activation marker CD38 can correlate with HIV disease progression independently of cycling, we performed a cluster-based multivariate correlation analysis of total circulating CD4+ T cell counts and viral loads with frequencies of CD38 and Ki67 expression on CD4+ lymphocytes from patients with untreated HIV infection, stratified in maturation subpopulations, and subpopulation subsets defined by the expression of CXCR5, CXCR3, and CCR4. The frequencies of the activated phenotypes %CD38+ Ki67− and %CD38+ Ki67+ of the CXCR5− CXCR3− CCR4+ (“pre-Th2”) central memory (TCM) cell subset clustered together, comprising a significant negative correlate of total circulating CD4+ T cell counts and a positive correlate of viral load in multivariate analysis. Frequency of cycling-uncoupled CD38 expression in “pre-Th2” TCM cells was a negative correlate of total circulating CD4+ T cell counts in univariate analysis, which was not the case of their %CD38+ Ki67+. CXCR5+ CXCR3− CCR4− TCM cells were underrepresented in patients, and their absolute counts correlated negatively with their %CD38+ Ki67− but not with their % CD38+ Ki67+. Our results may imply that CD38 expression either reflects or participates in pathogenic mechanisms of HIV disease independently of cell cycling.
Collapse
|
119
|
Billings H, Crowe SM, Palmer CS. Does immunometabolism provide new targets to treat HIV-mediated inflammatory diseases? Future Virol 2016. [DOI: 10.2217/fvl.16.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3800, Australia
- Infectious Diseases Department, The Alfred Hospital, Melbourne 3004, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne 3001, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3800, Australia
| |
Collapse
|
120
|
Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neurovirol 2016; 22:564-574. [PMID: 26843384 DOI: 10.1007/s13365-016-0424-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/04/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.
Collapse
Affiliation(s)
- Lance M Villeneuve
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Phillip R Purnell
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Kelly L Stauch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Shannon E Callen
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Shilpa J Buch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Howard S Fox
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
121
|
Devadas K, Biswas S, Haleyurgirisetty M, Wood O, Ragupathy V, Lee S, Hewlett I. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells. PLoS One 2016; 11:e0147421. [PMID: 26821323 PMCID: PMC4731573 DOI: 10.1371/journal.pone.0147421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/04/2016] [Indexed: 01/09/2023] Open
Abstract
HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2.
Collapse
Affiliation(s)
- Krishnakumar Devadas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
- * E-mail: (KD); (IKH)
| | - Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
| | - Mohan Haleyurgirisetty
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
| | - Owen Wood
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
| | - Sherwin Lee
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993–0002, United States of America
- * E-mail: (KD); (IKH)
| |
Collapse
|
122
|
Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, Crowe SM. Regulators of Glucose Metabolism in CD4 + and CD8 + T Cells. Int Rev Immunol 2015; 35:477-488. [PMID: 26606199 DOI: 10.3109/08830185.2015.1082178] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Much like cancer cells, activated T cells undergo various metabolic changes that allow them to grow and proliferate rapidly. By adopting aerobic glycolysis upon activation, T cells effectively prioritize efficiency in biosynthesis over energy generation. There are distinct differences in the way CD4+ and CD8+ T cells process activation signals. CD8+ effector T cells are less dependent on Glut1 and oxygen levels compared to their CD4+ counterparts. Similarly the downstream signaling by TCR also differs in both effector T cell types. Recent studies have explored PI3K/Akt, mTORC, HIF1α, p70S6K and Bcl-6 signaling in depth providing definition of the crucial roles of these regulators in glucose metabolism. These new insights may allow improved therapeutic manipulation against inflammatory conditions that are associated with dysfunctional T-cell metabolism such as autoimmune disorders, metabolic syndrome, HIV, and cancers.
Collapse
Affiliation(s)
- Clovis S Palmer
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia
| | - Tabinda Hussain
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia
| | - Gabriel Duette
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Thomas J Weller
- d Department of Immunology , Monash University , Melbourne , Australia
| | - Matias Ostrowski
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Isabel Sada-Ovalle
- e Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael CosÃ-o Villegas , Mexico City , Mexico
| | - Suzanne M Crowe
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia.,f Infectious Diseases Department , The Alfred Hospital , Melbourne , Australia
| |
Collapse
|
123
|
Dagenais-Lussier X, Mouna A, Routy JP, Tremblay C, Sekaly RP, El-Far M, Grevenynghe JV. Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine Growth Factor Rev 2015; 26:603-13. [PMID: 26409789 DOI: 10.1016/j.cytogfr.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
HIV-1 infection results in long-lasting activation of the immune system including elevated production of pro-inflammatory cytokine/chemokines, and bacterial product release from gut into blood and tissue compartments, which are not fully restored by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral regulatory proteins to hijack cell molecular mechanisms to enhance its own replication and dissemination. Here, we reviewed the relationship between viral proteins, immune activation/inflammation, and deregulated metabolism occurring in HIV-1-infected patients that ultimately dampens the protective innate and adaptive arms of immunity. Defining precisely the molecular mechanisms related to deregulated immuno-metabolism during HIV-1 infection could ultimately help in the development of novel clinical approaches to restore proper immune functions in these patients.
Collapse
Affiliation(s)
| | - Aounallah Mouna
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | | | | | - Julien van Grevenynghe
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|
124
|
Taylor HE, Simmons GE, Mathews TP, Khatua AK, Popik W, Lindsley CW, D’Aquila RT, Brown HA. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication. PLoS Pathog 2015; 11:e1004864. [PMID: 26020637 PMCID: PMC4447393 DOI: 10.1371/journal.ppat.1004864] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/07/2015] [Indexed: 12/25/2022] Open
Abstract
Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1) infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs) and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1) links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.
Collapse
Affiliation(s)
- Harry E. Taylor
- Northwestern HIV Translational Research Center, Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (HET); (HAB)
| | - Glenn E. Simmons
- Department of Molecular Genetics, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas P. Mathews
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Atanu K. Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, Tennessee, United States of America
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, Tennessee, United States of America
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennesee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard T. D’Aquila
- Northwestern HIV Translational Research Center, Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (HET); (HAB)
| |
Collapse
|
125
|
Cohen RA, Seider TR, Navia B. HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? ALZHEIMERS RESEARCH & THERAPY 2015; 7:37. [PMID: 25848401 PMCID: PMC4386102 DOI: 10.1186/s13195-015-0123-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marked improvements in survival and health outcome for people infected with HIV have occurred since the advent of combination antiretroviral therapy over a decade ago. Yet HIV-associated neurocognitive disorders continue to occur with an alarming prevalence. This may reflect the fact that infected people are now living longer with chronic infection. There is mounting evidence that HIV exacerbates age-associated cognitive decline. Many middle-aged HIV-infected people are experiencing cognitive decline similar that to that found among much older adults. An increased prevalence of vascular and metabolic comorbidities has also been observed and is greatest among older adults with HIV. Premature age-associated neurocognitive decline appears to be related to structural and functional brain changes on neuroimaging, and of particular concern is the fact that pathology indicative of neurodegenerative disease has been shown to occur in the brains of HIV-infected people. Yet notable differences also exist between the clinical presentation and brain disturbances occurring with HIV and those occurring in neurodegenerative conditions such as Alzheimer’s disease. HIV interacts with the aging brain to affect neurological structure and function. However, whether this interaction directly affects neurodegenerative processes, accelerates normal cognitive aging, or contributes to a worsening of other comorbidities that affect the brain in older adults remains an open question. Evidence for and against each of these possibilities is reviewed.
Collapse
Affiliation(s)
- Ronald A Cohen
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA
| | - Talia R Seider
- Departments of Neurology, Cognitive Aging and Memory Program, Institute on Aging, Psychiatry, and Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32610 USA ; Department of Clinical and Health Psychology, University of Florida, 1225 Center Drive, Room 3151, Gainesville, FL 32611 USA
| | - Bradford Navia
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
126
|
Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol 2015; 6:1. [PMID: 25657648 PMCID: PMC4302982 DOI: 10.3389/fimmu.2015.00001] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia
| | - Matias Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Brad Balderson
- Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia
| | - Nicole Christian
- Department of Microbiology, The University of the West Indies , Kingston , Jamaica
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia ; Department of Infectious Diseases, Monash University , Melbourne, VIC , Australia ; Infectious Diseases Department, The Alfred Hospital , Melbourne, VIC , Australia
| |
Collapse
|
127
|
Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology 2014; 11:98. [PMID: 25421745 PMCID: PMC4252996 DOI: 10.1186/s12977-014-0098-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-1, like all viruses, is entirely dependent on the host cell for providing the metabolic resources for completion of the viral replication cycle and the production of virions. It is well established that HIV-1 replicates efficiently in activated CD4+ T cells, whereas resting CD4+ T cells are refractory to infection with HIV-1. A hallmark of T cell activation is the upregulation of glycolysis to meet the biosynthetic and bioenergetic needs of cell proliferation and the execution of effector functions by the secretion of cytokines. To date, it has remained unknown if HIV-1 requires the high glycolytic activity of activated T cells to support its replication. RESULTS We report that in primary CD4+ T cells, the flux through the glycolytic pathway is increased upon infection with HIV-1. This increase in glycolytic activity does not occur in T cell lines when infected with HIV-1. By providing cells with galactose instead of glucose, the former being a poor substrate for glycolysis, we monitored the effect of preventing glycolysis in CD4+ T cells on virus replication cycle and cell fate. We observed that HIV-1 infected primary CD4+ T cells cultured in galactose have a survival advantage over those cultured in glucose and this coincides with reduced caspase 3 activation and apoptosis in cultures with galactose. T cell lines do not recapitulate this difference in cell death. Finally, we demonstrate that virion production is dependent on glycolysis as cultures containing galactose yield reduced amounts of HIV-1 virions compared with cultures containing glucose. CONCLUSIONS The replication of HIV-1 in primary CD4+ T cells causes an increase in glycolytic flux of the cell. Glycolysis is particularly required for virion production and additionally increases the sensitivity of the infected cell to virus-induced cell death.
Collapse
Affiliation(s)
- Andrea Hegedus
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Maia Kavanagh Williamson
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hendrik Huthoff
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
128
|
Palmer CS, Crowe SM. Panobinostat clinical trial highlights the challenges towards an HIV cure. Lancet HIV 2014; 1:e103. [PMID: 26424118 DOI: 10.1016/s2352-3018(14)00009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 02/01/2023]
Affiliation(s)
| | - Suzanne M Crowe
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
129
|
Palmer CS, Anzinger JJ, Zhou J, Gouillou M, Landay A, Jaworowski A, McCune JM, Crowe SM. Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects. THE JOURNAL OF IMMUNOLOGY 2014; 193:5595-603. [PMID: 25367121 DOI: 10.4049/jimmunol.1303092] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monocyte activation during HIV-1 infection is associated with increased plasma levels of inflammatory markers and increased risk for premature development of age-related diseases. Because activated monocytes primarily use glucose to support cellular metabolism, we hypothesized that chronic monocyte activation during HIV-1 infection induces a hypermetabolic response with increased glucose uptake. To test this hypothesis, we evaluated glucose transporter 1 (Glut1) expression and glucose uptake by monocyte subpopulations in HIV-seropositive (HIV(+)) treatment-naive individuals (n = 17), HIV(+) individuals on combination antiretroviral therapy with viral loads below detection (n = 11), and HIV-seronegative (HIV(-)) individuals (n = 16). Surface expression of Glut1 and cellular uptake of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2 deoxyglucose were analyzed by flow cytometry on monocyte subpopulations. Irrespective of treatment status, monocytes from HIV(+) persons had significantly increased surface expression of Glut1 compared with those from HIV(-) controls. Nonclassical (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocyte subpopulations showed higher Glut1 expression than did classical (CD14(++)CD16(-)) monocytes. Intermediate monocytes from treatment-naive HIV(+) individuals also showed increased uptake of 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2 deoxyglucose compared with those from HIV(-) controls. Our results show that HIV infection is associated with increased glucose metabolism in monocytes and that Glut1 expression by proinflammatory monocytes is a potential marker of inflammation in HIV-infected subjects. However, the possibility exists whereby other Gluts such as Glut3 and Glut4 may also support the influx of glucose into activated and inflammatory monocyte populations.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia;
| | - Joshua J Anzinger
- Department of Microbiology, The University of the West Indies, Mona, Kingston 7, Jamaica, West Indies
| | - Jingling Zhou
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Maelenn Gouillou
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Alan Landay
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Anthony Jaworowski
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3800, Australia; Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Suzanne M Crowe
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3800, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia 3800
| |
Collapse
|