101
|
Gassmann M, Cowburn A, Gu H, Li J, Rodriguez M, Babicheva A, Jain PP, Xiong M, Gassmann NN, Yuan JXJ, Wilkins MR, Zhao L. Hypoxia-induced pulmonary hypertension-Utilizing experiments of nature. Br J Pharmacol 2020; 178:121-131. [PMID: 32464698 DOI: 10.1111/bph.15144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,University Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Andrew Cowburn
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Martin R Wilkins
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Lan Zhao
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
102
|
Li G, Zhu A, Huang Y, Meng J, Ji L, Xue J, Li H, Wang X, Luo J, Wu Z, Wu S. The effect of traditional Tibetan guozhuang dance on vascular health in elderly individuals living at high altitudes. Am J Transl Res 2020; 12:4550-4560. [PMID: 32913528 PMCID: PMC7476110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
To evaluate the effect of dance on vascular-related factors and cerebral hemodynamics in elderly individuals in Qinghai-Tibetan plateau regions (mean altitude ≥2,300 m). Thirty elderly individuals, who practiced traditional Tibetan Guozhuang dance or did not, were enrolled, respectively. Serum PGC-1α, HCY, FSTL-1, VEGF and HIF-1α were measured by ELISA assays. Carotid artery stenosis and plaque, IMT, extracranial internal carotid artery stenosis and cerebral arteriosclerosis were evaluated using CUS and TCD. Body weight, BMI, heart rate, systolic pressure, and diastolic pressure, serum BGS, TC, LDL, HIF-1α, VEGF, and HCY in the dance group were significantly lower than the no-dance group. FSTL-1 levels, SO2 and SO2/heart rate ratio in the dance group were significantly higher than the no-dance group. Incidence of extracranial internal carotid artery stenosis, carotid stenosis and plaque in the dance group was significantly lower than the no-dance group. IMT was a significant positive correlation between PGC-1α and HCY in the no-dance group. Elderly individuals who regularly practiced Tibetan dance had improved blood vessel functionality and cerebral hemodynamic at high altitudes.
Collapse
Affiliation(s)
- Guofeng Li
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Aiqin Zhu
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Yuling Huang
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Jie Meng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu, People’s Republic of China
| | - Lei Ji
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Jinsheng Xue
- Foreign Cooperation Office, Chengdu Fifth People’s HospitalChengdu, People’s Republic of China
| | - Hongjuan Li
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Xiaohong Wang
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Junming Luo
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
| | - Shizheng Wu
- Institute of Geriatric, Qinghai Provincial People’s HospitalXining, People’s Republic of China
| |
Collapse
|
103
|
Palubiski LM, O'Halloran KD, O'Neill J. Renal Physiological Adaptation to High Altitude: A Systematic Review. Front Physiol 2020; 11:756. [PMID: 32765289 PMCID: PMC7378794 DOI: 10.3389/fphys.2020.00756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Under normal physiological conditions, renal tissue oxygen is tightly regulated. At high altitude, a physiological challenge is imposed by the decrease in atmospheric oxygen. At the level of the kidney, the physiological adaptation to high altitude is poorly understood, which might relate to different integrated responses to hypoxia over different time domains of exposure. Thus, this systematic review sought to examine the renal physiological adaptation to high altitude in the context of the magnitude and duration of exposure to high altitude in the healthy kidney model. Methods: To conduct the review, three electronic databases were examined: OVID, PubMed, and Scopus. Search terms included: Altitude, renal, and kidney. The broad, but comprehensive search, retrieved 1,057 articles published between 1997 and April 2020. Fourteen studies were included in the review. Results: The inconsistent effect of high altitude on renal hemodynamic parameters (glomerular filtration rate, renal blood flow, and renal plasma flow), electrolyte balance, and renal tissue oxygen is difficult to interpret; however, the data suggest that the nature and extent of renal physiological adaptation at high altitude appears to be related to the magnitude and duration of the exposure. Conclusion: It is clear that renal physiological adaptation to high altitude is a complex process that is not yet fully understood. Further research is needed to better understand the renal physiological adaptation to hypoxia and how renal oxygen homeostasis and metabolism is defended during exposure to high altitude and affected as a long-term consequence of renal adaptation at high altitude.
Collapse
Affiliation(s)
- Lisa M Palubiski
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
104
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
105
|
Zhang JH, Shen Y, Liu C, Yang J, Yang YQ, Zhang C, Bian SZ, Yu J, Gao XB, Zhang LP, Ke JB, Yuan FZY, Pan WX, Guo ZN, Huang L. EPAS1 and VEGFA gene variants are related to the symptoms of acute mountain sickness in Chinese Han population: a cross-sectional study. Mil Med Res 2020; 7:35. [PMID: 32718338 PMCID: PMC7385974 DOI: 10.1186/s40779-020-00264-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND More people ascend to high altitude (HA) for various activities, and some individuals are susceptible to HA illness after rapidly ascending from plains. Acute mountain sickness (AMS) is a general complaint that affects activities of daily living at HA. Although genomic association analyses suggest that single nucleotide polymorphisms (SNPs) are involved in the genesis of AMS, no major gene variants associated with AMS-related symptoms have been identified. METHODS In this cross-sectional study, 604 young, healthy Chinese Han men were recruited in June and July of 2012 in Chengdu, and rapidly taken to above 3700 m by plane. Basic demographic parameters were collected at sea level, and heart rate, pulse oxygen saturation (SpO2), systolic and diastolic blood pressure and AMS-related symptoms were determined within 18-24 h after arriving in Lhasa. AMS patients were identified according to the latest Lake Louise scoring system (LLSS). Potential associations between variant genotypes and AMS/AMS-related symptoms were identified by logistic regression after adjusting for potential confounders (age, body mass index and smoking status). RESULTS In total, 320 subjects (53.0%) were diagnosed with AMS, with no cases of high-altitude pulmonary edema or high-altitude cerebral edema. SpO2 was significantly lower in the AMS group than that in the non-AMS group (P = 0.003). Four SNPs in hypoxia-inducible factor-related genes were found to be associated with AMS before multiple hypothesis testing correction. The rs6756667 (EPAS1) was associated with mild gastrointestinal symptoms (P = 0.013), while rs3025039 (VEGFA) was related to mild headache (P = 0.0007). The combination of rs6756667 GG and rs3025039 CT/TT further increased the risk of developing AMS (OR = 2.70, P < 0.001). CONCLUSIONS Under the latest LLSS, we find that EPAS1 and VEGFA gene variants are related to AMS susceptibility through different AMS-related symptoms in the Chinese Han population; this tool might be useful for screening susceptible populations and predicting clinical symptoms leading to AMS before an individual reaches HA. TRIAL REGISTRATION Chinese Clinical Trial Registration, ChiCTR-RCS-12002232 . Registered 31 May 2012.
Collapse
Affiliation(s)
- Ji-Hang Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yang Shen
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Qi Yang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shi-Zhu Bian
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu-Bin Gao
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lai-Ping Zhang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing-Bin Ke
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Fang-Zheng-Yuan Yuan
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wen-Xu Pan
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhi-Nian Guo
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases, Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
106
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
107
|
Yu J, Yu L, Li Y, Hu F. Iron deficiency is a possible risk factor causing right heart failure in Tibetan children living in high altitude area. Medicine (Baltimore) 2020; 99:e21133. [PMID: 32702866 PMCID: PMC7373578 DOI: 10.1097/md.0000000000021133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the study is to discuss the risk factor of right heart failure (RHF) especially the association of iron deficiency with RHF in Tibetan children who live in high altitude area. In this retrospective study, we collected the data of Tibetan children from January 2011 to December 2018 in our hospital. The patients included in the study had the following data: age, gender, ferritin, echocardiography, hemoglobin, C-reaction protein, and altitude of residence. According to whether RHF was diagnosed, the patients were divided into RHF group and non-RHF group. Totally 133 patients were included with 59 in RHF group and 74 in non-RHF group. In single factor analysis, age (P = .008), altitude of residence (P < .001), ferritin (P < .001), and pulmonary arterial systolic pressure (P < .001) showed significant difference between the 2 groups. Binary logistic regression was performed to further identify the association of the clinical factors with RHF. Higher pulmonary arterial systolic pressure (odds ratio: 29.303, 95% confidence interval: 5.249-163.589, P < .001) and lower ferritin level (odds ratio: 5.849, 95% confidence interval: 1.585-21.593, P = .008) were independent risk factors associated with RHF. In receiver-operating characteristic curve, the optimal cutoff value of ferritin level was 14.6 μg/L with the sensitivity of 81.4% and specificity of 89.2%. As continuous variable, the correlation between ferritin and RHF was not certain (P = .281). Due to the possibility that iron deficiency be a risk factor of RHF in Tibetan children, prevention and treatment of iron deficiency might be a potential way in reducing the incidence of RHF in this high altitude area.
Collapse
Affiliation(s)
- Jiayun Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital
| | - Li Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Fan Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
108
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
109
|
Chen J, Shen Y, Wang J, Ouyang G, Kang J, Lv W, Yang L, He S. Analysis of Multiplicity of Hypoxia-Inducible Factors in the Evolution of Triplophysa Fish (Osteichthyes: Nemacheilinae) Reveals Hypoxic Environments Adaptation to Tibetan Plateau. Front Genet 2020; 11:433. [PMID: 32477402 PMCID: PMC7235411 DOI: 10.3389/fgene.2020.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
HIF (Hypoxia-inducible factor) gene family members function as master regulators of cellular and systemic oxygen homeostasis during changes in oxygen availability. Qinghai-Tibet Plateau is a natural laboratory for for long-term hypoxia and cold adaptation. In this context, T. scleroptera that is restricted to >3500 m high-altitude freshwater rivers was selected as the model to compare with a representative species from the plain, P. dabryanus. We cloned different HIF-α and carried out a phylogenetic analysis from invertebrates to vertebrates for identifying HIF-α genes and analyzing their evolutionary history. Intriguingly, the HIF-α has undergone gene duplications might be due to whole-genome duplication (WGD) events during evolution. PAML analysis indicated that HIF-1αA was subjected to positive selection acted on specific sites in Triplophysa lineages. To investigate the relationship between hypoxia adaptation and the regulation of HIF-α stability by pVHL in plateau and plain fish, a series of experiments were carried out. Comparison the luciferase transcriptional activity and protein levels of HIF-αs and the differing interactions of HIF-αs with pVHL, show clear differences between plateau and plain fish. T. scleroptera pVHL could enhance HIF-α transcriptional activity under hypoxia, and functional validation through pVHL protein mutagenesis showed that these mutations increased the stability of HIF-α and its hetero dimerization affinity to ARNT. Our research shows that missense mutations of pVHL induced evolutionary molecular adaptation in Triplophysa fishes living in high altitude hypoxic environments.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
110
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
111
|
Gojkovic M, Darmasaputra GS, Veliça P, Rundqvist H, Johnson RS. Deregulated hypoxic response in myeloid cells: A model for high-altitude pulmonary oedema (HAPE). Acta Physiol (Oxf) 2020; 229:e13461. [PMID: 32129933 PMCID: PMC8638671 DOI: 10.1111/apha.13461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
AIM High-altitude pulmonary oedema (HAPE) is a non-cardiogenic pulmonary oedema that can occur during rapid ascent to a high-altitude environment. Classically, HAPE has been described as a condition resulting from a combination of pulmonary vasoconstriction and hypertension. Inflammation has been described as important in HAPE, although as a side effect of pulmonary oedema rather than as a causative factor. In this study, we aim to understand the role of hypoxic response in myeloid cells and its involvement in pathogenesis of HAPE. METHODS We have generated a conditional deletion in mice of the von Hippel-Lindau factor (VHL) in myeloid cells to determine the effect of a deregulated hypoxic response in pulmonary oedema. RESULTS The deletion of VHL in pulmonary myeloid cells gave rise to pulmonary oedema, increased pulmonary vascular permeability and reduced performance during exertion. These changes were accompanied by reduced stroke volume in the left ventricle. CONCLUSION In this model, we show that a deregulated myeloid cell hypoxic response can trigger some of the most important symptoms of HAPE, and thus mice with a deletion of VHL in the myeloid lineage can function as a model of HAPE.
Collapse
Affiliation(s)
- Milos Gojkovic
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
| | | | - Pedro Veliça
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
| | - Helene Rundqvist
- Department of Physiology and Pharmacology Karolinska Institute Stockholm Sweden
| | - Randall S. Johnson
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
- Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
| |
Collapse
|
112
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
113
|
Abstract
Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.
Collapse
|
114
|
Hall JE, Lawrence ES, Simonson TS, Fox K. Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Front Genet 2020; 11:471. [PMID: 32528523 PMCID: PMC7247851 DOI: 10.3389/fgene.2020.00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human populations at high altitude exhibit both unique physiological responses and strong genetic signatures of selection thought to compensate for the decreased availability of oxygen in each breath of air. With the increased availability of genomic information from Tibetans, Andeans, and Ethiopians, much progress has been made to elucidate genetic adaptations to chronic hypoxia that have occurred throughout hundreds of generations in these populations. In this perspectives piece, we discuss specific hypoxia-pathway variants that have been identified in high-altitude populations and methods for functional investigation, which may be used to determine the underlying causal factors that afford adaptation to high altitude.
Collapse
Affiliation(s)
- James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Keolu Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
115
|
Moya EA, Go A, CB K, Fu Z, TS S, FL P. Neuronal HIF-1α in the nucleus tractus solitarius contributes to ventilatory acclimatization to hypoxia. J Physiol 2020; 598:2021-2034. [PMID: 32026480 PMCID: PMC7230006 DOI: 10.1113/jp279331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS We hypothesized that hypoxia inducible factor 1α (HIF-1α) in CNS respiratory centres is necessary for ventilatory acclimatization to hypoxia (VAH); VAH is a time-dependent increase in baseline ventilation and the hypoxic ventilatory response (HVR) occurring over days to weeks of chronic sustained hypoxia (CH). Constitutive deletion of HIF-1α in CNS neurons in transgenic mice tended to blunt the increase in HVR that occurs in wild-type mice with CH. Conditional deletion of HIF-1α in glutamatergic neurons of the nucleus tractus solitarius during CH significantly decreased ventilation in acute hypoxia but not normoxia in CH mice. These effects are not explained by changes in metabolic rate, nor CO2 , and there were no changes in the HVR in normoxic mice. HIF-1α mediated changes in gene expression in CNS respiratory centres are necessary in addition to plasticity of arterial chemoreceptors for normal VAH. ABSTRACT Chronic hypoxia (CH) produces a time-dependent increase of resting ventilation and the hypoxic ventilatory response (HVR) that is called ventilatory acclimatization to hypoxia (VAH). VAH involves plasticity in arterial chemoreceptors and the CNS [e.g. nucleus tractus solitarius (NTS)], although the signals for this plasticity are not known. We hypothesized that hypoxia inducible factor 1α (HIF-1α), an O2 -sensitive transcription factor, is necessary in the NTS for normal VAH. We tested this in two mouse models using loxP-Cre gene deletion. First, HIF-1α was constitutively deleted in CNS neurons (CNS-HIF-1α-/- ) by breeding HIF-1α floxed mice with mice expressing Cre-recombinase driven by the calcium/calmodulin-dependent protein kinase IIα promoter. Second, HIF-1α was deleted in NTS neurons in adult mice (NTS-HIF-1α-/- ) by microinjecting adeno-associated virus that expressed Cre-recombinase in HIF-1α floxed mice. In normoxic control mice, HIF-1α deletion in the CNS or NTS did not affect ventilation, nor the acute HVR (10-15 min hypoxic exposure). In mice acclimatized to CH for 1 week, ventilation in hypoxia was blunted in CNS-HIF-1α-/- and significantly decreased in NTS-HIF-1α-/- compared to control mice (P < 0.0001). These changes were not explained by differences in metabolic rate or CO2 . Immunofluorescence showed that HIF-1α deletion in NTS-HIF-1α-/- was restricted to glutamatergic neurons. The results indicate that HIF-1α is a necessary signal for VAH and the previously described plasticity in glutamatergic neurotransmission in the NTS with CH. HIF-1α deletion had no effect on the increase in normoxic ventilation with acclimatization to CH, indicating this is a distinct mechanism from the increased HVR with VAH.
Collapse
Affiliation(s)
- Esteban A. Moya
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, 8340589, Chile
| | - A Go
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Kim CB
- Providence Medical Institute, Torrance, California, 90503, USA
| | - Z Fu
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Simonson TS
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Powell FL
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| |
Collapse
|
116
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
117
|
Wander K, Su M, Mattison PM, Sum CY, Witt CC, Shenk MK, Blumenfield T, Li H, Mattison SM. High-altitude adaptations mitigate risk for hypertension and diabetes-associated anemia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:156-164. [PMID: 32324912 DOI: 10.1002/ajpa.24032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human populations native to high altitude exhibit numerous genetic adaptations to hypobaric hypoxia. Among Tibetan plateau peoples, these include increased vasodilation and uncoupling of erythropoiesis from hypoxia. OBJECTIVE/METHODS We tested the hypothesis that these high-altitude adaptations reduce risk for hypertension and diabetes-associated anemia among the Mosuo, a Tibetan-descended population in the mountains of Southwest China that is experiencing rapid economic change and increased chronic disease risk. RESULTS Hypertension was substantially less common among Mosuo than low-altitude Han populations, and models fit to the Han predicted higher probability of hypertension than models fit to the Mosuo. Diabetes was positively associated with anemia among the Han, but not the Mosuo. CONCLUSION The Mosuo have lower risk for hypertension and diabetes-associated anemia than the Han, supporting the hypothesis that high-altitude adaptations affecting blood and circulation intersect with chronic disease processes to lower risk for these outcomes. As chronic diseases continue to grow as global health concerns, it is important to investigate how they may be affected by local genetic adaptations.
Collapse
Affiliation(s)
- Katherine Wander
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Mingjie Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, B&R International Joint Laboratory of Eurasian Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Peter M Mattison
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Chun-Yi Sum
- Department of Anthropology, University of Rochester, Rochester, New York, USA
| | - Christopher C Witt
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Mary K Shenk
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Tami Blumenfield
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA.,School of Ethnology and Sociology, Yunnan University, Kunming, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, B&R International Joint Laboratory of Eurasian Anthropology, School of Life Science, Fudan University, Shanghai, China
| | | |
Collapse
|
118
|
Association of EPAS1 and PPARA Gene Polymorphisms with High-Altitude Headache in Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1593068. [PMID: 32185192 PMCID: PMC7060407 DOI: 10.1155/2020/1593068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 11/17/2022]
Abstract
Background High-altitude headache (HAH) is the most common complication after high-altitude exposure. Hypoxia-inducible factor- (HIF-) related genes have been confirmed to contribute to high-altitude acclimatization. We aim to investigate a possible association between HIF-related genes and HAH in the Chinese Han population. Methods In total, 580 healthy Chinese Han volunteers were recruited in Chengdu (500 m) and carried to Lhasa (3700 m) by plane in 2 hours. HAH scores and basic physiological parameters were collected within 18-24 hours after the arrival. Thirty-five single nucleotide polymorphisms (SNPs) in HIF-related genes were genotyped, and linkage disequilibrium (LD) was evaluated by Haploview software. The functions of SNPs/haplotypes for HAH were developed by using logistic regression analysis. Results In comparison with wild types, the rs4953354 "G" allele (P=0.013), rs6756667 "A" allele (P=0.013), rs6756667 "A" allele (EPAS1, and rs6520015 "C" allele in PPARA (P=0.013), rs6756667 "A" allele (PPARA (P=0.013), rs6756667 "A" allele (EPAS1, and rs6520015 "C" allele in PPARA (P=0.013), rs6756667 "A" allele (. Conclusions EPAS1 and PPARA polymorphisms were associated with HAH in the Chinese Han population. Our findings pointed out potentially predictive gene markers, provided new insights into understanding pathogenesis, and may further provide prophylaxis and treatment strategies for HAH.EPAS1, and rs6520015 "C" allele in PPARA (.
Collapse
|
119
|
Xiao J, Li X, Fan X, Fan F, Lei H, Li C. Gene Expression Profile Reveals Hematopoietic-Related Molecule Changes in Response to Hypoxic Exposure. DNA Cell Biol 2020; 39:548-554. [PMID: 32155344 DOI: 10.1089/dna.2019.5004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Qing-Tibet Plateau is characterized by low oxygen pressure, which is an important biomedical and ecological stressor. However, the variation in gene expression during periods of stay on the plateau has not been well studied. We recruited eight volunteers to stay on the plateau for 3, 7, and 30 days. Human Clariom D arrays were used to measure transcriptome changes in the mRNA expression profiles in these volunteers' blood. Analysis of variance (ANOVA) indicated that 699 genes were significantly differentially expressed in response to entering the plateau during hypoxic exposure. The genes with changes in transcript abundance were involved in the terms phosphoprotein, acetylation, protein binding, and protein transport. Furthermore, numerous genes involved in hematopoietic functions, including erythropoiesis and immunoregulation, were differentially expressed in response to hypoxia. This phenomenon may be one of reasons why the majority of people entering the plateau do not have excessive erythrocyte proliferation and are susceptible to infection.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Xiaowei Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Xiu Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Fengyan Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Huifen Lei
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Cuiying Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| |
Collapse
|
120
|
Wang M, Zhuang D, Mei M, Ma H, Li Z, He F, Cheng G, Lin G, Zhou W. Frequent mutation of hypoxia-related genes in persistent pulmonary hypertension of the newborn. Respir Res 2020; 21:53. [PMID: 32054482 PMCID: PMC7020588 DOI: 10.1186/s12931-020-1314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Aims Persistent pulmonary hypertension of the newborn (PPHN) is characterized by sustained high levels of pulmonary vascular resistance after birth with etiology unclear; Arterial blood oxygen saturation of Tibetan newborns at high latitudes is higher than that of Han newborns at low latitudes, suggesting that genetic adaptation may allow sufficient oxygen to confer Tibetan populations with resistance to pulmonary hypertension; We have previously identified genetic factors related to PPHN through candidate gene sequencing; In this study, we first performed whole exome sequencing in PPHN patients to screen for genetic-related factors. Methods and results In this two-phase genetic study, we first sequenced the whole exome of 20 Tibetan PPHN patients and compared it with the published genome sequences of 50 healthy high-altitude Tibetanshypoxia-related genes, a total of 166 PPHN-related variants were found, of which 49% were from 43 hypoxia-related genes; considering many studies have shown that the differences in the genetic background between Tibet and Han are characterized by hypoxia-related genetic polymorphisms, so it is necessary to further verify whether the association between hypoxia-related variants and PPHN is independent of high-altitude life. During the validation phase, 237 hypoxia-related genes were sequenced in another 80 Han PPHN patients living in low altitude areas, including genes at the discovery stage and known hypoxia tolerance, of which 413 variants from 127 of these genes were shown to be significantly associated with PPHN.hypoxia-related genes. Conclusions Our results indicates that the association of hypoxia-related genes with PPHN does not depend on high-altitude life, at the same time, 21 rare mutations associated with PPHN were also found, including three rare variants of the tubulin tyrosine ligase-like family member 3 gene (TTLL3:p.E317K, TTLL3:p.P777S) and the integrin subunit alpha M gene (ITGAM:p.E1071D). These novel findings provide important information on the genetic basis of PPHN.
Collapse
Affiliation(s)
- Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Deyi Zhuang
- Xiamen Key Laboratory of Neonatal Diseases, Neonatal Medical Center, Xiamen Children's Hospital, Children's Hospital of Fudan University (Xiamen Branch), Xiamen, 361006, Fujian, China
| | - Mei Mei
- Division of Pulmonology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Haiyan Ma
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 200436, China
| | - Guang Lin
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China.
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
121
|
González-Andrade F. High Altitude as a Cause of Congenital Heart Defects: A Medical Hypothesis Rediscovered in Ecuador. High Alt Med Biol 2020; 21:126-134. [PMID: 31976751 DOI: 10.1089/ham.2019.0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: There are ∼83 million people living at high altitude (>2500 m) worldwide who endure chronic hypoxia conditions. This article aims to analyze the relationship between high altitude, identified in several cities in Ecuador, and the prevalence of congenital heart disease (CHD). Methods: Set in Ecuador, this epidemiological observational cross-sectional study analyzes data over a range of 18 years (from 2000 to 2017), including 34,904 reported cases of CHD, with a mean of 1939 cases per year. Results: The mean prevalence rate of CHD found is 70.6 per 10,000 live newborns. A K-means analysis resulted in three clusters. Cluster 1 shows the lowest altitude and prevalence of CHD, with an average of 2619 m and 63.02 cases per 10,000 live newborns. Cluster 2 presents the second highest altitude and prevalence of CHD, with an average of 2909 m and 72.04 cases per 10,000 live newborns. Cluster 3 shows the highest values of altitude and prevalence of CHD, with an average of 3176 m and 86.62 cases per 10,000 live newborns. Pearson's coefficient is 0.979, so the correlation between the variables is positive. An altitude ranging from 2500 to 2750 m relates to a prevalence of CHD of ≤71 cases per 10,000 live newborns. An altitude ranging from 2751 to 3000 m relates to a prevalence of CHD of >71 and <89 cases per 10,000 live newborns. An altitude ranging between 3001 and 3264 m relates to a prevalence of CHD of ≥89 cases per 10,000 live newborns. Conclusions: The findings show that high altitude (>2500 m), ethnicity (Native American), rural locations, and limited access to health care are factors that influence and increase the prevalence rate of CHD. A correlation coefficient of 0.914 shows the direct relationship between high altitude and prevalence rates of CHD. For each year elapsed, the prevalence of CHD increased by 3.33 cases per 10,000 live newborns.
Collapse
Affiliation(s)
- Fabricio González-Andrade
- Unidad de Medicina Traslacional, Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador.,Colegio Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
122
|
Impacts of the Plateau Environment on the Gut Microbiota and Blood Clinical Indexes in Han and Tibetan Individuals. mSystems 2020; 5:5/1/e00660-19. [PMID: 31964769 PMCID: PMC6977073 DOI: 10.1128/msystems.00660-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intestinal microbiota is significantly affected by the external environment, but our understanding of the effects of extreme environments such as plateaus is far from adequate. In this study, we systematically analyzed the variation in the intestinal microbiota and 76 blood clinical indexes among 393 healthy adults with different plateau living durations (Han individuals with no plateau living, with plateau living for 4 to 6 days, with plateau living for >3 months, and who returned to the plain for 3 months, as well as plateau-living Tibetans). The results showed that the high-altitude environment rapidly (4 days) and continually (more than 3 months) shaped both the intestinal microbiota and clinical indexes of the Han population. With prolongation of plateau living, the general characteristics of the intestinal microbiota and clinical indexes of the Han population were increasingly similar to those of the Tibetan population. The intestinal microbiota of the Han population that returned to the plain area for 3 months still resembled that of the plateau-living Han population rather than that of the Han population on the plain. Moreover, clinical indexes such as blood glucose were significantly lower in the plateau groups than in the nonplateau groups, while the opposite result was obtained for testosterone. Interestingly, there were Tibetan-specific correlations between glucose levels and Succinivibrio and Sarcina abundance in the intestine. The results of this study suggest that a hypoxic environment could rapidly and lastingly affect both the human intestinal microbiota and blood clinical indexes, providing new insights for the study of plateau adaptability.IMPORTANCE The data presented in the present study demonstrate that the hypoxic plateau environment has a profound impact on the gut microbiota and blood clinical indexes in Han and Tibetan individuals. The plateau-changed signatures of the gut microbiota and blood clinical indexes were not restored to the nonplateau status in the Han cohorts, even when the individuals returned to the plain from the plateau for several months. Our study will improve the understanding of the great impact of hypoxic environments on the gut microbiota and blood clinical indexes as well as the adaptation mechanism and intervention targets for plateau adaptation.
Collapse
|
123
|
Accinelli RA, Leon-Abarca JA. Age and altitude of residence determine anemia prevalence in Peruvian 6 to 35 months old children. PLoS One 2020; 15:e0226846. [PMID: 31940318 PMCID: PMC6961872 DOI: 10.1371/journal.pone.0226846] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A Demographic and Family Health Survey (ENDES, for Encuesta Demográfica y de Salud Familiar in Spanish) is carried out annually in Peru. Based on it, the anemia prevalence was 43.6% in 2016 and 43.8% in 2017 using the WHO cutoff value of 11 g/dL and the altitude-correction equation. OBJECTIVE To assess factors contributing to anemia and to determine its prevalence in Peruvian children 6 to 35 months old. METHODS We used the MEASURE DHS-based ENDES survey to obtain representative data for11364 children from 6 to 35 months old on hemoglobin and health determinants. To evaluate normal hemoglobin levels, we used the original WHO criterion of the 5th percentile in children without chronic malnutrition and then applied it to the overall population. Relationships between hemoglobin and altitude levels, usage of cleaning methods to sanitize water safe to drink, usage of solid fuels and poverty status were tested using methodology for complex survey data. Percentile curves were made for altitude intervals by plotting hemoglobin compared to age. The new anemia rates are presented in graphs by Peruvian political regions according to the degree of public health significance. RESULTS Hemoglobin increased as age and altitude of residence increased. Using the 5th percentile, anemia prevalence was 7.3% in 2016 and 2017. Children from low altitudes had higher anemia prevalence (8.5%) than those from high altitudes (1.2%, p<0.0001). In the rainforest area of Peru, anemia prevalence was highest (13.5%), while in the highlands it was lowest (3.3%, p<0.0001). With access to safe drinking water and without chronic malnutrition, anemia rates could be reduced in the rainforest by 45% and 33%, respectively. CONCLUSION Anemia prevalence in Peruvian children from 6 to 35 months old was 7.3% in 2016 and 2017.
Collapse
Affiliation(s)
- Roberto Alfonso Accinelli
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
- Hospital Cayetano Heredia, Lima, Perú
| | - Juan Alonso Leon-Abarca
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
124
|
Friedrich J, Wiener P. Selection signatures for high-altitude adaptation in ruminants. Anim Genet 2020; 51:157-165. [PMID: 31943284 DOI: 10.1111/age.12900] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
High-altitude areas are important socio-economical habitats with ruminants serving as a major source of food and commodities for humans. Living at high altitude, however, is extremely challenging, predominantly due to the exposure to hypoxic conditions, but also because of cold temperatures and limited feed for livestock. To survive in high-altitude environments over the long term, ruminants have evolved adaptation strategies, e.g. physiological and morphological modifications, which allow them to cope with these harsh conditions. Identification of such selection signatures in ruminants may contribute to more informed breeding decisions, and thus improved productivity. Moreover, studying the genetic background of altitude adaptation in ruminants provides insights into a common molecular basis across species and thus a better understanding of the physiological basis of this adaptation. In this paper, we review the major effects of high altitude on the mammalian body and highlight some of the most important short-term (coping) and genetically evolved (adaptation) physiological modifications. We then discuss the genetic architecture of altitude adaptation and target genes that show evidence of being under selection based on recent studies in various species, with a focus on ruminants. The yak is presented as an interesting native species that has adapted to the high-altitude regions of Tibet. Finally, we conclude with implications and challenges of selection signature studies on altitude adaptation in general. We found that the number of studies on genetic mechanisms that enable altitude adaptation in ruminants is growing, with a strong focus on identifying selection signatures, and hypothesise that the investigation of genetic data from multiple species and regions will contribute greatly to the understanding of the genetic basis of altitude adaptation.
Collapse
Affiliation(s)
- J Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - P Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
125
|
Fox K, Rallapalli KL, Komor AC. Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes (Basel) 2020; 11:E88. [PMID: 31940934 PMCID: PMC7016644 DOI: 10.3390/genes11010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Appropriate empirical-based evidence and detailed theoretical considerations should be used for evolutionary explanations of phenotypic variation observed in the field of human population genetics (especially Indigenous populations). Investigators within the population genetics community frequently overlook the importance of these criteria when associating observed phenotypic variation with evolutionary explanations. A functional investigation of population-specific variation using cutting-edge genome editing tools has the potential to empower the population genetics community by holding "just-so" evolutionary explanations accountable. Here, we detail currently available precision genome editing tools and methods, with a particular emphasis on base editing, that can be applied to functionally investigate population-specific point mutations. We use the recent identification of thrifty mutations in the CREBRF gene as an example of the current dire need for an alliance between the fields of population genetics and genome editing.
Collapse
Affiliation(s)
- Keolu Fox
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Global Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kartik Lakshmi Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
126
|
Vettukattil JJ. Target Oxygen Levels and Critical Care of the Newborn. Curr Pediatr Rev 2020; 16:2-5. [PMID: 31622221 DOI: 10.2174/1573396315666191016094828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Despite our growing experience in the medical care of extremely preterm infants and critically ill neonates, there are serious gaps in the understanding and clinical application of the adaptive physiology of the newborn. Neonatal physiology is often misinterpreted and considered similar to that of adult physiology. The human psyche has been seriously influenced, both from an evolutionary and survival point of view, by the cause and effect of hypoxemia which is considered as a warning sign of impending death. Within this context, it is unimaginable for even the highly trained professionals to consider saturation as low as 65% as acceptable. However, all available data suggests that newborns can thrive in a hypoxemic environment as they are conditioned to withstand extreme low saturations in the fetal environment. An approach utilizing the benefits of the hypoxic conditioning would prompt the practice of optimal targeted oxygen saturation range in the clinical management of the newborn. Our current understanding of cyanotic congenital heart disease and the physiology of single ventricle circulation, where oxygen saturation in mid 70s is acceptable, is supported by clinical and animal studies. This article argues the need to challenge our current acceptable target oxygen saturation in the newborn and provides the reasoning behind accepting lower target oxygen levels in the critically ill newborn. Challenging the current practice is expected to open a debate paving the way to understand the risks of high target oxygen levels in the newborn compared with the benefits of permissive hypoxia in avoiding the associated morbidity and mortality of oxygen radical injury.
Collapse
Affiliation(s)
- Joseph J Vettukattil
- Congenital Heart Center, Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, MI, United States.,Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI
| |
Collapse
|
127
|
Wu DD, Yang CP, Wang MS, Dong KZ, Yan DW, Hao ZQ, Fan SQ, Chu SZ, Shen QS, Jiang LP, Li Y, Zeng L, Liu HQ, Xie HB, Ma YF, Kong XY, Yang SL, Dong XX, Esmailizadeh A, Irwin DM, Xiao X, Li M, Dong Y, Wang W, Shi P, Li HP, Ma YH, Gou X, Chen YB, Zhang YP. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Natl Sci Rev 2019; 7:952-963. [PMID: 34692117 PMCID: PMC8288980 DOI: 10.1093/nsr/nwz213] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Abundant and diverse domestic mammals living on the Tibetan Plateau provide useful materials for investigating adaptive evolution and genetic convergence. Here, we used 327 genomes from horses, sheep, goats, cattle, pigs and dogs living at both high and low altitudes, including 73 genomes generated for this study, to disentangle the genetic mechanisms underlying local adaptation of domestic mammals. Although molecular convergence is comparatively rare at the DNA sequence level, we found convergent signature of positive selection at the gene level, particularly the EPAS1 gene in these Tibetan domestic mammals. We also reported a potential function in response to hypoxia for the gene C10orf67, which underwent positive selection in three of the domestic mammals. Our data provide an insight into adaptive evolution of high-altitude domestic mammals, and should facilitate the search for additional novel genes involved in the hypoxia response pathway.
Collapse
Affiliation(s)
- Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Cui-Ping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kun-Zhe Dong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Da-Wei Yan
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Qian Hao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song-Qing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shu-Zhou Chu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qiu-Shuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Li-Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiao-Yan Kong
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Shu-Li Yang
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Xin-Xing Dong
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hai-Peng Li
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao Gou
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yong-Bin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
128
|
Julian CG. An Aptitude for Altitude: Are Epigenomic Processes Involved? Front Physiol 2019; 10:1397. [PMID: 31824328 PMCID: PMC6883803 DOI: 10.3389/fphys.2019.01397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, high-throughput genomic technologies and computational advancements have invigorated efforts to identify the molecular mechanisms regulating human adaptation to high altitude. Although exceptional progress regarding the identification of genomic regions showing evidence of recent positive selection has been made, many of the key “hypoxia tolerant” phenotypes of highland populations have not yet been linked to putative adaptive genetic variants. As a result, fundamental questions regarding the biological processes by which such adaptations are acquired remain unanswered. This Mini Review discusses the hypothesis that the epigenome works in coordination with underlying genomic sequence to govern adaptation to the chronic hypoxia of high altitude by influencing adaptive capacity and phenotypic variation under conditions of environmental hypoxia. Efforts to unravel the complex interactions between the genome, epigenome, and environmental exposures are essential to more fully appreciate the mechanisms underlying human adaptation to hypoxia.
Collapse
Affiliation(s)
- Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
129
|
Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Proc Natl Acad Sci U S A 2019; 116:24006-24011. [PMID: 31712437 DOI: 10.1073/pnas.1906171116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.
Collapse
|
130
|
Whole-Genome Sequencing Identifies the Egl Nine Homologue 3 (egln3/phd3) and Protein Phosphatase 1 Regulatory Inhibitor Subunit 2 (PPP1R2P1) Associated with High-Altitude Polycythemia in Tibetans at High Altitude. DISEASE MARKERS 2019; 2019:5946461. [PMID: 31827636 PMCID: PMC6881591 DOI: 10.1155/2019/5946461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/06/2019] [Indexed: 01/29/2023]
Abstract
Background The hypoxic conditions at high altitudes are great threats to survival, causing pressure for adaptation. More and more high-altitude denizens are not adapted with the condition known as high-altitude polycythemia (HAPC) that featured excessive erythrocytosis. As a high-altitude sickness, the etiology of HAPC is still unclear. Methods In this study, we reported the whole-genome sequencing-based study of 10 native Tibetans with HAPC and 10 control subjects followed by genotyping of selected 21 variants from discovered single nucleotide variants (SNVs) in an independent cohort (232 cases and 266 controls). Results We discovered the egl nine homologue 3 (egln3/phd3) (14q13.1, rs1346902, P = 1.91 × 10−5) and PPP1R2P1 (Protein Phosphatase 1 Regulatory Inhibitor Subunit 2) gene (6p21.32, rs521539, P = 0.012). Our results indicated an unbiased framework to identify etiological mechanisms of HAPC and showed that egln3/phd3 and PPP1R2P1 may be associated with the susceptibility to HAPC. Egln3/phd3b is associated with hypoxia-inducible factor subunit α (HIFα). Protein Phosphatase 1 Regulatory Inhibitor is associated with reactive oxygen species (ROS) and oxidative stress. Conclusions Our genome sequencing conducted in Tibetan HAPC patients identified egln3/phd3 and PPP1R2P1 associated with HAPC.
Collapse
|
131
|
Li C, Li X, Xiao J, Liu J, Fan X, Fan F, Lei H. Genetic changes in the EPAS1 gene between Tibetan and Han ethnic groups and adaptation to the plateau hypoxic environment. PeerJ 2019; 7:e7943. [PMID: 31681516 PMCID: PMC6822597 DOI: 10.7717/peerj.7943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 01/11/2023] Open
Abstract
In the Chinese Han population, prolonged exposure to hypoxic conditions can promote compensatory erythropoiesis which improves hypoxemia. However, Tibetans have developed unique phenotypes, such as downregulation of the hypoxia-inducible factor pathway through EPAS1 gene mutation, thus the mechanism of adaption of the Han population should be further studied. The results indicated that, under plateau hypoxic conditions, the plains population was able to acclimate rapidly to hypoxia through increasing EPAS1 mRNA expression and changing the hemoglobin conformation. Furthermore, the mutant genotype frequencies of the rs13419896, rs1868092 and rs4953354 loci in the EPAS1 gene were significantly higher in the Tibetan population than in the plains population. The EPAS1 gene expression level was lowest in the Han population carrying the A-A homozygous mutant of the rs13419896 locus but that it increased rapidly after these individuals entered the plateau. At this time, the hemoglobin content was lower in the homozygous mutant Han group than in the wild-type and heterozygous mutant populations, and the viscosity of blood was reduced in populations carrying the A-A haplotypes in rs13419896 and rs1868092 Among Tibetans, the group carrying homozygous mutations of the three SNPs also had lower hemoglobin concentrations than the wild-type. The Raman spectroscopy results showed that exposure of the Tibetan and Han population to hypoxic conditions changed the spatial conformation of hemoglobin and its binding ability to oxygen. The Tibetan population has mainly adapted to the plateau through genetic mutations, whereas some individuals adapt through changes in hemoglobin structure and function.
Collapse
Affiliation(s)
- Cuiying Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Xiaowei Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Juan Liu
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Xiu Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Fengyan Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| | - Huifen Lei
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
132
|
Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, Zheng Z, He X, Zhao Q, Pu Y, Guan W, Han J, Orlando L, Ma Y, Jiang L. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol Biol Evol 2019; 36:2591-2603. [PMID: 31273382 PMCID: PMC6805228 DOI: 10.1093/molbev/msz158] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
High altitude represents some of the most extreme environments worldwide. The genetic changes underlying adaptation to such environments have been recently identified in multiple animals but remain unknown in horses. Here, we sequence the complete genome of 138 domestic horses encompassing a whole altitudinal range across China to uncover the genetic basis for adaptation to high-altitude hypoxia. Our genome data set includes 65 lowland animals across ten Chinese native breeds, 61 horses living at least 3,300 m above sea level across seven locations along Qinghai-Tibetan Plateau, as well as 7 Thoroughbred and 5 Przewalski’s horses added for comparison. We find that Tibetan horses do not descend from Przewalski’s horses but were most likely introduced from a distinct horse lineage, following the emergence of pastoral nomadism in Northwestern China ∼3,700 years ago. We identify that the endothelial PAS domain protein 1 gene (EPAS1, also HIF2A) shows the strongest signature for positive selection in the Tibetan horse genome. Two missense mutations at this locus appear strongly associated with blood physiological parameters facilitating blood circulation as well as oxygen transportation and consumption in hypoxic conditions. Functional validation through protein mutagenesis shows that these mutations increase EPAS1 stability and its hetero dimerization affinity to ARNT (HIF1B). Our study demonstrates that missense mutations in the EPAS1 gene provided key evolutionary molecular adaptation to Tibetan horses living in high-altitude hypoxic environments. It reveals possible targets for genomic selection programs aimed at increasing hypoxia tolerance in livestock and provides a textbook example of evolutionary convergence across independent mammal lineages.
Collapse
Affiliation(s)
- Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Yefang Li
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Jianfei Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Weihuang Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohong He
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Qianjun Zhao
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Yabin Pu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Weijun Guan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China.,International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Ludovic Orlando
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, ØsterVoldgade 5-7, 1350K Copenhagen, Denmark.,Laboratoire AMIS, CNRS, UMR 5288, Université Paul Sabatier (UPS), Toulouse, France
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| |
Collapse
|
133
|
Richardson MF, Munyard K, Croft LJ, Allnutt TR, Jackling F, Alshanbari F, Jevit M, Wright GA, Cransberg R, Tibary A, Perelman P, Appleton B, Raudsepp T. Chromosome-Level Alpaca Reference Genome VicPac3.1 Improves Genomic Insight Into the Biology of New World Camelids. Front Genet 2019; 10:586. [PMID: 31293619 PMCID: PMC6598621 DOI: 10.3389/fgene.2019.00586] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
The development of high-quality chromosomally assigned reference genomes constitutes a key feature for understanding genome architecture of a species and is critical for the discovery of the genetic blueprints of traits of biological significance. South American camelids serve people in extreme environments and are important fiber and companion animals worldwide. Despite this, the alpaca reference genome lags far behind those available for other domestic species. Here we produced a chromosome-level improved reference assembly for the alpaca genome using the DNA of the same female Huacaya alpaca as in previous assemblies. We generated 190X Illumina short-read, 8X Pacific Biosciences long-read and 60X Dovetail Chicago® chromatin interaction scaffolding data for the assembly, used testis and skin RNAseq data for annotation, and cytogenetic map data for chromosomal assignments. The new assembly VicPac3.1 contains 90% of the alpaca genome in just 103 scaffolds and 76% of all scaffolds are mapped to the 36 pairs of the alpaca autosomes and the X chromosome. Preliminary annotation of the assembly predicted 22,462 coding genes and 29,337 isoforms. Comparative analysis of selected regions of the alpaca genome, such as the major histocompatibility complex (MHC), the region involved in the Minute Chromosome Syndrome (MCS) and candidate genes for high-altitude adaptations, reveal unique features of the alpaca genome. The alpaca reference genome VicPac3.1 presents a significant improvement in completeness, contiguity and accuracy over VicPac2 and is an important tool for the advancement of genomics research in all New World camelids.
Collapse
Affiliation(s)
- Mark F Richardson
- Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Kylie Munyard
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Larry J Croft
- Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Theodore R Allnutt
- Bioinformatics Core Research Group, Deakin University, Geelong, VIC, Australia
| | - Felicity Jackling
- Department of Genetics, The University of Melbourne, Melbourne, VIC, Australia
| | - Fahad Alshanbari
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Matthew Jevit
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Gus A Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rhys Cransberg
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ahmed Tibary
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Polina Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Belinda Appleton
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Terje Raudsepp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
134
|
Regulation of Serum Sphingolipids in Andean Children Born and Living at High Altitude (3775 m). Int J Mol Sci 2019; 20:ijms20112835. [PMID: 31212599 PMCID: PMC6600227 DOI: 10.3390/ijms20112835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies on Andean children indicate a prevalence of dyslipidemia and hypertension compared to dwellers at lower altitudes, suggesting that despite similar food intake and daily activities, they undergo different metabolic adaptations. In the present study, the sphingolipid pattern was investigated in serum of 7 underweight (UW), 30 normal weight (NW), 13 overweight (OW), and 9 obese (O) Andean children by liquid chromatography-mass spectrometry (LC-MS). Results indicate that levels of Ceramides (Cers) and sphingomyelins (SMs) correlate positively with biochemical parameters (except for Cers and Vitamin D, which correlate negatively), whereas sphingosine-1-phosphate (S1P) correlates negatively. Correlation results and LC-MS data identify the axis high density lipoprotein-cholesterol (HDL-C), Cers, and S1P as related to hypoxia adaptation. Specifically UW children are characterized by increased levels of S1P compared to O and lower levels of Cers compared to NW children. Furthermore, O children show lower levels of S1P and similar levels of Cers and SMs as NW. In conclusion, our results indicate that S1P is the primary target of hypoxia adaptation in Andean children, and its levels are associated with hypoxia tolerance. Furthermore, S1P can act as marker of increased risk of metabolic syndrome and cardiac dysfunction in young Andeans living at altitude.
Collapse
|
135
|
Musunuru K, Bernstein D, Cole FS, Khokha MK, Lee FS, Lin S, McDonald TV, Moskowitz IP, Quertermous T, Sankaran VG, Schwartz DA, Silverman EK, Zhou X, Hasan AAK, Luo XZJ. Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002178. [PMID: 29654098 DOI: 10.1161/circgen.118.002178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.).
| | - Daniel Bernstein
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - F Sessions Cole
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Mustafa K Khokha
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Frank S Lee
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Shin Lin
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas V McDonald
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ivan P Moskowitz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas Quertermous
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Vijay G Sankaran
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - David A Schwartz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Edwin K Silverman
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiaobo Zhou
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ahmed A K Hasan
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiao-Zhong James Luo
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| |
Collapse
|
136
|
Edea Z, Dadi H, Dessie T, Kim KS. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics 2019; 41:973-981. [PMID: 31119684 DOI: 10.1007/s13258-019-00820-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ethiopian sheep populations such as Arsi-Bale, Horro and Adilo (long fat-tailed, LFT) inhabit mid to high-altitude areas; and Menz sheep (MZ, short fat-tailed) are adapted to cool sub-alpine environments. In contrast, Blackhead Somali sheep (BHS, fat-rumped) thrive well in arid and semi-arid areas characterized by high temperature and low precipitation. The genomic investigation of Ethiopian sheep populations may help to identify genes and biological pathways enable to adapt to the different ecological conditions. OBJECTIVE To uncover genomic regions and genes showing evidence of positive selection for altitude adaptation in Ethiopian sheep populations. METHODS A total of 72 animals inhabiting high-versus low-altitude environments were genotyped on an Ovine Infinium HD array (~ 600 K). Pairwise genetic differentiation (Fst) was calculated in sliding windows of 20 SNPs and the upper 1% smoothed Fst values were considered to represent positive selection signatures. Genes within < 25 kb of the most differentiated SNPs were considered as selection candidates. RESULTS Signatures of selection were detected in genes known to be associated high with altitude adaptation in MZ-BHS pair comparison (PPP1R12A, RELN, PARP2, and DNAH9) and in LFT-BHS pair comparison (VAV3, MSRB3,EIF2AK4, MET, and TACR1). The candidate genes (MITF, FGF5, MTOR, TRHDE, and TUBB3) associated with altitude adaptation and shared between the MZ-BHS and LTF-BHS pair comparisons were also detected as under selection. Further functional analyses reveal that the candidate genes were involved in biological processes and pathways relevant to adaptation under extreme altitudes, including respiratory system development and smoothened signaling pathway. CONCLUSION The results of the present study could aid in-depth understanding and exploitation of the underlying genetic mechanisms for sheep and other livestock species adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Zewdu Edea
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - Hailu Dadi
- Addis Ababa Science and Technology University, P. O. Box 2490, Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Kwan-Suk Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
137
|
Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci 2019; 76:1759-1777. [PMID: 30767037 PMCID: PMC6453877 DOI: 10.1007/s00018-019-03039-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important for many cellular processes. Eukaryotic cells utilize oxygen for the production of biochemical energy in the form of adenosine triphosphate (ATP) generated from the catabolism of carbon-rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen consumption-coupled ATP production are the mitochondria, double-membraned organelles that provide a dynamic and multifaceted role in cell signalling and metabolism. Highly evolutionarily conserved molecular mechanisms exist to sense and respond to changes in cellular oxygen levels. The primary transcriptional regulators of the response to decreased oxygen levels (hypoxia) are the hypoxia-inducible factors (HIFs), which play important roles in both physiological and pathophysiological contexts. In this review we explore the relationship between HIF-regulated signalling pathways and the mitochondria, including the regulation of mitochondrial metabolism, biogenesis and distribution.
Collapse
Affiliation(s)
- Luke W Thomas
- University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - Margaret Ashcroft
- University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK.
| |
Collapse
|
138
|
James WPT, Johnson RJ, Speakman JR, Wallace DC, Frühbeck G, Iversen PO, Stover PJ. Nutrition and its role in human evolution. J Intern Med 2019; 285:533-549. [PMID: 30772945 DOI: 10.1111/joim.12878] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our understanding of human evolution has improved rapidly over recent decades, facilitated by large-scale cataloguing of genomic variability amongst both modern and archaic humans. It seems clear that the evolution of the ancestors of chimpanzees and hominins separated 7-9 million years ago with some migration out of Africa by the earlier hominins; Homo sapiens slowly emerged as climate change resulted in drier, less forested African conditions. The African populations expanded and evolved in many different conditions with slow mutation and selection rates in the human genome, but with much more rapid mutation occurring in mitochondrial DNA. We now have evidence stretching back 300 000 years of humans in their current form, but there are clearly four very different large African language groups that correlate with population DNA differences. Then, about 50 000-100 000 years ago a small subset of modern humans also migrated out of Africa resulting in a persistent signature of more limited genetic diversity amongst non-African populations. Hybridization with archaic hominins occurred around this time such that all non-African modern humans possess some Neanderthal ancestry and Melanesian populations additionally possess some Denisovan ancestry. Human populations both within and outside Africa also adapted to diverse aspects of their local environment including altitude, climate, UV exposure, diet and pathogens, in some cases leaving clear signatures of patterns of genetic variation. Notable examples include haemoglobin changes conferring resistance to malaria, other immune changes and the skin adaptations favouring the synthesis of vitamin D. As humans migrated across Eurasia, further major mitochondrial changes occurred with some interbreeding with ancient hominins and the development of alcohol intolerance. More recently, an ability to retain lactase persistence into adulthood has evolved rapidly under the environmental stimulus of pastoralism with the ability to husband lactating ruminants. Increased amylase copy numbers seem to relate to the availability of starchy foods, whereas the capacity to desaturase and elongate monounsaturated fatty acids in different societies seems to be influenced by whether there is a lack of supply of readily available dietary sources of long-chain polyunsaturated fatty acids. The process of human evolution includes genetic drift and adaptation to local environments, in part through changes in mitochondrial and nuclear DNA. These genetic changes may underlie susceptibilities to some modern human pathologies including folate-responsive neural tube defects, diabetes, other age-related pathologies and mental health disorders.
Collapse
Affiliation(s)
- W P T James
- London School of Hygiene and Tropical Medicine, London, UK
| | - R J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, CO, USA
| | - J R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - D C Wallace
- Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - G Frühbeck
- Endocrinology and Nutrition, Clinica Universidad de Navarra, Pamplona, Spain
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - P J Stover
- Vice Chancellor and Dean for Agriculture and Life Sciences, Texas A&M AgriLife, College Station, TX, USA
| |
Collapse
|
139
|
Xu Z, Jia Z, Shi J, Zhang Z, Gao X, Jia Q, Liu B, Liu J, Liu C, Zhao X, He K. Transcriptional profiling in the livers of rats after hypobaric hypoxia exposure. PeerJ 2019; 7:e6499. [PMID: 30993032 PMCID: PMC6461035 DOI: 10.7717/peerj.6499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Ascent to high altitude feels uncomfortable in part because of a decreased partial pressure of oxygen due to the decrease in barometric pressure. The molecular mechanisms causing injury in liver tissue after exposure to a hypoxic environment are widely unknown. The liver must physiologically and metabolically change to improve tolerance to altitude-induced hypoxia. Since the liver is the largest metabolic organ and regulates many physiological and metabolic processes, it plays an important part in high altitude adaptation. The cellular response to hypoxia results in changes in the gene expression profile. The present study explores these changes in a rat model. To comprehensively investigate the gene expression and physiological changes under hypobaric hypoxia, we used genome-wide transcription profiling. Little is known about the genome-wide transcriptional response to acute and chronic hypobaric hypoxia in the livers of rats. In this study, we carried out RNA-Sequencing (RNA-Seq) of liver tissue from rats in three groups, normal control rats (L), rats exposed to acute hypobaric hypoxia for 2 weeks (W2L) and rats chronically exposed to hypobaric hypoxia for 4 weeks (W4L), to explore the transcriptional profile of acute and chronic mountain sickness in a mammal under a controlled time-course. We identified 497 differentially expressed genes between the three groups. A principal component analysis revealed large differences between the acute and chronic hypobaric hypoxia groups compared with the control group. Several immune-related and metabolic pathways, such as cytokine-cytokine receptor interaction and galactose metabolism, were highly enriched in the KEGG pathway analysis. Similar results were found in the Gene Ontology analysis. Cogena analysis showed that the immune-related pathways were mainly upregulated and enriched in the acute hypobaric hypoxia group.
Collapse
Affiliation(s)
- Zhenguo Xu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zeyu Zhang
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Gao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Bohan Liu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jixuan Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
140
|
Carman BL, Predescu DN, Machado R, Predescu SA. Plexiform Arteriopathy in Rodent Models of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1133-1144. [PMID: 30926336 DOI: 10.1016/j.ajpath.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
As time progresses, our understanding of disease pathology is propelled forward by technological advancements. Much of the advancements that aid in understanding disease mechanics are based on animal studies. Unfortunately, animal models often fail to recapitulate the entirety of the human disease. This is especially true with animal models used to study pulmonary arterial hypertension (PAH), a disease with two distinct phases. The first phase is defined by nonspecific medial and adventitial thickening of the pulmonary artery and is commonly reproduced in animal models, including the classic models (ie, hypoxia-induced pulmonary hypertension and monocrotaline lung injury model). However, many animal models, including the classic models, fail to capture the progressive, or second, phase of PAH. This is a stage defined by plexogenic arteriopathy, resulting in obliteration and occlusion of the small- to mid-sized pulmonary vessels. Each of these two phases results in severe pulmonary hypertension that directly leads to right ventricular hypertrophy, decompensated right-sided heart failure, and death. Fortunately, newly developed animal models have begun to address the second, more severe, side of PAH and aid in our ability to develop new therapeutics. Moreover, p38 mitogen-activated protein kinase activation emerges as a central molecular mediator of plexiform lesions in both experimental models and human disease. Therefore, this review will focus on plexiform arteriopathy in experimental animal models of PAH.
Collapse
Affiliation(s)
- Brandon L Carman
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois
| | - Dan N Predescu
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois
| | - Roberto Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Sanda A Predescu
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois.
| |
Collapse
|
141
|
Zhou Y, Ouyang N, Liu L, Tian J, Huang X, Lu T. An EGLN1 mutation may regulate hypoxic response in cyanotic congenital heart disease through the PHD2/HIF-1A pathway. Genes Dis 2019; 6:35-42. [PMID: 30906831 PMCID: PMC6411777 DOI: 10.1016/j.gendis.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Cyanotic congenital heart disease (CCHD), a term describing the most severe congenital heart diseases are characterized by the anatomic malformation of a right to left shunt. Although the incidence of CCHD are far less than the that of congenital heart diseases (CHD), patients with CCHD always present severe clinical features such as hypoxia, dyspnea, and heart failure. Chronic hypoxia induces hypoxemia that significantly contributes to poor prognosis in CCHD. Current studies have demonstrated that the prolyl-4-hydroxylase2 (PHD2, encoded by EGLN1)/hypoxia-inducible factor-1A (HIF-1A) pathway is a key regulator of hypoxic response. Thus, we aim to assess the associations of single polymorphisms (SNPs) of the EGLN1 gene and hypoxic response in CCHD. A missense variant of EGLN1 c.380G>C (rs1209790) was found in 46 patients (46/126), with lower hypoxia incidence and higher rate of collateral vessel formation, compared with the wild type (P < 0.05). In vitro experiments, during hypoxia, EGLN1 mutation reduced EGLN1 expression compared with the wild type, with higher HIF-1A, VEGF and EPO expression levels in the mutant. No difference in HK1 expression was observed between the mutant and wild type. CCHD patients with c.380G>C showed improved response to hypoxia compared with the wild-type counterparts. The EGLN1 c.380G>C mutation improves hypoxic response through the PHD2/HIF-1A pathway, which may provide a molecular mechanism for hypoxic response in CCHD. The effects of the EGLN1 c.380G>C mutation on CCHD prognosis deserve further investigation.
Collapse
Affiliation(s)
- Yuanlin Zhou
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Na Ouyang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Developmental Disease in Childhood (Chongqing Medical University), Ministry of Education, Chongqing, PR China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, PR China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, PR China
| |
Collapse
|
142
|
Congenital and evolutionary modulations of hypoxia sensing and their erythroid phenotype. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
143
|
Jiang X, Tian W, Tu AB, Pasupneti S, Shuffle E, Dahms P, Zhang P, Cai H, Dinh TT, Liu B, Cain C, Giaccia AJ, Butcher EC, Simon MC, Semenza GL, Nicolls MR. Endothelial Hypoxia-Inducible Factor-2α Is Required for the Maintenance of Airway Microvasculature. Circulation 2019; 139:502-517. [PMID: 30586708 PMCID: PMC6340714 DOI: 10.1161/circulationaha.118.036157] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypoxia-inducible factors (HIFs), especially HIF-1α and HIF-2α, are key mediators of the adaptive response to hypoxic stress and play essential roles in maintaining lung homeostasis. Human and animal genetics studies confirm that abnormal HIF correlates with pulmonary vascular pathology and chronic lung diseases, but it remains unclear whether endothelial cell HIF production is essential for microvascular health. The large airway has an ideal circulatory bed for evaluating histological changes and physiology in genetically modified rodents. METHODS The tracheal microvasculature of mice, with conditionally deleted or overexpressed HIF-1α or HIF-2α, was evaluated for anatomy, perfusion, and permeability. Angiogenic signaling studies assessed vascular changes attributable to dysregulated HIF expression. An orthotopic tracheal transplantation model further evaluated the contribution of individual HIF isoforms in airway endothelial cells. RESULTS The genetic deletion of Hif-2α but not Hif-1α caused tracheal endothelial cell apoptosis, diminished pericyte coverage, reduced vascular perfusion, defective barrier function, overlying epithelial abnormalities, and subepithelial fibrotic remodeling. HIF-2α promoted microvascular integrity in airways through endothelial angiopoietin-1/TIE2 signaling and Notch activity. In functional tracheal transplants, HIF-2α deficiency in airway donors accelerated graft microvascular loss, whereas HIF-2α or angiopoietin-1 overexpression prolonged transplant microvascular perfusion. Augmented endothelial HIF-2α in transplant donors promoted airway microvascular integrity and diminished alloimmune inflammation. CONCLUSIONS Our findings reveal that the constitutive expression of endothelial HIF-2α is required for airway microvascular health.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Allen B. Tu
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Shravani Pasupneti
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Eric Shuffle
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Petra Dahms
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Patrick Zhang
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Haoliang Cai
- University of Michigan School of Information, Ann Arbor, MI 48109
| | - Thanh T. Dinh
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Bo Liu
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - Corey Cain
- VA Palo Alto Health Care System, Palo Alto, CA 94304
| | | | - Eugene C. Butcher
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| | - M. Celeste Simon
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Gregg L. Semenza
- Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark R. Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA 94304
- Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
144
|
Feuerecker M, Crucian BE, Quintens R, Buchheim J, Salam AP, Rybka A, Moreels M, Strewe C, Stowe R, Mehta S, Schelling G, Thiel M, Baatout S, Sams C, Choukèr A. Immune sensitization during 1 year in the Antarctic high-altitude Concordia Environment. Allergy 2019; 74:64-77. [PMID: 29978486 DOI: 10.1111/all.13545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Antarctica is a challenging environment for humans. It serves as a spaceflight ground analog, reflecting some conditions of long-duration exploration class space missions. The French-Italian Concordia station in interior Antarctica is a high-fidelity analog, located 1000 km from the coast, at an altitude of 3232 m. The aim of this field study was to characterize the extent, dynamics, and key mechanisms of the immune adaptation in humans overwintering at Concordia for 1 year. METHODS This study assessed immune functions in fourteen crewmembers. Quantitative and phenotypic analyses from human blood were performed using onsite flow cytometry together with specific tests on receptor-dependent and receptor-independent functional innate and adaptive immune responses. Transcriptome analyses and quantitative identification of key response genes were assessed. RESULTS Dynamic immune activation and a two-step escalation/activation pattern were observed. The early phase was characterized by moderately sensitized global immune responses, while after 3-4 months, immune responses were highly upregulated. The cytokine responses to an ex vivo stimulation were markedly raised above baseline levels. These functional observations were reflected at the gene transcriptional level in particular through the modulation of hypoxia-driven pathways. CONCLUSIONS This study revealed unique insights into the extent, dynamics, and genetics of immune dysfunctions in humans exposed for 1 year to the Antarctic environment at the Concordia station. The scale of immune function was imbalanced toward a sensitizing of inflammatory pathways.
Collapse
Affiliation(s)
- Matthias Feuerecker
- Department of Anaesthesiology Laboratory of Translational Research “Stress and Immunity” University Hospital LMU Munich Munich Germany
| | | | - Roel Quintens
- Radiobiology Unit Belgian Nuclear Research Centre (SCK CEN) Mol Belgium
| | - Judith‐Irina Buchheim
- Department of Anaesthesiology Laboratory of Translational Research “Stress and Immunity” University Hospital LMU Munich Munich Germany
| | | | - Ales Rybka
- IPEV/PNRA‐ESA Antarctic Program Dome C Antarctica
| | - Marjan Moreels
- Radiobiology Unit Belgian Nuclear Research Centre (SCK CEN) Mol Belgium
| | - Claudia Strewe
- Department of Anaesthesiology Laboratory of Translational Research “Stress and Immunity” University Hospital LMU Munich Munich Germany
| | | | | | - Gustav Schelling
- Department of Anaesthesiology Laboratory of Translational Research “Stress and Immunity” University Hospital LMU Munich Munich Germany
| | - Manfred Thiel
- Department of Anaesthesiology and Intensive Care Medical Faculty at Mannheim University of Heidelberg Mannheim Germany
| | - Sarah Baatout
- Radiobiology Unit Belgian Nuclear Research Centre (SCK CEN) Mol Belgium
| | | | - Alexander Choukèr
- Department of Anaesthesiology Laboratory of Translational Research “Stress and Immunity” University Hospital LMU Munich Munich Germany
| |
Collapse
|
145
|
Qi X, Zhang Q, He Y, Yang L, Zhang X, Shi P, Yang L, Liu Z, Zhang F, Liu F, Liu S, Wu T, Cui C, Ouzhuluobu, Bai C, Baimakangzhuo, Han J, Zhao S, Liang C, Su B. The Transcriptomic Landscape of Yaks Reveals Molecular Pathways for High Altitude Adaptation. Genome Biol Evol 2019; 11:72-85. [PMID: 30517636 PMCID: PMC6320679 DOI: 10.1093/gbe/evy264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Yak is one of the largest native mammalian species at the Himalayas, the highest plateau area in the world with an average elevation of >4,000 m above the sea level. Yak is well adapted to high altitude environment with a set of physiological features for a more efficient blood flow for oxygen delivery under hypobaric hypoxia. Yet, the genetic mechanism underlying its adaptation remains elusive. We conducted a cross-tissue, cross-altitude, and cross-species study to characterize the transcriptomic landscape of domestic yaks. The generated multi-tissue transcriptomic data greatly improved the current yak genome annotation by identifying tens of thousands novel transcripts. We found that among the eight tested tissues (lung, heart, kidney, liver, spleen, muscle, testis, and brain), lung and heart are two key organs showing adaptive transcriptional changes and >90% of the cross-altitude differentially expressed genes in lung display a nonlinear regulation. Pathways related to cell survival and proliferation are enriched, including PI3K-Akt, HIF-1, focal adhesion, and ECM–receptor interaction. These findings, in combination with the comprehensive transcriptome data set, are valuable to understanding the genetic mechanism of hypoxic adaptation in yak.
Collapse
Affiliation(s)
- Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,These authors contributed equally to this work
| | - Qu Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Perspective Sciences, Chongqing, China.,These authors contributed equally to this work
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,These authors contributed equally to this work
| | - Lixin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,These authors contributed equally to this work
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Linping Yang
- Animal Husbandry, Veterinary and Forestry Bureau of Maqu County, Maqu, China
| | - Zhengheng Liu
- Animal Husbandry, Veterinary and Forestry Bureau of Maqu County, Maqu, China
| | - Fuheng Zhang
- Animal Husbandry, Veterinary and Forestry Bureau of Maqu County, Maqu, China
| | - Fengyun Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Lanzhou Animal Husbandry and Veterinary Drug Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
146
|
Ding X, Chen Y, Yang J, Li G, Niu H, He R, Zhao J, Ning H. Characteristics of Familial Lung Cancer in Yunnan-Guizhou Plateau of China. Front Oncol 2018; 8:637. [PMID: 30619770 PMCID: PMC6305406 DOI: 10.3389/fonc.2018.00637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Lung cancer has inherited susceptibility and show familial aggregation, the characteristics of familial lung cancer exhibit population heterogeneity. Despite previous studies, familial lung cancer in China's Yunnan-Guizhou plateau remains understudied. Methods: Between 2015 and 2017, 1,023 lung cancer patients (residents of Yunnan-Guizhou plateau) were enrolled with no limitation on other parameters, 152 subjects had familial lung cancer. Clinicopathologic parameters were analyzed and compared, 4,754 lung cancer patients from NCI-GDC were used to represent a general population. Results: Familial lung cancer (FLC) subjects showed unique characters: early-onset; increased rate of female, adenocarcinoma, stage IV and other cancer history; unbalance in anatomic sites; all ruling out significant difference in smoking status. Unbalanced distribution of co-existing diseases or symptoms was also discovered. FLC patients were more likely to develop benign lesions (polyps, nodules, cysts) early in life, especially early-growth of multiple pulmonary nodules at higher frequency. Typical diseases with family history like diabetes and hypertension were also increased in FLC population. Compared to GDC data, our subject population was younger: the age peak of our FLC group was in 50-59; our sporadic group had an age peak around 60; while GDC patients' age peak was in 60-69. Importantly, the biggest difference happened in age 40-49: our FLC group and sporadic group had 3 times and 2 times higher ratio than GDC population, respectively. Moreover, the age peaks of our FLC males and FLC females were both in 50-59; while our sporadic females had the age peak in 50-59, much earlier than sporadic males (around 60-69); reflecting gender-specific or age-specific characters in our subject population. Conclusions: Familial lung cancer in China's Yunnan-Guizhou plateau showed unique clinicopathologic characters, differences were found in gender, age, histologic type, TNM stage and co-existing diseases or symptoms. Identification of hereditary factors which lead to increased lung cancer risk will be a challenge of both scientific and clinical significance.
Collapse
Affiliation(s)
- Xiaojie Ding
- Key Laboratory of Lung Cancer Research of Kunming Medical University, Kunming, China.,Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Ying Chen
- Key Laboratory of Lung Cancer Research of Kunming Medical University, Kunming, China.,Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Jiapeng Yang
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Guangjian Li
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Huatao Niu
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Rui He
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Jie Zhao
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Huanqi Ning
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| |
Collapse
|
147
|
Mutations in EPAS1 in congenital heart disease in Tibetans. Biosci Rep 2018; 38:BSR20181389. [PMID: 30487161 PMCID: PMC6435565 DOI: 10.1042/bsr20181389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022] Open
Abstract
EPAS1 encodes HIF2 and is closely related to high altitude chronic hypoxia. Mutations in the EPAS1 coding sequence are associated with several kinds of human diseases, including syndromic congenital heart disease (CHD). However, whether there are rare EPAS1 coding variants related to Tibetan non-syndromic CHD have not been fully investigated. A group of 286 Tibetan patients with non-syndromic CHD and 250 unrelated Tibetan healthy controls were recruited from Qinghai, China. Sanger sequencing was performed to identify variations in the EPAS1 coding sequence. The novelty of identified variants was confirmed by the examination of 1000G and ExAC databases. Control samples were screened to establish that the rare candidate variants were specific to the Tibetan patients with non-syndromic CHD. Bioinformatics software was used to assess the conservation of the mutations and to predict their effects. The effect of EPAS1 mutations on the transcription of its target gene, VEGF, was assessed by dual-luciferase reporter assay. The mammalian two-hybrid assay was used to study the protein interactions between HIF2 and PHD2 or pVHL. We identified two novel EPAS1 mutations (NM_001430: c.607A>C, p.N203H; c.2170G>T, p.G724W) in two patients. The N203H mutation significantly affected the transcription activity of the VEGF promoter, especially in conditions of hypoxia. The N203H mutation also showed enhanced protein–protein interactions between HIF2 and PHD2, and HIF2 and pVHL, especially in conditions of hypoxia. However, the G724W mutation did not demonstrate the same effects. Our results indicate that EPAS1 mutations might have a potential causative effect on the development of Tibetan non-syndromic CHD.
Collapse
|
148
|
Strewe C, Thieme D, Dangoisse C, Fiedel B, van den Berg F, Bauer H, Salam AP, Gössmann-Lang P, Campolongo P, Moser D, Quintens R, Moreels M, Baatout S, Kohlberg E, Schelling G, Choukèr A, Feuerecker M. Modulations of Neuroendocrine Stress Responses During Confinement in Antarctica and the Role of Hypobaric Hypoxia. Front Physiol 2018; 9:1647. [PMID: 30534078 PMCID: PMC6276713 DOI: 10.3389/fphys.2018.01647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
The Antarctic continent is an environment of extreme conditions. Only few research stations exist that are occupied throughout the year. The German station Neumayer III and the French-Italian Concordia station are such research platforms and human outposts. The seasonal shifts of complete daylight (summer) to complete darkness (winter) as well as massive changes in outside temperatures (down to -80°C at Concordia) during winter result in complete confinement of the crews from the outside world. In addition, the crew at Concordia is subjected to hypobaric hypoxia of ∼650 hPa as the station is situated at high altitude (3,233 m). We studied three expedition crews at Neumayer III (sea level) (n = 16) and two at Concordia (high altitude) (n = 15) to determine the effects of hypobaric hypoxia on hormonal/metabolic stress parameters [endocannabinoids (ECs), catecholamines, and glucocorticoids] and evaluated the psychological stress over a period of 11 months including winter confinement. In the Neumayer III (sea level) crew, EC and n-acylethanolamide (NAE) concentrations increased significantly already at the beginning of the deployment (p < 0.001) whereas catecholamines and cortisol remained unaffected. Over the year, ECs and NAEs stayed elevated and fluctuated before slowly decreasing till the end of the deployment. The classical stress hormones showed small increases in the last third of deployment. By contrast, at Concordia (high altitude), norepinephrine concentrations increased significantly at the beginning (p < 0.001) which was paralleled by low EC levels. Prior to the second half of deployment, norepinephrine declined constantly to end on a low plateau level, whereas then the EC concentrations increased significantly in this second period during the overwintering (p < 0.001). Psychometric data showed no significant changes in the crews at either station. These findings demonstrate that exposition of healthy humans to the physically challenging extreme environment of Antarctica (i) has a distinct modulating effect on stress responses. Additionally, (ii) acute high altitude/hypobaric hypoxia at the beginning seem to trigger catecholamine release that downregulates the EC response. These results (iii) are not associated with psychological stress.
Collapse
Affiliation(s)
- Claudia Strewe
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, Dresden, Germany
| | | | - Barbara Fiedel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | | | - Holger Bauer
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Alex P Salam
- IPEV/PNRA-ESA Antarctic Program, Brest, Antarctica
| | - Petra Gössmann-Lang
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Dominique Moser
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCKCEN), Mol, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Centre (SCKCEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCKCEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Eberhard Kohlberg
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Gustav Schelling
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Choukèr
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
149
|
Jeong C, Witonsky DB, Basnyat B, Neupane M, Beall CM, Childs G, Craig SR, Novembre J, Di Rienzo A. Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genet 2018; 14:e1007650. [PMID: 30188897 PMCID: PMC6143271 DOI: 10.1371/journal.pgen.1007650] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| | | | - Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Geoff Childs
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Sienna R. Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
150
|
Jacovas VC, Couto-Silva CM, Nunes K, Lemes RB, de Oliveira MZ, Salzano FM, Bortolini MC, Hünemeier T. Selection scan reveals three new loci related to high altitude adaptation in Native Andeans. Sci Rep 2018; 8:12733. [PMID: 30143708 PMCID: PMC6109162 DOI: 10.1038/s41598-018-31100-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
The Andean Altiplano has been occupied continuously since the late Pleistocene, ~12,000 years ago, which places the Andean natives as one of the most ancient populations living at high altitudes. In the present study, we analyzed genomic data from Native Americans living a long-time at Andean high altitude and at Amazonia and Mesoamerica lowland areas. We have identified three new candidate genes - SP100, DUOX2 and CLC - with evidence of positive selection for altitude adaptation in Andeans. These genes are involved in the TP53 pathway and are related to physiological routes important for high-altitude hypoxia response, such as those linked to increased angiogenesis, skeletal muscle adaptations, and immune functions at the fetus-maternal interface. Our results, combined with other studies, showed that Andeans have adapted to the Altiplano in different ways and using distinct molecular strategies as compared to those of other natives living at high altitudes.
Collapse
Affiliation(s)
- Vanessa C Jacovas
- Genetics Departament, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cainã M Couto-Silva
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Renan B Lemes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | - Francisco M Salzano
- Genetics Departament, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Genetics Departament, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|