101
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
102
|
Palczewski MB, Kuschman HP, Bovee R, Hickok JR, Thomas DD. Vorinostat exhibits anticancer effects in triple-negative breast cancer cells by preventing nitric oxide-driven histone deacetylation. Biol Chem 2021; 402:501-512. [PMID: 33938179 DOI: 10.1515/hsz-2020-0323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Triple-negative breast cancers (TNBC) that produce nitric oxide (NO) are more aggressive, and the expression of the inducible form of nitric oxide synthase (NOS2) is a negative prognostic indicator. In these studies, we set out to investigate potential therapeutic strategies to counter the tumor-permissive properties of NO. We found that exposure to NO increased proliferation of TNBC cells and that treatment with the histone deacetylase inhibitor Vorinostat (SAHA) prevented this proliferation. When histone acetylation was measured in response to NO and/or SAHA, NO significantly decreased acetylation on histone 3 lysine 9 (H3K9ac) and SAHA increased H3K9ac. If NO and SAHA were sequentially administered to cells (in either order), an increase in acetylation was observed in all cases. Mechanistic studies suggest that the "deacetylase" activity of NO does not involve S-nitrosothiols or soluble guanylyl cyclase activation. The observed decrease in histone acetylation by NO required the interaction of NO with cellular iron pools and may be an overriding effect of NO-mediated increases in histone methylation at the same lysine residues. Our data revealed a novel pathway interaction of Vorinostat and provides new insight in therapeutic strategy for aggressive TNBCs.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60607, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60607, USA
| | - Rhea Bovee
- DePaul University, 1 E. Jackson Blvd., Chicago, IL 60604, USA
| | - Jason R Hickok
- IRBM S.p.A., IRBM Science Park, Via Pontina Km. 30.600, I-00071 Pomezia (Rome), Italy
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60607, USA
| |
Collapse
|
103
|
Discovery of a novel 53BP1 inhibitor through AlphaScreen-based high-throughput screening. Bioorg Med Chem 2021; 34:116054. [PMID: 33571875 DOI: 10.1016/j.bmc.2021.116054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
Tumor suppressor p53-binding protein 1 (53BP1), a tantem tudor domain (TTD) protein, takes part in DNA Damage Repair (DDR) pathways through the specific recognition of lysine methylation on histones. The dysregulation of 53BP1 is closely related to the development of many diseases including cancer. Moreover, recent studies found that deficiency of 53BP1 could increase the efficiency of precise CRISPR/Cas9 genome editing. Thus, discovery of inhibitor is beneficial to the study of biological functions of 53BP1 and the application of CRISPR/Cas9 genome editing. UNC2170 and its derivatives have been reported as 53BP1 targeted small molecular inhibitors with modest activities. Hence, to discover better 53BP1 inhibitors, we conducted an AlphaScreen assay based high-throughput screening (HTS) and identified a novel and effective 53BP1-TTD inhibitor DP308 which disrupts the binding between 53BP1 and H4K20me2 peptide with an IC50 value of 1.69 ± 0.73 μM. Both Microscale Themophoresis (MST) and Surface Plasmon Resonance (SPR) assays confirmed the direct binding between DP308 and 53BP1-TTD protein with binding affinity (Kd) of about 2.7 μM. Molecular docking studies further suggested that DP308 possibly occupies the H4K20me2 binding pocket of the 53BP1-TTD aromatic cage. These results demonstrated that DP308 is a promising small molecule inhibitor for further optimization towards a more potent chemical probe of 53BP1. Additionally, it could be a potential valuable tool for applying to gene editing therapy by increasing the efficiency of CRISPR/Cas9 genome editing.
Collapse
|
104
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
105
|
Harrison RES, Weng K, Wang Y, Peng Q. Phase Separation and Histone Epigenetics in Genome Regulation. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100892. [PMID: 33519290 PMCID: PMC7845916 DOI: 10.1016/j.cossms.2020.100892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.
Collapse
Affiliation(s)
- Reed E. S. Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, P. R. China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
106
|
Molecular evolution and expression analysis of ADP-ribosylation factors (ARFs) from longan embryogenic callus. Gene 2021; 777:145461. [PMID: 33515723 DOI: 10.1016/j.gene.2021.145461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
ADP-ribosylation modification considered as a model to study histone post-translational modification in chromatin modification. Despite it was reported in many plants, the study of ARFs gene family in longan was still unclear. In this study, 14 longan ARFs genes were identified using the longan genome (the third-generation genome) and further divided into two major groups, including the DlARF in the I-II group and the ARF-like (DlARL) in the III-V group, according to their structure and evolutionary characteristics. Whole-genome duplication (WGD) and segmental duplication events played a major role in the expansion of the DlARFs gene family, the synteny and phylogenetic analyses provided a deeper insight into the evolutionary characteristics of the DlARFs. Protein-protein interactions suggested that some DlARFs proteins may interact to participate in biological processes. Promoter analysis showed more stress response elements in DlARF5, DlGB1, DlARL1, DlARL2, and DlARL8a, suggesting that they may participate in abiotic stress. Expression profiles of DlARFs by quantitative real-time PCR (qRT-PCR) showed that they were abundant accumulation during early somatic embryogenesis (SE). Expression pattern analysis of RNA-seq and qRT-PCR revealed that some ARFs members regulated early SE, and respond to exogenous hormones and abiotic stress such as abscisic acid (ABA), gibberellin A3 (GA3), salicylic acid (SA), methyl jasmonate (MeJA), cold, and heat. Our study provides new insights for further research on the potential function of DlARFs, which may be useful for the improvement of longan.
Collapse
|
107
|
DNA methyltransferase inhibitors modulate histone methylation: epigenetic crosstalk between H3K4me3 and DNA methylation during sperm differentiation. ZYGOTE 2021; 29:239-244. [PMID: 33413709 DOI: 10.1017/s0967199420000684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate 'tuning' of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial-temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.
Collapse
|
108
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
109
|
Baisya DR, Lonardi S. Prediction of histone post-translational modifications using deep learning. Bioinformatics 2020; 36:5610-5617. [PMID: 33367499 DOI: 10.1093/bioinformatics/btaa1075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Abstract
Motivation
Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory processes in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been shown that one can predict PTMs from the underlying DNA primary sequence.
Results
In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep learning combined with an effective pre-processing step. Our classification framework has also enabled the discovery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type-specific) can provide almost the same prediction accuracy that can be obtained using all the transcription factors data.
Availabilityand implementation
https://github.com/dDipankar/DeepPTM.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dipankar Ranjan Baisya
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
110
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
111
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
112
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
113
|
Li QM, Li JL, Feng ZH, Lin HC, Xu Q. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells. Bioengineered 2020; 11:449-462. [PMID: 32208897 PMCID: PMC7161540 DOI: 10.1080/21655979.2020.1743536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells in response to exogenous stimuli. Histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. Previous studies have shown that histone methyltransferases (HMTs) and histone demethylases (HDMs) are crucial for the osteogenic differentiation of human bone marrow, adipose tissue, and tooth tissue. However, little is known about the role of histone methylation in hDPC differentiation. Here, the expression levels of HMTs and HDMs were profiled in hDPCs undergoing odontogenic induction. Among several differentially expressed enzymes, HDM KDM5A demonstrated significantly enhanced expression during cytodifferentiation. Furthermore, KDM5A expression increased during early passages and in a time-dependent manner during odontogenic induction. Using a shRNA-expressing lentivirus, KDM5A was knocked down in hDPCs. KDM5A depletion resulted in greater alkaline phosphatase activity and more mineral deposition formation. Meanwhile, the expression levels of the odontogenic markers DMP1, DSPP, OSX, and OCN were increased by KDM5A knockdown. As a histone demethylase specific for tri- and dimethylated histone H3 at lysine 4 (H3K4me3/me2), KDM5A deficiency led to a significant increment in total H3K4me3 levels, whereas no significant difference was found for H3K4 me2. H3K4me3 levels on the promoters of the odontogenic markers increased after KDM5A knockdown in hDPCs. These results demonstrated that KDM5A is present in hDPCs and inhibits the odontogenic differentiation potentiality of hDPCs by removing H3K4me3 from specific gene promoters, suggesting that KDM5A-dependent histone demethylation may play an important role in reparative dentinogenesis.
Collapse
Affiliation(s)
- Qi-Meng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jin-Ling Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhi-Hui Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Huan-Cai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Qiong Xu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
114
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
115
|
Hoyer-Fender S. Transgenerational effect of drug-mediated inhibition of LSD1 on eye pigment expression in Drosophila. BMC Ecol 2020; 20:62. [PMID: 33228645 PMCID: PMC7684728 DOI: 10.1186/s12898-020-00330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Background The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance. Results We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Conclusions Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology-Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen, Germany.
| |
Collapse
|
116
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
117
|
Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Curr Genet 2020; 67:267-281. [PMID: 33159551 DOI: 10.1007/s00294-020-01124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.
Collapse
|
118
|
Francis M, Gopinathan G, Foyle D, Fallah P, Gonzalez M, Luan X, Diekwisch T. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis. J Dent Res 2020; 99:1332-1340. [PMID: 32762486 PMCID: PMC7580172 DOI: 10.1177/0022034520932491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The packaging of DNA around nucleosomes exerts dynamic control over eukaryotic gene expression either by granting access to the transcriptional machinery in an open chromatin state or by silencing transcription via chromatin compaction. Histone methylation modification affects chromatin through the addition of methyl groups to lysine or arginine residues of histones H3 and H4 by means of histone methyl transferases or histone demethylases. Changes in histone methylation state modulate periodontal gene expression and have profound effects on periodontal development, health, and therapy. At the onset of periodontal development, progenitor cell populations such as dental follicle cells are characterized by an open H3K4me3 chromatin mark on RUNX2, MSX2, and DLX5 gene promoters. During further development, periodontal progenitor differentiation undergoes a global switch from the H3K4me3 active methyl mark to the H3K27me3 repressive mark. When compared with dental pulp cells, periodontal neural crest lineage differentiation is characterized by repressive H3K9me3 and H3K27me3 marks on typical dentinogenesis-related genes. Inflammatory conditions as they occur during periodontal disease result in unique histone methylation signatures in affected cell populations, including repressive H3K9me3 and H3K27me3 histone marks on extracellular matrix gene promoters and active H3K4me3 marks on interleukin, defensin, and chemokine gene promoters, facilitating a rapid inflammatory response to microbial pathogens. The inflammation-induced repression of chromatin on extracellular matrix gene promoters presents a therapeutic opportunity for the application of histone methylation inhibitors capable of inhibiting suppressive trimethylation marks. Furthermore, inhibition of chromatin coregulators through interference with key inflammatory mediators such as NF-kB by means of methyltransferase inhibitors provides another avenue to halt the exacerbation of the inflammatory response in periodontal tissues. In conclusion, histone methylation dynamics play an intricate role in the fine-tuning of chromatin states during periodontal development and harbor yet-to-be-realized potential for the treatment of periodontal disease.
Collapse
Affiliation(s)
- M. Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G. Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - D. Foyle
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - P. Fallah
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - M. Gonzalez
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - X. Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - T.G.H. Diekwisch
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
119
|
Dobrovolska O, Brilkov M, Madeleine N, Ødegård-Fougner Ø, Strømland Ø, Martin SR, De Marco V, Christodoulou E, Teigen K, Isaksson J, Underhaug J, Reuter N, Aalen RB, Aasland R, Halskau Ø. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS J 2020; 287:4458-4480. [PMID: 32083791 DOI: 10.1111/febs.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock-key models, missing important aspects of histone-tail CW interactions. We here present an analysis of the ASHH2 CW-H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. β-augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the η1, η3 and C-terminal coils, but also in the β1 and β2 strands and the C-terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post-translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome. DATABASES: Structural data are available in the PDB database under the accession code 6QXZ. Resonance assignments for CW42 in its apo- and holo-forms are available in the BMRB database under the accession code 27251.
Collapse
Affiliation(s)
- Olena Dobrovolska
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Maxim Brilkov
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Noelly Madeleine
- Department of Biological Sciences, University of Bergen, Norway, Bergen
- Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Øyvind Ødegård-Fougner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephen R Martin
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Johan Isaksson
- Department of Chemistry, The Arctic University of Tromsø, Norway
| | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Norway, Bergen
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Norway, Bergen
| | | | - Rein Aasland
- Department of Biosciences, University of Oslo, Norway, Oslo
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| |
Collapse
|
120
|
Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy. Exp Hematol 2020; 92:19-31. [PMID: 32950598 DOI: 10.1016/j.exphem.2020.09.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, disseminated hematological malignancy associated with clonal selection of aberrant self-renewing hematopoietic stem cells and progenitors and poorly differentiated myeloid blasts. The most prevalent form of leukemia in adults, AML is predominantly an age-related disorder and accounts for more than 10,000 deaths per year in the United States alone. In comparison to solid tumors, AML has an overall low mutational burden, albeit more than 70% of AML patients harbor somatic mutations in genes encoding epigenetic modifiers and chromatin regulators. In the past decade, discoveries highlighting the role of DNA and histone modifications in determining cellular plasticity and lineage commitment have attested to the importance of epigenetic contributions to tumor cell de-differentiation and heterogeneity, tumor initiation, maintenance, and relapse. Orchestration in histone methylation levels regulates pluripotency and multicellular development. The increasing number of reversible methylation regulators being identified, including histone methylation writer, reader, and eraser enzymes, and their implications in AML pathogenesis have widened the scope of epigenetic reprogramming, with multiple drugs currently in various stages of preclinical and clinical trials. AML methylome also determines response to conventional chemotherapy, as well as AML cell interaction within a tumor-immune microenvironment ecosystem. Here we summarize the latest developments focusing on molecular derangements in histone methyltransferases (HMTs) and histone demethylases (HDMs) in AML pathogenesis. AML-associated HMTs and HDMs, through intricate crosstalk mechanisms, maintain an altered histone methylation code conducive to disease progression. We further discuss their importance in governing response to therapy, which can be used as a biomarker for treatment efficacy. Finally we deliberate on the therapeutic potential of targeting aberrant histone methylome in AML, examine available small molecule inhibitors in combination with immunomodulating therapeutic approaches and caveats, and discuss how future studies can enable posited epigenome-based targeted therapy to become a mainstay for AML treatment.
Collapse
|
121
|
Zhu L, Yuan C, Wang M, Liu Y, Wang Z, Seif MM. Bisphenol A-associated alterations in DNA and histone methylation affects semen quality in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105580. [PMID: 32712368 DOI: 10.1016/j.aquatox.2020.105580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known estrogenic endocrine disruptor, is ubiquitously present in the environment, possessing the potential to interfere with the reproductive endocrine system in male mammals. However, there are limited studies on the reproductive toxicity in male aquatic animals associated with epigenetic modifications. In order to evaluate the potential effects of BPA on reproduction and better understand the underlying mechanism, adult male rare minnow (Gobiocypris rarus) were exposed to 15 μg L-1 BPA over a period of 63 d. Results showed that BPA induced congestion of blood vessels and infiltration of inflammatory cells after 21 d exposure, and decreased sperm fertilization after 63 d exposure. The genome DNA methylation levels were significantly increased throughout the treatment, and a strong positive stain were found in the spermatocyte, spermatid and sperm. The H3K4me3 level in all types of germ cell were increased by 21 d exposure while decreased following 63 d exposure. The positive stain of H3K9me3 was decreased in sperms while increased in spermatids by 21 d exposure. In addition, the H3K9me3 level was significantly increased after 63 d exposure, and a strong positive stain were found in spermatocytes, spermatids, and sperms. Our result also revealed that the transcripts of DNA methyltransferase genes (dnmt1 and dnmt3-8) and histone methyltransferase genes (mll2-5, setdb1-2 and ezh2) were also markedly changed under BPA exposure for 21-63 d. These findings indicated that BPA had toxicity in male reproductive, and DNA/histone methylation might play a vital role in the regulation of BPA-triggered the decreased of sperm quality.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China.
| | - Mohamed M Seif
- College of Animal Science and Technology, Northwest A&F University, Yang Ling, Shaanxi, 712100, China; Toxicology and Food Contaminants Department, National Research Centre, Cairo 11435, Egypt
| |
Collapse
|
122
|
Ashok C, Selvam M, Ponne S, Parcha PK, Raja KMP, Baluchamy S. CREB acts as a common transcription factor for major epigenetic repressors; DNMT3B, EZH2, CUL4B and E2F6. Med Oncol 2020; 37:68. [PMID: 32710193 DOI: 10.1007/s12032-020-01395-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
CREB signaling is known for several decades, but how it regulates both positive and negative regulators of cell proliferation is not well understood. On the other hand functions of major epigenetic repressors such as DNMT3B, EZH2 and CUL4B for their repressive epigenetic modifications on chromatin have also been well studied. However, there is very limited information available on how these repressors are regulated at their transcriptional level. Here, using computational tools and molecular techniques including site directed mutagenesis, promoter reporter assay, chromatin immunoprecipitation (ChIP), we identified that CREB acts as a common transcription factor for DNMT3B, EZH2, CUL4B and E2F6. ChIP assay revealed that pCREB binds to promoters of these repressors at CREs and induce their transcription. As expected, the expression of these repressors and their associated repressive marks particularly H3K27me3 and H2AK119ub are increased and decreased upon CREB overexpression and knock-down conditions respectively in the cancer cells indicating that CREB regulates the functions of these repressors by activating their transcription. Since CREB and these epigenetic repressors are overexpressed in various cancer types, our findings showed the molecular relationship between them and indicate that CREB is an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India
| | - Phani K Parcha
- Department of Biochemistry and Molecular Biology, Pondicherry Central University, Pondicherry, 605014, India
| | | | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
123
|
Wang J, Yu C, Zhang S, Ye J, Dai H, Wang H, Huang J, Cao X, Ma J, Ma H, Wang Y. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. NATURE PLANTS 2020; 6:823-837. [PMID: 32572214 DOI: 10.1038/s41477-020-0697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/17/2020] [Indexed: 05/25/2023]
Abstract
Histone demethylation is crucial for proper chromatin structure and to ensure normal development, and requires the large family of Jumonji C (JmjC)-containing demethylases; however, the molecular mechanisms that regulate the substrate specificity of these JmjC-containing demethylases remain largely unknown. Here, we show that the substrate specificity of the Arabidopsis histone demethylase JMJ16 is broadened from Lys 4 of histone H3 (H3K4) alone in somatic cells to both H3K4 and H3K9 when it binds to the meiocyte-specific histone reader MMD1. Consistent with this, the JMJ16 catalytic domain exhibits both H3K4 and H3K9 demethylation activities. Moreover, the JMJ16 C-terminal FYR domain interacts with the JMJ16 catalytic domain and probably restricts its substrate specificity. By contrast, MMD1 can compete with the N-terminal catalytic domain of JMJ16 for binding to the FYR-C domain, thereby expanding the substrate specificity of JMJ16 by preventing the FYR domain from binding to the catalytic domain. We propose that MMD1 and JMJ16 together in male meiocytes promote gene expression in an H3K9me3-dependent manner and thereby contribute to meiotic chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hang Dai
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
124
|
|
125
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
126
|
Ly CH, Lynch GS, Ryall JG. A Metabolic Roadmap for Somatic Stem Cell Fate. Cell Metab 2020; 31:1052-1067. [PMID: 32433923 DOI: 10.1016/j.cmet.2020.04.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 01/14/2023]
Abstract
While metabolism was initially thought to play a passive role in cell biology by generating ATP to meet bioenergetic demands, recent studies have identified critical roles for metabolism in the generation of new biomass and provision of obligate substrates for the epigenetic modification of histones and DNA. This review details how metabolites generated through glycolysis and the tricarboxylic acid cycle are utilized by somatic stem cells to support cell proliferation and lineage commitment. Importantly, we also discuss the evolving hypothesis that histones can act as an energy reservoir during times of energy stress. Finally, we discuss how cells integrate both extrinsic metabolic cues and intrinsic metabolic machinery to regulate cell fate.
Collapse
Affiliation(s)
- C Hai Ly
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James G Ryall
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
127
|
Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Commun Chem 2020; 3:69. [PMID: 36703460 PMCID: PMC9814790 DOI: 10.1038/s42004-020-0313-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
The understanding of biomolecular recognition of posttranslationally modified histone proteins is centrally important to the histone code hypothesis. Despite extensive binding and structural studies on the readout of histones, the molecular language by which posttranslational modifications on histone proteins are read remains poorly understood. Here we report physical-organic chemistry studies on the recognition of the positively charged trimethyllysine by the electron-rich aromatic cage containing PHD3 finger of KDM5A. The aromatic character of two tryptophan residues that solely constitute the aromatic cage of KDM5A was fine-tuned by the incorporation of fluorine substituents. Our thermodynamic analyses reveal that the wild-type and fluorinated KDM5A PHD3 fingers associate equally well with trimethyllysine. This work demonstrates that the biomolecular recognition of trimethyllysine by fluorinated aromatic cages is associated with weaker cation-π interactions that are compensated by the energetically more favourable trimethyllysine-mediated release of high-energy water molecules that occupy the aromatic cage.
Collapse
|
128
|
Akpa CA, Kleo K, Oker E, Tomaszewski N, Messerschmidt C, López C, Wagener R, Oehl-Huber K, Dettmer K, Schoeler A, Lenze D, Oefner PJ, Beule D, Siebert R, Capper D, Dimitrova L, Hummel M. Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model. BMC Cancer 2020; 20:427. [PMID: 32408898 PMCID: PMC7227222 DOI: 10.1186/s12885-020-06937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application. METHODS To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis. RESULTS Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium. CONCLUSIONS This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep.
Collapse
Affiliation(s)
- Chidimma Agatha Akpa
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany.
| | - Karsten Kleo
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elisabeth Oker
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Nancy Tomaszewski
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Kathrin Oehl-Huber
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anne Schoeler
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dido Lenze
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter J Oefner
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, Charité Core Unit Bioinformatics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - David Capper
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lora Dimitrova
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Hummel
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| |
Collapse
|
129
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
130
|
Kang HS, Lee JH, Oh KJ, Lee EW, Han BS, Park KY, Suh JM, Min JK, Chi SW, Lee SC, Bae KH, Kim WK. IDH1-dependent α-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism 2020; 105:154173. [PMID: 32035087 DOI: 10.1016/j.metabol.2020.154173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. METHODS We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. RESULTS We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. CONCLUSION These results suggested that the IDH1-α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.
Collapse
Affiliation(s)
- Hyun Sup Kang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jae Ho Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kun-Young Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Seung-Wook Chi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
131
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
132
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
133
|
Barra R, Morgan C, Sáez-Briones P, Reyes-Parada M, Burgos H, Morales B, Hernández A. Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutr Rev 2020; 77:65-80. [PMID: 30445479 DOI: 10.1093/nutrit/nuy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.
Collapse
Affiliation(s)
- Rafael Barra
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Carlos Morgan
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Sáez-Briones
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Miguel Reyes-Parada
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud Universidad Autónoma de Chile, Talca, Chile
| | - Héctor Burgos
- Núcleo Disciplinar Psicología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Center of Innovation on Information Technologies for Social Applications (CITIAPS), University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernández
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
134
|
Leung J, Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. FRONTIERS IN PLANT SCIENCE 2020; 11:181. [PMID: 32194593 PMCID: PMC7066317 DOI: 10.3389/fpls.2020.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Epigenetics refers to the mode of inheritance independent of mutational changes in the DNA. Early evidence has revealed methylation, acetylation, and phosphorylation of histones, as well as methylation of DNA as part of the underlying mechanisms. The recent awareness that many human diseases have in fact an epigenetic basis, due to unbalanced diets, has led to a resurgence of interest in how epigenetics might be connected with, or even controlled by, metabolism. The Next-Generation genomic technologies have now unleashed torrents of results exposing a wondrous array of metabolites that are covalently attached to selective sites on histones, DNA and RNA. Metabolites are often cofactors or targets of chromatin-modifying enzymes. Many metabolites themselves can be acetylated or methylated. This indicates that the acetylome and methylome can actually be deep and pervasive networks to ensure the nuclear activities are coordinated with the metabolic status of the cell. The discovery of novel histone marks also raises the question on the types of pathways by which their corresponding metabolites are replenished, how they are corralled to the specific histone residues and how they are recognized. Further, atypical cytosines and uracil have also been found in eukaryotic genomes. Although these new and extensive connections between metabolism and epigenetics have been established mostly in animal models, parallels must exist in plants, inasmuch as many of the basic components of chromatin and its modifying enzymes are conserved. Plants are chemical factories constantly responding to stress. Plants, therefore, should lend themselves readily for identifying new endogenous metabolites that are also modulators of nuclear activities in adapting to stress.
Collapse
Affiliation(s)
- Jeffrey Leung
- Institut Jean-Pierre Bourgin, ERL3559 CNRS, INRAE, Versailles, France
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
135
|
Yamauchi Y, Cooper PR, Shimizu E, Kobayashi Y, Smith AJ, Duncan HF. Histone Acetylation as a Regenerative Target in the Dentine-Pulp Complex. Front Genet 2020; 11:1. [PMID: 32117431 PMCID: PMC7016267 DOI: 10.3389/fgene.2020.00001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
If dental caries (or tooth decay) progresses without intervention, the infection will advance through the dentine leading to severe pulpal inflammation (irreversible pulpitis) and pulp death. The current management of irreversible pulpits is generally root-canal-treatment (RCT), a destructive, expensive, and often unnecessary procedure, as removal of the injurious stimulus alone creates an environment in which pulp regeneration may be possible. Current dental-restorative-materials stimulate repair non-specifically and have practical limitations; as a result, opportunities exist for the development of novel therapeutic strategies to regenerate the damaged dentine-pulp complex. Recently, epigenetic modification of DNA-associated histone ‘tails’ has been demonstrated to regulate the self-renewal and differentiation potential of dental-stem-cell (DSC) populations central to regenerative endodontic treatments. As a result, the activities of histone deacetylases (HDAC) are being recognised as important regulators of mineralisation in both tooth development and dental-pulp-repair processes, with HDAC-inhibition (HDACi) promoting pulp cell mineralisation in vitro and in vivo. Low concentration HDACi-application can promote de-differentiation of DSC populations and conversely, increase differentiation and accelerate mineralisation in DSC populations. Therapeutically, various HDACi solutions can release bioactive dentine-matrix-components (DMCs) from the tooth’s extracellular matrix; solubilised DMCs are rich in growth factors and can stimulate regenerative processes such as angiogenesis, neurogenesis, and mineralisation. The aim of this mini-review is to discuss the role of histone-acetylation in the regulation of DSC populations, while highlighting the importance of HDAC in tooth development and dental pulp regenerative-mineralisation processes, before considering the potential therapeutic application of HDACi in targeted biomaterials to the damaged pulp to stimulate regeneration.
Collapse
Affiliation(s)
- Yukako Yamauchi
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul Roy Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Emi Shimizu
- Oral Biology Department, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Yoshifumi Kobayashi
- Oral Biology Department, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Anthony J Smith
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Henry Fergus Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
136
|
Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 2020; 10:9. [PMID: 32021684 PMCID: PMC6995143 DOI: 10.1186/s13578-020-0374-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone marks control many cellular processes including DNA damage repair. This review will focus primarily on the active histone mark H3K36me3 in the regulation of DNA damage repair and the maintenance of genomic stability after DNA damage. There are diverse clues showing H3K36me3 participates in DNA damage response by directly recruiting DNA repair machinery to set the chromatin at a “ready” status, leading to a quick response upon damage. Reduced H3K36me3 is associated with low DNA repair efficiency. This review will also place a main emphasis on the H3K36me3-mediated DNA damage repair in the tumorigenesis of the newly found oncohistone mutant tumors. Gaining an understanding of different aspects of H3K36me3 in DNA damage repair, especially in cancers, would share the knowledge of chromatin and DNA repair to serve to the drug discovery and patient care.
Collapse
Affiliation(s)
- Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongfei Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
137
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
138
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
139
|
Vyse K, Faivre L, Romich M, Pagter M, Schubert D, Hincha DK, Zuther E. Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature. FRONTIERS IN PLANT SCIENCE 2020; 11:39. [PMID: 32117378 PMCID: PMC7020257 DOI: 10.3389/fpls.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Chromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of stress-related genes after stress exposure. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We reveal that the repressive modification histone H3 lysine 27 trimethylation (H3K27me3) targets genes which are quickly activated upon cold exposure, however, H3K27me3 is not necessarily lost during a longer time in the cold. In addition, we have set-up a quantitative reverse transcription polymerase chain reaction-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of many of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyze large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS may result in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress.
Collapse
Affiliation(s)
- Kora Vyse
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Léa Faivre
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Melissa Romich
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| | - Dirk K. Hincha
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Daniel Schubert, ; Ellen Zuther,
| |
Collapse
|
140
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
141
|
Karakkat JV, Kaimala S, Sreedharan SP, Jayaprakash P, Adeghate EA, Ansari SA, Guccione E, Mensah-Brown EPK, Starling Emerald B. The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Res 2019; 47:10086-10103. [PMID: 31529049 PMCID: PMC6821284 DOI: 10.1093/nar/gkz786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
The metabolic sensor Per-Arnt-Sim (Pas) domain-containing serine/threonine kinase (PASK) is expressed predominantly in the cytoplasm of different cell types, although a small percentage is also expressed in the nucleus. Herein, we show that the nuclear PASK associates with the mammalian H3K4 MLL2 methyltransferase complex and enhances H3K4 di- and tri-methylation. We also show that PASK is a histone kinase that phosphorylates H3 at T3, T6, S10 and T11. Taken together, these results suggest that PASK regulates two different H3 tail modifications involving H3K4 methylation and H3 phosphorylation. Using muscle satellite cell differentiation and functional analysis after loss or gain of Pask expression using the CRISPR/Cas9 system, we provide evidence that some of the regulatory functions of PASK during development and differentiation may occur through the regulation of these histone modifications.
Collapse
Affiliation(s)
- Jimsheena V Karakkat
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Sreejisha P Sreedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Princy Jayaprakash
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
142
|
Holt MV, Wang T, Young NL. High-Throughput Quantitative Top-Down Proteomics: Histone H4. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2548-2560. [PMID: 31741267 DOI: 10.1007/s13361-019-02350-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Proteins physiologically exist as "proteoforms" that arise from one gene and acquire additional function by post-translational modifications (PTM). When multiple PTMs coexist on single protein molecules, top-down proteomics becomes the only feasible method of characterization; however, most top-down methods have limited quantitative capacity and insufficient throughput to truly address proteoform biology. Here we demonstrate that top-down proteomics can be quantitative, reproducible, sensitive, and high throughput. The proteoforms of histone H4 are well studied both as a challenging proteoform identification problem and due to their essential role in the regulation of all eukaryotic DNA-templated processes. Much of histone H4's function is obfuscated from prevailing methods due to combinatorial mechanisms. Starting from cells or tissues, after an optimized protein purification process, the H4 proteoforms are physically separated by on-line C3 chromatography, narrowly isolated in MS1 and sequenced with ETD fragmentation. We achieve more than 30 replicates from a single 35-mm tissue culture dish by loading 55 ng of H4 on column. Parallelization and automation yield a sustained throughput of 12 replicates per day. We achieve reproducible quantitation (average biological Pearson correlations of 0.89) of hundreds of proteoforms (about 200-300) over almost six orders of magnitude and an estimated LLoQ of 0.001% abundance. We demonstrate the capacity of the method to precisely measure well-established changes with sodium butyrate treatment of SUM159 cells. We show that the data produced by a quantitative top-down method can be amenable to parametric statistical comparisons and is capable of delineating relevant biological changes at the full proteoform level.
Collapse
Affiliation(s)
- Matthew V Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
143
|
Sun J, Shi F, Yang N. Exploration of the Substrate Preference of Lysine Methyltransferase SMYD3 by Molecular Dynamics Simulations. ACS OMEGA 2019; 4:19573-19581. [PMID: 31788587 PMCID: PMC6881823 DOI: 10.1021/acsomega.9b01842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
SMYD3, a SET and MYND domain containing lysine methyltransferase, catalyzes the transfer of the methyl group from a methyl donor onto the Nε group of a lysine residue in the substrate protein. Methylation of MAP3 kinase kinase (MAP3K2) by SMYD3 has been implicated in Ras-driven tumorigenesis. The crystal structure of SMYD3 in complex with MAP3K2 peptide reveals a shallow hydrophobic pocket (P-2), which accommodates the binding of a phenylalanine residue at the -2 position of the substrate (F258) is a crucial determinant of substrate specificity of SMYD3. To better understand the substrate preference of SMYD3 at the -2 position, molecular dynamics (MD) simulations and the MM/GBSA method were performed on the crystal structure of SMYD3-MAP3K2 complex (PDB: 5EX0) after substitution of F258 residue of MAP3K2 to each of the other 19 natural residues, respectively. Binding free energy calculations reveal that the P-2 pocket prefers an aromatic hydrophobic group and none of the substitutions behave better than the wild-type phenylalanine residue does. Furthermore, we investigated the structure-activity relationships (SAR) of a series of non-natural phenylalanine derivative substitutions at the -2 position and found that quite a few modifications on the sidechain of F258 residue could strengthen its binding to the P-2 pocket of SMYD3. These explorations provide insights into developing novel SMYD3 inhibitors with high potency and high selectivity against MAP3K2 and cancer.
Collapse
Affiliation(s)
| | | | - Na Yang
- E-mail: . Tel/Fax: + 8622 85358193
| |
Collapse
|
144
|
Malinczak CA, Rasky AJ, Fonseca W, Schaller MA, Allen RM, Ptaschinski C, Morris S, Lukacs NW. Upregulation of H3K27 Demethylase KDM6 During Respiratory Syncytial Virus Infection Enhances Proinflammatory Responses and Immunopathology. THE JOURNAL OF IMMUNOLOGY 2019; 204:159-168. [PMID: 31748348 DOI: 10.4049/jimmunol.1900741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Severe disease following respiratory syncytial virus (RSV) infection has been linked to enhanced proinflammatory cytokine production that promotes a Th2-type immune environment. Epigenetic regulation in immune cells following viral infection plays a role in the inflammatory response and may result from upregulation of key epigenetic modifiers. In this study, we show that RSV-infected bone marrow-derived dendritic cells (BMDC) as well as pulmonary dendritic cells (DC) from RSV-infected mice upregulated the expression of Kdm6b/Jmjd3 and Kdm6a/Utx, H3K27 demethylases. KDM6-specific chemical inhibition (GSK J4) in BMDC led to decreased production of chemokines and cytokines associated with the inflammatory response during RSV infection (i.e., CCL-2, CCL-3, CCL-5, IL-6) as well as decreased MHC class II and costimulatory marker (CD80/86) expression. RSV-infected BMDC treated with GSK J4 altered coactivation of T cell cytokine production to RSV as well as a primary OVA response. Airway sensitization of naive mice with RSV-infected BMDCs exacerbate a live challenge with RSV infection but was inhibited when BMDCs were treated with GSK J4 prior to sensitization. Finally, in vivo treatment with the KDM6 inhibitor, GSK J4, during RSV infection reduced inflammatory DC in the lungs along with IL-13 levels and overall inflammation. These results suggest that KDM6 expression in DC enhances proinflammatory innate cytokine production to promote an altered Th2 immune response following RSV infection that leads to more severe immunopathology.
Collapse
Affiliation(s)
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL 32610; and
| | - Ronald M Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; .,Mary H. Weiser Food and Allergy Center, Ann Arbor, MI 48109
| |
Collapse
|
145
|
Plasticity of histone modifications around Cidea and Cidec genes with secondary bile in the amelioration of developmentally-programmed hepatic steatosis. Sci Rep 2019; 9:17100. [PMID: 31745102 PMCID: PMC6863835 DOI: 10.1038/s41598-019-52943-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
We recently reported that a treatment with tauroursodeoxycholic acid (TUDCA), a secondary bile acid, improved developmentally-deteriorated hepatic steatosis in an undernourishment (UN, 40% caloric restriction) in utero mouse model after a postnatal high-fat diet (HFD). We performed a microarray analysis and focused on two genes (Cidea and Cidec) because they are enhancers of lipid droplet (LD) sizes in hepatocytes and showed the greatest up-regulation in expression by UN that were completely recovered by TUDCA, concomitant with parallel changes in LD sizes. TUDCA remodeled developmentally-induced histone modifications (dimethylation of H3K4, H3K27, or H3K36), but not DNA methylation, around the Cidea and Cidec genes in UN pups only. Changes in these histone modifications may contribute to the markedly down-regulated expression of Cidea and Cidec genes in UN pups, which was observed in the alleviation of hepatic fat deposition, even under HFD. These results provide an insight into the future of precision medicine for developmentally-programmed hepatic steatosis by targeting histone modifications.
Collapse
|
146
|
Ren J, Shen F, Zhang L, Sun J, Yang M, Yang M, Hou R, Yue B, Zhang X. Single-base-resolution methylome of giant panda's brain, liver and pancreatic tissue. PeerJ 2019; 7:e7847. [PMID: 31637123 PMCID: PMC6800980 DOI: 10.7717/peerj.7847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/08/2019] [Indexed: 11/20/2022] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is one of the most endangered mammals, and its conservation has significant ecosystem and cultural service value. Cytosine DNA methylation (5mC) is a stable epigenetic modification to the genome and has multiple functions such as gene regulation. However, DNA methylome of giant panda and its function have not been reported as of yet. Bisulfite sequencing was performed on a 4-day-old male giant panda's brain, liver and pancreatic tissues. We found that the whole genome methylation level was about 0.05% based on reads normalization and mitochondrial DNA was not methylated. Three tissues showed similar methylation tendency in the protein-coding genes of their genomes, but the brain genome had a higher count of methylated genes. We obtained 467 and 1,013 different methylation regions (DMR) genes in brain vs. pancreas and liver, while only 260 DMR genes were obtained in liver vs pancreas. Some lncRNA were also DMR genes, indicating that methylation may affect biological processes by regulating other epigenetic factors. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that low methylated promoter, high methylated promoter and DMR genes were enriched at some important and tissue-specific items and pathways, like neurogenesis, metabolism and immunity. DNA methylation may drive or maintain tissue specificity and organic functions and it could be a crucial regulating factor for the development of newborn cubs. Our study offers the first insight into giant panda's DNA methylome, laying a foundation for further exploration of the giant panda's epigenetics.
Collapse
Affiliation(s)
- Jianying Ren
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Fujun Shen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jie Sun
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Miao Yang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingyu Yang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
147
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
148
|
Disruption of the Molecular Circadian Clock and Cancer: An Epigenetic Link. Biochem Genet 2019; 58:189-209. [DOI: 10.1007/s10528-019-09938-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
149
|
[Chemical targeting of DNA and histone methylation in cancer: Novelties, hopes and promises]. Bull Cancer 2019; 106:823-833. [PMID: 31522746 DOI: 10.1016/j.bulcan.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
150
|
Harmanci A, Harmanci AS, Swaminathan J, Gopalakrishnan V. EpiSAFARI: sensitive detection of valleys in epigenetic signals for enhancing annotations of functional elements. Bioinformatics 2019; 36:1014-1021. [PMID: 31501853 PMCID: PMC7703766 DOI: 10.1093/bioinformatics/btz702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Functional genomics experiments generate genomewide signal profiles that are dense information sources for annotating the regulatory elements. These profiles measure epigenetic activity at the nucleotide resolution and they exhibit distinctive patterns as they fluctuate along the genome. Most notable of these patterns are the valley patterns that are prevalently observed in assays such as ChIP Sequencing and bisulfite sequencing. The genomic positions of valleys pinpoint locations of cis-regulatory elements such as enhancers and insulators. Systematic identification of the valleys provides novel information for delineating the annotation of regulatory elements. Nevertheless, the valleys are not reported by majority of the analysis pipelines. RESULTS We describe EpiSAFARI, a computational method for sensitive detection of valleys from diverse types of epigenetic profiles. EpiSAFARI employs a novel smoothing method for decreasing noise in signal profiles and accounts for technical factors such as sparse signals, mappability and nucleotide content. In performance comparisons, EpiSAFARI performs favorably in terms of accuracy. The histone modification valleys detected by EpiSAFARI exhibit high conservation, transcription factor binding and they are enriched in nascent transcription. In addition, the large clusters of histone valleys are found to be enriched at the promoters of the developmentally associated genes. Differential histone valleys exhibit concordance with differential DNase signal at cell line specific valleys. DNA methylation valleys exhibit elevated conservation and high transcription factor binding. Specifically, we observed enriched binding of transcription factors associated with chromatin structure around methyl-valleys. AVAILABILITY AND IMPLEMENTATION EpiSAFARI is publicly available at https://github.com/harmancilab/EpiSAFARI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Akdes Serin Harmanci
- School of Biomedical Informatics, Center for Systems Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | - Vidya Gopalakrishnan
- Department of Pediatrics, USA,Department of Molecular and Cellular Oncology, USA,Brain Tumor Center, USA,Center for Cancer Epigenetics, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA,M.D. Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|