101
|
RNA-Seq Analysis of Prickled and Prickle-Free Epidermis Provides Insight into the Genetics of Prickle Development in Red Raspberry (Rubus ideaus L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10121904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Red raspberry (Rubus idaeus L.) is a globally commercialized specialty crop with growing demand worldwide. The presence of prickles on the stems, petioles and undersides of the leaves complicates both the field management and harvesting of raspberries. An RNA sequencing analysis was used to identify differentially expressed genes in the epidermal tissue of prickled “Caroline” and prickle-free “Joan J.” and their segregating progeny. Expression patterns of differentially expressed genes (DEGs) in prickle-free plants revealed the downregulation of some vital development-related transcription factors (TFs), including a MIXTA-like R2R3-MYB family member; MADS-box; APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and NAM, ATAF1/2 and CUC2 (NAC) in prickle-free epidermis tissue. The downregulation of these TFs was confirmed by qRT-PCR analysis, indicating a key regulatory role in prickle development. This study adds to the understanding of prickle development mechanisms in red raspberries needed for utilizing genetic engineering strategies for developing prickle-free raspberry cultivars and, possibly, other Rubus species, such as blackberry (Rubus sp.) and black raspberry (R. occidentalis L.).
Collapse
|
102
|
Bassolino L, Buti M, Fulvio F, Pennesi A, Mandolino G, Milc J, Francia E, Paris R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1540. [PMID: 33187168 PMCID: PMC7697600 DOI: 10.3390/plants9111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Plant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. Cannabis sativa L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage. Despite comprehensive knowledge of cannabinoids' metabolic pathways, very little is known about their regulation, while the literature on flavonoids' metabolic pathways is still scarce. In this study, we provide the first genome-wide analysis of bHLH and MYB families in C. sativa reference cultivar CBDRx and identification of candidate coding sequences for these transcription factors. Cannabis sativa bHLHs and MYBs were then classified into functional subfamilies through comparative phylogenetic analysis with A. thaliana transcription factors. Analyses of gene structure and motif distribution confirmed that CsbHLHs and CsMYBs belonging to the same evolutionary clade share common features at both gene and amino acidic level. Candidate regulatory genes for key metabolic pathways leading to flavonoid and cannabinoid synthesis in Cannabis were also retrieved. Furthermore, a candidate gene approach was used to identify structural enzyme-coding genes for flavonoid and cannabinoid synthesis. Taken as a whole, this work represents a valuable resource of candidate genes for further investigation of the C. sativa cannabinoid and flavonoid metabolic pathways for genomic studies and breeding programs.
Collapse
Affiliation(s)
- Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy;
| | - Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Alessandro Pennesi
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| |
Collapse
|
103
|
Huang J, Wang S, Wang X, Fan Y, Han Y. Structure and expression analysis of seven salt-related ERF genes of Populus. PeerJ 2020; 8:e10206. [PMID: 33150090 PMCID: PMC7583627 DOI: 10.7717/peerj.10206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.
Collapse
Affiliation(s)
- Juanjuan Huang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Xingdou Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
104
|
Cheng X, Cao J, Gao C, Gao W, Yan S, Yao H, Xu K, Liu X, Xu D, Pan X, Lu J, Chang C, Zhang H, Ma C. Identification of the wheat C3H gene family and expression analysis of candidates associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:524-537. [PMID: 33053501 DOI: 10.1016/j.plaphy.2020.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 05/01/2023]
Abstract
C3H zinc finger transcription factors play important roles in managing various biotic/abiotic stresses in Aarabidopsis, rice, and maize. The functions of these factors in wheat, however, remain largely unclear. We identified 88 TaC3H genes that were divided into four subfamilies in this analysis. Gene structure and conserved domain analyses indicate that most members of the same subfamily have similar structures. A total of 76 paralogous and 48 orthologous pairs were identified and Ka/Ks values were used to analyze replication relationships amongst wheat, rice, and Arabidopsis. Gene ontology (GO) annotation analysis showed that most TaC3H genes possessed molecular functions, while transcriptome results showed that the 88 TaC3H genes responded to water imbibition. Microarray data for 53 TaC3H genes were obtained and heat maps were generated; these results indicate that these genes are expressed in 13 wheat tissues. Subcellular localization prediction analysis indicates that most TaC3H genes are located in the nucleus. Promoter analysis indicates that most TaC3H genes contained cis-elements including ABRE, GARE-motif, and MBS, indicating that these can respond to various biotic/abiotic stresses. Transcriptome data and quantitative real-time PCR analysis of wheat cultivars with contrasting seed dormancy phenotypes show that five genes TaC3H4/-18/-37/-51/-72 were very likely involved in seed dormancy and germination. Exogenous ABA treatment further indicated that these five genes were responsive to ABA, suggesting that there may be a crosstalk between these genes and ABA signaling pathway in controlling seed dormancy and germination. These results provide a theoretical basis for subsequent studies on TaC3H gene function and also contribute to studies on the C3H gene in other species.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Kangle Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xue Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Dongmei Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| |
Collapse
|
105
|
Wang Z, Mao Y, Guo Y, Gao J, Liu X, Li S, Lin YCJ, Chen H, Wang JP, Chiang VL, Li W. MYB Transcription Factor161 Mediates Feedback Regulation of Secondary wall-associated NAC-Domain1 Family Genes for Wood Formation. PLANT PHYSIOLOGY 2020; 184:1389-1406. [PMID: 32943464 PMCID: PMC7608153 DOI: 10.1104/pp.20.01033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Wood formation is a complex process that involves cell differentiation, cell expansion, secondary wall deposition, and programmed cell death. We constructed a four-layer wood formation transcriptional regulatory network (TRN) in Populus trichocarpa (black cottonwood) that has four Secondary wall-associated NAC-Domain1 (PtrSND1) transcription factor (TF) family members as the top-layer regulators. We characterized the function of a MYB (PtrMYB161) TF in this PtrSND1-TRN, using transgenic P trichocarpa cells and whole plants. PtrMYB161 is a third-layer regulator that directly transactivates five wood formation genes. Overexpression of PtrMYB161 in P. trichocarpa (OE-PtrMYB161) led to reduced wood, altered cell type proportions, and inhibited growth. Integrative analysis of wood cell-based chromatin-binding assays with OE-PtrMYB161 transcriptomics revealed a feedback regulation system in the PtrSND1-TRN, where PtrMYB161 represses all four top-layer regulators and one second-layer regulator, PtrMYB021, possibly affecting many downstream TFs in, and likely beyond, the TRN, to generate the observed phenotypic changes. Our data also suggested that the PtrMYB161's repressor function operates through interaction of the base PtrMYB161 target-binding system with gene-silencing cofactors. PtrMYB161 protein does not contain any known negative regulatory domains. CRISPR-based mutants of PtrMYB161 in P. trichocarpa exhibited phenotypes similar to the wild type, suggesting that PtrMYB161's activator functions are redundant among many TFs. Our work demonstrated that PtrMYB161 binds to multiple sets of target genes, a feature that allows it to function as an activator as well as a repressor. The balance of the two functions may be important to the establishment of regulatory homeostasis for normal growth and development.
Collapse
Affiliation(s)
- Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuli Mao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yanjiao Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
106
|
Gourlay G, Ma D, Schmidt A, Constabel CP. MYB134-RNAi poplar plants show reduced tannin synthesis in leaves but not roots, and increased susceptibility to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6601-6611. [PMID: 32777037 DOI: 10.1093/jxb/eraa371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The importance of the poplar MYB134 gene in controlling condensed tannin (CT) biosynthesis was tested by suppressing its expression using RNA interference (RNAi). MYB134-RNAi plants grew normally but showed reduced accumulation of stress-induced CTs in leaves. RNA-seq analysis indicated that flavonoid- and CT-related genes, as well as additional CT regulators, were strongly and specifically down-regulated by MYB134 suppression. This confirmed that the primary MYB134 target is the leaf flavonoid and CT pathway. Root CT accumulation was not impacted by MYB suppression, suggesting that additional CT regulators are active in roots and emphasizing the complexity of the regulation of CTs in poplar. To test the effect of CT down-regulation on oxidative stress resistance, leaves of MYB134-RNAi and control plants were exposed to the reactive oxygen species generator methyl viologen. MYB134-RNAi leaves sustained significantly more photosystem II damage, as seen in reduced chlorophyll fluorescence, compared with wild-type leaves. MYB134-RNAi leaves also contained more hydrogen peroxide, a reactive oxygen species, compared with the wild type. Our data thus corroborate the hypothesis that CT can act as an antioxidant in vivo and protect against oxidative stress. Overall, MYB134 was shown to be a central player in the regulation of CT synthesis in leaves.
Collapse
Affiliation(s)
- Geraldine Gourlay
- Centre for Forest Biology & Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Dawei Ma
- Centre for Forest Biology & Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Axel Schmidt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
107
|
Pucker B, Pandey A, Weisshaar B, Stracke R. The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification and expression patterns. PLoS One 2020; 15:e0239275. [PMID: 33021974 PMCID: PMC7537896 DOI: 10.1371/journal.pone.0239275] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, defense responses and metabolite accumulation. To date MYB family genes have not yet been comprehensively identified in the major staple fruit crop banana. In this study, we present a comprehensive, genome-wide analysis of the MYB genes from Musa acuminata DH-Pahang (A genome). A total of 285 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Organ- and development-specific expression patterns were determined from RNA-Seq data. For 280 M. acuminata MYB genes for which expression was found in at least one of the analysed samples, a variety of expression patterns were detected. The M. acuminata R2R3-MYB genes were functionally categorised, leading to the identification of seven clades containing only M. acuminata R2R3-MYBs. The encoded proteins may have specialised functions that were acquired or expanded in Musa during genome evolution. This functional classification and expression analysis of the MYB gene family in banana establishes a solid foundation for future comprehensive functional analysis of MaMYBs and can be utilized in banana improvement programmes.
Collapse
Affiliation(s)
- Boas Pucker
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
| | - Ashutosh Pandey
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
- National Institute of Plant Genome Research, New Delhi, India
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
108
|
Premathilake AT, Ni J, Bai S, Tao R, Ahmad M, Teng Y. R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit. PLANTA 2020; 252:59. [PMID: 32964301 DOI: 10.1007/s00425-020-03473-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/15/2020] [Indexed: 05/24/2023]
Abstract
PpMYB17 positively regulates flavonoid biosynthesis in pear fruit by activating PpCHS, PpCHI, PpF3H, and PpFLS in the flavonoid biosynthesis pathway independently of bHLH or WD40 cofactors in the MBW complex. Flavonoids are important secondary metabolites in plants. The flavonoid biosynthesis pathway is regulated by various transcription factors, with MYB transcription factors considered to be the key regulators. However, the regulation of flavonoid biosynthesis in the pear fruit has not been fully characterized. The R2R3-MYB transcription factor PpMYB17 was isolated from 'Red Zaosu' pear fruit and functionally characterized. An exposure to light upregulated PpMYB17 expression in the pear fruit. A phylogenetic analysis indicated PpMYB17 is related to the flavonol regulators. A subcellular localization assay suggested that PpMYB17 is a nuclear protein. Overexpression of PpMYB17 increased the flavonoid content of pear calli and Arabidopsis via the upregulated expression of structural genes in the flavonoid biosynthesis pathway, especially FLS. The LC-MS/MS analysis revealed most of the differentially accumulated flavonols, flavanones, flavones, isoflavones, and anthocyanins were significantly more abundant in PpMYB17-overexpressing calli than in wild-type calli. Moreover, PpMYB17 did not interact with PpbHLH3, PpbHLH33, or PpWD40 in a yeast system. Dual-luciferase assays demonstrated that PpMYB17 strongly activates the promoters of PpCHS, PpCHI, PpF3H, PpFLS, and PpUFGT which are key downstream genes in the flavonoid biosynthesis pathway, independently of the PpbHLH3 cofactor. These gene expression changes may enhance flavonoid biosynthesis in pear fruit. The data presented may be useful for further elucidating the flavonoid biosynthesis regulatory network, potentially leading to the development of new pear cultivars that produce fruits with increased flavonoid contents.
Collapse
Affiliation(s)
- Apekshika T Premathilake
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China
- Department of Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China
| | - Ruiyan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
109
|
Fan H, Cui M, Li N, Li X, Liang Y, Liu L, Cai Y, Lin Y. Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species. PeerJ 2020; 8:e9781. [PMID: 32953268 PMCID: PMC7473048 DOI: 10.7717/peerj.9781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
MYB transcription factors play important roles in different plant biological processes during plant growth, development and stress response. In this study, 101 (DoMYB1-101) and 99 (PaMYB1-99) R2R3-MYB genes were identified in the genomes of Dendrobium officinale and Phalaenopsis aphrodite, respectively. To classify the isolated candidate genes, the R2R3-MYB genes from A. thaliana were selected as references. As a result, all identified DoMYB and PaMYB genes were classified into 22 subfamilies. Phylogenetic analysis revealed that S21 had the largest number of members of all the subfamilies. The numbers of introns, exons and conserved sequences in all of the identified genes are different. In addition, 20 DoMYB genes from six subfamilies were selected for further analysis of tissue-specific expression and responses to various abiotic stresses treatments. The results showed that all of the DoMYB genes in S4 and S19 subfamilies exhibited the highest relative expression levels in flowers. And five DoMYB genes including DoMYB31, DoMYB40, DoMYB49, DoMYB52 and DoMYB54, responded to the stress response. These results may provide useful information for further studies of the R2R3-MYB gene family.
Collapse
Affiliation(s)
- Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Manli Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xujuan Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuxuan Liang
- Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
110
|
Chen SP, Sun WH, Xiong YF, Jiang YT, Liu XD, Liao XY, Zhang DY, Jiang SZ, Li Y, Liu B, Ma L, Yu X, He L, Liu B, Feng JL, Feng LZ, Wang ZW, Zou SQ, Lan SR, Liu ZJ. The Phoebe genome sheds light on the evolution of magnoliids. HORTICULTURE RESEARCH 2020; 7:146. [PMID: 32922818 PMCID: PMC7459323 DOI: 10.1038/s41438-020-00368-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 05/09/2023]
Abstract
Lauraceae includes the genus Phoebe, and the family is linked to the evolution of magnoliids. We sequenced the genome of Phoebe bournei Nanmu. The assembled genome size was 989.19 Mb, with a contig N50 value of 2.05 Mb. A total of 28,198 protein-coding genes were annotated in P. bournei. Whole-genome duplication (WGD) analysis showed that Lauraceae has experienced two WGD events; the older WGD event occurred just before the divergence of Lauraceae and Magnoliales, and the more recent WGD was shared by all lineages of Lauraceae. The phylogenetic tree showed that magnoliids form a sister clade to monocots and eudicots. We also identified 63 MADS-box genes, including AGL12-like genes that may be related to the regulation of P. bournei roots and FIN219-like genes encoding GH3 proteins, which are involved in photomorphogenesis. SAUR50-like genes involved in light signal-mediated pedicel or stem development were also identified. Four ATMYB46- and three PtrEPSP-homologous genes related to lignin biosynthesis were identified. These genes may be associated with the formation of straight trunks in P. bournei. Overall, the P. bournei reference genome provides insight into the origin, evolution, and diversification of Phoebe and other magnoliids.
Collapse
Affiliation(s)
- Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Wei-Hong Sun
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yuan-Fang Xiong
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yu-Ting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xue-Die Liu
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xing-Yu Liao
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Di-Yang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shu-Zhen Jiang
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yu Li
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bin Liu
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Li He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bao Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jin-Lin Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Li-Zhen Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | | | - Shuang-Quan Zou
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Si-Ren Lan
- College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 325005 Wenzhou, China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100 Jinan, China
| |
Collapse
|
111
|
Fu C, Chen H, Gao H, Lu Y, Han C, Han Y. Two papaya
MYB
proteins function in fruit ripening by regulating some genes involved in cell‐wall degradation and carotenoid biosynthesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4442-4448. [PMID: 32388883 DOI: 10.1002/jsfa.10484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 05/02/2023]
Affiliation(s)
- Changchun Fu
- College of Biology and Environmental EngineeringZhejiang Shuren University Hangzhou China
| | - Hangjun Chen
- Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province; Key Laboratory of China Light IndustryFood Science Institute, Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Haiyan Gao
- Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province; Key Laboratory of China Light IndustryFood Science Institute, Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yin Lu
- College of Biology and Environmental EngineeringZhejiang Shuren University Hangzhou China
| | - Chao Han
- College of Biology and Environmental EngineeringZhejiang Shuren University Hangzhou China
| | - Yanchao Han
- Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province; Key Laboratory of China Light IndustryFood Science Institute, Zhejiang Academy of Agricultural Sciences Hangzhou China
| |
Collapse
|
112
|
Liu C, Hao J, Qiu M, Pan J, He Y. Genome-wide identification and expression analysis of the MYB transcription factor in Japanese plum (Prunus salicina). Genomics 2020; 112:4875-4886. [PMID: 32818635 DOI: 10.1016/j.ygeno.2020.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
MYB proteins constitute one of the largest transcription factor families in plants, members of which are involved in various plant physiological and biochemical processes. Japanese plum (Prunus salicina) is one of the important stone fruit crops worldwide. To date, no comprehensive study of the MYB family in Japanese plum has been reported. In this study, we performed genome-wide analysis of MYB genes in Japanese plum including the phylogeny, gene structures, protein motifs, chromosomal locations, collinearity and expression patterns analysis. A total of 96 Japanese plum R2R3-MYB (PsMYB) genes were characterized and distributed on 8 chromosomes at various densities. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of PsMYB genes, and the interspecies synteny analysis revealed the orthologous gene pairs between Japanese plum and other four selected Rosaceae species. The 96 PsMYB genes could be classified into 27 subgroups based on phylogenetic topology, as supported by the conserved gene structures and motif compositions. Further comparative phylogenetic analysis revealed the functional divergence of MYB gene family during evolution, and three subgroups which included only Rasaceae MYB genes were identified. Expression analysis revealed the distinct expression profiles of the PsMYB genes, and further functional predictions found some of them might be associated with the plum fruit quality traits. Our researches provide a global insight into the organization, phylogeny, evolution and expression patterns of the PsMYB genes, and contribute to the greater understanding of their functional roles in Japanese plum.
Collapse
Affiliation(s)
- Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Jingjing Hao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Mengqing Qiu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Jianjun Pan
- Agricultural Technology Extension Center of Conghua District, Guangdong Province, Guangzhou 510900, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China.
| |
Collapse
|
113
|
Balmant KM, Noble JD, C Alves F, Dervinis C, Conde D, Schmidt HW, Vazquez AI, Barbazuk WB, Campos GDL, Resende MFR, Kirst M. Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in Populus deltoides. Genome Res 2020; 30:1131-1143. [PMID: 32817237 PMCID: PMC7462072 DOI: 10.1101/gr.261438.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023]
Abstract
Despite the growing resources and tools for high-throughput characterization and analysis of genomic information, the discovery of the genetic elements that regulate complex traits remains a challenge. Systems genetics is an emerging field that aims to understand the flow of biological information that underlies complex traits from genotype to phenotype. In this study, we used a systems genetics approach to identify and evaluate regulators of the lignin biosynthesis pathway in Populus deltoides by combining genome, transcriptome, and phenotype data from a population of 268 unrelated individuals of P. deltoides The discovery of lignin regulators began with the quantitative genetic analysis of the xylem transcriptome and resulted in the detection of 6706 and 4628 significant local- and distant-eQTL associations, respectively. Among the locally regulated genes, we identified the R2R3-MYB transcription factor MYB125 (Potri.003G114100) as a putative trans-regulator of the majority of genes in the lignin biosynthesis pathway. The expression of MYB125 in a diverse population positively correlated with lignin content. Furthermore, overexpression of MYB125 in transgenic poplar resulted in increased lignin content, as well as altered expression of genes in the lignin biosynthesis pathway. Altogether, our findings indicate that MYB125 is involved in the control of a transcriptional coexpression network of lignin biosynthesis genes during secondary cell wall formation in P. deltoides.
Collapse
Affiliation(s)
- Kelly M Balmant
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Jerald D Noble
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
| | - Filipe C Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel Conde
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Henry W Schmidt
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
| | - William B Barbazuk
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA
- Statistics Department, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marcio F R Resende
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Horticulture Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
114
|
Assessments of fine-scale spatial patterns of SNPs in an old-growth beech forest. Heredity (Edinb) 2020; 125:240-252. [PMID: 32606418 DOI: 10.1038/s41437-020-0334-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
The spatial patterns of non-neutral genetic variations at fine spatial scales and their possible associations with microenvironments have not been well-documented for tree populations. Based on 25-32 SNP markers, we examine whether non-neutral SNPs and their associations with microenvironments can be detected in FcMYB1603, a gene homologous to that encoding a protein induced by drought stress in Arabidopsis thaliana for the 166 adult trees in a 1-ha plot in a mature population of Fagus crenata. In the 83 individuals of a younger cohort of below canopy trees, the nonsynonymous SNP at locus FcMYB1603_684 exhibited a spatial signature representing a departure from the expected spatial patterns of neutral genetic variation. Evaluations of non-neutrality for this locus were robust against the potential risks of false positives due to the low number of SNP loci, a low criterion set for minor allele frequency, and any edge effect on the trees' spatial structure. An older cohort exhibited no signal of the existence of non-neutral genetic variation, suggesting that temporal fluctuation in the microenvironmental conditions on the forest floor may have exposed different cohorts to different magnitudes of selection pressure. Although genotypes of the locus showed a spatial association with a microenvironmental variable potentially related to soil moisture, the present study was subject to a limitation due to the generally low polymorphism of nonsynonymous loci within the single plot, which suggests that it will be important to replicate the study design in order to carry out research on fine-scale non-neutral genetic variations.
Collapse
|
115
|
Li P, Wen J, Chen P, Guo P, Ke Y, Wang M, Liu M, Tran LSP, Li J, Du H. MYB Superfamily in Brassica napus: Evidence for Hormone-Mediated Expression Profiles, Large Expansion, and Functions in Root Hair Development. Biomolecules 2020; 10:biom10060875. [PMID: 32517318 PMCID: PMC7356979 DOI: 10.3390/biom10060875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/16/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
MYB proteins are involved in diverse important biological processes in plants. Herein, we obtained the MYB superfamily from the allotetraploid Brassica napus, which contains 227 MYB-related (BnMYBR/Bn1R-MYB), 429 R2R3-MYB (Bn2R-MYB), 22 R1R2R3-MYB (Bn3R-MYB), and two R1R2R2R1/2-MYB (Bn4R-MYB) genes. Phylogenetic analysis classified the Bn2R-MYBs into 43 subfamilies, and the BnMYBRs into five subfamilies. Sequence characteristics and exon/intron structures within each subfamily of the Bn2R-MYBs and BnMYBRs were highly conserved. The whole superfamily was unevenly distributed on 19 chromosomes and underwent unbalanced expansion in B. napus. Allopolyploidy between B. oleracea and B. rapa mainly contributed to the expansion in their descendent B. napus, in which B. rapa-derived genes were more retained. Comparative phylogenetic analysis of 2R-MYB proteins from nine Brassicaceae and seven non-Brassicaceae species identified five Brassicaceae-specific subfamilies and five subfamilies that are lacking from the examined Brassicaceae species, which provided an example for the adaptive evolution of the 2R-MYB gene family alongside angiosperm diversification. Ectopic expression of four Bn2R-MYBs under the control of the viral CaMV35S and/or native promoters could rescue the lesser root hair phenotype of the Arabidopsis thaliana wer mutant plants, proving the conserved negative roles of the 2R-MYBs of the S15 subfamily in root hair development. RNA-sequencing data revealed that the Bn2R-MYBs and BnMYBRs had diverse transcript profiles in roots in response to the treatments with various hormones. Our findings provide valuable information for further functional characterizations of B. napusMYB genes.
Collapse
Affiliation(s)
- Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Pengcheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Correspondence: (L.-S.P.T.); or (H.D.); Tel.: +86-18223480008 (H.D.)
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: (L.-S.P.T.); or (H.D.); Tel.: +86-18223480008 (H.D.)
| |
Collapse
|
116
|
Jiang CK, Rao GY. Insights into the Diversification and Evolution of R2R3-MYB Transcription Factors in Plants. PLANT PHYSIOLOGY 2020; 183:637-655. [PMID: 32291329 PMCID: PMC7271803 DOI: 10.1104/pp.19.01082] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/28/2020] [Indexed: 05/03/2023]
Abstract
As one of the largest families of transcription factors (TFs) in plants, R2R3-MYB proteins play crucial roles in regulating a series of plant-specific biological processes. Although the diversity of plant R2R3-MYB TFs has been studied previously, the processes and mechanisms underlying the expansion of these proteins remain unclear. Here, we performed evolutionary analyses of plant R2R3-MYB TFs with dense coverage of streptophyte algae and embryophytes. Our analyses revealed that ancestral land plants exhibited 10 subfamilies of R2R3-MYB proteins, among which orthologs of seven subfamilies were present in chlorophytes and charophycean algae. We found that asymmetric gene duplication events in different subfamilies account for the expansion of R2R3-MYB proteins in embryophytes. We further discovered that the largest subfamily of R2R3-MYBs in land plants, subfamily VIII, emerged in the common ancestor of Zygnematophyceae and embryophytes. During plant terrestrialization, six duplication events gave rise to seven clades of subfamily VIII. Subsequently, this TF subfamily showed a tendency for expansion in bryophytes, lycophytes, and ferns and extensively diversified in ancestral gymnosperms and angiosperms in clades VIII-A-1, VIII-D, and VIII-E. In contrast to subfamily VIII, other subfamilies of R2R3-MYB TFs have remained less expanded across embryophytes. The findings regarding phylogenetic analyses, auxiliary motifs, and DNA-binding specificities provide insight into the evolutionary history of plant R2R3-MYB TFs and shed light on the mechanisms underlying the extensive expansion and subsequent sub- and neofunctionalization of these proteins.
Collapse
Affiliation(s)
- Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
117
|
The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060788] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.
Collapse
|
118
|
Wang H, Wang X, Yu C, Wang C, Jin Y, Zhang H. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar. BMC PLANT BIOLOGY 2020; 20:173. [PMID: 32312227 PMCID: PMC7168848 DOI: 10.1186/s12870-020-02389-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND R2R3-MYB transcription factors (TFs) play important roles in plant growth and development, and response to biotic and abiotic stresses. However, their regulatory mechanisms in wound-induced anthocyanin biosynthesis in woody plants are largely unknown. RESULTS In this work, we report that expression of anthocyanin biosynthesis genes (ABGs) were activated by PdMYB118, a MYB TF encoding gene from Populus deltoids, and the activation of PdMYB118 was significantly enhanced by PdTT8, a bHLH protein, through its direct interaction with PdMYB118. PdMYB118 and some ABGs were evidently induced by wound induction and methyl jasmonate (MeJA) treatment. Overexpression of PdMYB118 promoted anthocyanin accumulation in transgenic poplar upon wound induction. Furthermore, a poplar JASMONATE ZIM-domain (JAZ) protein, PtrJAZ1, repressed the transcriptional function of PdMYB118/PdTT8 complex by binding to PdTT8, and wound stimulated the biosynthesis of jasmonic acid (JA) and the degradation of PtrJAZ1. CONCLUSIONS Based on these observations, we proposed that PtrJAZ1 degradation triggered the expression of ABGs, leading to increased biosynthesis of anthocyanins in the wounded leaves of transgenic poplar. Therefore, our findings not only illustrate the crucial role of PdMYB118 in wound-induced anthocyanin biosynthesis in poplar, but also provide a molecular basis for the genetic engineering of colorful tree species.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, China
| | - Chunyan Yu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yanli Jin
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
119
|
Zhu L, Guan Y, Zhang Z, Song A, Chen S, Jiang J, Chen F. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:217-224. [PMID: 32078899 DOI: 10.1016/j.plaphy.2020.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
R2R3-MYB transcription factors are important regulators of the growth and development of plants. Here, CmMYB8 a chrysanthemum gene encoding an R2R3-MYB transcription factor, was isolated and functionally characterized. The gene was transcribed throughout the plant, but most strongly in the stem. When CmMYB8 was over-expressed, a number of genes encoding components of lignin synthesis were down-regulated, and the plants' lignin content was reduced. The composition of the lignin in the transgenic plants was also altered, and its S/G ratio was reduced. A further consequence of the over-expression of CmMYB8 was to lessen the transcript abundance of key genes involved in flavonoid synthesis, resulting in a reduced accumulation of flavonoids. The indication is that the CmMYB8 protein participates in the negative regulation of both lignin and flavonoid synthesis.
Collapse
Affiliation(s)
- Lu Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Zhaohe Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
120
|
Li HY, Yue YZ, Ding WJ, Chen GW, Li L, Li YL, Shi TT, Yang XL, Wang LG. Genome-Wide Identification, Classification, and Expression Profiling Reveals R2R3-MYB Transcription Factors Related to Monoterpenoid Biosynthesis in Osmanthus fragrans. Genes (Basel) 2020; 11:genes11040353. [PMID: 32224874 PMCID: PMC7230838 DOI: 10.3390/genes11040353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Osmanthus fragrans is widely grown for the purpose of urban greening and the pleasant aroma emitted from its flowers. The floral scent is determined by several monoterpenoid volatiles, such as linalool and its oxides, which are a few of the most common volatiles and the main components of the essential oils in most sweet osmanthus cultivars. In addition, the relative contents of cis- and trans-linalool oxide (furan) may affect the aromas and quality of the essential oils. MYB proteins represent the largest family of transcription factors in plants and participate in regulating secondary metabolites. Several cis-elements, especially AC-rich regions, are known to be bound by 2R-MYBs and could be found in the promoter of the enzyme genes in the terpenoid metabolic pathway. However, there has to date been no investigation into the 2R-MYB family genes involved in regulating terpenoid biosynthesis in O. fragrans. Here, 243 non-redundant 2R-MYB proteins were grouped into 33 clusters based on the phylogeny and exon-intron distribution. These genes were unevenly distributed on 23 chromosomes. Ka/Ks analysis showed that the major mode of 2R-MYB gene evolution was purifying selection. Expression analysis indicated that 2R-MYB genes in O. fragrans exhibited varied expression patterns. A total of 35 OfMYBs representing the highest per kilobase per million mapped reads in the flower were selected for quantitative real-time PCR analysis. The correlation analysis between the expression level and the contents of fragrant compounds at different flowering stages suggested that OfMYB19/20 exhibited remarkably positive correlation with the accumulation of cis-linalool oxides. OfMYB51/65/88/121/137/144 showed significantly negative correlations with one or more linalool oxides. Characterization of these proteins revealed that OfMYB19 and OfMYB137 were localized in the nuclei, but did not show transcriptional activation in the yeast system, which suggested that they may be bound to other transcription factors to exert regulatory functions. These findings provide useful information for further functional investigation of the 2R-MYBs and offer a foundation for clarifying the 2R-MYB transcription factors involved in the molecular mechanism of the regulation of monoterpenoid biosynthesis in Osmanthus fragrans.
Collapse
Affiliation(s)
- Hai-Yan Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan-Zheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Jie Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Gong-Wei Chen
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Li Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ting-Ting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiu-Lian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang-Gui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel./Fax: +86-025-8542-7305
| |
Collapse
|
121
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
122
|
Hu X, Zhang L, Wilson I, Shao F, Qiu D. The R2R3-MYB transcription factor family in Taxus chinensis: identification, characterization, expression profiling and posttranscriptional regulation analysis. PeerJ 2020; 8:e8473. [PMID: 32110480 PMCID: PMC7032060 DOI: 10.7717/peerj.8473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022] Open
Abstract
The MYB transcription factor family is one of the largest gene families playing regulatory roles in plant growth and development. The MYB family has been studied in a variety of plant species but has not been reported in Taxus chinensis. Here we identified 72 putative R2R3-MYB genes in T. chinensis using a comprehensive analysis. Sequence features, conversed domains and motifs were characterized. The phylogenetic analysis showed TcMYBs and AtMYBs were clustered into 36 subgroups, of which 24 subgroups included members from T. chinensis and Arabidopsis thaliana, while 12 subgroups were specific to one species. This suggests the conservation and specificity in structure and function of plant R2R3-MYBs. The expression of TcMYBs in various tissues and different ages of xylem were investigated. Additionally, miRNA-mediated posttranscriptional regulation analysis revealed that TcMYBs were the targets of miR858, miR159 and miR828, suggesting the posttranscriptional regulation of MYBs is highly conserved in plants. The results provide a basis for further study the role of TcMYBs in the regulation of secondary metabolites of T. chinensis.
Collapse
Affiliation(s)
- Xinling Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lisha Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Iain Wilson
- Agriculture and Food, CSIRO, Canberra, Australia
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
123
|
Genome-wide identification and characterization of R2R3-MYB family in Hypericum perforatum under diverse abiotic stresses. Int J Biol Macromol 2020; 145:341-354. [DOI: 10.1016/j.ijbiomac.2019.12.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
|
124
|
Pu X, Yang L, Liu L, Dong X, Chen S, Chen Z, Liu G, Jia Y, Yuan W, Liu L. Genome-Wide Analysis of the MYB Transcription Factor Superfamily in Physcomitrella patens. Int J Mol Sci 2020; 21:ijms21030975. [PMID: 32024128 PMCID: PMC7037163 DOI: 10.3390/ijms21030975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/19/2023] Open
Abstract
MYB transcription factors (TFs) are one of the largest TF families in plants to regulate numerous biological processes. However, our knowledge of the MYB family in Physcomitrella patens is limited. We identified 116 MYB genes in the P. patens genome, which were classified into the R2R3-MYB, R1R2R3-MYB, 4R-MYB, and MYB-related subfamilies. Most R2R3 genes contain 3 exons and 2 introns, whereas R1R2R3 MYB genes contain 10 exons and 9 introns. N3R-MYB (novel 3RMYB) and NR-MYBs (novel RMYBs) with complicated gene structures appear to be novel MYB proteins. In addition, we found that the diversity of the MYB domain was mainly contributed by domain shuffling and gene duplication. RNA-seq analysis suggested that MYBs exhibited differential expression to heat and might play important roles in heat stress responses, whereas CCA1-like MYB genes might confer greater flexibility to the circadian clock. Some R2R3-MYB and CCA1-like MYB genes are preferentially expressed in the archegonium and during the transition from the chloronema to caulonema stage, suggesting their roles in development. Compared with that of algae, the numbers of MYBs have significantly increased, thus our study lays the foundation for further exploring the potential roles of MYBs in the transition from aquatic to terrestrial environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Lixin Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Lina Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Xiumei Dong
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Silin Chen
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Gaojing Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Yanxia Jia
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430000, China; (X.P.); (W.Y.)
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, National Wild Seed Resource Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Y.); (L.L.); (X.D.); (S.C.); (Z.C.); (G.L.); (Y.J.)
- Correspondence:
| |
Collapse
|
125
|
Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 148:817-832. [PMID: 31962068 DOI: 10.1016/j.ijbiomac.2020.01.167] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses, the R2R3-MYB members are the predominant form found in higher plants. In the present study, a total of 111 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 31 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. This work will facilitate future biologically functional studies of potato StR2R3-MYB transcription factors and enrich the knowledge of MYB superfamily genes in plant species.
Collapse
|
126
|
Liu H, Yu W, Wu J, Li Z, Li H, Zhou J, Hu J, Lu Y. Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability. PLANTA 2020; 251:47. [PMID: 31925576 DOI: 10.1007/s00425-020-03338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Circular RNA (circRNA) identification and expression profiles, and construction of circRNAs-miRNAs-mRNAs networks indicates that circRNAs are involved in wood formation of poplars in acclimation to low nitrogen availability. Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in wood formation of poplars in acclimation to low nitrogen (N) availability are currently unknown. Here, we undertook a systematic identification and characterization of circRNAs in the wood of Populus × canescens exposed to either 50 (low N) or 500 (normal N) µM NH4NO3 using rRNA-depleted RNA-sequencing. A total of 2,509 unique circRNAs were identified, and 163 (ca. 6.5%) circRNAs were significantly differentially expressed (DE) under low N condition. We observed a positive correlation between the expression patterns of DE circRNAs and their hosting protein-coding genes. Moreover, circRNAs-miRNAs-mRNAs' networks were identified in the wood of poplars under low N availability. For instance, upregulated several circRNAs, such as circRNA1226, circRNA 1732, and circRNA392 induced increases in nuclear factor Y, subunit A1-A (NFYA1-A), NFYA1-B, and NFYA10 transcript levels via the mediation of miR169b members, which is in line with reduced xylem width and cell layers of the xylem in the wood of low N-supplied poplars. Upregulation of circRNA1006, circRNA1344, circRNA1941, circRNA901, and circRNA146 caused increased transcript level of MYB61 via the mediation of a miR5021 member, corresponding well to the higher lignin concentration in the wood of low N-treated poplars. Overall, these results indicated that DE circRNAs play an essential role in regulating gene expression via circRNAs-miRNAs-mRNAs' networks to modulate wood anatomical and chemical properties of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of State Forestry and Grassland Administration, Non-Timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institution of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510000, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai, 200335, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
127
|
Zhao K, Cheng Z, Guo Q, Yao W, Liu H, Zhou B, Jiang T. Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:571881. [PMID: 33178243 PMCID: PMC7596293 DOI: 10.3389/fpls.2020.571881] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 05/03/2023]
Abstract
The MYB, one of the largest transcription factor families in plants, is related to various biological processes. For an example, the R2R3-MYB family plays an important role in regulation of primary and secondary metabolism, plant growth and development, and responses to hormones and stresses. However, functional studies on the poplar R2R3-MYB genes are limited. In this study, we identified 207 poplar R2R3-MYB genes that are unevenly distributed on the 19 chromosomes of poplar, followed by characterization of their conserved domains. On the basis of phylogenetic analysis, these genes can be divided into 23 groups. Evidence from synteny analyses indicated that the poplar R2R3-MYB gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, we investigated salt responsive genes and explored their expression patterns. Furthermore, we cloned the PsnMYB108 gene from poplar, which is significantly up-regulated in roots and leaves in response to salt stress. To validate its function, we developed transgenic tobacco plants that over-express the PsnMYB108 gene. It appears that the transgenic lines are more tolerant to salt stress than the wild type does. Evidence from physiological analyses demonstrated that over-expression of PsnMYB108 may improve tobacco salt stress tolerance by increasing the reactive oxygen species scavenging ability and the accumulation of proline. These results laid the foundation for future analysis and functional studies of poplar R2R3-MYB family members, and revealed that PsnMYB108 plays an important role in improving plant salt stress tolerance.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Huajing Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Boru Zhou,
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Tingbo Jiang,
| |
Collapse
|
128
|
Xie M, Zhang J, Singan VR, McGranahan MJ, LaFayette PR, Jawdy SS, Engle N, Doeppke C, Tschaplinski TJ, Davis MF, Lindquist E, Barry K, Schmutz J, Parrott WA, Chen F, Tuskan GA, Chen J, Muchero W. Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSP-TF and determination of its transcriptional effect. PLANT DIRECT 2020; 4:e00178. [PMID: 31911959 PMCID: PMC6941116 DOI: 10.1002/pld3.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
In plants, the phenylpropanoid pathway is responsible for the synthesis of a diverse array of secondary metabolites that include lignin monomers, flavonoids, and coumarins, many of which are essential for plant structure, biomass recalcitrance, stress defense, and nutritional quality. Our previous studies have demonstrated that Populus trichocarpa PtrEPSP-TF, an isoform of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, has transcriptional activity and regulates phenylpropanoid biosynthesis in Populus. In this study, we report the identification of single nucleotide polymorphism (SNP) of PtrEPSP-TF that defines its functionality. Populus natural variants carrying this SNP were shown to have reduced lignin content. Here, we demonstrated that the SNP-induced substitution of 142nd amino acid (PtrEPSP-TFD142E) dramatically impairs the DNA-binding and transcriptional activity of PtrEPSP-TF. When introduced to a monocot species rice (Oryza sativa) in which an EPSP synthase isoform with the DNA-binding helix-turn-helix (HTH) motif is absent, the PtrEPSP-TF, but not PtrEPSP-TFD142E, activated genes in the phenylpropanoid pathway. More importantly, heterologous expression of PtrEPSP-TF uncovered five new transcriptional regulators of phenylpropanoid biosynthesis in rice. Collectively, this study identifies the key amino acid required for PtrEPSP-TF functionality and provides a strategy to uncover new transcriptional regulators in phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Meng Xie
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jin Zhang
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | - Sara S. Jawdy
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy Engle
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Crissa Doeppke
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Timothy J. Tschaplinski
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Mark F. Davis
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Erika Lindquist
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | - Kerrie Barry
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | - Jeremy Schmutz
- U.S. Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Wayne A. Parrott
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Gerald A. Tuskan
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
129
|
Fang Q, Wang X, Wang H, Tang X, Liu C, Yin H, Ye S, Jiang Y, Duan Y, Luo K. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants. TREE PHYSIOLOGY 2020; 40:46-59. [PMID: 31728530 DOI: 10.1093/treephys/tpz113] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 05/07/2023]
Abstract
In plants, R2R3 MYB transcription factors (TFs) consist of one large gene family and are involved in the regulation of many developmental processes and various stresses. However, the functions of most of MYB TFs in woody plants remain unknown. Here, PtrMYB94, an R2R3 MYB TF from Populus trichocarpa, is characterized to be involved in the regulation of drought responses and abscisic acid (ABA) signaling. PtrMYB94 encodes a nuclear-localized R2R3 MYB TF. RT-PCR results showed that the PtrMYB94 transcripts were relatively abundant in leaves and stems, and were induced rapidly in response to dehydration stress. Overexpression of PtrMYB94 improved plant drought responses, suggesting that this MYB TF may functionally regulate poplar adaptability to drought stress. Furthermore, the analysis of transcriptional expression and PtrMYB94 promoter: GUS activity showed that PtrMYB94 responded to ABA induction. PtrMYB94-overexpressing plants exhibited the inhibition of seed germination compared with the wild-type (WT) control under ABA exposure condition. The ABA content was evidently increased in the PtrMYB94-overexpressing plants relative to the WT plants. In addition, transcript levels of several ABA- and drought-responsive genes, such as ABA1 and DREB2B, were up-regulated. Taken together, our results suggest that PtrMYB94 is involved in an ABA-dependent drought stress regulation in Populus.
Collapse
Affiliation(s)
- Qing Fang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haiyang Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Xiaowen Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Chi Liu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Heng Yin
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China
| | - Shenglong Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanzhong Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yanjiao Duan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
130
|
Zhang Y, Showalter AM. CRISPR/Cas9 Genome Editing Technology: A Valuable Tool for Understanding Plant Cell Wall Biosynthesis and Function. FRONTIERS IN PLANT SCIENCE 2020; 11:589517. [PMID: 33329650 PMCID: PMC7714752 DOI: 10.3389/fpls.2020.589517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
For the past 5 years, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology has appeared in the molecular biology research spotlight. As a game-changing player in genome editing, CRISPR/Cas9 technology has revolutionized animal research, including medical research and human gene therapy as well as plant science research, particularly for crop improvement. One of the most common applications of CRISPR/Cas9 is to generate genetic knock-out mutants. Recently, several multiplex genome editing approaches utilizing CRISPR/Cas9 were developed and applied in various aspects of plant research. Here we summarize these approaches as they relate to plants, particularly with respect to understanding the biosynthesis and function of the plant cell wall. The plant cell wall is a polysaccharide-rich cell structure that is vital to plant cell formation, growth, and development. Humans are heavily dependent on the byproducts of the plant cell wall such as shelter, food, clothes, and fuel. Genes involved in the assembly of the plant cell wall are often highly redundant. To identify these redundant genes, higher-order knock-out mutants need to be generated, which is conventionally done by genetic crossing. Compared with genetic crossing, CRISPR/Cas9 multi-gene targeting can greatly shorten the process of higher-order mutant generation and screening, which is especially useful to characterize cell wall related genes in plant species that require longer growth time. Moreover, CRISPR/Cas9 makes it possible to knock out genes when null T-DNA mutants are not available or are genetically linked. Because of these advantages, CRISPR/Cas9 is becoming an ideal and indispensable tool to perform functional studies in plant cell wall research. In this review, we provide perspectives on how to design CRISPR/Cas9 to achieve efficient gene editing and multi-gene targeting in plants. We also discuss the recent development of the virus-based CRISPR/Cas9 system and the application of CRISPR/Cas9 to knock in genes. Lastly, we summarized current progress on using CRISPR/Cas9 for the characterization of plant cell wall-related genes.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- *Correspondence: Allan M. Showalter,
| |
Collapse
|
131
|
Yu Y, Liu H, Zhang N, Gao C, Qi L, Wang C. The BpMYB4 Transcription Factor From Betula platyphylla Contributes Toward Abiotic Stress Resistance and Secondary Cell Wall Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:606062. [PMID: 33537043 PMCID: PMC7847980 DOI: 10.3389/fpls.2020.606062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 05/19/2023]
Abstract
The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the largest transcription factor families in plants, and is widely involved in the regulation of plant metabolism. In this study, we show that a MYB4 transcription factor, BpMYB4, identified from birch (Betula platyphylla Suk.) and homologous to EgMYB1 from Eucalyptus robusta Smith and ZmMYB31 from Zea mays L. is involved in secondary cell wall synthesis. The expression level of BpMYB4 was higher in flowers relative to other tissues, and was induced by artificial bending and gravitational stimuli in developing xylem tissues. The expression of this gene was not enriched in the developing xylem during the active season, and showed higher transcript levels in xylem tissues around sprouting and near the dormant period. BpMYB4 also was induced express by abiotic stress. Functional analysis indicated that expression of BpMYB4 in transgenic Arabidopsis (Arabidopsis thaliana) plants could promote the growth of stems, and result in increased number of inflorescence stems and shoots. Anatomical observation of stem sections showed lower lignin deposition, and a chemical contents test also demonstrated increased cellulose and decreased lignin content in the transgenic plants. In addition, treatment with 100 mM NaCl and 200 mM mannitol resulted in the germination rate of the over-expressed lines being higher than that of the wild-type seeds. The proline content in transgenic plants was higher than that in WT, but MDA content was lower than that in WT. Further investigation in birch using transient transformation techniques indicated that overexpression of BpMYB4 could scavenge hydrogen peroxide and O2 .- and reduce cell damage, compared with the wild-type plants. Therefore, we believe that BpMYB4 promotes stem development and cellulose biosynthesis as an inhibitor of lignin biosynthesis, and has a function in abiotic stress resistance.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Huizi Liu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Nan Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Liwang Qi
- Chinese Academy of Forestry, Beijing, China
- Liwang Qi,
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- *Correspondence: Chao Wang,
| |
Collapse
|
132
|
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 2019; 111:1929-1945. [DOI: 10.1016/j.ygeno.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
133
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
134
|
Li W, Liu Y, Zhao J, Zhen X, Guo C, Shu Y. Genome-wide identification and characterization of R2R3-MYB genes in Medicago truncatula. Genet Mol Biol 2019; 42:611-623. [PMID: 31188936 PMCID: PMC6905446 DOI: 10.1590/1678-4685-gmb-2018-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022] Open
Abstract
MYB is a large family of plant transcription factors. Its function has been identified in several plants, while there are few reports in Medicago truncatula. In this study, we used RNA-seq data to analyze and identify R2R3-MYB genes in the genome of Medicago truncatula. Phylogenetic analysis classified 150 MtMYB genes into 21 subfamilies with homologs. Out of the 150 MtMYB genes, 139 were distributed among 8 chromosomes, with tandem duplications (TD) and segment duplications (SD). Microarray data were used for functional analysis of the MtMYB genes during growth and developmental processes providing evidence for a role in tissues differentiation, seed development processes, and especially the nodulation process. Furthermore, we investigated the expression of MtMYB genes in response to abiotic stresses using RNA-seq data, which confirmed the critical roles in signal transduction and regulation processes under abiotic stress. We used quantitative real-time PCR (qRT-PCR) to validate expression profiles. The expression pattern of M. truncatula MYB genes under different abiotic stress conditions suggest that some may play a major role in cross-talk among different signal transduction pathways in response to abiotic stresses. Our study will serve as a foundation for future research into the molecular function of M. truncatula R2R3-MYB genes.
Collapse
Affiliation(s)
- Wei Li
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Ying Liu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Jinyue Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Xin Zhen
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Yongjun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| |
Collapse
|
135
|
Han Y, Yu J, Zhao T, Cheng T, Wang J, Yang W, Pan H, Zhang Q. Dissecting the Genome-Wide Evolution and Function of R2R3-MYB Transcription Factor Family in Rosa chinensis. Genes (Basel) 2019; 10:E823. [PMID: 31635348 PMCID: PMC6826493 DOI: 10.3390/genes10100823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/23/2023] Open
Abstract
Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level.
Collapse
Affiliation(s)
- Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jiayao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tao Zhao
- VIB-UGent Center for Plant Systems Biology, Technologiepark, Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
136
|
Cheng X, Wang S, Xu D, Liu X, Li X, Xiao W, Cao J, Jiang H, Min X, Wang J, Zhang H, Chang C, Lu J, Ma C. Identification and Analysis of the GASR Gene Family in Common Wheat ( Triticum aestivum L.) and Characterization of TaGASR34, a Gene Associated With Seed Dormancy and Germination. Front Genet 2019; 10:980. [PMID: 31681420 PMCID: PMC6813915 DOI: 10.3389/fgene.2019.00980] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
Seed dormancy and germination are important agronomic traits in wheat (Triticum aestivum L.) because they determine pre-harvest sprouting (PHS) resistance and thus affect grain production. These processes are regulated by Gibberellic Acid-Stimulated Regulator (GASR) genes. In this study, we identified 37 GASR genes in common wheat, which were designated TaGASR1-37. Moreover, we identified 40 pairs of paralogous genes, of which only one had a Ka/Ks value greater than 1, indicating that most TaGASR genes have undergone negative selection. Chromosomal location and duplication analysis revealed 25 pairs of segmentally duplicated genes and seven pairs of tandemly duplicated genes, suggesting that large-scale duplication events may have contributed to the expansion of TaGASR gene family. Microarray analysis of the expression of 18 TaGASR genes indicated that these genes play diverse roles in different biological processes. Using wheat varieties with contrasting seed dormancy phenotypes, we investigated the expression patterns of TaGASR genes and the corresponding seed germination index phenotypes in response to water imbibition, exogenous ABA and GA treatment, and low- and high-temperature treatment. Based on these data, we identified the TaGASR34 gene as potentially associated with seed dormancy and germination. Further, we used a SNP mutation of the TaGASR34 promoter (-16) to develop the CAPS marker GS34-7B, which was then used to validate the association of TaGASR34 with seed dormancy and germination by evaluating two natural populations across environments. Notably, the frequency of the high-dormancy GS34-7Bb allele was significantly lower than that of the low-dormancy GS34-7Ba allele, implying that the favorable GS34-7Bb allele has not previously been used in wheat breeding. These results provide valuable information for further functional analysis of TaGASR genes and present a useful gene and marker combination for future improvement of PHS resistance in wheat.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Shengxing Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Dongmei Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xue Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xinyu Li
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Weiwei Xiao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Hao Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xiaoyu Min
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jianfeng Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| |
Collapse
|
137
|
Gui J, Luo L, Zhong Y, Sun J, Umezawa T, Li L. Phosphorylation of LTF1, an MYB Transcription Factor in Populus, Acts as a Sensory Switch Regulating Lignin Biosynthesis in Wood Cells. MOLECULAR PLANT 2019; 12:1325-1337. [PMID: 31145998 DOI: 10.1016/j.molp.2019.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Lignin is specifically deposited in plant secondary cell walls, and initiation of lignin biosynthesis is regulated by a variety of developmental and environmental signals. However, the mechanisms governing the regulation of lignin biosynthesis remain to be elucidated. In this study, we identified a lignin biosynthesis-associated transcription factor (LTF) from Populus, LTF1, which binds the promoter of a key lignin biosynthetic gene encoding 4-coumarate-CoA ligase (4CL). We showed that LTF1 in its unphosphorylated state functions as a regulator restraining lignin biosynthesis. When LTF1 becomes phosphorylated by PdMPK6 in response to external stimuli such as wounding, it undergoes degradation through a proteasome pathway, resulting in activation of lignification. Expression of a phosphorylation-null mutant version of LTF1 led to stable protein accumulation and persistent attenuation of lignification in wood cells. Taken together, our study reveals a mechanism whereby LTF1 phosphorylation acts as a sensory switch to regulate lignin biosynthesis in response to environmental stimuli. The discovery of novel modulators and mechanisms modifying lignin biosynthesis has important implications for improving the utilization of cell-wall biomass.
Collapse
Affiliation(s)
- Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Yu Zhong
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
138
|
Wang C, Chen L, Yang H, Yang S, Wang J. Genome-wide identification, expression and functional analysis of Populus xylogen-like genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110191. [PMID: 31481222 DOI: 10.1016/j.plantsci.2019.110191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
As an extracellular arabinogalactan protein (AGP) containing a non-specific lipid transfer protein (nsLTP) domain, xylogen mediates the local intercellular communication required for tracheary element (TE) differentiation in Zinnia cell culture. Although XYLP (xylogen-like protein) gene families have been reported in Arabidopsis and rice, no comprehensive analysis has been performed in woody plants. In this work, 31 XYLP genes in five phylogenetic groups were identified from Populus trichocarpa genome and a comprehensive bioinformatic analysis including gene and protein structures, chromosomal locations and duplication events were conducted. In-silico data and qRT-PCR results indicated that PtXYLP1 is predominantly expressed in poplar apex, young leaves and roots, while PtXYLP2 is uniformly expressed across a variety of tissues with a low abundance. Analysis on PtXYLP1pro:GUS and PtXYLP2pro:GUS in Arabidopsis revealed their differential expression patterns during seed germination and specific inductions by exogenously applied phytohormones including auxin, cytokinin and GA. When overexpressed in Arabidopsis, PtXYLP1 but not PtXYLP2 resulted in cotyledons with defective venation patterns and interrupted secondary (2°) vein loops, which phenotype was underpinned by the down-regulation of genes indispensably required by embryonic venation development at procambium and/or vessel level.
Collapse
Affiliation(s)
- Caili Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lincai Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
139
|
Qi X, Fang H, Chen Z, Liu Z, Yu X, Liang C. Ectopic Expression of a R2R3-MYB Transcription Factor Gene LjaMYB12 from Lonicera japonica Increases Flavonoid Accumulation in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20184494. [PMID: 31514380 PMCID: PMC6770605 DOI: 10.3390/ijms20184494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Lonicera japonica Thunb. is a widely used medicinal plant and is rich in a variety of active ingredients. Flavonoids are one of the important components in L. japonica and their content is an important indicator for evaluating the quality of this herb. To study the regulation of flavonoid biosynthesis in L. japonica, an R2R3-MYB transcription factor gene LjaMYB12 was isolated and characterized. Bioinformatics analysis indicated that LjaMYB12 belonged to the subgroup 7, with a typical R2R3 DNA-binding domain and conserved subgroup 7 motifs. The transcriptional level of LjaMYB12 was proportional to the total flavonoid content during the development of L. japonica flowers. Subcellular localization analysis revealed that LjaMYB12 localized to the nucleus. Transactivation activity assay indicated that LjaMYB12 was a transcriptional activator. Then, ectopic expression of LjaMYB12 in Arabidopsis could increase PAL activity and flavonoid content and promote transcription of a range of flavonoid biosynthetic genes. Interestingly, the fold changes of downstream genes in the flavonoid biosynthetic pathway were significantly higher than that of the upstream genes, which suggested that LjaMYB12 may have different regulatory patterns for the upstream and downstream pathways of flavonoid biosynthesis. The results provided here will effectively facilitate the study of subgroup 7 MYBs and transcriptional regulation of flavonoid biosynthesis in L. japonica.
Collapse
Affiliation(s)
- Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
| | - Zequn Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
| | - Zhiqi Liu
- Nanjing Foreign Language School, Nanjing 210008, China.
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7145, USA.
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| |
Collapse
|
140
|
Expression Analysis of the NAC Transcription Factor Family of Populus in Response to Salt Stress. FORESTS 2019. [DOI: 10.3390/f10080688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Sequence phylogeny, genome organisation, gene structure, conserved motifs, promoter cis-element and expression profiling of poplar NACs related to salt stress were detected. In addition, expression of two salt-induced NACs was analysed. Background and Objectives: NAC transcription factor (TF) proteins are involved in a wide range of functions during plant development and stress-related endurance processes. To understand the function of Populus NAC TFs in salt stress tolerance, we characterised the structure and expression profile of a total of 289 NAC members. Materials and Methods: Sequence phylogeny, genome organisation, gene structure, motif composition and promoter cis-element were detected using bioinformatics. The expression pattern of Populus NAC TFs under salt stress was also detected using RNA-Seq and RT-qPCR. Results: Synteny analysis showed that 46 and 37 Populus NAC genes were involved in whole-genome duplication and tandem duplication events, respectively. The expression pattern of Populus NAC TFs under salt stress showed the expression of the 289 PtNACs of 84K poplar was induced. Similar expression trends of NACs were found in Populus simonii × P. nigra T. S. Hwang et Liang and Arabidopsis thaliana (L.) Heynh. Conclusions: The correlation analysis showed that the expression of two differentially expressed NAC genes PtNAC024 and PtNAC182 was significantly associated with most of the 63 differentially expressed genes tested. The expression of PtNAC024 and PtNAC182 in different tissues was also analysed in silico and different expression patterns were found. Together, this study provides a solid basis to explore stress-related NAC TF functions in Populus salt tolerance and development.
Collapse
|
141
|
Mitra M, Agarwal P, Kundu A, Banerjee V, Roy S. Investigation of the effect of UV-B light on Arabidopsis MYB4 (AtMYB4) transcription factor stability and detection of a putative MYB4-binding motif in the promoter proximal region of AtMYB4. PLoS One 2019; 14:e0220123. [PMID: 31393961 PMCID: PMC6687144 DOI: 10.1371/journal.pone.0220123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
Here, we have investigated the possible effect of UV-B light on the folding/unfolding properties and stability of Arabidopsis thaliana MYB4 (AtMYB4) transcription factor in vitro by using biophysical approaches. Urea-induced equilibrium unfolding analyses have shown relatively higher stability of the wild-type recombinant AtMYB4 protein than the N-terminal deletion forms after UV-B exposure. However, as compared to wild-type form, AtMYB4Δ2 protein, lacking both the two N-terminal MYB domains, showed appreciable alteration in the secondary structure following UV-B exposure. UV-B irradiated AtMYB4Δ2 also displayed higher propensity of aggregation in light scattering experiments, indicating importance of the N-terminal modules in regulating the stability of AtMYB4 under UV-B stress. DNA binding assays have indicated specific binding activity of AtMYB4 to a putative MYB4 binding motif located about 212 bp upstream relative to transcription start site of AtMYB4 gene promoter, while relatively weak DNA binding activity was detected for another putative MYB4 motif located at -908 bp in AtMYB4 promoter. Gel shift and fluorescence anisotropy studies have shown increased binding affinity of UV-B exposed AtMYB4 to the promoter proximal MYB4 motif. ChIP assay has revealed binding of AtMYB4 to the promoter proximal (-212 position) MYB4 motif (ACCAAAC) in vivo. Docking experiments further revealed mechanistic detail of AtMYB4 interaction with the putative binding motifs. Overall, our results have indicated that the N-terminal 62-116 amino acid residues constituting the second MYB domain plays an important role in maintaining the stability of the C-terminal region and the overall stability of the protein, while a promoter proximal MYB-motif in AtMYB4 promoter may involve in the regulation of its own expression under UV-B light.
Collapse
Affiliation(s)
- Mehali Mitra
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Anurima Kundu
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Victor Banerjee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| |
Collapse
|
142
|
Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, Fan D, Li C, Luo K. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:733-751. [PMID: 31021017 DOI: 10.1111/tpj.14364] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
The secondary cell wall is an important carbon sink in higher plants and its biosynthesis requires coordination of metabolic fluxes in the phenylpropanoid pathway. In Arabidopsis (Arabidopsis thaliana), MYB75 and the KNOX transcription factor KNAT7 form functional complexes to regulate secondary cell wall formation in the inflorescence stem. However, the molecular mechanism by which these transcription factors control different branches of the phenylpropanoid pathway remains poorly understood in woody species. We isolated an R2R3-MYB transcription factor MYB6 from Populus tomentosa and determined that it was expressed predominately in young leaves. Overexpression of MYB6 in transgenic poplar upregulated flavonoid biosynthetic gene expression, resulting in significantly increased accumulation of anthocyanin and proanthocyanidins. MYB6-overexpression plants showed reduced secondary cell wall deposition, accompanied by repressed expression of secondary cell wall biosynthetic genes. We further showed that MYB6 interacted physically with KNAT7 and formed functional complexes that acted to repress secondary cell wall development in poplar and Arabidopsis. The results provide an insight into the transcriptional mechanisms involved in the regulation of the metabolic fluxes between the flavonoid and lignin biosynthetic pathways in poplar.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Liwen Dou
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
143
|
Wang H, Wang X, Song W, Bao Y, Jin Y, Jiang C, Wang C, Li B, Zhang H. PdMYB118, isolated from a red leaf mutant of Populus deltoids, is a new transcription factor regulating anthocyanin biosynthesis in poplar. PLANT CELL REPORTS 2019; 38:927-936. [PMID: 31147728 DOI: 10.1007/s00299-019-02413-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
A new anthocyanin biosynthesis transcription factor PdMYB118, which could be used for the genetic engineering of colorful tree species, was indentified from a red leaf mutant of Populus deltoids. In higher plants, the biosynthesis of anthocyanins is regulated by several classes of transcription factors (TFs), including R2R3-MYB, bHLH and WD-repeat proteins. In this work, we isolated an MYB gene regulating anthocyanin biosynthesis from a red leaf mutant of Populus deltoids, which accumulated more anthocyanins in the leaves and showed higher expression levels of anthocyanin biosynthesis genes than did the wild type. Gene expression analyses of all TFs regulating anthocyanin biosynthesis demonstrated that only a MYB118 homologous gene, PdMYB118, was up-regulated in the mutant compared with the wide type. Subcellular localization analyses in poplar leaf mesophyll protoplasts showed that PdMYB118-YFP fusion protein was specifically located in nucleus. When transiently expressed in poplar leaf protoplasts, PdMYB118 specifically promoted the expression of anthocyanidin biosynthesis genes. Dual-luciferase assays revealed that PdMYB118 can directly activate the promoters of these genes. When overexpressed in Shanxin Yang (P. davidiana × P. bolleana), a hybrid clone commercially grown for landscaping in the northern part of China, transgenic plants overexpressing PdMYB118 produced more anthocyanins in the leaves and turned their color into redness when grown in both greenhouse and field. Consistently, transcripts of some important anthocyanidin biosynthesis genes were significantly increased in the leaves of transgenic plants. All these results indicate that PdMYB118 functions as an essential transcription factor regulating anthocyanin biosynthesis in poplar and could be used for the genetic engineering of colorful tree species.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, China
| | - Weimeng Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China
| | - Yan Bao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China
| | - Yanli Jin
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | - Chunmei Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, China
| | - Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | - Bei Li
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China
- Institute for Advanced Study of Coastal Ecology, and the Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, China.
- Institute for Advanced Study of Coastal Ecology, and the Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
144
|
Alvarez-Buylla ER, García-Ponce B, Sánchez MDLP, Espinosa-Soto C, García-Gómez ML, Piñeyro-Nelson A, Garay-Arroyo A. MADS-box genes underground becoming mainstream: plant root developmental mechanisms. THE NEW PHYTOLOGIST 2019; 223:1143-1158. [PMID: 30883818 DOI: 10.1111/nph.15793] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 05/19/2023]
Abstract
Plant growth is largely post-embryonic and depends on meristems that are active throughout the lifespan of an individual. Developmental patterns rely on the coordinated spatio-temporal expression of different genes, and the activity of transcription factors is particularly important during most morphogenetic processes. MADS-box genes constitute a transcription factor family in eukaryotes. In Arabidopsis, their proteins participate in all major aspects of shoot development, but their role in root development is still not well characterized. In this review we synthetize current knowledge pertaining to the function of MADS-box genes highly expressed in roots: XAL1, XAL2, ANR1 and AGL21, as well as available data for other MADS-box genes expressed in this organ. The role of Trithorax group and Polycomb group complexes on MADS-box genes' epigenetic regulation is also discussed. We argue that understanding the role of MADS-box genes in root development of species with contrasting architectures is still a challenge. Finally, we propose that MADS-box genes are key components of the gene regulatory networks that underlie various gene expression patterns, each one associated with the distinct developmental fates observed in the root. In the case of XAL1 and XAL2, their role within these networks could be mediated by regulatory feedbacks with auxin.
Collapse
Affiliation(s)
- Elena R Alvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Carlos Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, CP 78290, Mexico
| | - Mónica L García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, 04960, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| |
Collapse
|
145
|
Jiao B, Zhao X, Lu W, Guo L, Luo K. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. TREE PHYSIOLOGY 2019; 39:1187-1200. [PMID: 30968143 DOI: 10.1093/treephys/tpz040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Secondary cell wall (SCW) biosynthesis during wood formation in trees is controlled by a multilevel regulatory network that coordinates the expression of substantial genes. However, few transcription factors involved in the negative regulation of secondary wall biosynthesis have been characterized in tree species. In this study, we isolated an R2R3 MYB transcription factor MYB189 from Populus trichocarpa, which is expressed predominantly in secondary vascular tissues, especially in the xylem. A novel repression motif was identified in the C-terminal region of MYB189, which indicates this factor was a transcriptional repressor. Overexpression (OE) of MYB189 in Arabidopsis and poplar resulted in a significant reduction in the contents of lignin, cellulose and hemicelluloses. Vascular development in stems of MYB189 OE lines was markedly inhibited, leading to a dramatic decrease in SCW thickness of xylem fibers. Gene expression analyses showed that most of the structural genes involved in the biosynthesis of lignin, cellulose and xylans were significantly downregulated in MYB189-overexpressing poplars compared with the wild-type control. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction and transient expression assays revealed that MYB189 could directly bind to the promoters of secondary wall biosynthetic genes to repress their expression. Together, these data suggest that MYB189 acts as a repressor to regulate SCW biosynthesis in poplar.
Collapse
Affiliation(s)
- Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
146
|
An C, Sheng L, Du X, Wang Y, Zhang Y, Song A, Jiang J, Guan Z, Fang W, Chen F, Chen S. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. HORTICULTURE RESEARCH 2019; 6:84. [PMID: 31645945 PMCID: PMC6804602 DOI: 10.1038/s41438-019-0166-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 05/27/2023]
Abstract
MYB transcription factors are widely involved in the development of and physiological processes in plants. Here, we isolated the chrysanthemum R2R3-MYB family transcription factor CmMYB15, a homologous gene of AtMYB15. It was demonstrated that CmMYB15 expression was induced by aphids and that CmMYB15 could bind to AC elements, which usually exist in the promoter of lignin biosynthesis genes. Overexpression of CmMYB15 in chrysanthemum enhanced the resistance of aphids. Additionally, the content of lignin and the expression of several lignin biosynthesis genes increased. In summary, the results indicate that CmMYB15 regulates lignin biosynthesis genes that enhance the resistance of chrysanthemum to aphids.
Collapse
Affiliation(s)
- Cong An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinping Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
147
|
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, Zhen C, Cheng H, Yang C, Elsheery NI, Cheng Y. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC PLANT BIOLOGY 2019; 19:276. [PMID: 31234799 PMCID: PMC6591973 DOI: 10.1186/s12870-019-1865-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Tianyuan Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | | | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| |
Collapse
|
148
|
Tombuloglu H. Genome-wide identification and expression analysis of R2R3, 3R- and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum). Genomics 2019; 112:782-795. [PMID: 31128265 DOI: 10.1016/j.ygeno.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
MYB transcription factors (TFs) have vital roles in regulating lignin or fiber development. Flax (Linum usitatissimum) is known as one of the plants with high fiber production capacity. However, no studies have been conducted to identify and characterize MYB TFs in the flax genome. Results showed that flax genome harbours 167 R2R3, seven 3R, and one 4R-type MYB TFs. 22 MYB genes (%13) were estimated to be tandem duplicated dated around 13.3-86.98 Mya. 130 flax MYB members have apparent orthologous with Arabidopsis, in which 17 R2R3 MYBs are associated with lignin biosynthesis. MYB062, MYB072, MYB096, MYB141, and MYB146 genes were up-regulated in tissues having higher lignin production capacity. In opposite, MYB012 and MYB113 genes were down-regulated which points out the involvement of those genes in the lignin biosynthesis mechanism. This comprehensive study can provide a basis for understanding the role of MYBs in fiber or lignin production in flax.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| |
Collapse
|
149
|
Xing C, Liu Y, Zhao L, Zhang S, Huang X. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. PLANT, CELL & ENVIRONMENT 2019; 42:832-845. [PMID: 29929211 DOI: 10.1111/pce.13387] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 05/18/2023]
Abstract
Dehydroascorbate reductase (DHAR) plays an important role in stress responses, but the transcriptional regulation of DHAR in response to abiotic stress is still poorly understood. In this study, we isolated a novel R2R3-type MYB transcription factor from Pyrus betulaefolia by yeast one-hybrid screening, designated as PbrMYB5. PbrMYB5 was localized in the nucleus and could bind specifically to the promoter of PbrDHAR2. PbrMYB5 was greatly induced by cold and salt but slightly by dehydration. Overexpression of PbrMYB5 in tobacco conferred enhanced tolerance to chilling stresses, whereas down-regulation of PbrMYB5 in P. betulaefolia by virus-induced gene silencing resulted in elevated chilling sensitivity. Transgenic tobacco exhibited higher expression levels of NtDHAR2 and accumulated larger amount of ascorbic acid (AsA) than the wild-type plants. Virus-induced gene silencing of PbrMYB5 in P. betulaefolia down-regulated PbrDHAR2 abundance and decreased AsA level, accompanied by an increased sensitivity to the chilling stress. Taken together, these results demonstrated that PbrMYB5 was an activator of AsA biosynthesis and may play a positive role in chilling tolerance, at least in part, due to the modulation of AsA synthesis by regulating the PbrDHAR2 expression.
Collapse
Affiliation(s)
- Caihua Xing
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yue Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
150
|
Stanfield R, Laur J. Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression. Cells 2019; 8:E202. [PMID: 30818743 PMCID: PMC6468725 DOI: 10.3390/cells8030202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Previous experiments using heat exchangers (liquid cooled blocks) to chill a portion of plant stem have shown a transient stoppage in phloem translocation and an increase in measured phloem pressure. Although a chilled-induced stoppage of phloem transport has been known for over 100 years, the mechanism of this phenomenon is still poorly understood. Recently, work has highlighted that aquaporins occur within the plasma membrane of the sieve tubes along the entire source-to-sink pathway, and that isoforms of these water channel proteins may change dynamically. Aquaporins show regulatory roles in controlling tissue and cellular water status in response to environmental hardships. Thus, we tested if protein localization and mRNA transcript abundance changes occur in response to chilling in balsam poplar (Populus balsamifera) using immunohistochemistry and qrtPCR. The results of the immunolocalization experiments show that the labeling intensity of the sieve elements treated for only 2 min of chill time significantly increased for PIP2. After 10 min of chilling, this signal declined significantly to lower than that of the pre-chilled sieve elements. Overall, the abundance of mRNA transcript increased for the tested PIP2s following cold application. We discuss the implication that aquaporins are responsible for the alleviation of sieve tube pressure and the resumption of flow following a cold-induced blockage event.
Collapse
Affiliation(s)
- Ryan Stanfield
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Joan Laur
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|