101
|
Kato Y, Sakamoto W. Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:312-21. [PMID: 24862025 DOI: 10.1111/tpj.12562] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/16/2014] [Accepted: 05/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a primary target for light-induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo-oxidative damage. We propose that PSII core phosphorylation contributes to fine-tuned degradation of D1.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | |
Collapse
|
102
|
Ramundo S, Casero D, Mühlhaus T, Hemme D, Sommer F, Crèvecoeur M, Rahire M, Schroda M, Rusch J, Goodenough U, Pellegrini M, Perez-Perez ME, Crespo JL, Schaad O, Civic N, Rochaix JD. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control. THE PLANT CELL 2014; 26:2201-2222. [PMID: 24879428 PMCID: PMC4079378 DOI: 10.1105/tpc.114.124842] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/16/2014] [Accepted: 05/09/2014] [Indexed: 05/14/2023]
Abstract
Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.
Collapse
Affiliation(s)
- Silvia Ramundo
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - David Casero
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Timo Mühlhaus
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm Germany
| | - Dorothea Hemme
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm Germany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm Germany
| | - Michèle Crèvecoeur
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michèle Rahire
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm Germany
| | - Jannette Rusch
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Maria Esther Perez-Perez
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - José Luis Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Olivier Schaad
- Genomics Platform, University of Geneva, 1211 Geneva, Switzerland Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Natacha Civic
- Genomics Platform, University of Geneva, 1211 Geneva, Switzerland
| | - Jean David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
103
|
Yoshioka-Nishimura M, Yamamoto Y. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:100-6. [PMID: 24725639 DOI: 10.1016/j.jphotobiol.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
The reaction center-binding D1 protein of Photosystem II is damaged by excessive light, which leads to photoinhibition of Photosystem II. The damaged D1 protein is removed immediately by specific proteases, and a metalloprotease FtsH located in the thylakoid membranes is involved in the proteolytic process. According to recent studies on the distribution and organization of the protein complexes/supercomplexes in the thylakoid membranes, the grana of higher plant chloroplasts are crowded with Photosystem II complexes and light-harvesting complexes. For the repair of the photodamaged D1 protein, the majority of the active hexameric FtsH proteases should be localized in close proximity to the Photosystem II complexes. The unstacking of the grana may increase the area of the grana margin and facilitate easier access of the FtsH proteases to the damaged D1 protein. These results suggest that the structural changes of the thylakoid membranes by light stress increase the mobility of the membrane proteins and support the quality control of Photosystem II.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
104
|
Iwai M, Yokono M, Nakano A. Visualizing structural dynamics of thylakoid membranes. Sci Rep 2014; 4:3768. [PMID: 24442007 PMCID: PMC3895878 DOI: 10.1038/srep03768] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022] Open
Abstract
To optimize photosynthesis, light-harvesting antenna proteins regulate light energy dissipation and redistribution in chloroplast thylakoid membranes, which involve dynamic protein reorganization of photosystems I and II. However, direct evidence for such protein reorganization has not been visualized in live cells. Here we demonstrate structural dynamics of thylakoid membranes by live cell imaging in combination with deconvolution. We observed chlorophyll fluorescence in the antibiotics-induced macrochloroplast in the moss Physcomitrella patens. The three-dimensional reconstruction uncovered the fine thylakoid membrane structure in live cells. The time-lapse imaging shows that the entire thylakoid membrane network is structurally stable, but the individual thylakoid membrane structure is flexible in vivo. Our observation indicates that grana serve as a framework to maintain structural integrity of the entire thylakoid membrane network. Both the structural stability and flexibility of thylakoid membranes would be essential for dynamic protein reorganization under fluctuating light environments.
Collapse
Affiliation(s)
- Masakazu Iwai
- 1] Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan [2] PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012 Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819 Japan
| | - Akihiko Nakano
- 1] Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan [2] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
105
|
Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. THE PLANT CELL 2014; 26:373-90. [PMID: 24449688 PMCID: PMC3963582 DOI: 10.1105/tpc.113.120113] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/18/2023]
Abstract
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
Collapse
|
106
|
Suorsa M, Rantala M, Danielsson R, Järvi S, Paakkarinen V, Schröder WP, Styring S, Mamedov F, Aro EM. Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1463-71. [PMID: 24296034 DOI: 10.1016/j.bbabio.2013.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/01/2023]
Abstract
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Ravi Danielsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Virpi Paakkarinen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Wolfgang P Schröder
- Umeå Plant Science Center and Department of Chemistry, Linnaeus väg 10, University of Umeå, SE-901 87 Umeå, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, University of Uppsala, Box 523, SE-75120 Uppsala, Sweden.
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
107
|
Järvi S, Gollan PJ, Aro EM. Understanding the roles of the thylakoid lumen in photosynthesis regulation. FRONTIERS IN PLANT SCIENCE 2013; 4:434. [PMID: 24198822 PMCID: PMC3813922 DOI: 10.3389/fpls.2013.00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/12/2013] [Indexed: 05/20/2023]
Abstract
It has been known for a long time that the thylakoid lumen provides the environment for oxygen evolution, plastocyanin-mediated electron transfer, and photoprotection. More recently lumenal proteins have been revealed to play roles in numerous processes, most often linked with regulating thylakoid biogenesis and the activity and turnover of photosynthetic protein complexes, especially the photosystem II and NAD(P)H dehydrogenase-like complexes. Still, the functions of the majority of lumenal proteins in Arabidopsis thaliana are unknown. Interestingly, while the thylakoid lumen proteome of at least 80 proteins contains several large protein families, individual members of many protein families have highly divergent roles. This is indicative of evolutionary pressure leading to neofunctionalization of lumenal proteins, emphasizing the important role of the thylakoid lumen for photosynthetic electron transfer and ultimately for plant fitness. Furthermore, the involvement of anterograde and retrograde signaling networks that regulate the expression and activity of lumen proteins is increasingly pertinent. Recent studies have also highlighted the importance of thiol/disulfide modulation in controlling the functions of many lumenal proteins and photosynthetic regulation pathways.
Collapse
Affiliation(s)
| | | | - Eva-Mari Aro
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland e-mail:
| |
Collapse
|
108
|
Liu X, Zheng M, Wang R, Wang R, An L, Rodermel SR, Yu F. Genetic interactions reveal that specific defects of chloroplast translation are associated with the suppression of var2-mediated leaf variegation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:979-93. [PMID: 23721655 DOI: 10.1111/jipb.12078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/21/2013] [Indexed: 05/09/2023]
Abstract
Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.
Collapse
Affiliation(s)
- Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | | | | | | | | | | | | |
Collapse
|
109
|
Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. PHOTOSYNTHESIS RESEARCH 2013; 116:437-53. [PMID: 23703455 DOI: 10.1007/s11120-013-9855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 05/07/2023]
Abstract
Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | |
Collapse
|
110
|
Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodríguez-Concepción M. Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control. THE PLANT CELL 2013; 25:4183-94. [PMID: 24104567 PMCID: PMC3877790 DOI: 10.1105/tpc.113.113001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/22/2023]
Abstract
Plastids provide plants with metabolic pathways that are unique among eukaryotes, including the methylerythritol 4-phosphate pathway for the production of isoprenoids essential for photosynthesis and plant growth. Here, we show that the first enzyme of the pathway, deoxyxylulose 5-phosphate synthase (DXS), interacts with the J-protein J20 in Arabidopsis thaliana. J-proteins typically act as adaptors that provide substrate specificity to heat shock protein 70 (Hsp70), a molecular chaperone. Immunoprecipitation experiments showed that J20 and DXS are found together in vivo and confirmed the presence of Hsp70 chaperones in DXS complexes. Mutants defective in J20 activity accumulated significantly increased levels of DXS protein (but no transcripts) and displayed reduced levels of DXS enzyme activity, indicating that loss of J20 function causes posttranscriptional accumulation of DXS in an inactive form. Furthermore, J20 promotes degradation of DXS following a heat shock. Together, our data indicate that J20 might identify unfolded or misfolded (damaged) forms of DXS and target them to the Hsp70 system for proper folding under normal conditions or degradation upon stress.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Gabriela Toledo-Ortiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Michael A. Phillips
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | | | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Address correspondence to
| |
Collapse
|
111
|
Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 2013; 587:3372-81. [DOI: 10.1016/j.febslet.2013.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/08/2023]
|
112
|
Nishimura K, Asakura Y, Friso G, Kim J, Oh SH, Rutschow H, Ponnala L, van Wijk KJ. ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. THE PLANT CELL 2013; 25:2276-301. [PMID: 23898032 PMCID: PMC3723626 DOI: 10.1105/tpc.113.112557] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Whereas the plastid caseinolytic peptidase (Clp) P protease system is essential for plant development, substrates and substrate selection mechanisms are unknown. Bacterial ClpS is involved in N-degron substrate selection and delivery to the ClpAP protease. Through phylogenetic analysis, we show that all angiosperms contain ClpS1 and some species also contain ClpS1-like protein(s). In silico analysis suggests that ClpS1 is the functional homolog of bacterial ClpS. We show that Arabidopsis thaliana ClpS1 interacts with plastid ClpC1,2 chaperones. The Arabidopsis ClpS1 null mutant (clps1) lacks a visible phenotype, and no genetic interactions with ClpC/D chaperone or ClpPR core mutants were observed. However, clps1, but not clpc1-1, has increased sensitivity to the translational elongation inhibitor chloramphenicol suggesting a link between translational capacity and ClpS1. Moreover, ClpS1 was upregulated in clpc1-1, and quantitative proteomics of clps1, clpc1, and clps1 clpc1 showed specific molecular phenotypes attributed to loss of ClpC1 or ClpS1. In particular, clps1 showed alteration of the tetrapyrrole pathway. Affinity purification identified eight candidate ClpS1 substrates, including plastid DNA repair proteins and Glu tRNA reductase, which is a control point for tetrapyrrole synthesis. ClpS1 interaction with five substrates strictly depended on two conserved ClpS1 residues involved in N-degron recognition. ClpS1 function, substrates, and substrate recognition mechanisms are discussed.
Collapse
Affiliation(s)
- Kenji Nishimura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Soo-hyun Oh
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York, 14853
| | - Klaas J. van Wijk
- Computational Biology Service Unit, Cornell University, Ithaca, New York, 14853
- Address correspondence to
| |
Collapse
|
113
|
Zienkiewicz M, Kokoszka N, Bacławska I, Drożak A, Romanowska E. Light intensity and quality stimulated Deg1-dependent cleavage of PSII components in the chloroplasts of maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:126-136. [PMID: 23563498 DOI: 10.1016/j.plaphy.2013.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Recent studies have revealed that photo damages inducing high white light illumination of C3-type plant Arabidopsis thaliana promotes Deg1-mediated degradation of not only photosystem II core proteins D1/D2 but also minor LHCII proteins CP26, CP29 and PSII-associated PsbS protein. Using biochemical and immunological approaches we show that that the substrate pool of the heterologously expressed Deg1 ortholog protease from C4-type plant Zea mays is very similar to that of the A. thaliana in both mesophyll and bundle sheath chloroplasts. The Deg1-mediated degradation of photosystem II components has been observed after high light and red light treatment of maize leaves, while far red light did not induce Deg1-mediated degradation. Moreover, two isoforms of the Deg1 protease have been identified. Their genes are localized in chromosomes 6 and 8. The Pull-Down assay indicated that both proteins were able to bind the same set of chloroplast proteins, nevertheless in vitro digestion of Z. mays thylakoids in the form of inside-out vesicles has raveled that only Deg1 found in chromosome 8 exhibited proteolytic activity. Interestingly, the relative amount of Deg1 proteases in Z. mays bundle sheath chloroplasts (BS) is significantly higher than in mesophyll chloroplasts (M) in spite of lower content of PSII (∼20%) in BS.
Collapse
Affiliation(s)
- Maksymilian Zienkiewicz
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Nela Kokoszka
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ilona Bacławska
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Drożak
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Elżbieta Romanowska
- University of Warsaw, Department of Molecular Plant Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
114
|
Wang R, Gao F, Guo BQ, Huang JC, Wang L, Zhou YJ. Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 2013; 14:11125-44. [PMID: 23712354 PMCID: PMC3709723 DOI: 10.3390/ijms140611125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022] Open
Abstract
Soil contamination by chromium (Cr) has become an increasing problem worldwide as a result of extensive industrial activities. Chromium, especially hexavalent Cr, impairs the growth and productivity of plants. Although it has been proposed that plants could modify their metabolism to adapt to Cr stress by reprogramming the expression of genes, especially those related to the antioxidant system, damage response, and electron transport chain, evidence at the protein expression level is lacking. To better understand the precise mechanisms underlying Cr phytoxicity and the plant response to Cr exposure, the time-course of changes in the protein expression profile induced by short-term hexavalent Cr exposure (1, 6 and 24 h) were analyzed in maize leaves. Among the over 1200 protein spots detected reproducibly by two-dimensional electrophoresis (2-DE), 60 were found to be differentially accumulated during Cr stress treatment. Of the Cr-regulated proteins, 58 were identified using tandem mass spectrometry (MS/MS). The Cr-regulated proteins identified were mainly involved in ROS detoxification and defense responses (26%), photosynthesis and chloroplast organization (22%), post-transcriptional processing of mRNA and rRNA (12%), protein synthesis and folding (10%), the DNA damage response (5%), and the cytoskeleton (3%). The possible involvement of these Cr stress-responsive proteins in Cr phytoxicity and the plant response to Cr exposure in maize is discussed, taking into consideration the information available from other plant models. Our results provide preliminary evidence that will facilitate understanding the molecular mechanisms underlying Cr toxicity in maize.
Collapse
Affiliation(s)
- Rong Wang
- College of Life Science, Fuyang Teachers College, Fuyang 236037, China; E-Mails: (R.W.); (J.-C.H.)
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing-Qian Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
| | - Ji-Chang Huang
- College of Life Science, Fuyang Teachers College, Fuyang 236037, China; E-Mails: (R.W.); (J.-C.H.)
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Authors to whom correspondence should be addressed; E-Mails: (L.W.); (Y.-J.Z.); Tel./Fax: +86-10-8210-6134 (L.W.); +86-10-6893-2922 (Y.-J.Z.)
| | - Yi-Jun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; E-Mails: (F.G.); (B.-Q.G.)
- Authors to whom correspondence should be addressed; E-Mails: (L.W.); (Y.-J.Z.); Tel./Fax: +86-10-8210-6134 (L.W.); +86-10-6893-2922 (Y.-J.Z.)
| |
Collapse
|
115
|
Sun W, Gao F, Fan H, Shan X, Sun R, Liu L, Gong W. The structures of Arabidopsis Deg5 and Deg8 reveal new insights into HtrA proteases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:830-7. [PMID: 23633592 PMCID: PMC3640471 DOI: 10.1107/s0907444913002023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/21/2013] [Indexed: 12/22/2022]
Abstract
Plant Deg5 and Deg8 are two members of the HtrA proteases, a family of oligomeric serine endopeptidases that are involved in a variety of protein quality-control processes. These two HtrA proteases are located in the thylakoid lumen and participate in high-light stress responses by collaborating with other chloroplast proteins. Deg5 and Deg8 degrade photodamaged D1 protein of the photosystem II reaction centre, allowing its in situ replacement. Here, the crystal structures of Arabidopsis thaliana Deg5 (S266A) and Deg8 (S292A) are reported at 2.6 and 2.0 Å resolution, respectively. The Deg5 trimer contains two calcium ions in a central channel, suggesting a link between photodamage control and calcium ions in chloroplasts. Previous structures of HtrA proteases have indicated that their regulation usually requires C-terminal PDZ domain(s). Deg5 is unique in that it contains no PDZ domain and the trimeric structure of Deg5 (S266A) reveals a novel catalytic triad conformation. A similar triad conformation is observed in the hexameric structure of the single PDZ-domain-containing Deg8 (S292A). These findings suggest a novel activation mechanism for plant HtrA proteases and provide structural clues to their function in light-stress response.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
116
|
Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:157-79. [PMID: 23548781 PMCID: PMC3641200 DOI: 10.1104/pp.113.215699] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 05/18/2023]
Abstract
The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed.
Collapse
|
117
|
Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:652-62. [PMID: 23432654 DOI: 10.1111/tpj.12154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/02/2013] [Accepted: 02/12/2013] [Indexed: 05/21/2023]
Abstract
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll - protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4-1, a stay-green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4-1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation-related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity-dependent manner. Surprisingly, the Fv /Fm value remained high in nyc4-1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4-1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild-type and other non-functional stay-green mutants, including sgr-2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll - protein complexes during leaf senescence is discussed.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kato Y, Sakamoto W. Possible compensatory role among chloroplast proteases under excess-light stress condition. PLANT SIGNALING & BEHAVIOR 2013; 8:e23198. [PMID: 23299325 PMCID: PMC3676490 DOI: 10.4161/psb.23198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.
Collapse
|
119
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
120
|
Shan X, Sun W, Fan H, Jia M, Gao F, Gong W. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Arabidopsis thaliana Deg8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:69-72. [PMID: 23295491 DOI: 10.1107/s1744309112048774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 11/10/2022]
Abstract
Arabidopsis thaliana Deg8, an ATP-independent serine endopeptidase, is involved in the repair of photosystem II (PSII), specifically the degradation of the photo-damaged PSII reaction centre D1 protein. To understand the molecular mechanism underlying the participation of Deg8 in the degradation of the photo-damaged D1 protein, the structure of Deg8 is needed. Until recently, however, no structure of Deg8 had been solved. In this study, Deg8 from A. thaliana was cloned, overexpressed and purified in Escherichia coli. Crystallization was performed at 277 K using tribasic sodium citrate as the precipitant and the crystals diffracted to 2.0 Å resolution, belonging to space group C2 with unit-cell parameters a = 129.5, b = 124.2, c = 93.3 Å, α = γ = 90, β = 132.4°. Assuming one trimer in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.35 Å(3) Da(-1) and 47.6%, respectively.
Collapse
Affiliation(s)
- Xiaoyue Shan
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
121
|
Jaiswal DK, Ray D, Subba P, Mishra P, Gayali S, Datta A, Chakraborty S, Chakraborty N. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.). Proteome Sci 2012; 10:59. [PMID: 23031650 PMCID: PMC3558352 DOI: 10.1186/1477-5956-10-59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED BACKGROUND Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. RESULTS To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. CONCLUSIONS The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.
Collapse
Affiliation(s)
- Dinesh Kumar Jaiswal
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Doel Ray
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Poonam Mishra
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|