101
|
Wayne LL, Gachotte DJ, Walsh TA. Transgenic and Genome Editing Approaches for Modifying Plant Oils. Methods Mol Biol 2019; 1864:367-394. [PMID: 30415347 DOI: 10.1007/978-1-4939-8778-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vegetable oils are important for human and animal nutrition and as renewable resources for chemical feedstocks. We provide an overview of transgenic and genome editing approaches for modifying plant oils, describing useful model and crop systems and different strategies for transgenic modifications. We also describe new genome editing approaches that are beginning to be applied to oilseed plants and crops. These approaches are illustrated with examples for modifying the nutritional quality of vegetable oils by altering fatty acid desaturation, producing non-native fatty acids in oilseeds, and enhancing the overall accumulation of oil in seeds and leaves.
Collapse
Affiliation(s)
- Laura L Wayne
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Daniel J Gachotte
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Terence A Walsh
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
102
|
Tan H, Zhang J, Qi X, Shi X, Zhou J, Wang X, Xiang X. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. PLANT MOLECULAR BIOLOGY 2019; 99:31-44. [PMID: 30519824 DOI: 10.1007/s11103-018-0800-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/23/2018] [Indexed: 05/24/2023]
Abstract
In this manuscript, we explored the key molecular networks for oil biosynthesis with the transcriptome and metabolome of B. napus embryo at different developmental stages. Brassica napus (B. napus) is an important oil crop worldwide, yet the molecular pathways involved in oil biosynthesis in seeds are not fully understood. In this study, we performed a combined investigation of the gene expression profiles and metabolite content in B. napus seeds at 21, 28 and 35 days after flowering (DAF), when seed oil biosynthesis takes place. The total triacylglycerol (TAG) content in seed embryos increased over the course of seed maturation, and was accompanied by changes in the fatty acid profile, an increase in lipid droplets, and a reduction in starch grains. Metabolome analysis showed that the total amino acid, free fatty acid and organic acid contents in seed embryos decreased during seed maturation. In total, the abundance of 76 metabolites was significantly different between 21 and 28 DAF, and 68 metabolites changed in abundance between 28 and 35 DAF. Transcriptome analysis showed that the set of genes differentially expressed between stages was significantly enriched in those related to lipid metabolism, transport, protein and RNA metabolism, development and signaling, covering most steps of plant lipid biosynthesis and metabolism. Importantly, the metabolite and gene expression profiles were closely correlated during seed development, especially those associated with TAG and fatty acid biosynthesis. Further, the expression of major carbohydrate metabolism-regulating genes was closely correlated with carbohydrate content during seed maturation. Our results provide novel insights into the regulation of oil biosynthesis in B. napus seeds and highlights the coordination of gene expression and metabolism in this process.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiahuan Zhang
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xiao Qi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoli Shi
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianguo Zhou
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
103
|
Jeppson S, Demski K, Carlsson AS, Zhu LH, Banaś A, Stymne S, Lager I. Crambe hispanica Subsp. abyssinica Diacylglycerol Acyltransferase Specificities Towards Diacylglycerols and Acyl-CoA Reveal Combinatorial Effects That Greatly Affect Enzymatic Activity and Specificity. FRONTIERS IN PLANT SCIENCE 2019; 10:1442. [PMID: 31798607 PMCID: PMC6863138 DOI: 10.3389/fpls.2019.01442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
Crambe is an oil crop suitable for industrial purposes due to the high content of erucic acid (22:1) in the seed oil. The final acylation of diacylglycerols (DAG) with acyl-CoA in the production of triacylglycerols (oil) is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. We identified eight forms of DGATs in crambe and characterized them in microsomal preparations of yeast expressing the enzymes using various acyl-CoAs and both di-6:0-DAG and long-chain DAG species as acyl acceptors. All DGATs accepted 22:1-CoA when using di-6:0-DAG as acyl acceptor. When di-22:1-DAG was the acyl acceptor, the DGAT1 type of enzyme utilized 22:1-CoA at a much-reduced rate compared to assays with sn-1-22:1-sn-2-18:1(oleoyl)-DAG, the most frequently available DAG precursor in crambe seeds. None of the DGAT2 enzymes was able to acylate di-22:1-DAG. Our results indicate that formation of trierucin by crambe DGATs is a limiting step for further increasing the levels of 22:1 in the previously developed transgenic crambe lines due to their poor abilities to acylate di-22:1-DAG. We also show that the acyl-CoA specificities and the enzymatic activities are highly influenced by the fatty acid composition of the DAG acyl acceptor. This finding implies that the use of artificial acyl acceptors (e.g. di-6:0-DAG) may not always reflect the actual acyl-CoA specificities of DGATs in planta. The relevance of the here reported pronounced specificities for specific DAG species exerted by DGAT enzymes is discussed in the context of the findings of DAG pools of distinct catalytic origin in triacylglycerol biosynthesis in the seed oil.
Collapse
Affiliation(s)
- Simon Jeppson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- *Correspondence: Simon Jeppson,
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anders S. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
104
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
105
|
Cao H. Identification of the major diacylglycerol acyltransferase mRNA in mouse adipocytes and macrophages. BMC BIOCHEMISTRY 2018; 19:11. [PMID: 30547742 PMCID: PMC6293574 DOI: 10.1186/s12858-018-0103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023]
Abstract
Background Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds. Methods qPCR evaluated DGAT mRNA levels in mouse 3 T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds. Results TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3. Conclusion The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| |
Collapse
|
106
|
Zhang Z, Dunwell JM, Zhang YM. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. BMC PLANT BIOLOGY 2018; 18:328. [PMID: 30514240 PMCID: PMC6280547 DOI: 10.1186/s12870-018-1542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/20/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism. RESULTS An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh), and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes. As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900) co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then, in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits β-CT (BnaC05g37990D) and BCCP1 (BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and β-CT is positively regulated by four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis, GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and the contraction of gene families, LOX, LAH and HSI2, related to oil degradation. CONCLUSIONS The molecular mechanisms associated with differences in seed oil content provide the basis for future breeding efforts to improve seed oil content.
Collapse
Affiliation(s)
- Zhibin Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AS UK
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
107
|
Sun B, Guo X, Fan C, Chen Y, Wang J, Hu Z. Newly Identified Essential Amino Acids Affecting Chlorella ellipsoidea DGAT1 Function Revealed by Site-Directed Mutagenesis. Int J Mol Sci 2018; 19:ijms19113462. [PMID: 30400369 PMCID: PMC6274981 DOI: 10.3390/ijms19113462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme in the synthesis of triacylglycerol (TAG), the most important form of energy storage in plants. Some residues have previously been proven to be crucial for DGAT1 activity. In this study, we used site-directed mutagenesis of the CeDGAT1 gene from Chlorella ellipsoidea to alter 16 amino acids to investigate effects on DGAT1 function. Of the 16 residues (L482R, E542R, Y553A, G577R, R579D, Y582R, R596D, H603D, H609D, A624R, F629R, S632A, W650R, A651R, Q658H, and P660R), we newly identified 5 (L482, R579, H603, A651, and P660) as being essential for DGAT1 function and 7 (E542, G577, R596, H609, A624, S632, and Q658) that significantly affect DGAT1 function to different degrees, as revealed by heterologous expression of the mutants in yeast strain INVSc1. Importantly, compared with CeDGAT1, expression of the mutant CeDGAT1Y553A significantly increased the total fatty acid and TAG contents of INVSc1. Comparison among CeDGAT1Y553A, GmDGAT1Y341A, AtDGAT1Y364A, BnDGAT1Y347A, and BoDGAT1Y352A, in which tyrosine at the position corresponding to the 553rd residue in CeDGAT1 is changed into alanine, indicated that the impact of changing Y to A at position 553 is specific for CeDGAT1. Overall, the results provide novel insight into the structure and function of DGAT1, as well as a mutant gene with high potential for lipid improvement in microalgae and plants.
Collapse
Affiliation(s)
- Baocheng Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuejie Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming 65023, China.
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
108
|
Zhang H, Zhang Z, Xiong T, Xiong X, Wu X, Guan C, Xiao G. The CCCH-type transcription factor BnZFP1 is a positive regulator to control oleic acid levels through the expression of diacylglycerol O-acyltransferase 1 gene in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:633-640. [PMID: 30340175 DOI: 10.1016/j.plaphy.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
In China, the high-oleic acid rapeseed has an oil content of ∼42% and oleic acid (18:1) content of ∼80%. Compared to ordinary rapeseed, high-oleic acid rapeseed has higher levels of monounsaturated fatty acids and lower levels of saturated fatty acid and polyunsaturated fatty acids, and thus is of high nutritional and health value. In addition, high-oleic acid rapeseed oil imparts cardiovascular protective effects. Based on these properties, high-oleic acid oil crops have been extensively investigated and cultivated. We previously identified a CCCH-type transcription factor (BnZFP1, GenBank accession number XM_013796508) that is associated with high oleic acid traits from a Brassica napus subtractive hybridization library. In the present study, we overexpressed and silenced the BnZFP1 gene of B. napus. BnZFP1-overexpressing plants exhibited an 18.8% increase in oleic acid levels and a 3.8% increase in oil content. However, BNZFP1-silenced plants showed a 4.5% decrease in oleic acid levels, whereas no significant change in oil content was observed. Microarray and pull-down assays indicated that BnZFP1 has a total of thirty potential target genes. Further analysis and validation of one of the potential target genes, namely, diacylglycerol O-acyltransferases 1 (DGAT1) gene, indicated that it is positively regulated by BnZFP1. We also observed a correlation between elevated DGAT1 gene expression levels and higher oil content and oleic acid levels in rapeseed.
Collapse
Affiliation(s)
- Haiqiang Zhang
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhenqian Zhang
- The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Teng Xiong
- The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xinghua Xiong
- The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xianmeng Wu
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, Hunan, 410128, China
| | - Chunyun Guan
- The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Gang Xiao
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; The National Oil Crops Improvement Center, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, Hunan, 410128, China.
| |
Collapse
|
109
|
Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, Weselake RJ, Lemieux MJ. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:287-299. [PMID: 30003607 DOI: 10.1111/tpj.14029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-β-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
110
|
Rosli R, Chan PL, Chan KL, Amiruddin N, Low ETL, Singh R, Harwood JL, Murphy DJ. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:84-96. [PMID: 30107884 DOI: 10.1016/j.plantsci.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 05/14/2023]
Abstract
The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.
Collapse
Affiliation(s)
- Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom; Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
111
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
112
|
Cloning and characterization of EgGDSL, a gene associated with oil content in oil palm. Sci Rep 2018; 8:11406. [PMID: 30061629 PMCID: PMC6065316 DOI: 10.1038/s41598-018-29492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Oil palm (Elaeis guineensis, Jacq.) is a key tropical oil crop, which provides over one third of the global vegetable oil production, but few genes related to oil yield have been characterized. In this study, a GDSL esterase/lipase gene, which was significantly associated with oil content, was isolated from oil palm and designated as EgGDSL. Its functional characterization was carried out through ectopic expression in Arabidopsis ecotype Col-0. It was shown that expression of EgGDSL in Arabidopsis led to the increased total fatty acid content by 9.5% compared with the wild type. Further analysis of the fatty acid composition revealed that stearic acid (18:0) increased in the seeds of the transgenic lines, but the levels of linoleic acid (18:2) plus 11-eicosenoic acid drastically declined. Quantitative real-time PCR (qPCR) revealed that in oil palm, EgGDSL was highly expressed in mesocarp followed by leaf, and the expression level was very low in the root. The expression level of EgGDSL gene began to increase at two months after flowering (MAF) and reached its peak by four MAF, then declined rapidly, and reached its lowest level during the mature period (6 MAF). The EgGDSL gene was more highly expressed in oil palm trees with high oil content than that with low oil content, demonstrating that the transcription level of EgGDSL correlated with the amount of oil accumulation. The gene may be valuable for engineering fatty acid metabolism in crop improvement programmes and for marker-assisted breeding.
Collapse
|
113
|
Zhu Z, Yuan G, Fan X, Fan Y, Yang M, Yin Y, Liu J, Liu Y, Cao X, Tian J, Xue S. The synchronous TAG production with the growth by the expression of chloroplast transit peptide-fused ScPDAT in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:156. [PMID: 29928307 PMCID: PMC5989348 DOI: 10.1186/s13068-018-1160-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/31/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The synchronous triacylglycerol (TAG) production with the growth is a key step to lower the cost of the microalgae-based biofuel production. Phospholipid: diacylglycerol acyltransferase (PDAT) has been identified recently and catalyzes the phospholipid contributing acyl group to diacylglycerol to synthesize TAG, and is considered as the important source of TAG in Chlamydomonas reinhardtii. RESULTS Using a chimeric Hsp70A-RbcS2 promoter, exogenous PDAT form Saccharomyces cerevisiae fused with a chloroplast transit peptide was expressed in C. reinhardtii CC-137. Proved by western blot, the expression of ScPDAT showed a synchronous trend to the growth in the exponential phase. Compared to the wild type, the strain of Scpdat achieved 22% increase in the content of total fatty acids and 32% increase in TAG content. In addition, the fluctuation of C16 series fatty acid in monogalactosyldiacylglycerol, diacylglyceryltrimethylhomoserine and TAG indicated an enhancement in the TAG accumulation pathway. CONCLUSION The TAG production was enhanced in the regular cultivation without the nutrient stress by strengthening the conversion of polar lipid to TAG in C. reinhardtii and the findings provide a candidate strategy for rational engineered strain to overcome the decline in the growth during the TAG accumulation triggered by nitrogen starvation.
Collapse
Affiliation(s)
- Zhen Zhu
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Guangze Yuan
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Xuran Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yalei Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jiao Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Tian
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
114
|
Aoyagi T, Kobayashi M, Kozaki A. Design of a Seed-Specific Chimeric Promoter with a Modified Expression Profile to Improve Seed Oil Content. Int J Mol Sci 2018; 19:ijms19061667. [PMID: 29874815 PMCID: PMC6032214 DOI: 10.3390/ijms19061667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing the yield of plant oil is an important objective to meet the demand for sustainable resources and energy. Some attempts to enhance the expression of genes involved in oil synthesis in seeds have succeeded in increasing oil content. In many cases, the promoters of seed-storage protein genes have been used as seed-specific promoters. However, conventional promoters are developmentally regulated and their expression periods are limited. We constructed a chimeric promoter that starts to express in the early stage of seed development, and high-level expression is retained until the later stage by connecting the promoters of the biotin carboxyl carrier protein 2 (BCCP2) gene encoding the BCCP2 subunit of acetyl-CoA carboxylase and the fatty acid elongase 1 (FAE1) gene from Arabidopsis. The constructed promoter was ligated upstream of the TAG1 gene encoding diacylglycerol acyltransferase 1 and introduced into Arabidopsis. Seeds from transgenic plants carrying AtTAG1 under the control of the chimeric promoter showed increased oil content (up by 18–73%) compared with wild-type seeds. The novel expression profile of the chimeric promoter showed that this could be a promising strategy to manipulate the content of seed-storage oils and other compounds.
Collapse
Affiliation(s)
- Toshihiro Aoyagi
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Masaya Kobayashi
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Akiko Kozaki
- Department of Biology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
115
|
Gustafsson C, Willforss J, Lopes-Pinto F, Ortiz R, Geleta M. Identification of genes regulating traits targeted for domestication of field cress (Lepidium campestre) as a biennial and perennial oilseed crop. BMC Genet 2018; 19:36. [PMID: 29843613 PMCID: PMC5975587 DOI: 10.1186/s12863-018-0624-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The changing climate and the desire to use renewable oil sources necessitate the development of new oilseed crops. Field cress (Lepidium campestre) is a species in the Brassicaceae family that has been targeted for domestication not only as an oilseed crop that produces seeds with a desirable industrial oil quality but also as a cover/catch crop that provides valuable ecosystem services. Lepidium is closely related to Arabidopsis and display significant proportions of syntenic regions in their genomes. Arabidopsis genes are among the most characterized genes in the plant kingdom and, hence, comparative genomics of Lepidium-Arabidopsis would facilitate the identification of Lepidium candidate genes regulating various desirable traits. RESULTS Homologues of 30 genes known to regulate vernalization, flowering time, pod shattering, oil content and quality in Arabidopsis were identified and partially characterized in Lepidium. Alignments of sequences representing field cress and two of its closely related perennial relatives: L. heterophyllum and L. hirtum revealed 243 polymorphic sites across the partial sequences of the 30 genes, of which 95 were within the predicted coding regions and 40 led to a change in amino acids of the target proteins. Within field cress, 34 polymorphic sites including nine non-synonymous substitutions were identified. The phylogenetic analysis of the data revealed that field cress is more closely related to L. heterophyllum than to L. hirtum. CONCLUSIONS There is significant variation within and among Lepidium species within partial sequences of the 30 genes known to regulate traits targeted in the present study. The variation within these genes are potentially useful to speed-up the process of domesticating field cress as future oil crop. The phylogenetic relationship between the Lepidium species revealed in this study does not only shed some light on Lepidium genome evolution but also provides important information to develop efficient schemes for interspecific hybridization between different Lepidium species as part of the domestication efforts.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Jakob Willforss
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-23053, Alnarp, Sweden
| | - Fernando Lopes-Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07, Uppsala, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
116
|
Quantitative Spatiotemporal Oil Body Ultrastructure Helps to Verify the Distinct Lipid Deposition Patterns in Benzoin Endosperm and Embryo Cells. FORESTS 2018. [DOI: 10.3390/f9050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
117
|
Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1034-1045. [PMID: 28975735 PMCID: PMC5902773 DOI: 10.1111/pbi.12847] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Present address:
Centre for BiotechnologyMaharshi Dayanand UniversityRohtak124001India
| | - Hesham M. Abdullah
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Biotechnology DepartmentFaculty of AgricultureAl‐Azhar UniversityCairoEgypt
| | - Parisa Akbari
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| | - Danny Schnell
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Om Parkash Dhankher
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| |
Collapse
|
118
|
Tian Y, Lv X, Xie G, Zhang J, Xu Y, Chen F. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis. Biochem Biophys Res Commun 2018; 500:370-375. [PMID: 29654768 DOI: 10.1016/j.bbrc.2018.04.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content.
Collapse
Affiliation(s)
- Yinshuai Tian
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, China
| | - Xueyan Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fang Chen
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
119
|
Chen L, Zheng Y, Dong Z, Meng F, Sun X, Fan X, Zhang Y, Wang M, Wang S. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation. Mol Genet Genomics 2018; 293:401-415. [PMID: 29138932 DOI: 10.1007/s00438-017-1393-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.
Collapse
Affiliation(s)
- Liang Chen
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Yuhong Zheng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China.
| | - Fanfan Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Xingmiao Sun
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Xuhong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Yunfeng Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Mingliang Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China
| | - Shuming Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun, 130033, People's Republic of China.
| |
Collapse
|
120
|
Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics 2018; 19:213. [PMID: 29562889 PMCID: PMC5863459 DOI: 10.1186/s12864-018-4595-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Background Perilla frutescens is well known for its high α-linolenic acid (ALA) accumulation in seeds and medicinal values as well as a source of edible and general-purpose oils. However, the regulatory mechanisms of the biosynthesis of fatty acid in its seeds remain poorly understood due to the lacking of sequenced genome. For better understanding the regulation of lipid metabolism and further increase its oil content or modify oil composition, time-course transcriptome and lipid composition analyses were performed. Results Analysis of fatty acid content and composition showed that the α-linolenic acid and oleic acid accumulated rapidly from 5 DAF to 15 DAF and then kept relatively stable. However, the amount of palmitic acid and linoleic acid decreased quickly from 5 DAF to 15DAF. No significant variation of stearic acid content was observed from 5 DAF to 25DAF. Our transcriptome data analyses revealed that 110,176 unigenes were generated from six seed libraries at 5, 10, 20 DAF. Of these, 53 (31 up, 22 down) and 653 (259 up, 394 down) genes showed temporal and differentially expression during the seed development in 5 DAF vs 10 DAF, 20 vs 10 DAF, respectively. The differentially expressed genes were annotated and found to be involved in distinct functional categories and metabolic pathways. Deep mining of transcriptome data led to the identification of key genes involved in fatty acid and triacylglycerol biosynthesis and metabolism. Thirty seven members of transcription factor family AP2, B3 and NFYB putatively involved in oil synthesis and deposition were differentially expressed during seed development. The results of qRT-PCR for selected genes showed a strong positive correlation with the expression abundance measured in RNA-seq analysis. Conclusions The present study provides valuable genomic resources for characterizing Perilla seed gene expression at the transcriptional level and will extend our understanding of the complex molecular and cellular events of oil biosynthesis and accumulation in oilseed crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-4595-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BingNan Liao
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - YouJin Hao
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - JunXing Lu
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - HuiYang Bai
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Li Guan
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Tao Zhang
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
121
|
Zhu Y, Xie L, Chen GQ, Lee MY, Loque D, Scheller HV. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:46. [PMID: 29483939 PMCID: PMC5820799 DOI: 10.1186/s13068-018-1049-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/12/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maize (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. RESULTS Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. CONCLUSION The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0.
Collapse
Affiliation(s)
- Yerong Zhu
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- College of Life Science, Nankai University, Tianjin, 300071 China
| | - Linan Xie
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Grace Q. Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710 USA
| | - Mi Yeon Lee
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Dominique Loque
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
122
|
Cui Y, Zhao J, Wang Y, Qin S, Lu Y. Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:32. [PMID: 29449880 PMCID: PMC5806285 DOI: 10.1186/s13068-018-1029-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/23/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacylglycerol with acyl-CoA. RESULTS A dual-function PtWS/DGAT associated with diatom Phaeodactylum tricornutum is discovered in the current study. Distinctive to documented microalgal DGAT types, PtWS/DGAT exhibits activities of both a wax ester synthase (WS) and a DGAT. WS/DGATs are broadly distributed in microalgae, with different topology and phylogeny from those of DGAT1s, DGAT2s, and DGAT3s. In vitro and in vivo assays revealed that PtWS/DGAT, functioning as either a WS or a DGAT, exhibited a preference on saturated FA substrate. Endogenous overexpression of PtWS/DGAT demonstrated that the DGAT activity was dominant, whereas the WS activity was condition dependent and relatively minor. Compared with the wild type (WT), overexpression of PtWS/DGAT in the diatom resulted in increased levels of total lipids (TL) and triacylglycerol (TAG) regardless of nitrogen availability. The stability and scalability of the introduced traits were further investigated at a 10-L photobioreactor, where the mutant growth resembled WT, with moderately increased productivity of TL and TAG. Furthermore, the production of wax esters increased considerably (from undetectable levels to 2.83%) under nitrogen-deplete conditions. CONCLUSIONS PtWS/DGAT is a bifunctional enzyme and may serve as a promising target for the engineering of microalga-based oils and waxes for future industrial use.
Collapse
Affiliation(s)
- Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Jialin Zhao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228 China
| |
Collapse
|
123
|
Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, Shan L. Seed-Specific Expression of AtLEC1 Increased Oil Content and Altered Fatty Acid Composition in Seeds of Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:260. [PMID: 29559985 PMCID: PMC5845668 DOI: 10.3389/fpls.2018.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the major oil crops and is the fifth largest source of plant oils in the world. Numerous genes participate in regulating the biosynthesis and accumulation of the storage lipids in seeds or other reservoir organs, among which several transcription factors, such as LEAFY COTYLEDON1 (AtLEC1), LEC2, and WRINKLED1 (WRI1), involved in embryo development also control the lipid reservoir in seeds. In this study, the AtLEC1 gene was transferred into the peanut genome and expressed in a seed-specific manner driven by the NapinA full-length promoter or its truncated 230-bp promoter. Four homozygous transgenic lines, two lines with the longer promoter and the other two with the truncated one, were selected for further analysis. The AtLEC1 mRNA level and the corresponding protein accumulation in different transgenic overexpression lines were altered, and the transgenic plants grew and developed normally without any detrimental effects on major agronomic traits. In the developing seeds of transgenic peanuts, the mRNA levels of a series of genes were upregulated. These genes are associated with fatty acid (FA) biosynthesis and lipid accumulation. The former set of genes included the homomeric ACCase A (AhACC II), the BC subunit of heteromeric ACCase (AhBC4), ketoacyl-ACP synthetase (AhKAS II), and stearoyl-ACP desaturase (AhSAD), while the latter ones were the diacylglycerol acyltransferases and oleosins (AhDGAT1, AhDGAT2, AhOle1, AhOle2, and AhOle3). The oil content and seed weight increased by 4.42-15.89% and 11.1-22.2%, respectively, and the levels of major FA components including stearic acid, oleic acid, and linoleic acid changed significantly in all different lines.
Collapse
Affiliation(s)
- Guiying Tang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pingli Xu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenhua Ma
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
| | - Fang Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| | - Lei Shan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong University, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- *Correspondence: Lei Shan, Shubo Wan,
| |
Collapse
|
124
|
Abdullah HM, Chhikara S, Akbari P, Schnell DJ, Pareek A, Dhankher OP. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:335. [PMID: 30574188 PMCID: PMC6299664 DOI: 10.1186/s13068-018-1326-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Camelina sativa has attracted much interest as alternative renewable resources for biodiesel, other oil-based industrial products and a source for edible oils. Its unique oil attributes attract research to engineering new varieties of improved oil quantity and quality. The overexpression of enzymes catalyzing the synthesis of the glycerol backbone and the sequential conjugation of fatty acids into this backbone is a promising approach for increasing the levels of triacylglycerol (TAG). In a previous study, we co-expressed the diacylglycerol acyltransferase (DGAT1) and glycerol-3-phosphate dehydrogenase (GPD1), involved in TAG metabolism, in Camelina seeds. Transgenic plants exhibited a higher-percentage seed oil content, a greater seed mass, and overall improved seed and oil yields relative to wild-type plants. To further increase seed oil content in Camelina, we utilized metabolite profiling, in conjunction with transcriptome profiling during seed development to examine potential rate-limiting step(s) in the production of building blocks for TAG biosynthesis. RESULTS Transcriptomic analysis revealed approximately 2518 and 3136 transcripts differentially regulated at significant levels in DGAT1 and GPD1 transgenics, respectively. These transcripts were found to be involved in various functional categories, including alternative metabolic routes in fatty acid synthesis, TAG assembly, and TAG degradation. We quantified the relative contents of over 240 metabolites. Our results indicate major metabolic switches in transgenic seeds associated with significant changes in the levels of glycerolipids, amino acids, sugars, and organic acids, especially the TCA cycle and glycolysis intermediates. CONCLUSIONS From the transcriptomic and metabolomic analysis of DGAT1, GPD1 and DGAT1 + GPD1 expressing lines of C. sativa, we conclude that TAG production is limited by (1) utilization of fixed carbon from the source tissues supported by the increase in glycolysis pathway metabolites and decreased transcripts levels of transcription factors controlling fatty acids synthesis; (2) TAG accumulation is limited by the activity of lipases/hydrolases that hydrolyze TAG pool supported by the increase in free fatty acids and monoacylglycerols. This comparative transcriptomics and metabolomics approach is useful in understanding the regulation of TAG biosynthesis, identifying bottlenecks, and the corresponding genes controlling these pathways identified as limitations, for generating Camelina varieties with improved seed and oil yields.
Collapse
Affiliation(s)
- Hesham M. Abdullah
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651 Egypt
- Present Address: Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
- Present Address: Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Parisa Akbari
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Danny J. Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 100067 India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
125
|
Zhao C, Li H, Zhang W, Wang H, Xu A, Tian J, Zou J, Taylor DC, Zhang M. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2205. [PMID: 29312429 PMCID: PMC5744481 DOI: 10.3389/fpls.2017.02205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.
Collapse
Affiliation(s)
- Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Hailan Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jitao Zou
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
126
|
Jeennor S, Veerana M, Anantayanon J, Panchanawaporn S, Chutrakul C, Laoteng K. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value. J Biotechnol 2017; 263:45-51. [DOI: 10.1016/j.jbiotec.2017.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023]
|
127
|
Zheng L, Shockey J, Guo F, Shi L, Li X, Shan L, Wan S, Peng Z. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:62-70. [PMID: 29031100 DOI: 10.1016/j.jplph.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agronomically important oilseed crop that is cultivated in many parts of the world. In this study, seven distinct forms of type 1 DGAT (AhDGAT1.1-AhDGAT1.7) were identified, cloned, and characterized. Comparisons of the nucleotide sequences and gene structures revealed many different splicing variants of AhDGAT1, some of which displayed different organ-specific expression patterns. A representative gene (AhDGAT1.1) was transformed into wild-type tobacco and was shown to increase seed fatty acid (FA) content by 14.7%-20.9%. All seven AhDGAT1s were expressed in TAG-deficient Saccharomyces cerevisiae strain H1246; the five longest AhDGAT1 variants generated high levels of acyltransferase activity and complemented the free fatty acid lethality phenotype in this strain. The alternative splicing that gives rise to AhDGAT1.2 and AhDGAT1.4 creates predicted protein C-terminal truncations. The proteins encoded by these two variants were not active and did not complement the fatty acid sensitivity in H1246. These results were verified by visualization of intracellular lipid droplets using Nile Red staining. Collectively, the results presented here represent the first comprehensive analysis of the peanut DGAT1 gene family, which, unlike in other published plant DGAT1 sequences, shows widespread alternative splicing that may affect the expression patterns and enzyme activities of some members of the gene family.
Collapse
Affiliation(s)
- Ling Zheng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China
| | - Jay Shockey
- United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Feng Guo
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China
| | - Lingmin Shi
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China
| | - Xinguo Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China.
| | - Zhenying Peng
- Bio-Tech Research Center, Shandong Academy of Agricultural Science/Shandong Provincial Key Laboratory of Genetic Improvement, Ecology, and Physiology of Crops, Jinan, 250100, China.
| |
Collapse
|
128
|
Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics 2017; 18:776. [PMID: 29025408 PMCID: PMC5639739 DOI: 10.1186/s12864-017-4176-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Background Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. Results In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome “Darmor-bzh” to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. Conclusion The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose. Electronic supplementary material The online version of this article (10.1186/s12864-017-4176-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China.
| |
Collapse
|
129
|
Song Y, Wang XD, Rose RJ. Oil body biogenesis and biotechnology in legume seeds. PLANT CELL REPORTS 2017; 36:1519-1532. [PMID: 28866824 PMCID: PMC5602053 DOI: 10.1007/s00299-017-2201-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/23/2017] [Indexed: 05/08/2023]
Abstract
The seeds of many legume species including soybean, Pongamia pinnata and the model legume Medicago truncatula store considerable oil, apart from protein, in their cotyledons. However, as a group, legume storage strategies are quite variable and provide opportunities for better understanding of carbon partitioning into different storage products. Legumes with their ability to fix nitrogen can also increase the sustainability of agricultural systems. This review integrates the cell biology, biochemistry and molecular biology of oil body biogenesis before considering biotechnology strategies to enhance oil body biosynthesis. Cellular aspects of packaging triacylglycerol (TAG) into oil bodies are emphasized. Enhancing seed oil content has successfully focused on the up-regulation of the TAG biosynthesis pathways using overexpression of enzymes such as diacylglycerol acyltransferase1 and transcription factors such as WRINKLE1 and LEAFY COTYLEDON1. While these strategies are central, decreasing carbon flow into other storage products and maximizing the packaging of oil bodies into the cytoplasm are other strategies that need further examination. Overall there is much potential for integrating carbon partitioning, up-regulation of fatty acid and TAG synthesis and oil body packaging, for enhancing oil levels. In addition to the potential for integrated strategies to improving oil yields, the capacity to modify fatty acid composition and use of oil bodies as platforms for the production of recombinant proteins in seed of transgenic legumes provide other opportunities for legume biotechnology.
Collapse
Affiliation(s)
- Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xin-Ding Wang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
130
|
Caldo KMP, Acedo JZ, Panigrahi R, Vederas JC, Weselake RJ, Lemieux MJ. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors. PLANT PHYSIOLOGY 2017; 175:667-680. [PMID: 28827454 PMCID: PMC5619907 DOI: 10.1104/pp.17.00934] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 05/06/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT11-113) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P. Caldo
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jeella Z. Acedo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Randall J. Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Address correspondence to or
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Address correspondence to or
| |
Collapse
|
131
|
Chen G, Xu Y, Siloto RMP, Caldo KMP, Vanhercke T, Tahchy AE, Niesner N, Chen Y, Mietkiewska E, Weselake RJ. High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:167-177. [PMID: 28755522 DOI: 10.1111/tpj.13652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 05/08/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure-function insights into DGAT1, however, remain limited because of the lack of a three-dimensional detailed structure for this membrane-bound enzyme. In this study, the amino acid residues governing B. napus DGAT1 (BnaDGAT1) activity were investigated via directed evolution, targeted mutagenesis, in vitro enzymatic assay, topological analysis, and transient expression of cDNA encoding selected enzyme variants in Nicotiana benthamiana. Directed evolution revealed that numerous amino acid residues were associated with increased BnaDGAT1 activity, and 67% of these residues were conserved among plant DGAT1s. The identified amino acid residue substitution sites occur throughout the BnaDGAT1 polypeptide, with 89% of the substitutions located outside the putative substrate binding or active sites. In addition, cDNAs encoding variants I447F or L441P were transiently overexpressed in N. benthamiana leaves, resulting in 33.2 or 70.5% higher triacylglycerol content, respectively, compared with native BnaDGAT1. Overall, the results provide novel insights into amino acid residues underlying plant DGAT1 function and performance-enhanced BnaDGAT1 variants for increasing vegetable oil production.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Rodrigo M P Siloto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | | | | | | | - Yongyan Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| |
Collapse
|
132
|
Shi J, Lang C, Wang F, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:177-182. [PMID: 28818373 DOI: 10.1016/j.plantsci.2017.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 05/21/2023]
Abstract
In plants, the enzymes fatty acid dehydrogenase 2 (FAD2) and fatty acid elongase 1 (FAE1) have been shown in previous studies to play important roles in the de novo biosynthesis of fatty acids. However, the effects of depressed expression of FAD2 and FAE1 on seed storage compounds accumulation remains to be elucidated. In this study, we produced RNA interfering transgenic rapeseeds lines, BnFAD2-Ri, BnFAE1-Ri and BnFAD2/BnFAE1-Ri, which exhibited depressed expression of the BnFAD2 and BnFAE1 genes under the control of seed-specific napin A promoter. These transgenic rapeseeds showed normal growth and development as compared with the wild type (CY2). Depressed expression of BnFAD2 and BnFAE1 genes modified fatty acid profiles, leading to increased oleic acid and decreased erucic acid contents in transgenic seeds. Consistent with these results, the ratios of C18:1/C18:2 and C18:1/C18:3 in C18 unsaturated fatty acids were greatly increased due to increased oleic acid content in transgenic seeds. Moreover, depressed expression of BnFAD2 and BnFAE1 genes resulted in slightly decreased oil contents and increased protein contents in transgenic seeds. Our results demonstrated that depressed expression of BnFAD2 and BnFAE1 greatly improves seed nutritional quality by modulating the fatty acid metabolism and storage products accumulation and that BnFAD2 and BnFAE1 are reliable targets for genetic improvement of rapeseed in seed nutritional quality.
Collapse
Affiliation(s)
- Jianghua Shi
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Chunxiu Lang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Fulin Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Xuelong Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Renhu Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Tao Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jinqing Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Guanting Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
133
|
Manan S, Ahmad MZ, Zhang G, Chen B, Haq BU, Yang J, Zhao J. Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1604. [PMID: 28979275 PMCID: PMC5611487 DOI: 10.3389/fpls.2017.01604] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/31/2017] [Indexed: 05/04/2023]
Abstract
Soybean is an important oilseed crop and major dietary protein resource, yet the molecular processes and regulatory mechanisms involved in biosynthesis of seed storage substances are not fully understood. The B3 domain transcription factor (TF) LEC2 essentially regulates embryo development and seed maturation in other plants, but is not functionally characterized in soybean. Here, we characterize the function of a soybean LEC2 homolog, GmLEC2a, in regulating carbohydrate catabolism, triacylglycerol (TAG) biosynthesis, and seed development. The experimental analysis showed that GmLEC2a complemented Arabidopsis atlec2 mutant defects in seedling development and TAG accumulation. Over-expression of GmLEC2a in Arabidopsis seeds increased the TAG contents by 34% and the composition of long chain fatty acids by 4% relative to the control seeds. Transcriptome analysis showed that ectopic expression of GmLEC2a in soybean hairy roots up-regulated several sets of downstream TF genes GmLEC1, GmFUS3, GmABI3, GmDof11 and GmWRI1 that regulate the seed development and production of seed storage substances. GmLEC2a regulated the lipid transporter genes and oil body protein gene OLEOSIN (OLE1). The genes involved in carbohydrate biosynthesis and storage, such as sucrose synthesis, and catabolism of TAG, such as lipases in GmLEC2a hairy roots were down-regulated. GmLEC2a targeted metabolic genes for seed protein in soybean.
Collapse
Affiliation(s)
- Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Z. Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Basir U. Haq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jihong Yang
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| |
Collapse
|
134
|
Savadi S, Bisht DS, Bhat SR. Isolation and expression analyses of KLUH gene in developing seeds and enhanced seed oil in KLUH overexpressing Brassica juncea transgenics. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
135
|
Mutations in the promoter, intron and CDS of two FAD2 generate multiple alleles modulating linoleic acid level in yellow mustard. Sci Rep 2017; 7:8284. [PMID: 28811544 PMCID: PMC5557838 DOI: 10.1038/s41598-017-08317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Linoleic acid (C18:2) is an important polyunsaturated fatty acid in the seed oil of many crops. Here, we report that mutations in the promoter, intron and CDS of the FAD2 genes SalFAD2.LIA1 and SalFAD2.LIA2 generate three alleles LIA 1a , LIA 1b and lia 1 and two alleles LIA 2 and lia 2, respectively, controlling the C18:2 variation (4.4-32.7%) in yellow mustard. The allelic effect on increasing C18:2 content is LIA 1a > LIA 1b > lia 1 , LIA 2 > lia 2, and LIA 1a > LIA 2. The five FAD 2 alleles each contain two exons, one intron and a promoter adjacent to exon 1. LIA 1a has a 1152 bp CDS, a 1221 bp intron with promoter function and a 607 bp promoter. Compared with LIA 1a , the intron of LIA 1b has reduced promoter activity and that of LIA 2 and lia 2 has no promoter function due to extensive SNP and indel mutations. lia 1 differed from LIA 1b by having an insertion of 1223 bp retrotransposon in its intron. lia 2 with mutations in the promoter has reduced promoter activity compared with LIA 2 . This study revealed that complex quantitative variation of trait phenotype in plants could be modulated by multiple alleles of oligogenic loci resulting from mutations in the regulatory region and CDS.
Collapse
|
136
|
Xue LL, Chen HH, Jiang JG. Implications of glycerol metabolism for lipid production. Prog Lipid Res 2017; 68:12-25. [PMID: 28778473 DOI: 10.1016/j.plipres.2017.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) is an important product in oil-producing organisms. Biosynthesis of TAG can be completed through either esterification of fatty acids to glycerol backbone, or through esterification of 2-monoacylglycerol. This review will focus on the former pathway in which two precursors, fatty acid and glycerol-3-phosphate (G3P), are required for TAG formation. Tremendous progress has been made about the enzymes or genes that regulate the biosynthetic pathway of TAG. However, much attention has been paid to the fatty acid provision and the esterification process, while the possible role of G3P is largely neglected. Glycerol is extensively studied on its usage as carbon source for value-added products, but the modification of glycerol metabolism, which is directly associated with G3P synthesis, is seldom recognized in lipid investigations. The relevance among glycerol metabolism, G3P synthesis and lipid production is described, and the role of G3P in glycerol metabolism and lipid production are discussed in detail with an emphasis on how G3P affects lipid production through the modulation of glycerol metabolism. Observations of lipid metabolic changes due to glycerol related disruption in mammals, plants, and microorganisms are introduced. Altering glycerol metabolism results in the changes of final lipid content. Possible regulatory mechanisms concerning the relationship between glycerol metabolism and lipid production are summarized.
Collapse
Affiliation(s)
- Lu-Lu Xue
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; (b)Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hao-Hong Chen
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
137
|
Peng H, Moghaddam L, Brinin A, Williams B, Mundree S, Haritos VS. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnol Appl Biochem 2017. [DOI: 10.1002/bab.1573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Huadong Peng
- Department of Chemical Engineering; Monash University; Clayton Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Anthony Brinin
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities; Queensland University of Technology; Brisbane Australia
| | | |
Collapse
|
138
|
Comparative transcriptome analysis of lipid biosynthesis in seeds and non-seed tissues of sea buckthorn. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0564-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
139
|
Rauf S, Jamil N, Tariq SA, Khan M, Kausar M, Kaya Y. Progress in modification of sunflower oil to expand its industrial value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1997-2006. [PMID: 28093767 DOI: 10.1002/jsfa.8214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 05/20/2023]
Abstract
Increasing the sunflower seed oil content as well as improving its quality makes it compatible for industrial demands. This is an important breeding objective of sunflower which increases its market value and ensures high returns for the producers. The present review focuses on determining the progress of improving sunflower seed oil content and modifying its quality by empirical and advanced molecular breeding methods. It is known that the sunflower oil content and quality have been altered through empirical selection methods and mutation breeding programmes in various parts of the world. Further improvement in seed oil content and its components (such as phytosterols, tocopherols and modified fatty acid profile) has been slowed down due to low genetic variation in elite germplasm and complex of hereditary traits. Introgression from wild species can be carried out to modify the fatty acids profile and tocopherol contents with linkage drags. Different transgenes introduced through biotechnological methods may produce novel long-chain fatty acids within sunflower oil. Bio-engineering of sunflower oil could allow it to be used in diverse industrial products such as bio-diesel or bio-plastics. These results showed that past and current trends of modifying sunflower oil quality are essential for its further expansion as an oilseed crop. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding & Genetics, University College of Agriculture, University of Sargodha, Pakistan
| | - Nazia Jamil
- Department of Microbiology and Molecular Genetics University of the Punjab, Quaid-e-Campus, Lahore, Pakistan
| | - Sultan Ali Tariq
- National Agriculture Research Institute, Murre Road, Islamabad, Pakistan
| | - Maria Khan
- Department of Plant Breeding & Genetics, University College of Agriculture, University of Sargodha, Pakistan
| | - Maria Kausar
- Department of Plant Breeding & Genetics, University College of Agriculture, University of Sargodha, Pakistan
| | - Yalcin Kaya
- Department of Genetic and Bioengineering, Engineering Faculty, Trakya University, Edirne, Turkey
| |
Collapse
|
140
|
Klaitong P, Fa-Aroonsawat S, Chungjatupornchai W. Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb Cell Fact 2017; 16:61. [PMID: 28403867 PMCID: PMC5389083 DOI: 10.1186/s12934-017-0677-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Microalgae are promising sources of lipid triacylglycerol (TAG) for biodiesel production. However, to date, microalgal biodiesel is technically feasible, but not yet economically viable. Increasing TAG content and productivity are important to achieve economic viability of microalgal biodiesel. To increase TAG content, oleaginous microalga Neochloris oleoabundans was genetically engineered with an endogenous key enzyme diacylglycerol acyltransferase 2 (NeoDGAT2) responsible for TAG biosynthesis. Results The integration of NeoDGAT2 expression cassettes in N. oleoabundans transformant was confirmed by PCR. The neutral lipid accumulation in the transformant detected by Nile red staining was accelerated and 1.9-fold higher than in wild type; the lipid bodies in the transformant visualized under fluorescence microscope were also larger. The NeoDGAT2 transcript was two-fold higher in the transformant than wild type. Remarkably higher lipid accumulation was found in the transformant than wild type: total lipid content increased 1.6-to 2.3-fold up to 74.5 ± 4.0% dry cell weight (DCW) and total lipid productivity increased 1.6- to 3.2-fold up to 14.6 ± 2.0 mg/L/day; while TAG content increased 1.8- to 3.2-fold up to 46.1 ± 1.6% DCW and TAG productivity increased 1.6- to 4.3-fold up to 8.9 ± 1.3 mg/L/day. A significantly altered fatty acid composition was detected in the transformant compared to wild type; the levels of saturated fatty acid C16:0 increased double to 49%, whereas C18:0 was reduced triple to 6%. Long-term stability was observed in the transformant continuously maintained in solid medium over 100 generations in a period of about 4 years. Conclusions Our results demonstrate the increased TAG content and productivity in N. oleoabundans by NeoDGAT2 overexpression that may offer the first step towards making microalgae an economically feasible source for biodiesel production. The strategy for genetically improved microalga presented in this study can be applied to other microalgal species possessing desired characteristics for industrial biofuel production.
Collapse
Affiliation(s)
- Paeka Klaitong
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sirirat Fa-Aroonsawat
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Wipa Chungjatupornchai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
141
|
Marmon S, Sturtevant D, Herrfurth C, Chapman K, Stymne S, Feussner I. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. PLANT PHYSIOLOGY 2017; 173:2081-2095. [PMID: 28235891 PMCID: PMC5373062 DOI: 10.1104/pp.16.01865] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/22/2017] [Indexed: 05/19/2023]
Abstract
Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) on seed lipid composition were assessed in several Camelina sativa lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of DGAT1 led to an increased percentage of 18:3n-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3n-3 acyl groups were elevated in both cotyledon and embryonal axis. PDAT overexpression led to a relative increase of 18:2n-6 at the expense of 18:3n-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that C.sativa seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2n-6 content in the seed oil of the PDAT overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3n-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2n-6. The higher levels of 18:3n-3 in DGAT1-silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine.
Collapse
Affiliation(s)
- Sofia Marmon
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany;
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| | - Drew Sturtevant
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| | - Cornelia Herrfurth
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| | - Kent Chapman
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| | - Sten Stymne
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| | - Ivo Feussner
- Albrecht-von-Haller Institute for Plant Sciences (S.M., C.H., I.F.) and Göttingen Center for Molecular Biosciences (I.F.), Department of Plant Biochemistry, Georg-August-University, 37077 Goettingen, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden (S.M., S.S.); and
- Center for Plant Lipid Research and BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.)
| |
Collapse
|
142
|
Guo X, Fan C, Chen Y, Wang J, Yin W, Wang RRC, Hu Z. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. BMC PLANT BIOLOGY 2017; 17:48. [PMID: 28222675 PMCID: PMC5319178 DOI: 10.1186/s12870-017-0995-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.
Collapse
Affiliation(s)
- Xuejie Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, 65023 China
| | - Weibo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Richard R. C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300 USA
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present address: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
143
|
Ivarson E, Leiva-Eriksson N, Ahlman A, Kanagarajan S, Bülow L, Zhu LH. Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre. FRONTIERS IN PLANT SCIENCE 2017; 7:2032. [PMID: 28119714 PMCID: PMC5220066 DOI: 10.3389/fpls.2016.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop.
Collapse
Affiliation(s)
- Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| | | | - Annelie Ahlman
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| | - Leif Bülow
- Department of Pure and Applied Biochemistry, Lund UniversityLund, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
144
|
Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li Z, Shrestha P, Vanhercke T, Ral J, Liang G, Wang M, White R, Larkin P, Singh S, Petrie J. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:56-67. [PMID: 27307093 PMCID: PMC5253471 DOI: 10.1111/pbi.12590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/06/2023]
Abstract
Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs.
Collapse
Affiliation(s)
- Qing Liu
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Qigao Guo
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Sehrish Akbar
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- National University of Science and Technology (NUST) IslamabadIslamabadPakistan
| | - Yao Zhi
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Madeline Mitchell
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Jean‐Philippe Ral
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Guolu Liang
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Ming‐Bo Wang
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Rosemary White
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Philip Larkin
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Surinder Singh
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - James Petrie
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| |
Collapse
|
145
|
Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C, Marmon S, Farré EM, Feussner I, Benning C. Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:8. [PMID: 28070221 PMCID: PMC5210179 DOI: 10.1186/s13068-016-0686-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/10/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. RESULTS Based on their expression profile, six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6) were chosen for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. CONCLUSIONS Taken together, our results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Agnieszka Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
| | - Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zhi-Yan Du
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Katharina Vollheyde
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Sofia Marmon
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Dept. of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eva M. Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, 37073 Göttingen, Germany
| | - Christoph Benning
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
146
|
Zheng L, Shockey J, Bian F, Chen G, Shan L, Li X, Wan S, Peng Z. Variant Amino Acid Residues Alter the Enzyme Activity of Peanut Type 2 Diacylglycerol Acyltransferases. FRONTIERS IN PLANT SCIENCE 2017; 8:1751. [PMID: 29085382 PMCID: PMC5650624 DOI: 10.3389/fpls.2017.01751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol (TAG) biosynthesis via the acyl-CoA-dependent acylation of diacylglycerol. This reaction is a major control point in the Kennedy pathway for biosynthesis of TAG, which is the most important form of stored metabolic energy in most oil-producing plants. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar 'Luhua 14.' Sequence analysis of 11 different peanut cultivars revealed a gene family of 8 peanut DGAT2 genes (designated AhDGAT2a-h). Sequence alignments revealed 21 nucleotide differences between the eight ORFs, but only six differences result in changes to the predicted amino acid (AA) sequences. A representative full-length cDNA clone (AhDGAT2a) was characterized in detail. The biochemical effects of altering the AhDGAT2a sequence to include single variable AA residues were tested by mutagenesis and functional complementation assays in transgenic yeast systems. All six mutant variants retained enzyme activity and produced lipid droplets in vivo. The N6D and A26P mutants also displayed increased enzyme activity and/or total cellular fatty acid (FA) content. N6D mutant mainly increased the content of palmitoleic acid, and A26P mutant mainly increased the content of palmitic acid. The A26P mutant grew well both in the presence of oleic and C18:2, but the other mutants grew better in the presence of C18:2. AhDGAT2 is expressed in all peanut organs analyzed, with high transcript levels in leaves and flowers. These levels are comparable to that found in immature seeds, where DGAT2 expression is most abundant in other plants. Over-expression of AhDGAT2a in tobacco substantially increased the FA content of transformed tobacco seeds. Expression of AhDGAT2a also altered transcription levels of endogenous tobacco lipid metabolic genes in transgenic tobacco, apparently creating a larger carbon 'sink' that supports increased FA levels.
Collapse
Affiliation(s)
- Ling Zheng
- College of Life Science, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jay Shockey
- United States Department of Agriculture, Southern Regional Research Center, Agricultural Research Service, New Orleans, LA, United States
| | - Fei Bian
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Gao Chen
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Shan
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinguo Li
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shubo Wan
- College of Life Science, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Zhenying Peng, Shubo Wan,
| | - Zhenying Peng
- College of Life Science, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Zhenying Peng, Shubo Wan,
| |
Collapse
|
147
|
Lee EJ, Oh M, Hwang JU, Li-Beisson Y, Nishida I, Lee Y. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds. FRONTIERS IN PLANT SCIENCE 2017; 8:194. [PMID: 28265278 PMCID: PMC5316546 DOI: 10.3389/fpls.2017.00194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/31/2017] [Indexed: 05/11/2023]
Abstract
Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10-37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24-43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Division of Integrative Biosciences and Biotechnology, Plant Cell Biology Laboratory, Pohang University of Science and TechnologyPohang, South Korea
| | - Minwoo Oh
- Division of Integrative Biosciences and Biotechnology, Plant Cell Biology Laboratory, Pohang University of Science and TechnologyPohang, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Biosciences and Biotechnology, Plant Cell Biology Laboratory, Pohang University of Science and TechnologyPohang, South Korea
| | - Yonghua Li-Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/Centre National de la Recherche Scientifique/Aix-Marseille University, CEA CadaracheMarseille, France
| | - Ikuo Nishida
- Division of Life Science, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
| | - Youngsook Lee
- Division of Integrative Biosciences and Biotechnology, Plant Cell Biology Laboratory, Pohang University of Science and TechnologyPohang, South Korea
- *Correspondence: Youngsook Lee
| |
Collapse
|
148
|
Jin Y, Yuan Y, Gao L, Sun R, Chen L, Li D, Zheng Y. Characterization and Functional Analysis of a Type 2 Diacylglycerol Acyltransferase ( DGAT2) Gene from Oil Palm ( Elaeis guineensis Jacq.) Mesocarp in Saccharomyces cerevisiae and Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1791. [PMID: 29089956 PMCID: PMC5651047 DOI: 10.3389/fpls.2017.01791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/02/2017] [Indexed: 05/06/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the highest oil-yielding plant in the world, storing 90 and 60% (dry weight) oil in its mesocarp and kernel, respectively. To gain insights into the oil accumulation mechanism, one of the key enzymes involved in triacylglycerol (TAG) biosynthesis, a Type 2 diacylglycerol acyltransferase (DGAT2) from oil palm, was characterized for its in vivo activity. EgDGAT2 is highly expressed in mesocarp during the last two developmental stages while large amounts of oil are accumulated at the highest rate during ripening. Heterologous expression of EgDGAT2 in mutant yeast H1246 restored TAG biosynthesis with substrate preference toward unsaturated fatty acids (FAs) (16:1 and 18:1). Furthermore, seed-specific overexpression of EgDGAT2 in Arabidopsis thaliana enhanced the content of polyunsaturated FAs 18:2 and 18:3 (each by 6 mol%) in seed TAGs, when compared to that from wild-type Arabidopsis. In turn, the proportion of 18:0 and 20:0 FAs in seed TAGs from EgDGAT2 transgenic lines decreased accordingly. These results provide new insights into understanding the in vivo activity of EgDGAT2 from oil palm mesocarp, which will be of importance for metabolic enhancement of unsaturated FAs production.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongdong Li
- *Correspondence: Dongdong Li, Yusheng Zheng,
| | | |
Collapse
|
149
|
Tan KWM, Lee YK. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:255. [PMID: 27895709 PMCID: PMC5120525 DOI: 10.1186/s13068-016-0671-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| |
Collapse
|
150
|
Liu Q, Sun Y, Chen J, Li P, Li C, Niu G, Jiang L. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit. BMC Genomics 2016; 17:929. [PMID: 27852215 PMCID: PMC5112726 DOI: 10.1186/s12864-016-3275-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Symplocos paniculata, asiatic sweetleaf or sapphire berry, is a widespread shrub or small tree from Symplocaceae with high oil content and excellent fatty acid composition in fruit. It has been used as feedstocks for biodiesel and cooking oil production in China. Little transcriptome information is available on the regulatory molecular mechanism of oil accumulation at different fruit development stages. RESULTS The transcriptome at four different stages of fruit development (10, 80,140, and 170 days after flowering) of S. paniculata were analyzed. Approximately 28 million high quality clean reads were generated. These reads were trimmed and assembled into 182,904 non-redundant putative transcripts with a mean length of 592.91 bp and N50 length of 785 bp, respectively. Based on the functional annotation through Basic Local Alignment Search Tool (BLAST) with public protein database, the key enzymes involved in lipid metabolism were identified, and a schematic diagram of the pathway and temporal expression patterns of lipid metabolism was established. About 13,939 differentially expressed unigenes (DEGs) were screened out using differentially expressed sequencing (DESeq) method. The transcriptional regulatory patterns of the identified enzymes were highly related to the dynamic oil accumulation along with the fruit development of S. paniculata. In addition, quantitative real-time PCR (qRT-PCR) of six vital genes was significantly correlated with DESeq data. CONCLUSIONS The transcriptome sequences obtained and deposited in NCBI would enrich the public database and provide an unprecedented resource for the discovery of the genes associated with lipid metabolism pathway in S. paniculata. Results in this study will lay the foundation for exploring transcriptional regulatory profiles, elucidating molecular regulatory mechanisms, and accelerating genetic engineering process to improve the yield and quality of seed oil of S. paniculata.
Collapse
Affiliation(s)
- Qiang Liu
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.,Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Youping Sun
- Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Jinzheng Chen
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.,Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Peiwang Li
- Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Changzhu Li
- Hunan Academy of Forestry, 658 South Shaoshan Rd., Changsha, Hunan, 410004, China
| | - Genhua Niu
- Texas A&M AgriLife Research Center at El Paso, 1380 A&M Circle, El Paso, TX, 79927, USA
| | - Lijuan Jiang
- Central South University of Forestry and Technology, 498 South Shaoshan Rd., Changsha, Hunan, 410004, China.
| |
Collapse
|