101
|
Escandón M, Meijón M, Valledor L, Pascual J, Pinto G, Cañal MJ. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata. FRONTIERS IN PLANT SCIENCE 2018; 9:485. [PMID: 29719546 PMCID: PMC5914196 DOI: 10.3389/fpls.2018.00485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
- Plant Biotechnology Unit, University Institute of Biotechnology of Asturias (IUBA), Oviedo, Spain
- *Correspondence: Mónica Escandón, ; María Jesús Cañal,
| |
Collapse
|
102
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
103
|
Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quilleré I, Cukier C, Gibon Y, Limami AM, Nicolas S, Brulé L, Lea PJ, Maranas CD, Hirel B. Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield. THE PLANT CELL 2017; 29:919-943. [PMID: 28396554 PMCID: PMC5466022 DOI: 10.1105/tpc.16.00613] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 05/18/2023]
Abstract
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.
Collapse
Affiliation(s)
- Rafael A Cañas
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Yves Gibon
- Unité Mixte Recherche 1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome Platform, INRA de Bordeaux-Aquitaine, F-33883 Villenave d'Ornon cedex, France
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Stéphane Nicolas
- Station de Génétique Végétale, INRA-UPS-INAPG-CNRS, Ferme du Moulon, F-91190 Gif/Yvette, France
| | - Lenaïg Brulé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| |
Collapse
|
104
|
Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H. Cowpea ( Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. FRONTIERS IN PLANT SCIENCE 2017; 8:586. [PMID: 28473840 PMCID: PMC5397532 DOI: 10.3389/fpls.2017.00586] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 05/12/2023]
Abstract
Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment vs. osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted.
Collapse
Affiliation(s)
- Piebiep Goufo
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
- *Correspondence: Piebiep Goufo
| | - José M. Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Tiago F. Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Carlos M. Correia
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Manuela R. Oliveira
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e VeterináriaOeiras, Portugal
| | - Eduardo A. S. Rosa
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeiras, Portugal
| | - Henrique Trindade
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto DouroVila Real, Portugal
| |
Collapse
|
105
|
Rangel-Huerta OD, Gil A. Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. Int J Mol Sci 2016; 17:ijms17122072. [PMID: 27941699 PMCID: PMC5187872 DOI: 10.3390/ijms17122072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
Abstract
Metabolomics is the study of low-weight molecules present in biological samples such as biofluids, tissue/cellular extracts, and culture media. Metabolomics research is increasing, and at the moment, it has several applications in the food science and nutrition fields. In the present review, we provide an update about the most frequently used methodologies and metabolomic platforms in these areas. Also, we discuss different metabolomic strategies regarding the discovery of new bioactive compounds (BACs) in plant-based foods. Furthermore, we review the existing literature related to the use of metabolomics to investigate the potential protective role of BACs in the prevention and treatment of non-communicable chronic diseases, namely cardiovascular disease, diabetes, and cancer.
Collapse
Affiliation(s)
- Oscar Daniel Rangel-Huerta
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Center for Biomedical Research, University of Granada, 18100 Granada, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Center for Biomedical Research, University of Granada, 18100 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Ciberobn, 28029 Madrid, Spain.
| |
Collapse
|
106
|
Ong RG, Higbee A, Bottoms S, Dickinson Q, Xie D, Smith SA, Serate J, Pohlmann E, Jones AD, Coon JJ, Sato TK, Sanford GR, Eilert D, Oates LG, Piotrowski JS, Bates DM, Cavalier D, Zhang Y. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:237. [PMID: 27826356 PMCID: PMC5100259 DOI: 10.1186/s13068-016-0657-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. RESULTS While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. CONCLUSIONS In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Rebecca Garlock Ong
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- Department of Chemical Engineering, Michigan State University, East Lansing, MI USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI USA
| | - Alan Higbee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Scott Bottoms
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Scott A. Smith
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI USA
| | - Jose Serate
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Arthur Daniel Jones
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI USA
- Department of Chemistry, Michigan State University, East Lansing, MI USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg R. Sanford
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI USA
| | - Dustin Eilert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff S. Piotrowski
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Donna M. Bates
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - David Cavalier
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
107
|
Jorge TF, Mata AT, António C. Mass spectrometry as a quantitative tool in plant metabolomics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150370. [PMID: 27644967 PMCID: PMC5031636 DOI: 10.1098/rsta.2015.0370] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana T Mata
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
108
|
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X. The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1471. [PMID: 27833614 PMCID: PMC5080359 DOI: 10.3389/fpls.2016.01471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 05/18/2023]
Abstract
At the eight-leaf stage, maize is highly sensitive to stresses such as drought, heat, and their combination, which greatly affect its yield. At present, few studies have analyzed maize response to combined drought and heat stress at the eight-leaf stage. In this study, we measured certain physical parameters of maize at the eight-leaf stage when it was exposed to drought, heat, and their combination. The results showed an increase in the content of H2O2 and malondialdehyde (MDA), and in the enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but a decrease in the quantum efficiency of photosystem II (ΦPSII). The most obvious increase or decrease in physical parameters was found under the combined stress condition. Moreover, to identify proteins differentially regulated by the three stress conditions at the eight-leaf stage, total proteins from the maize leaves were identified and quantified using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. In summary, the expression levels of 135, 65, and 201 proteins were significantly changed under the heat, drought and combined stress conditions, respectively. Of the 135, 65, and 201 differentially expressed proteins, 61, 28, and 16 responded exclusively to drought stress, heat stress, and combined stress, respectively. Bioinformatics analysis implied that chaperone proteins and proteases play important roles in the adaptive response of maize to heat stress and combined stress, and that the leaf senescence promoted by ethylene-responsive protein and ripening-related protein may play active roles in maize tolerance to combined drought and heat stress. The signaling pathways related to differentially expressed proteins were obviously different under all three stress conditions. Thus, the functional characterization of these differentially expressed proteins will be helpful for discovering new targets to enhance maize tolerance to stress.
Collapse
Affiliation(s)
- Feiyun Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yulong Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Fuju Tai
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Chaohai Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
109
|
Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y. Fortune telling: metabolic markers of plant performance. Metabolomics 2016; 12:158. [PMID: 27729832 PMCID: PMC5025497 DOI: 10.1007/s11306-016-1099-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND In the last decade, metabolomics has emerged as a powerful diagnostic and predictive tool in many branches of science. Researchers in microbes, animal, food, medical and plant science have generated a large number of targeted or non-targeted metabolic profiles by using a vast array of analytical methods (GC-MS, LC-MS, 1H-NMR….). Comprehensive analysis of such profiles using adapted statistical methods and modeling has opened up the possibility of using single or combinations of metabolites as markers. Metabolic markers have been proposed as proxy, diagnostic or predictors of key traits in a range of model species and accurate predictions of disease outbreak frequency, developmental stages, food sensory evaluation and crop yield have been obtained. AIM OF REVIEW (i) To provide a definition of plant performance and metabolic markers, (ii) to highlight recent key applications involving metabolic markers as tools for monitoring or predicting plant performance, and (iii) to propose a workable and cost-efficient pipeline to generate and use metabolic markers with a special focus on plant breeding. KEY MESSAGE Using examples in other models and domains, the review proposes that metabolic markers are tending to complement and possibly replace traditional molecular markers in plant science as efficient estimators of performance.
Collapse
Affiliation(s)
- Olivier Fernandez
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Maria Urrutia
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Stéphane Bernillon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | | | | | | | - Nicolas Langlade
- UMR LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Alain Charcosset
- UMR GQE, INRA, CNRS, Université Paris Sud, AgroParisTech, Ferme du Moulon, 91190 Gif-Sur-Yvette, France
| | - Annick Moing
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Centre INRA de Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, 33140 Villenave d’Ornon, France
| |
Collapse
|
110
|
Obata T, Florian A, Timm S, Bauwe H, Fernie AR. On the metabolic interactions of (photo)respiration. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3003-14. [PMID: 27029352 DOI: 10.1093/jxb/erw128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Given that photorespiration is inextricably linked to the process of photosynthesis by virtue of sharing the common first enzyme Rubisco, the photorespiratory pathway has been less subject to study in isolation than many other metabolic pathways. That said, despite often being described to be linked to reactions of ammonia assimilation, C1 metabolism and respiratory metabolism, the precise molecular mechanisms governing these linkages in land plants remain partially obscure. The application of broad metabolite profiling on mutants with altered levels of metabolic enzymes has facilitated the identification of common and distinct metabolic responses among them. Here we provide an update of the recent findings from such studies, focusing particularly on the interplay between photorespiration and the metabolic reactions of mitochondrial respiration. In order to do so we evaluated (i) changes in organic acids following environmental perturbation of metabolism, (ii) changes in organic acid levels in a wide range of photorespiratory mutants, (iii) changes in levels of photorespiratory metabolites in transgenic tomato lines deficient in the expression of enzymes of the tricarboxylic acid cycle. In addition, we estimated the rates of photorespiration in a complete set of tricarboxylic acid cycle transgenic tomato lines. Finally, we discuss insight concerning the interaction between photorespiration and other pathways that has been attained following the development of (13)CO2-based flux profiling methods.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexandra Florian
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
111
|
Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK, Weber APM. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3015-26. [PMID: 27053720 DOI: 10.1093/jxb/erw145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Michael Hodges
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Younès Dellero
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, 141012 Sevilla, Spain
| | - Agepati S Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Xin-Guang Zhu
- CAS-MPG Partner Institutes for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
112
|
Jin R, Wang Y, Liu R, Gou J, Chan Z. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses. FRONTIERS IN PLANT SCIENCE 2016; 6:1123. [PMID: 26779204 PMCID: PMC4703826 DOI: 10.3389/fpls.2015.01123] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 05/24/2023]
Abstract
Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), [Formula: see text] and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.
Collapse
Affiliation(s)
- Rui Jin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ruijie Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Junbo Gou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| |
Collapse
|