101
|
Lei Y, Zhang J, Shan H. Strided Self-Supervised Low-Dose CT Denoising for Lung Nodule Classification. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:257-268. [PMID: 36939784 PMCID: PMC9590543 DOI: 10.1007/s43657-021-00025-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Lung nodule classification based on low-dose computed tomography (LDCT) images has attracted major attention thanks to the reduced radiation dose and its potential for early diagnosis of lung cancer from LDCT-based lung cancer screening. However, LDCT images suffer from severe noise, largely influencing the performance of lung nodule classification. Current methods combining denoising and classification tasks typically require the corresponding normal-dose CT (NDCT) images as the supervision for the denoising task, which is impractical in the context of clinical diagnosis using LDCT. To jointly train these two tasks in a unified framework without the NDCT images, this paper introduces a novel self-supervised method, termed strided Noise2Neighbors or SN2N, for blind medical image denoising and lung nodule classification, where the supervision is generated from noisy input images. More specifically, the proposed SN2N can construct the supervision information from its neighbors for LDCT denoising, which does not need NDCT images anymore. The proposed SN2N method enables joint training of LDCT denoising and lung nodule classification tasks by using self-supervised loss for denoising and cross-entropy loss for classification. Extensively experimental results on the Mayo LDCT dataset demonstrate that our SN2N achieves competitive performance compared with the supervised learning methods that have paired NDCT images as supervision. Moreover, our results on the LIDC-IDRI dataset show that the joint training of LDCT denoising and lung nodule classification significantly improves the performance of LDCT-based lung nodule classification.
Collapse
Affiliation(s)
- Yiming Lei
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, 200433 China
| | - Junping Zhang
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai, 200433 China
| | - Hongming Shan
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433 China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210 China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 201210 China
| |
Collapse
|
102
|
Chao L, Wang Z, Zhang H, Xu W, Zhang P, Li Q. Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.12.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Bera S, Biswas PK. Noise Conscious Training of Non Local Neural Network Powered by Self Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3663-3673. [PMID: 34224348 DOI: 10.1109/tmi.2021.3094525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The explosive rise of the use of Computer tomography (CT) imaging in medical practice has heightened public concern over the patient's associated radiation dose. On the other hand, reducing the radiation dose leads to increased noise and artifacts, which adversely degrades the scan's interpretability. In recent times, the deep learning-based technique has emerged as a promising method for low dose CT(LDCT) denoising. However, some common bottleneck still exists, which hinders deep learning-based techniques from furnishing the best performance. In this study, we attempted to mitigate these problems with three novel accretions. First, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks. Our proposed module assisted in boosting the denoising by a significant margin. Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising. The loss mentioned above also assisted to alleviate the laborious effort required while training CT denoising network using image patches. Lastly, we propose a novel discriminator function for CT denoising tasks. The conventional vanilla discriminator tends to overlook the fine structural details and focus on the global agreement. Our proposed discriminator leverage self-attention and pixel-wise GANs for restoring the diagnostic quality of LDCT images. Our method validated on a publicly available dataset of the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge performed remarkably better than the existing state of the art method. The corresponding source code is available at: https://github.com/reach2sbera/ldct_nonlocal.
Collapse
|
104
|
Zavala-Mondragon LA, de With PHN, van der Sommen F. Image Noise Reduction Based on a Fixed Wavelet Frame and CNNs Applied to CT. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:9386-9401. [PMID: 34757905 DOI: 10.1109/tip.2021.3125489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation exposure in CT imaging leads to increased patient risk. This motivates the pursuit of reduced-dose scanning protocols, in which noise reduction processing is indispensable to warrant clinically acceptable image quality. Convolutional Neural Networks (CNNs) have received significant attention as an alternative for conventional noise reduction and are able to achieve state-of-the art results. However, the internal signal processing in such networks is often unknown, leading to sub-optimal network architectures. The need for better signal preservation and more transparency motivates the use of Wavelet Shrinkage Networks (WSNs), in which the Encoding-Decoding (ED) path is the fixed wavelet frame known as Overcomplete Haar Wavelet Transform (OHWT) and the noise reduction stage is data-driven. In this work, we considerably extend the WSN framework by focusing on three main improvements. First, we simplify the computation of the OHWT that can be easily reproduced. Second, we update the architecture of the shrinkage stage by further incorporating knowledge of conventional wavelet shrinkage methods. Finally, we extensively test its performance and generalization, by comparing it with the RED and FBPConvNet CNNs. Our results show that the proposed architecture achieves similar performance to the reference in terms of MSSIM (0.667, 0.662 and 0.657 for DHSN2, FBPConvNet and RED, respectively) and achieves excellent quality when visualizing patches of clinically important structures. Furthermore, we demonstrate the enhanced generalization and further advantages of the signal flow, by showing two additional potential applications, in which the new DHSN2 is used as regularizer: (1) iterative reconstruction and (2) ground-truth free training of the proposed noise reduction architecture. The presented results prove that the tight integration of signal processing and deep learning leads to simpler models with improved generalization.
Collapse
|
105
|
Amirrashedi M, Sarkar S, Mamizadeh H, Ghadiri H, Ghafarian P, Zaidi H, Ay MR. Leveraging deep neural networks to improve numerical and perceptual image quality in low-dose preclinical PET imaging. Comput Med Imaging Graph 2021; 94:102010. [PMID: 34784505 DOI: 10.1016/j.compmedimag.2021.102010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023]
Abstract
The amount of radiotracer injected into laboratory animals is still the most daunting challenge facing translational PET studies. Since low-dose imaging is characterized by a higher level of noise, the quality of the reconstructed images leaves much to be desired. Being the most ubiquitous techniques in denoising applications, edge-aware denoising filters, and reconstruction-based techniques have drawn significant attention in low-count applications. However, for the last few years, much of the credit has gone to deep-learning (DL) methods, which provide more robust solutions to handle various conditions. Albeit being extensively explored in clinical studies, to the best of our knowledge, there is a lack of studies exploring the feasibility of DL-based image denoising in low-count small animal PET imaging. Therefore, herein, we investigated different DL frameworks to map low-dose small animal PET images to their full-dose equivalent with quality and visual similarity on a par with those of standard acquisition. The performance of the DL model was also compared to other well-established filters, including Gaussian smoothing, nonlocal means, and anisotropic diffusion. Visual inspection and quantitative assessment based on quality metrics proved the superior performance of the DL methods in low-count small animal PET studies, paving the way for a more detailed exploration of DL-assisted algorithms in this domain.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hojjat Mamizadeh
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical, Tehran, Iran.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
106
|
Zhang Y, Hu D, Zhao Q, Quan G, Liu J, Liu Q, Zhang Y, Coatrieux G, Chen Y, Yu H. CLEAR: Comprehensive Learning Enabled Adversarial Reconstruction for Subtle Structure Enhanced Low-Dose CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3089-3101. [PMID: 34270418 DOI: 10.1109/tmi.2021.3097808] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
X-ray computed tomography (CT) is of great clinical significance in medical practice because it can provide anatomical information about the human body without invasion, while its radiation risk has continued to attract public concerns. Reducing the radiation dose may induce noise and artifacts to the reconstructed images, which will interfere with the judgments of radiologists. Previous studies have confirmed that deep learning (DL) is promising for improving low-dose CT imaging. However, almost all the DL-based methods suffer from subtle structure degeneration and blurring effect after aggressive denoising, which has become the general challenging issue. This paper develops the Comprehensive Learning Enabled Adversarial Reconstruction (CLEAR) method to tackle the above problems. CLEAR achieves subtle structure enhanced low-dose CT imaging through a progressive improvement strategy. First, the generator established on the comprehensive domain can extract more features than the one built on degraded CT images and directly map raw projections to high-quality CT images, which is significantly different from the routine GAN practice. Second, a multi-level loss is assigned to the generator to push all the network components to be updated towards high-quality reconstruction, preserving the consistency between generated images and gold-standard images. Finally, following the WGAN-GP modality, CLEAR can migrate the real statistical properties to the generated images to alleviate over-smoothing. Qualitative and quantitative analyses have demonstrated the competitive performance of CLEAR in terms of noise suppression, structural fidelity and visual perception improvement.
Collapse
|
107
|
Choi K. Self-supervised Projection Denoising for Low-Dose Cone-Beam CT. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3459-3462. [PMID: 34891984 DOI: 10.1109/embc46164.2021.9629859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We consider the problem of denoising low-dose xray projections for cone-beam CT, where x-ray measurements are typically modeled as signal corrupted by Poisson noise. Since each projection view is a 2D image, we regard the lowdose projection views as examples to train a convolutional neural network. For self-supervised training without ground truth, we partially blind noisy projections and train the denoising model to recover the blind spots of projection views. From the projection views denoised by the learned model, we can reconstruct a high-quality 3D volume with a reconstruction algorithm such as the standard filtered backprojection. Through a series of phantom experiments, our self-supervised denoising approach simultaneously reduces noise level and restores structural information in cone-beam CT images.
Collapse
|
108
|
Bai T, Wang B, Nguyen D, Wang B, Dong B, Cong W, Kalra MK, Jiang S. Deep Interactive Denoiser (DID) for X-Ray Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2965-2975. [PMID: 34329156 DOI: 10.1109/tmi.2021.3101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dose computed tomography (LDCT) is desirable for both diagnostic imaging and image-guided interventions. Denoisers are widely used to improve the quality of LDCT. Deep learning (DL)-based denoisers have shown state-of-the-art performance and are becoming mainstream methods. However, there are two challenges to using DL-based denoisers: 1) a trained model typically does not generate different image candidates with different noise-resolution tradeoffs, which are sometimes needed for different clinical tasks; and 2) the model's generalizability might be an issue when the noise level in the testing images differs from that in the training dataset. To address these two challenges, in this work, we introduce a lightweight optimization process that can run on top of any existing DL-based denoiser during the testing phase to generate multiple image candidates with different noise-resolution tradeoffs suitable for different clinical tasks in real time. Consequently, our method allows users to interact with the denoiser to efficiently review various image candidates and quickly pick the desired one; thus, we termed this method deep interactive denoiser (DID). Experimental results demonstrated that DID can deliver multiple image candidates with different noise-resolution tradeoffs and shows great generalizability across various network architectures, as well as training and testing datasets with various noise levels.
Collapse
|
109
|
Peng Z, Ni M, Shan H, Lu Y, Li Y, Zhang Y, Pei X, Chen Z, Xie Q, Wang S, Xu XG. Feasibility evaluation of PET scan-time reduction for diagnosing amyloid-β levels in Alzheimer's disease patients using a deep-learning-based denoising algorithm. Comput Biol Med 2021; 138:104919. [PMID: 34655898 DOI: 10.1016/j.compbiomed.2021.104919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To shorten positron emission tomography (PET) scanning time in diagnosing amyloid-β levels thus increasing the workflow in centers involving Alzheimer's Disease (AD) patients. METHODS PET datasets were collected for 25 patients injected with 18F-AV45 radiopharmaceutical. To generate necessary training data, PET images from both normal-scanning-time (20-min) as well as so-called "shortened-scanning-time" (1-min, 2-min, 5-min, and 10-min) were reconstructed for each patient. Building on our earlier work on MCDNet (Monte Carlo Denoising Net) and a new Wasserstein-GAN algorithm, we developed a new denoising model called MCDNet-2 to predict normal-scanning-time PET images from a series of shortened-scanning-time PET images. The quality of the predicted PET images was quantitatively evaluated using objective metrics including normalized-root-mean-square-error (NRMSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR). Furthermore, two radiologists performed subjective evaluations including the qualitative evaluation and a five-point grading evaluation. The denoising performance of the proposed MCDNet-2 was finally compared with those of U-Net, MCDNet, and a traditional denoising method called Gaussian Filtering. RESULTS The proposed MCDNet-2 can yield good denoising performance in 5-min PET images. In the comparison of denoising methods, MCDNet-2 yielded the best performance in the subjective evaluation although it is comparable with MCDNet in objective comparison (NRMSE, PSNR, and SSIM). In the qualitative evaluation of amyloid-β positive or negative results, MCDNet-2 was found to achieve a classification accuracy of 100%. CONCLUSIONS The proposed denoising method has been found to reduce the PET scan time from the normal level of 20 min to 5 min but still maintaining acceptable image quality in correctly diagnosing amyloid-β levels. These results suggest strongly that deep learning-based methods such as ours can be an attractive solution to the clinical needs to improve PET imaging workflow.
Collapse
Affiliation(s)
- Zhao Peng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai, 201210, China
| | - Yu Lu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Yongzhe Li
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Yifan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xi Pei
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Nuclear Medical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Chen
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Nuclear Medical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shicun Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China; Institute of Nuclear Medical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - X George Xu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China; Institute of Nuclear Medical Physics, University of Science and Technology of China, Hefei, 230026, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
110
|
Chen K, Long K, Ren Y, Sun J, Pu X. Lesion-Inspired Denoising Network: Connecting Medical Image Denoising and Lesion Detection. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA 2021. [DOI: 10.1145/3474085.3475480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kecheng Chen
- University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Long
- University of Electronic Science and Technology of China, Chengdu, China
| | - Yazhou Ren
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jiayu Sun
- West China Hospital of SiChuan University, Chengdu, China
| | - Xiaorong Pu
- University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
111
|
Park SB. Advances in deep learning for computed tomography denoising. World J Clin Cases 2021; 9:7614-7619. [PMID: 34621813 PMCID: PMC8462260 DOI: 10.12998/wjcc.v9.i26.7614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Computed tomography (CT) has seen a rapid increase in use in recent years. Radiation from CT accounts for a significant proportion of total medical radiation. However, given the known harmful impact of radiation exposure to the human body, the excessive use of CT in medical environments raises concerns. Concerns over increasing CT use and its associated radiation burden have prompted efforts to reduce radiation dose during the procedure. Therefore, low-dose CT has attracted major attention in the radiology, since CT-associated x-ray radiation carries health risks for patients. The reduction of the CT radiation dose, however, compromises the signal-to-noise ratio, which affects image quality and diagnostic performance. Therefore, several denoising methods have been developed and applied to image processing technologies with the goal of reducing image noise. Recently, deep learning applications that improve image quality by reducing the noise and artifacts have become commercially available for diagnostic imaging. Deep learning image reconstruction shows great potential as an advanced reconstruction method to improve the quality of clinical CT images. These improvements can provide significant benefit to patients regardless of their disease, and further advances are expected in the near future.
Collapse
Affiliation(s)
- Sung Bin Park
- Department of Radiology, Chung-Ang University Hospital, Seoul 06973, South Korea
| |
Collapse
|
112
|
Kulathilake KASH, Abdullah NA, Bandara AMRR, Lai KW. InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9975762. [PMID: 34552709 PMCID: PMC8452440 DOI: 10.1155/2021/9975762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022]
Abstract
Low-dose Computed Tomography (LDCT) has gained a great deal of attention in clinical procedures due to its ability to reduce the patient's risk of exposure to the X-ray radiation. However, reducing the X-ray dose increases the quantum noise and artifacts in the acquired LDCT images. As a result, it produces visually low-quality LDCT images that adversely affect the disease diagnosing and treatment planning in clinical procedures. Deep Learning (DL) has recently become the cutting-edge technology of LDCT denoising due to its high performance and data-driven execution compared to conventional denoising approaches. Although the DL-based models perform fairly well in LDCT noise reduction, some noise components are still retained in denoised LDCT images. One reason for this noise retention is the direct transmission of feature maps through the skip connections of contraction and extraction path-based DL modes. Therefore, in this study, we propose a Generative Adversarial Network with Inception network modules (InNetGAN) as a solution for filtering the noise transmission through skip connections and preserving the texture and fine structure of LDCT images. The proposed Generator is modeled based on the U-net architecture. The skip connections in the U-net architecture are modified with three different inception network modules to filter out the noise in the feature maps passing over them. The quantitative and qualitative experimental results have shown the performance of the InNetGAN model in reducing noise and preserving the subtle structures and texture details in LDCT images compared to the other state-of-the-art denoising algorithms.
Collapse
Affiliation(s)
- K. A. Saneera Hemantha Kulathilake
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Computing, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
113
|
Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2973108. [PMID: 34484414 PMCID: PMC8416402 DOI: 10.1155/2021/2973108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
The X-ray radiation from computed tomography (CT) brought us the potential risk. Simply decreasing the dose makes the CT images noisy and diagnostic performance compromised. Here, we develop a novel denoising low-dose CT image method. Our framework is based on an improved generative adversarial network coupling with the hybrid loss function, including the adversarial loss, perceptual loss, sharpness loss, and structural similarity loss. Among the loss function terms, perceptual loss and structural similarity loss are made use of to preserve textural details, and sharpness loss can make reconstruction images clear. The adversarial loss can sharp the boundary regions. The results of experiments show the proposed method can effectively remove noise and artifacts better than the state-of-the-art methods in the aspects of the visual effect, the quantitative measurements, and the texture details.
Collapse
|
114
|
Wu M, Chen W, Chen Q, Park H. Noise Reduction for SD-OCT Using a Structure-Preserving Domain Transfer Approach. IEEE J Biomed Health Inform 2021; 25:3460-3472. [PMID: 33822730 DOI: 10.1109/jbhi.2021.3071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spectral-domain optical coherence tomography (SD-OCT) images inevitably suffer from multiplicative speckle noise caused by random interference. This study proposes an unsupervised domain adaptation approach for noise reduction by translating the SD-OCT to the corresponding high-quality enhanced depth imaging (EDI)-OCT. We propose a structure-persevered cycle-consistent generative adversarial network for unpaired image-to-image translation, which can be applied to imbalanced unpaired data, and can effectively preserve retinal details based on a structure-specific cross-domain description. It also imposes smoothness by penalizing the intensity variation of the low reflective region between consecutive slices. Our approach was tested on a local data set that consisted of 268 SD-OCT volumes and two public independent validation datasets including 20 SD-OCT volumes and 17 B-scans, respectively. Experimental results show that our method can effectively suppress noise and maintain the retinal structure, compared with other traditional approaches and deep learning methods in terms of qualitative and quantitative assessments. Our proposed method shows good performance for speckle noise reduction and can assist downstream tasks of OCT analysis.
Collapse
|
115
|
Alla Takam C, Tchagna Kouanou A, Samba O, Mih Attia T, Tchiotsop D. Big Data Framework Using Spark Architecture for Dose Optimization Based on Deep Learning in Medical Imaging. ARTIF INTELL 2021. [DOI: 10.5772/intechopen.97746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep learning and machine learning provide more consistent tools and powerful functions for recognition, classification, reconstruction, noise reduction, quantification and segmentation in biomedical image analysis. Some breakthroughs. Recently, some applications of deep learning and machine learning for low-dose optimization in computed tomography have been developed. Due to reconstruction and processing technology, it has become crucial to develop architectures and/or methods based on deep learning algorithms to minimize radiation during computed tomography scan inspections. This chapter is an extension work done by Alla et al. in 2020 and explain that work very well. This chapter introduces the deep learning for computed tomography scan low-dose optimization, shows examples described in the literature, briefly discusses new methods for computed tomography scan image processing, and provides conclusions. We propose a pipeline for low-dose computed tomography scan image reconstruction based on the literature. Our proposed pipeline relies on deep learning and big data technology using Spark Framework. We will discuss with the pipeline proposed in the literature to finally derive the efficiency and importance of our pipeline. A big data architecture using computed tomography images for low-dose optimization is proposed. The proposed architecture relies on deep learning and allows us to develop effective and appropriate methods to process dose optimization with computed tomography scan images. The real realization of the image denoising pipeline shows us that we can reduce the radiation dose and use the pipeline we recommend to improve the quality of the captured image.
Collapse
|
116
|
Chen Z, Zhang J, Zhang Y, Huang Z. Traffic Accident Data Generation Based on Improved Generative Adversarial Networks. SENSORS 2021; 21:s21175767. [PMID: 34502657 PMCID: PMC8434573 DOI: 10.3390/s21175767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
For urban traffic, traffic accidents are the most direct and serious risk to people’s lives, and rapid recognition and warning of traffic accidents is an important remedy to reduce their harmful effects. However, research scholars are often confronted with the problem of scarce and difficult-to-collect accident data resources for traffic accident scenarios. Therefore, in this paper, a traffic data generation model based on Generative Adversarial Networks (GAN) is developed. To make GAN applicable to non-graphical data, we improve the generator network structure of the model and used the generated model to resample the original data to obtain new traffic accident data. By constructing an adversarial neural network model, we generate a large number of data samples that are similar to the original traffic accident data. Results of the statistical test indicate that the generated samples are not significantly different from the original data. Furthermore, the experiments of traffic accident recognition with several representative classifiers demonstrate that the augmented data can effectively enhance the performance of accident recognition, with a maximum increase in accuracy of 3.05% and a maximum decrease in the false positive rate of 2.95%. Experimental results verify that the proposed method can provide reliable mass data support for the recognition of traffic accidents and road traffic safety.
Collapse
Affiliation(s)
- Zhijun Chen
- Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430070, China; (Z.C.); (J.Z.)
- School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
| | - Jingming Zhang
- Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430070, China; (Z.C.); (J.Z.)
- School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
| | - Yishi Zhang
- School of Management, Wuhan University of Technology, Wuhan 430070, China;
| | - Zihao Huang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-134-1951-6612
| |
Collapse
|
117
|
Javaid U, Souris K, Huang S, Lee JA. Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study. Phys Med 2021; 89:93-103. [PMID: 34358755 DOI: 10.1016/j.ejmp.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Monte Carlo (MC) algorithms provide accurate modeling of dose calculation by simulating the delivery and interaction of many particles through patient geometry. Fast MC simulations using large number of particles are desirable as they can lead to reliable clinical decisions. In this work, we assume that faster simulations with fewer particles can approximate slower ones by denoising them with deep learning. MATERIALS AND METHODS We use mean squared error (MSE) as loss function to train networks (sNet and dUNet), with 2.5D and 3D setups considering volumes of 7 and 24 slices. Our models are trained on proton therapy MC dose distributions of six different tumor sites acquired from 50 patients. We provide networks with input MC dose distributions simulated using 1 × 106 particles while keeping 1 × 109 particles as reference. RESULTS On average over 10 new patients with different tumor sites, in 2.5D and 3D, our models recover relative residual error on target volume, ΔD95TV of 0.67 ± 0.43% and 1.32 ± 0.87% for sNet vs. 0.83 ± 0.53% and 1.66 ± 0.98% for dUNet, compared to the noisy input at 12.40 ± 4.06%. Moreover, the denoising time for a dose distribution is: < 9s and < 1s for sNet vs. < 16s and < 1.5s for dUNet in 2.5D and 3D, in comparison to about 100 min (MC simulation using 1 × 109 particles). CONCLUSION We propose a fast framework that can successfully denoise MC dose distributions. Starting from MC doses with 1 × 106 particles only, the networks provide comparable results as MC doses with1 × 109 particles, reducing simulation time significantly.
Collapse
Affiliation(s)
- Umair Javaid
- Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium; Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium.
| | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| | - Sheng Huang
- Department of Med. Phys., Memorial Sloan Kettering Cancer Center, New York, United States
| | - John A Lee
- Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium; Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| |
Collapse
|
118
|
Chen J, Zhang C, Traverso A, Zhovannik I, Dekker A, Wee L, Bermejo I. Generative models improve radiomics reproducibility in low dose CTs: a simulation study. Phys Med Biol 2021; 66. [PMID: 34289463 DOI: 10.1088/1361-6560/ac16c0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022]
Abstract
Radiomics is an active area of research in medical image analysis, however poor reproducibility of radiomics has hampered its application in clinical practice. This issue is especially prominent when radiomic features are calculated from noisy images, such as low dose computed tomography (CT) scans. In this article, we investigate the possibility of improving the reproducibility of radiomic features calculated on noisy CTs by using generative models for denoising. Our work concerns two types of generative models-encoder-decoder network (EDN) and conditional generative adversarial network (CGAN). We then compared their performance against a more traditional 'non-local means' denoising algorithm. We added noise to sinograms of full dose CTs to mimic low dose CTs with two levels of noise: low-noise CT and high-noise CT. Models were trained on high-noise CTs and used to denoise low-noise CTs without re-training. We tested the performance of our model in real data, using a dataset of same-day repeated low dose CTs in order to assess the reproducibility of radiomic features in denoised images. EDN and the CGAN achieved similar improvements on the concordance correlation coefficients (CCC) of radiomic features for low-noise images from 0.87 [95%CI, (0.833, 0.901)] to 0.92 [95%CI, (0.909, 0.935)] and for high-noise images from 0.68 [95%CI, (0.617, 0.745)] to 0.92 [95%CI, (0.909, 0.936)], respectively. The EDN and the CGAN improved the test-retest reliability of radiomic features (mean CCC increased from 0.89 [95%CI, (0.881, 0.914)] to 0.94 [95%CI, (0.927, 0.951)]) based on real low dose CTs. These results show that denoising using EDN and CGANs could be used to improve the reproducibility of radiomic features calculated from noisy CTs. Moreover, images at different noise levels can be denoised to improve the reproducibility using the above models without need for re-training, provided the noise intensity is not excessively greater that of the high-noise CTs. To the authors' knowledge, this is the first effort to improve the reproducibility of radiomic features calculated on low dose CT scans by applying generative models.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Chong Zhang
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Ivan Zhovannik
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands.,Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| |
Collapse
|
119
|
Zhang Z, Liang X, Zhao W, Xing L. Noise2Context: Context-assisted learning 3D thin-layer for low-dose CT. Med Phys 2021; 48:5794-5803. [PMID: 34287948 DOI: 10.1002/mp.15119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of x-ray radiation exposure attract more and more attention. To lower the x-ray radiation, low-dose CT (LDCT) has been widely adopted in certain scenarios, while it will induce the degradation of CT image quality. In this paper, we proposed a deep learning-based method that can train denoising neural networks without any clean data. METHODS In this work, for 3D thin-slice LDCT scanning, we first drive an unsupervised loss function which was equivalent to a supervised loss function with paired noisy and clean samples when the noise in the different slices from a single scan was uncorrelated and zero-mean. Then, we trained the denoising neural network to map one noise LDCT image to its two adjacent LDCT images in a single 3D thin-layer LDCT scanning, simultaneously. In essence, with some latent assumptions, we proposed an unsupervised loss function to train the denoising neural network in an unsupervised manner, which integrated the similarity between adjacent CT slices in 3D thin-layer LDCT. RESULTS Further experiments on Mayo LDCT dataset and a realistic pig head were carried out. In the experiments using Mayo LDCT dataset, our unsupervised method can obtain performance comparable to that of the supervised baseline. With the realistic pig head, our method can achieve optimal performance at different noise levels as compared to all the other methods that demonstrated the superiority and robustness of the proposed Noise2Context. CONCLUSIONS In this work, we present a generalizable LDCT image denoising method without any clean data. As a result, our method not only gets rid of the complex artificial image priors but also amounts of paired high-quality training datasets.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xiaokun Liang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Wei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| |
Collapse
|
120
|
Li X, Wang S, Niu X, Wang L, Chen P. 3D M-Net: Object-Specific 3D Segmentation Network Based on a Single Projection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:5852595. [PMID: 34335721 PMCID: PMC8292052 DOI: 10.1155/2021/5852595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
The internal assembly correctness of industrial products directly affects their performance and service life. Industrial products are usually protected by opaque housing, so most internal detection methods are based on X-rays. Since the dense structural features of industrial products, it is challenging to detect the occluded parts only from projections. Limited by the data acquisition and reconstruction speeds, CT-based detection methods do not achieve real-time detection. To solve the above problems, we design an end-to-end single-projection 3D segmentation network. For a specific product, the network adopts a single projection as input to segment product components and output 3D segmentation results. In this study, the feasibility of the network was verified against data containing several typical assembly errors. The qualitative and quantitative results reveal that the segmentation results can meet industrial assembly real-time detection requirements and exhibit high robustness to noise and component occlusion.
Collapse
Affiliation(s)
- Xuan Li
- State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Sukai Wang
- State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Xiaodong Niu
- State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Liming Wang
- State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| | - Ping Chen
- State Key Lab for Electronic Testing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
121
|
Gao M, Fessler JA, Chan HP. Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1805-1816. [PMID: 33729933 PMCID: PMC8274391 DOI: 10.1109/tmi.2021.3066896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging modality that can reduce false negatives and false positives in mass lesion detection caused by overlapping breast tissue in conventional two-dimensional (2D) mammography. The patient dose of a DBT scan is similar to that of a single 2D mammogram, while acquisition of each projection view adds detector readout noise. The noise is propagated to the reconstructed DBT volume, possibly obscuring subtle signs of breast cancer such as microcalcifications (MCs). This study developed a deep convolutional neural network (DCNN) framework for denoising DBT images with a focus on improving the conspicuity of MCs as well as preserving the ill-defined margins of spiculated masses and normal tissue textures. We trained the DCNN using a weighted combination of mean squared error (MSE) loss and adversarial loss. We configured a dedicated x-ray imaging simulator in combination with digital breast phantoms to generate realistic in silico DBT data for training. We compared the DCNN training between using digital phantoms and using real physical phantoms. The proposed denoising method improved the contrast-to-noise ratio (CNR) and detectability index (d') of the simulated MCs in the validation phantom DBTs. These performance measures improved with increasing training target dose and training sample size. Promising denoising results were observed on the transferability of the digital-phantom-trained denoiser to DBT reconstructed with different techniques and on a small independent test set of human subject DBT images.
Collapse
|
122
|
Jiang C, Zhang X, Zhang N, Zhang Q, Zhou C, Yuan J, He Q, Yang Y, Liu X, Zheng H, Fan W, Hu Z, Liang D. Synthesizing PET/MR (T1-weighted) images from non-attenuation-corrected PET images. Phys Med Biol 2021; 66. [PMID: 34098534 DOI: 10.1088/1361-6560/ac08b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/07/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) imaging can be used for early detection, diagnosis and postoperative patient monitoring of many diseases. Traditional PET imaging requires not only additional computed tomography (CT) imaging or magnetic resonance imaging (MR) to provide anatomical information but also attenuation correction (AC) map calculation based on CT images or MR images for accurate quantitative estimation. During a patient's treatment, PET/CT or PET/MR scans are inevitably repeated many times, leading to additional doses of ionizing radiation (CT scans) and additional economic and time costs (MR scans). To reduce adverse effects while obtaining high-quality PET/MR images in the course of a patient's treatment, especially in the stage of evaluating the effect of postoperative treatment, in this work, we propose a new method based on deep learning, which can directly obtain synthetic attenuation-corrected PET (sAC PET) and synthetic T1-weighted MR (sMR) images based only on non-attenuation-corrected PET (NAC PET) images. Our model, based on the Wasserstein generative adversarial network, first removes noise and artifacts from the NAC PET images to generate sAC PET images and then generates sMR images from the obtained sAC PET images. To evaluate the performance of this generative model, we evaluated it on paired PET/MR images from a total of eighty clinical patients. Based on qualitative and quantitative analysis, the generated sAC PET and sMR images showed a high degree of similarity to the real AC PET and real MR images. These results indicated that our proposed method can reduce the frequency of additional anatomical imaging scans during PET imaging and has great potential in improving doctors' clinical diagnosis efficiency, saving patients' economic expenditure and reducing the radiation risk brought by CT scanning.
Collapse
Affiliation(s)
- Changhui Jiang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China.,National Innovation Center for Advanced Medical Devices, Shenzhen 518131, People's Republic of China
| | - Xu Zhang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Qiyang Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chao Zhou
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jianmin Yuan
- Central Research Institute, Shanghai United Imaging Healthcare, Shanghai 201807, People's Republic of China
| | - Qiang He
- Central Research Institute, Shanghai United Imaging Healthcare, Shanghai 201807, People's Republic of China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xin Liu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, China Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
123
|
Kulathilake KASH, Abdullah NA, Sabri AQM, Lai KW. A review on Deep Learning approaches for low-dose Computed Tomography restoration. COMPLEX INTELL SYST 2021; 9:2713-2745. [PMID: 34777967 PMCID: PMC8164834 DOI: 10.1007/s40747-021-00405-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT) scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance, and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address this topic.
Collapse
Affiliation(s)
- K. A. Saneera Hemantha Kulathilake
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aznul Qalid Md Sabri
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
124
|
Leuschner J, Schmidt M, Baguer DO, Maass P. LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction. Sci Data 2021; 8:109. [PMID: 33863917 PMCID: PMC8052416 DOI: 10.1038/s41597-021-00893-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Deep learning approaches for tomographic image reconstruction have become very effective and have been demonstrated to be competitive in the field. Comparing these approaches is a challenging task as they rely to a great extent on the data and setup used for training. With the Low-Dose Parallel Beam (LoDoPaB)-CT dataset, we provide a comprehensive, open-access database of computed tomography images and simulated low photon count measurements. It is suitable for training and comparing deep learning methods as well as classical reconstruction approaches. The dataset contains over 40000 scan slices from around 800 patients selected from the LIDC/IDRI database. The data selection and simulation setup are described in detail, and the generating script is publicly accessible. In addition, we provide a Python library for simplified access to the dataset and an online reconstruction challenge. Furthermore, the dataset can also be used for transfer learning as well as sparse and limited-angle reconstruction scenarios. Measurement(s) | Low Dose Computed Tomography of the Chest • feature extraction objective | Technology Type(s) | digital curation • image processing technique | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13526360
Collapse
Affiliation(s)
- Johannes Leuschner
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany.
| | - Maximilian Schmidt
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany.
| | - Daniel Otero Baguer
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany
| | - Peter Maass
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany
| |
Collapse
|
125
|
Irfan M, Iftikhar MA, Yasin S, Draz U, Ali T, Hussain S, Bukhari S, Alwadie AS, Rahman S, Glowacz A, Althobiani F. Role of Hybrid Deep Neural Networks (HDNNs), Computed Tomography, and Chest X-rays for the Detection of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3056. [PMID: 33809665 PMCID: PMC8002268 DOI: 10.3390/ijerph18063056] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022]
Abstract
COVID-19 syndrome has extensively escalated worldwide with the induction of the year 2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early intervention and avoid disease succession. This article intends to develop a hybrid deep neural networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into 3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images, denoted as 'hybrid images' (with resolution 1080 × 1080) were collected from different sources, including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data repositories. The 80% hybrid images were used to train the hybrid deep neural network model and the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99% classification accuracy on the test set data.
Collapse
Affiliation(s)
- Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; (M.I.); (A.S.A.); (S.R.)
| | - Muhammad Aksam Iftikhar
- Department of Computer Science, Lahore Campus, COMSATS University Islamabad, Lahore 54000, Pakistan;
| | - Sana Yasin
- Department of Computer Science, University of OKara, Okara 56130, Pakistan;
| | - Umar Draz
- Department of Computer Science, University of Sahiwal, Sahiwal 57000, Pakistan; (U.D.); (S.H.)
| | - Tariq Ali
- Computer Science Department, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Shafiq Hussain
- Department of Computer Science, University of Sahiwal, Sahiwal 57000, Pakistan; (U.D.); (S.H.)
| | - Sarah Bukhari
- Department of Computer Science, National Fertilizer Corporation Institute of Engineering and Technology, Multan 60000, Pakistan;
| | - Abdullah Saeed Alwadie
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; (M.I.); (A.S.A.); (S.R.)
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia; (M.I.); (A.S.A.); (S.R.)
| | - Adam Glowacz
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland;
| | - Faisal Althobiani
- Faculty of Maritime Studies, King Abdulaziz University, Jeddah 21577, Saudi Arabia;
| |
Collapse
|
126
|
Ghosh SK, Biswas B, Ghosh A. A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion. EVOLUTIONARY INTELLIGENCE 2021. [DOI: 10.1007/s12065-019-00344-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
127
|
Gong Y, Shan H, Teng Y, Tu N, Li M, Liang G, Wang G, Wang S. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:213-223. [PMID: 35402757 PMCID: PMC8993163 DOI: 10.1109/trpms.2020.3025071] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.
Collapse
Affiliation(s)
- Yu Gong
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China, and Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 200433, China, and the Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China, and the Key Laboratory of Intelligent Computing in Medical Images, Ministry of Education, Shenyang 110169, China
| | - Ning Tu
- PET-CT/MRI Center and Molecular Imaging Center, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Ming Li
- Neusoft Medical Systems Co., Ltd, Shenyang 110167, China
| | - Guodong Liang
- Neusoft Medical Systems Co., Ltd, Shenyang 110167, China
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
128
|
Torres-Velázquez M, Chen WJ, Li X, McMillan AB. Application and Construction of Deep Learning Networks in Medical Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:137-159. [PMID: 34017931 PMCID: PMC8132932 DOI: 10.1109/trpms.2020.3030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep learning (DL) approaches are part of the machine learning (ML) subfield concerned with the development of computational models to train artificial intelligence systems. DL models are characterized by automatically extracting high-level features from the input data to learn the relationship between matching datasets. Thus, its implementation offers an advantage over common ML methods that often require the practitioner to have some domain knowledge of the input data to select the best latent representation. As a result of this advantage, DL has been successfully applied within the medical imaging field to address problems, such as disease classification and tumor segmentation for which it is difficult or impossible to determine which image features are relevant. Therefore, taking into consideration the positive impact of DL on the medical imaging field, this article reviews the key concepts associated with its evolution and implementation. The sections of this review summarize the milestones related to the development of the DL field, followed by a description of the elements of deep neural network and an overview of its application within the medical imaging field. Subsequently, the key steps necessary to implement a supervised DL application are defined, and associated limitations are discussed.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Wei-Jie Chen
- Department of Electrical and Computer Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Xue Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA, and also with the Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
129
|
Dashtbani Moghari M, Zhou L, Yu B, Young N, Moore K, Evans A, Fulton RR, Kyme AZ. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: Performance and clinical feasibility. Phys Med Biol 2021; 66. [PMID: 33621965 DOI: 10.1088/1361-6560/abe917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Dose reduction in cerebral CT perfusion (CTP) imaging is desirable but is accompanied by an increase in noise that can compromise the image quality and the accuracy of image-based haemodynamic modelling used for clinical decision support in acute ischaemic stroke. The few reported methods aimed at denoising low-dose CTP images lack practicality by considering only small sections of the brain or being computationally expensive. Moreover, the prediction of infarct and penumbra size and location - the chief means of decision support for treatment options - from denoised data has not been explored using these approaches. In this work, we present the first application of a 3D generative adversarial network (3D GAN) for predicting normal-dose CTP data from low-dose CTP data. Feasibility of the approach was tested using real data from 30 acute ischaemic stroke patients in conjunction with low dose simulation. The 3D GAN model was applied to 64^3 voxel patches extracted from two different configurations of the CTP data- frame-based and stacked. The method led to whole-brain denoised data being generated for haemodynamic modelling within 90 seconds. Accuracy of the method was evaluated using standard image quality metrics and the extent to which the clinical content and lesion characteristics of the denoised CTP data were preserved. Results showed an average improvement of 5.15-5.32 dB PSNR and 0.025-0.033 SSIM for CTP images and 2.66-3.95 dB PSNR and 0.036-0.067 SSIM for functional maps at 50% and 25% of normal dose using GAN model in conjunction with a stacked data regime for image synthesis. Consequently, the average lesion volumetric error reduced significantly (p-value < 0.05) by 18-29% and dice coefficient improved significantly by 15-22%. We conclude that GAN-based denoising is a promising practical approach for reducing radiation dose in CTP studies and improving lesion characterisation.
Collapse
Affiliation(s)
- Mahdieh Dashtbani Moghari
- Biomedical Engineering, Faculty of Engineering and Computer Science, Darlington Campus, The University of Sydney, NSW, 2006, AUSTRALIA
| | - Luping Zhou
- The University of Sydney, Sydney, 2006, AUSTRALIA
| | - Biting Yu
- University of Wollongong, Wollongong, New South Wales, AUSTRALIA
| | - Noel Young
- Radiology, Westmead Hospital, Sydney, New South Wales, AUSTRALIA
| | - Krystal Moore
- Westmead Hospital, Sydney, New South Wales, AUSTRALIA
| | - Andrew Evans
- Aged Care & Stroke, Westmead Hospital, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Faculty of Health Sciences, University of Sydney, 94 Mallett Street, Camperdown, Sydney, New South Wales, 2050, AUSTRALIA
| | - Andre Z Kyme
- Brain & Mind Research Institute, University of Sydney, Sydney, NSW 2006, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
130
|
Bao G, Wang X, Xu R, Loh C, Adeyinka OD, Pieris DA, Cherepanoff S, Gracie G, Lee M, McDonald KL, Nowak AK, Banati R, Buckland ME, Graeber MB. PathoFusion: An Open-Source AI Framework for Recognition of Pathomorphological Features and Mapping of Immunohistochemical Data. Cancers (Basel) 2021; 13:617. [PMID: 33557152 PMCID: PMC7913958 DOI: 10.3390/cancers13040617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 01/29/2021] [Indexed: 12/03/2022] Open
Abstract
We have developed a platform, termed PathoFusion, which is an integrated system for marking, training, and recognition of pathological features in whole-slide tissue sections. The platform uses a bifocal convolutional neural network (BCNN) which is designed to simultaneously capture both index and contextual feature information from shorter and longer image tiles, respectively. This is analogous to how a microscopist in pathology works, identifying a cancerous morphological feature in the tissue context using first a narrow and then a wider focus, hence bifocal. Adjacent tissue sections obtained from glioblastoma cases were processed for hematoxylin and eosin (H&E) and immunohistochemical (CD276) staining. Image tiles cropped from the digitized images based on markings made by a consultant neuropathologist were used to train the BCNN. PathoFusion demonstrated its ability to recognize malignant neuropathological features autonomously and map immunohistochemical data simultaneously. Our experiments show that PathoFusion achieved areas under the curve (AUCs) of 0.985 ± 0.011 and 0.988 ± 0.001 in patch-level recognition of six typical pathomorphological features and detection of associated immunoreactivity, respectively. On this basis, the system further correlated CD276 immunoreactivity to abnormal tumor vasculature. Corresponding feature distributions and overlaps were visualized by heatmaps, permitting high-resolution qualitative as well as quantitative morphological analyses for entire histological slides. Recognition of more user-defined pathomorphological features can be added to the system and included in future tissue analyses. Integration of PathoFusion with the day-to-day service workflow of a (neuro)pathology department is a goal. The software code for PathoFusion is made publicly available.
Collapse
Affiliation(s)
- Guoqing Bao
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Xiuying Wang
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Ran Xu
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (R.X.); (C.L.); (O.D.A.); (D.A.P.)
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Christina Loh
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (R.X.); (C.L.); (O.D.A.); (D.A.P.)
| | - Oreoluwa Daniel Adeyinka
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (R.X.); (C.L.); (O.D.A.); (D.A.P.)
| | - Dula Asheka Pieris
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (R.X.); (C.L.); (O.D.A.); (D.A.P.)
| | - Svetlana Cherepanoff
- St Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; (S.C.); (G.G.)
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (M.E.B.)
| | - Gary Gracie
- St Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; (S.C.); (G.G.)
| | - Maggie Lee
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (M.E.B.)
| | - Kerrie L. McDonald
- Cooperative Trials Group of Neuro-Oncology (COGNO), Sydney, NSW 1450, Australia; (K.L.M.); (A.K.N.); (R.B.)
- Brain Cancer Consultancy, Sydney, NSW 2040, Australia
| | - Anna K. Nowak
- Cooperative Trials Group of Neuro-Oncology (COGNO), Sydney, NSW 1450, Australia; (K.L.M.); (A.K.N.); (R.B.)
- Department of Medical Oncology, University of Western Australia, Perth, WA 6009, Australia
| | - Richard Banati
- Cooperative Trials Group of Neuro-Oncology (COGNO), Sydney, NSW 1450, Australia; (K.L.M.); (A.K.N.); (R.B.)
- Life Sciences, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia
- Medical Imaging and Radiation Sciences, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael E. Buckland
- Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (M.L.); (M.E.B.)
- Cooperative Trials Group of Neuro-Oncology (COGNO), Sydney, NSW 1450, Australia; (K.L.M.); (A.K.N.); (R.B.)
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (R.X.); (C.L.); (O.D.A.); (D.A.P.)
| |
Collapse
|
131
|
Muhammad K, Khan S, Ser JD, Albuquerque VHCD. Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:507-522. [PMID: 32603291 DOI: 10.1109/tnnls.2020.2995800] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been presented in the literature for brain tumor classification (BTC) in order to assist radiologists for a better diagnostic analysis. In this overview, we present an in-depth review of the surveys published so far and recent deep learning-based methods for BTC. Our survey covers the main steps of deep learning-based BTC methods, including preprocessing, features extraction, and classification, along with their achievements and limitations. We also investigate the state-of-the-art convolutional neural network models for BTC by performing extensive experiments using transfer learning with and without data augmentation. Furthermore, this overview describes available benchmark data sets used for the evaluation of BTC. Finally, this survey does not only look into the past literature on the topic but also steps on it to delve into the future of this area and enumerates some research directions that should be followed in the future, especially for personalized and smart healthcare.
Collapse
|
132
|
Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification. Sci Rep 2021; 11:1839. [PMID: 33469077 PMCID: PMC7815707 DOI: 10.1038/s41598-021-81525-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
In computer-aided analysis of cardiac MRI data, segmentations of the left ventricle (LV) and myocardium are performed to quantify LV ejection fraction and LV mass, and they are performed after the identification of a short axis slice coverage, where automatic classification of the slice range of interest is preferable. Standard cardiac image post-processing guidelines indicate the importance of the correct identification of a short axis slice range for accurate quantification. We investigated the feasibility of applying transfer learning of deep convolutional neural networks (CNNs) as a means to automatically classify the short axis slice range, as transfer learning is well suited to medical image data where labeled data is scarce and expensive to obtain. The short axis slice images were classified into out-of-apical, apical-to-basal, and out-of-basal, on the basis of short axis slice location in the LV. We developed a custom user interface to conveniently label image slices into one of the three categories for the generation of training data and evaluated the performance of transfer learning in nine popular deep CNNs. Evaluation with unseen test data indicated that among the CNNs the fine-tuned VGG16 produced the highest values in all evaluation categories considered and appeared to be the most appropriate choice for the cardiac slice range classification.
Collapse
|
133
|
DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.2995717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
134
|
Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, Yang X. A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 2021; 22:11-36. [PMID: 33305538 PMCID: PMC7856512 DOI: 10.1002/acm2.13121] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
This paper reviewed the deep learning-based studies for medical imaging synthesis and its clinical application. Specifically, we summarized the recent developments of deep learning-based methods in inter- and intra-modality image synthesis by listing and highlighting the proposed methods, study designs, and reported performances with related clinical applications on representative studies. The challenges among the reviewed studies were then summarized with discussion.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yang Lei
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Yabo Fu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Jacob F. Wynne
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
| | - Walter J. Curran
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Tian Liu
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Xiaofeng Yang
- Department of Radiation OncologyEmory UniversityAtlantaGAUSA
- Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|
135
|
Moen TR, Chen B, Holmes DR, Duan X, Yu Z, Yu L, Leng S, Fletcher JG, McCollough CH. Low-dose CT image and projection dataset. Med Phys 2020; 48:902-911. [PMID: 33202055 DOI: 10.1002/mp.14594] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To describe a large, publicly available dataset comprising computed tomography (CT) projection data from patient exams, both at routine clinical doses and simulated lower doses. ACQUISITION AND VALIDATION METHODS The library was developed under local ethics committee approval. Projection and image data from 299 clinically performed patient CT exams were archived for three types of clinical exams: noncontrast head CT scans acquired for acute cognitive or motor deficit, low-dose noncontrast chest scans acquired to screen high-risk patients for pulmonary nodules, and contrast-enhanced CT scans of the abdomen acquired to look for metastatic liver lesions. Scans were performed on CT systems from two different CT manufacturers using routine clinical protocols. Projection data were validated by reconstructing the data using several different reconstruction algorithms and through use of the data in the 2016 Low Dose CT Grand Challenge. Reduced dose projection data were simulated for each scan using a validated noise-insertion method. Radiologists marked location and diagnosis for detected pathologies. Reference truth was obtained from the patient medical record, either from histology or subsequent imaging. DATA FORMAT AND USAGE NOTES Projection datasets were converted into the previously developed DICOM-CT-PD format, which is an extended DICOM format created to store CT projections and acquisition geometry in a nonproprietary format. Image data are stored in the standard DICOM image format and clinical data in a spreadsheet. Materials are provided to help investigators use the DICOM-CT-PD files, including a dictionary file, data reader, and user manual. The library is publicly available from The Cancer Imaging Archive (https://doi.org/10.7937/9npb-2637). POTENTIAL APPLICATIONS This CT data library will facilitate the development and validation of new CT reconstruction and/or denoising algorithms, including those associated with machine learning or artificial intelligence. The provided clinical information allows evaluation of task-based diagnostic performance.
Collapse
Affiliation(s)
- Taylor R Moen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Baiyu Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David R Holmes
- Biomedical Imaging Resource, Mayo Clinic, Rochester, MN, USA
| | - Xinhui Duan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Zhicong Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
136
|
Zheng A, Gao H, Zhang L, Xing Y. A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT. Phys Med Biol 2020; 65:245030. [PMID: 32365345 DOI: 10.1088/1361-6560/ab8fc1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Helical CT has been widely used in clinical diagnosis. In this work, we focus on a new prototype of helical CT, equipped with sparsely spaced multidetector and multi-slit collimator (MSC) in the axis direction. This type of system can not only lower radiation dose, and suppress scattering by MSC, but also cuts down the manufacturing cost of the detector. The major problem to overcome with such a system, however, is that of insufficient data for reconstruction. Hence, we propose a deep learning-based function optimization method for this ill-posed inverse problem. By incorporating a Radon inverse operator, and disentangling each slice, we significantly simplify the complexity of our network for 3D reconstruction. The network is composed of three subnetworks. Firstly, a convolutional neural network (CNN) in the projection domain is constructed to estimate missing projection data, and to convert helical projection data to 2D fan-beam projection data. This is follwed by the deployment of an analytical linear operator to transfer the data from the projection domain to the image domain. Finally, an additional CNN in the image domain is added for further image refinement. These three steps work collectively, and can be trained end to end. The overall network is trained on a simulated CT dataset based on eight patients from the American Association of Physicists in Medicine (AAPM) Low Dose CT Grand Challenge. We evaluate the trained network on both simulated datasets and clinical datasets. Extensive experimental studies have yielded very encouraging results, based on both visual examination and quantitative evaluation. These results demonstrate the effectiveness of our method and its potential for clinical usage. The proposed method provides us with a new solution for a fully 3D ill-posed problem.
Collapse
Affiliation(s)
- Ao Zheng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China. Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
137
|
Abstract
BACKGROUND Computed tomography (CT) is a central modality in modern radiology contributing to diagnostic medicine in almost every medical subspecialty, but particularly in emergency services. To solve the inverse problem of reconstructing anatomical slice images from the raw output the scanner measures, several methods have been developed, with filtered back projection (FBP) and iterative reconstruction (IR) subsequently providing criterion standards. Currently there are new approaches to reconstruction in the field of artificial intelligence utilizing the upcoming possibilities of machine learning (ML), or more specifically, deep learning (DL). METHOD This review covers the principles of present CT image reconstruction as well as the basic concepts of DL and its implementation in reconstruction. Subsequently commercially available algorithms and current limitations are being discussed. RESULTS AND CONCLUSION DL is an ML method that utilizes a trained artificial neural network to solve specific problems. Currently two vendors are providing DL image reconstruction algorithms for the clinical routine. For these algorithms, a decrease in image noise and an increase in overall image quality that could potentially facilitate the diagnostic confidence in lesion conspicuity or may translate to dose reduction for given clinical tasks have been shown. One study showed equal diagnostic accuracy in the detection of coronary artery stenosis for DL reconstructed images compared to IR at higher image quality levels. Consequently, a lot more research is necessary and should aim at diagnostic superiority in the clinical context covering a broadness of pathologies to demonstrate the reliability of such DL approaches. KEY POINTS · Following iterative reconstruction, there is a new approach to CT image reconstruction in the clinical routine using deep learning (DL) as a method of artificial intelligence.. · DL image reconstruction algorithms decrease image noise, improve image quality, and have potential to reduce radiation dose.. · Diagnostic superiority in the clinical context should be demonstrated in future trials.. CITATION FORMAT · Arndt C, Güttler F, Heinrich A et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr 2021; 193: 252 - 261.
Collapse
|
138
|
Fu Z, Tseng HW, Vedantham S, Karellas A, Bilgin A. A residual dense network assisted sparse view reconstruction for breast computed tomography. Sci Rep 2020; 10:21111. [PMID: 33273541 PMCID: PMC7713379 DOI: 10.1038/s41598-020-77923-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.
Collapse
Affiliation(s)
- Zhiyang Fu
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.,Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Hsin Wu Tseng
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Srinivasan Vedantham
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Andrew Karellas
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Ali Bilgin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA. .,Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA. .,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
139
|
Liu J, Yang Y, Wernick MN, Pretorius PH, King MA. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging. Med Phys 2020; 48:156-168. [PMID: 33145782 DOI: 10.1002/mp.14577] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Post-reconstruction filtering is often applied for noise suppression due to limited data counts in myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT). We study a deep learning (DL) approach for denoising in conventional SPECT-MPI acquisitions, and investigate whether it can be more effective for improving the detectability of perfusion defects compared to traditional postfiltering. METHODS Owing to the lack of ground truth in clinical studies, we adopt a noise-to-noise (N2N) training approach for denoising in SPECT-MPI images. We consider a coupled U-Net (CU-Net) structure which is designed to improve learning efficiency through feature map reuse. For network training we employ a bootstrap procedure to generate multiple noise realizations from list-mode clinical acquisitions. In the experiments we demonstrated the proposed approach on a set of 895 clinical studies, where the iterative OSEM algorithm with three-dimensional (3D) Gaussian postfiltering was used to reconstruct the images. We investigated the detection performance of perfusion defects in the reconstructed images using the non-prewhitening matched filter (NPWMF), evaluated the uniformity of left ventricular (LV) wall in terms of image intensity, and quantified the effect of smoothing on the spatial resolution of the reconstructed LV wall by using its full-width at half-maximum (FWHM). RESULTS Compared to OSEM with Gaussian postfiltering, the DL denoised images with CU-Net significantly improved the detection performance of perfusion defects at all contrast levels (65%, 50%, 35%, and 20%). The signal-to-noise ratio (SNRD ) in the NPWMF output was increased on average by 8% over optimal Gaussian smoothing (P < 10-4 , paired t-test), while the inter-subject variability was greatly reduced. The CU-Net also outperformed a 3D nonlocal means (NLM) filter and a convolutional autoencoder (CAE) denoising network in terms of SNRD . In addition, the FWHM of the LV wall in the reconstructed images was varied by less than 1%. Furthermore, CU-Net also improved the detection performance when the images were processed with less post-reconstruction smoothing (a trade-off of increased noise for better LV resolution), with SNRD improved on average by 23%. CONCLUSIONS The proposed DL with N2N training approach can yield additional noise suppression in SPECT-MPI images over conventional postfiltering. For perfusion defect detection, DL with CU-Net could outperform conventional 3D Gaussian filtering with optimal setting as well as NLM and CAE.
Collapse
Affiliation(s)
- Junchi Liu
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yongyi Yang
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Miles N Wernick
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
140
|
Yuan N, Zhou J, Qi J. Half2Half: deep neural network based CT image denoising without independent reference data. ACTA ACUST UNITED AC 2020; 65:215020. [DOI: 10.1088/1361-6560/aba939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
141
|
Yang CC. Evaluation of Impact of Factors Affecting CT Radiation Dose for Optimizing Patient Dose Levels. Diagnostics (Basel) 2020; 10:E787. [PMID: 33028021 PMCID: PMC7600150 DOI: 10.3390/diagnostics10100787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
The dose metrics and factors influencing radiation exposure for patients undergoing head, chest, and abdominal computed tomography (CT) scans were investigated for optimization of patient dose levels. The local diagnostic reference levels (DRLs) of adult CT scans performed in our hospital were established based on 28,147 consecutive examinations, including 5510 head scans, 9091 chest scans, and 13,526 abdominal scans. Among the six CT scanners used in our hospital, four of them are 64-slice multi-detector CT units (MDCT64), and the other two have detector slices higher than 64 (MDCTH). Multivariate analysis was conducted to evaluate the effects of body size, kVp, mAs, and pitch on volume CT dose index (CTDIvol). The local DRLs expressed in terms of the 75th percentile of CTDIvol for the head, chest, and abdominal scans performed on MDCT64 were 59.32, 9.24, and 10.64 mGy, respectively. The corresponding results for MDCTH were 57.90, 7.67, and 9.86 mGy. In regard to multivariate analysis, CTDIvol showed various dependence on the predictors investigated in this study. All regression relationships have coefficient of determination (R2) larger than 0.75, indicating a good fit to the data. Overall, the research results obtained through our workflow could facilitate the modification of CT imaging procedures once the local DRLs are unusually high compared to the national DRLs.
Collapse
Affiliation(s)
- Ching-Ching Yang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
142
|
Nemoto M, Chida K. Reducing the Breast Cancer Risk and Radiation Dose of Radiography for Scoliosis in Children: A Phantom Study. Diagnostics (Basel) 2020; 10:E753. [PMID: 32993028 PMCID: PMC7600947 DOI: 10.3390/diagnostics10100753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022] Open
Abstract
Full-spinal radiographs (FRs) are often the first choice of imaging modality in the investigation of scoliosis. However, FRs are strongly related to breast cancer occurrence due to multiple large-field radiographic examinations taken during childhood and adolescence, which may increase the risk for breast cancer in adulthood among women with scoliosis. The purpose of this study was to consider various technical parameters to reduce the patient radiation dose of FRs for scoliosis. To evaluate breast surface doses (BSDs) in FRs, radio photoluminescence dosimeters were placed in contact with a child phantom. Using the PC-based Monte Carlo (PMC) program for calculating patient doses in medical X-ray examinations, the breast organ dose (BOD) and the effective dose were calculated by performing Monte Carlo simulations using mathematical phantom models. The BSDs in the posteroanterior (PA) view were 0.15-0.34-fold those in the anteroposterior (AP) view. The effective dose in the PA view was 0.4-0.61-fold that in the AP view. BSD measurements were almost equivalent to the BODs obtained using PMC at all exposure settings. During FRs, the PA view without an anti-scatter grid significantly reduced the breast dose compared to the AP view with an anti-scatter grid.
Collapse
Affiliation(s)
- Manami Nemoto
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Miyagi, Japan;
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575, Miyagi, Japan;
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba, Sendai 980-0845, Miyagi, Japan
| |
Collapse
|
143
|
Al'Aref SJ, Einstein AJ. Reduction in radiation exposure using a focused low-voltage scan before coronary CT angiography. J Cardiovasc Comput Tomogr 2020; 15:246-248. [PMID: 32948486 DOI: 10.1016/j.jcct.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Subhi J Al'Aref
- Division of Cardiology, Department of Medicine. University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Andrew J Einstein
- Department of Medicine, Seymour, Paul, and Gloria Milstein Division of Cardiology, And Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, United States.
| |
Collapse
|
144
|
Lyu Q, Shan H, Steber C, Helis C, Whitlow CT, Chan M, Wang G. Multi-Contrast Super-Resolution MRI Through a Progressive Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2738-2749. [PMID: 32086201 PMCID: PMC7673259 DOI: 10.1109/tmi.2020.2974858] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) is widely used for screening, diagnosis, image-guided therapy, and scientific research. A significant advantage of MRI over other imaging modalities such as computed tomography (CT) and nuclear imaging is that it clearly shows soft tissues in multi-contrasts. Compared with other medical image super-resolution methods that are in a single contrast, multi-contrast super-resolution studies can synergize multiple contrast images to achieve better super-resolution results. In this paper, we propose a one-level non-progressive neural network for low up-sampling multi-contrast super-resolution and a two-level progressive network for high up-sampling multi-contrast super-resolution. The proposed networks integrate multi-contrast information in a high-level feature space and optimize the imaging performance by minimizing a composite loss function, which includes mean-squared-error, adversarial loss, perceptual loss, and textural loss. Our experimental results demonstrate that 1) the proposed networks can produce MRI super-resolution images with good image quality and outperform other multi-contrast super-resolution methods in terms of structural similarity and peak signal-to-noise ratio; 2) combining multi-contrast information in a high-level feature space leads to a significantly improved result than a combination in the low-level pixel space; and 3) the progressive network produces a better super-resolution image quality than the non-progressive network, even if the original low-resolution images were highly down-sampled.
Collapse
Affiliation(s)
- Qing Lyu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - Cole Steber
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Corbin Helis
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Christopher T. Whitlow
- Department of Radiology, Department of Biomedical Engineering, and Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | |
Collapse
|
145
|
Ramon AJ, Yang Y, Pretorius PH, Johnson KL, King MA, Wernick MN. Improving Diagnostic Accuracy in Low-Dose SPECT Myocardial Perfusion Imaging With Convolutional Denoising Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2893-2903. [PMID: 32167887 PMCID: PMC9472754 DOI: 10.1109/tmi.2020.2979940] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Lowering the administered dose in SPECT myocardial perfusion imaging (MPI) has become an important clinical problem. In this study we investigate the potential benefit of applying a deep learning (DL) approach for suppressing the elevated imaging noise in low-dose SPECT-MPI studies. We adopt a supervised learning approach to train a neural network by using image pairs obtained from full-dose (target) and low-dose (input) acquisitions of the same patients. In the experiments, we made use of acquisitions from 1,052 subjects and demonstrated the approach for two commonly used reconstruction methods in clinical SPECT-MPI: 1) filtered backprojection (FBP), and 2) ordered-subsets expectation-maximization (OSEM) with corrections for attenuation, scatter and resolution. We evaluated the DL output for the clinical task of perfusion-defect detection at a number of successively reduced dose levels (1/2, 1/4, 1/8, 1/16 of full dose). The results indicate that the proposed DL approach can achieve substantial noise reduction and lead to improvement in the diagnostic accuracy of low-dose data. In particular, at 1/2 dose, DL yielded an area-under-the-ROC-curve (AUC) of 0.799, which is nearly identical to the AUC = 0.801 obtained by OSEM at full-dose ( p -value = 0.73); similar results were also obtained for FBP reconstruction. Moreover, even at 1/8 dose, DL achieved AUC = 0.770 for OSEM, which is above the AUC = 0.755 obtained at full-dose by FBP. These results indicate that, compared to conventional reconstruction filtering, DL denoising can allow for additional dose reduction without sacrificing the diagnostic accuracy in SPECT-MPI.
Collapse
|
146
|
Kiyasseh D, Zhu T, Clifton D. The Promise of Clinical Decision Support Systems Targetting Low-Resource Settings. IEEE Rev Biomed Eng 2020; 15:354-371. [PMID: 32813662 DOI: 10.1109/rbme.2020.3017868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Low-resource clinical settings are plagued by low physician-to-patient ratios and a shortage of high-quality medical expertise and infrastructure. Together, these phenomena lead to over-burdened healthcare systems that under-serve the needs of the community. Alleviating this burden can be undertaken by the introduction of clinical decision support systems (CDSSs); systems that support stakeholders (ranging from physicians to patients) within the clinical setting in their day-to-day activities. Such systems, which have proven to be effective in the developed world, remain to be under-explored in low-resource settings. This review attempts to summarize the research focused on clinical decision support systems that either target stakeholders within low-resource clinical settings or diseases commonly found in such environments. When categorizing our findings according to disease applications, we find that CDSSs are predominantly focused on dealing with bacterial infections and maternal care, do not leverage deep learning, and have not been evaluated prospectively. Together, these highlight the need for increased research in this domain in order to impact a diverse set of medical conditions and ultimately improve patient outcomes.
Collapse
|
147
|
Generalization of diffusion magnetic resonance imaging–based brain age prediction model through transfer learning. Neuroimage 2020; 217:116831. [DOI: 10.1016/j.neuroimage.2020.116831] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
|
148
|
Baffour FI, Glazebrook KN, Kumar SK, Broski SM. Role of imaging in multiple myeloma. Am J Hematol 2020; 95:966-977. [PMID: 32350883 DOI: 10.1002/ajh.25846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
With rapid advancements in the diagnosis and treatment of multiple myeloma (MM), imaging has become instrumental in detection of intramedullary and extramedullary disease, providing prognostic information, and assessing therapeutic efficacy. Whole-body low dose computed tomography (WBLDCT) has emerged as the study of choice to detect osteolytic bone disease. Positron emission tomography/computed tomography (PET/CT) combines functional and morphologic information to identify MM disease activity and assess treatment response. Magnetic resonance imaging (MRI) has excellent soft-tissue contrast and is the modality of choice for bone marrow evaluation. This review focuses on the imaging modalities available for MM patient management, highlighting advantages, disadvantages, and applications of each.
Collapse
Affiliation(s)
| | | | - Shaji K. Kumar
- Department of Internal Medicine, Division of HematologyMayo Clinic Rochester Minnesota USA
| | | |
Collapse
|
149
|
Sheng K. Artificial intelligence in radiotherapy: a technological review. Front Med 2020; 14:431-449. [PMID: 32728877 DOI: 10.1007/s11684-020-0761-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Radiation therapy (RT) is widely used to treat cancer. Technological advances in RT have occurred in the past 30 years. These advances, such as three-dimensional image guidance, intensity modulation, and robotics, created challenges and opportunities for the next breakthrough, in which artificial intelligence (AI) will possibly play important roles. AI will replace certain repetitive and labor-intensive tasks and improve the accuracy and consistency of others, particularly those with increased complexity because of technological advances. The improvement in efficiency and consistency is important to manage the increasing cancer patient burden to the society. Furthermore, AI may provide new functionalities that facilitate satisfactory RT. The functionalities include superior images for real-time intervention and adaptive and personalized RT. AI may effectively synthesize and analyze big data for such purposes. This review describes the RT workflow and identifies areas, including imaging, treatment planning, quality assurance, and outcome prediction, that benefit from AI. This review primarily focuses on deep-learning techniques, although conventional machine-learning techniques are also mentioned.
Collapse
Affiliation(s)
- Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
150
|
Zhou Q, Ding M, Zhang X. Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network. SENSORS 2020; 20:s20133724. [PMID: 32635206 PMCID: PMC7374418 DOI: 10.3390/s20133724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
Image deblurring has been a challenging ill-posed problem in computer vision. Gaussian blur is a common model for image and signal degradation. The deep learning-based deblurring methods have attracted much attention due to their advantages over the traditional methods relying on hand-designed features. However, the existing deep learning-based deblurring techniques still cannot perform well in restoring the fine details and reconstructing the sharp edges. To address this issue, we have designed an effective end-to-end deep learning-based non-blind image deblurring algorithm. In the proposed method, a multi-stream bottom-top-bottom attention network (MBANet) with the encoder-to-decoder structure is designed to integrate low-level cues and high-level semantic information, which can facilitate extracting image features more effectively and improve the computational efficiency of the network. Moreover, the MBANet adopts a coarse-to-fine multi-scale strategy to process the input images to improve image deblurring performance. Furthermore, the global information-based fusion and reconstruction network is proposed to fuse multi-scale output maps to improve the global spatial information and recurrently refine the output deblurred image. The experiments were done on the public GoPro dataset and the realistic and dynamic scenes (REDS) dataset to evaluate the effectiveness and robustness of the proposed method. The experimental results show that the proposed method generally outperforms some traditional deburring methods and deep learning-based state-of-the-art deblurring methods such as scale-recurrent network (SRN) and denoising prior driven deep neural network (DPDNN) in terms of such quantitative indexes as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) and human vision.
Collapse
|