101
|
Anzola A, González R, Gámez-Belmonte R, Ocón B, Aranda CJ, Martínez-Moya P, López-Posadas R, Hernández-Chirlaque C, Sánchez de Medina F, Martínez-Augustin O. miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli. Sci Rep 2018; 8:17350. [PMID: 30478292 PMCID: PMC6255912 DOI: 10.1038/s41598-018-35338-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.
Collapse
Grants
- BFU2014-57736-P, SAF2011-22922 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- AGL2014-5883-R, SAF-2011-22812 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- SAF2017-88457-R, BFU2014-57736-P, SAF2011-22922 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- CTS-245, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CTS-235, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CTS-245, CTS-6736 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Andrea Anzola
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Raquel González
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Patricia Martínez-Moya
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Rocío López-Posadas
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain.
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
102
|
Soderborg TK, Clark SE, Mulligan CE, Janssen RC, Babcock L, Ir D, Young B, Krebs N, Lemas DJ, Johnson LK, Weir T, Lenz LL, Frank DN, Hernandez TL, Kuhn KA, D'Alessandro A, Barbour LA, El Kasmi KC, Friedman JE. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun 2018; 9:4462. [PMID: 30367045 PMCID: PMC6203757 DOI: 10.1038/s41467-018-06929-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with increased risk for offspring obesity and non-alcoholic fatty liver disease (NAFLD), but the causal drivers of this association are unclear. Early colonization of the infant gut by microbes plays a critical role in establishing immunity and metabolic function. Here, we compare germ-free mice colonized with stool microbes (MB) from 2-week-old infants born to obese (Inf-ObMB) or normal-weight (Inf-NWMB) mothers. Inf-ObMB-colonized mice demonstrate increased hepatic gene expression for endoplasmic reticulum stress and innate immunity together with histological signs of periportal inflammation, a histological pattern more commonly reported in pediatric cases of NAFLD. Inf-ObMB mice show increased intestinal permeability, reduced macrophage phagocytosis, and dampened cytokine production suggestive of impaired macrophage function. Furthermore, exposure to a Western-style diet in Inf-ObMB mice promotes excess weight gain and accelerates NAFLD. Overall, these results provide functional evidence supporting a causative role of maternal obesity-associated infant dysbiosis in childhood obesity and NAFLD.
Collapse
Affiliation(s)
- Taylor K Soderborg
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Sarah E Clark
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Christopher E Mulligan
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Rachel C Janssen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Lyndsey Babcock
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Bridget Young
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Pediatrics; Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Dominick J Lemas
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainsville, FL, 32610, USA
| | - Linda K Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Tiffany Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, 80523, CO, USA
| | - Laurel L Lenz
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Teri L Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Kristine A Kuhn
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Linda A Barbour
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Karim C El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA. .,Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA. .,Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
103
|
Cho MS, Kim SY, Suk KT, Kim BY. Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. J Microbiol 2018; 56:855-867. [PMID: 30377993 DOI: 10.1007/s12275-018-8346-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver diseases worldwide and its incidence continues to increase. NAFLD occurs when the body can no longer effectively store excess energy in the adipose tissue. Despite the increasing prevalence of NAFLD, making lifestyle changes, including increased exercise, is often an elusive goal for patients with NAFLD. The liver directly connects to the gut-gastrointestinal milieu via the portal vein, which are all part of the gut-liver axis. Therefore, the gut-microbiome and microbial products have been actively studied as likely key factors in NAFLD pathophysiology. Hence, dysbiosis of the gut microbiome and therapeutic manipulation of the gut-liver axis are being investigated. Novel therapeutic approaches for modulating gut microbiota through the administration of probiotics, prebiotics, synbiotics, and antibiotics have been proposed with numerous promising initial reports on the effectiveness and clinical applications of these approaches. This review delves into the current evidence on novel therapies that modulate gut microbiota and discusses ongoing clinical trials targeting the gut-liver axis for the management and prevention of NAFLD.
Collapse
Affiliation(s)
| | - Sang Yeol Kim
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| | | |
Collapse
|
104
|
|
105
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
106
|
Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018; 24:1532-1535. [PMID: 30150716 DOI: 10.1038/s41591-018-0164-x] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.
Collapse
|
107
|
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018; 9:1853. [PMID: 30150987 PMCID: PMC6099188 DOI: 10.3389/fimmu.2018.01853] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Once known exclusively for their role in nutrients absorption, primary bile acids, chenodeoxycholic and cholic acid, and secondary bile acids, deoxycholic and lithocholic acid, are signaling molecules, generated from cholesterol breakdown by the interaction of the host and intestinal microbiota, acting on several receptors including the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5) and the Farnesoid-X-Receptor (FXR). Both receptors are placed at the interface of the host immune system with the intestinal microbiota and are highly represented in cells of innate immunity such as intestinal and liver macrophages, dendritic cells and natural killer T cells. Here, we review how GPBAR1 and FXR modulate the intestinal and liver innate immune system and contribute to the maintenance of a tolerogenic phenotype in entero-hepatic tissues, and how regulation of innate immunity might help to explain beneficial effects exerted by GPBAR1 and FXR ligands in immune and metabolic disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Section of Gastroenterology, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
108
|
Li Y, Liu T, Yan C, Xie R, Guo Z, Wang S, Zhang Y, Li Z, Wang B, Cao H. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Mol Pharm 2018; 15:3860-3870. [PMID: 30036479 DOI: 10.1021/acs.molpharmaceut.8b00347] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a common chronic liver disorder, is prevalent in the world. Recent evidence demonstrates that the "gut-liver axis" is related well to the progression of NAFLD, which regards gut microbiota and the intestinal barrier as two critical factors correlated with NAFLD. Diammonium glycyrrhizinate (DG), a compound of the natural bioactive pentacyclic triterpenoid glycoside, is the main component of licorice root extracts. The anti-inflammatory and liver protection effects of DG have already been reported, but to date, the mechanism has not been fully elucidated. In this research, we observed that DG reduced body weight, liver steatosis, as well as hepatic inflammation in NAFLD model mice induced by a high-fat diet. Illumina sequencing of the 16S rRNA revealed that DG intervention notably altered the composition of the gut microbiota in NAFLD mice. The richness of gut microbiota was significantly increased by DG. Specifically, DG reduced the Firmicutes-to- Bacteroidetes ratio and the endotoxin-producing bacteria such as Desulfovibrio and elevated the abundance of probiotics such as Proteobacteria and Lactobacillus. DG could augment the levels of short-chain fatty acid (SCFA)-producing bacteria such as Ruminococcaceae and Lachnospiraceae and promote SCFA production. In addition, DG supplementation dramatically alleviated the intestinal low-grade inflammation. Meanwhile, DG improved the expression of tight junction proteins, the goblet cell number, and mucin secretion and sequentially enhanced the function of intestinal barrier. Collectively, the prevention of NAFLD by DG might be mediated by modulating gut microbiota and restoring the intestinal barrier.
Collapse
|
109
|
Fiorucci S, Biagioli M, Distrutti E. Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacol Res 2018; 134:289-298. [PMID: 30021122 DOI: 10.1016/j.phrs.2018.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
With an estimated prevalence of ≈25% in Western and Asian countries, non alcoholic fatty liver disease (NAFLD), caused by chronic excessive caloric intake, is the emerging as the most prevalent liver disorder worldwide. NAFLD exists in two clinical entities, non-alcoholic fatty liver disease (NAFL), a relative benign disease that carry on minimal risk of liver-related morbidity but significant risk of cardiovascular complications, and non-alcoholic steatohepatitis (NASH), a progressive liver disorder with a significant risk for development of liver-related morbidities and mortality. While, liver injury in NASH is contributed by lipid overload in hepatocytes, lipotoxicity, the main determinant of disease progression is an inflammation-driven fibrotic response. Here, we review the landscape of emerging pharmacological interventions in the treatment of NAFL and NASH. A consensus exists that, while treating the liver component of NASH requires development of novel pharmacological approaches, the future therapy of NASH needs to be tailored to the single patient and most likely will be a combination of agents acting on specific pathogenic mechanisms at different disease stage.
Collapse
Affiliation(s)
- Stefano Fiorucci
- University of Perugia, Department Surgical and Biomedical Sciences, Perugia, Italy.
| | - Michele Biagioli
- University of Perugia, Department Surgical and Biomedical Sciences, Perugia, Italy
| | | |
Collapse
|
110
|
Jung Y, Kim I, Mannaa M, Kim J, Wang S, Park I, Kim J, Seo YS. Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Sci Biotechnol 2018; 28:261-267. [PMID: 30815318 DOI: 10.1007/s10068-018-0433-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders. Possible links have been recently found between the gut-microbiota and the host metabolism in development of NAFLD and obesity. Therefore, understanding the changes in intestinal microbiota during the progression of NAFLD, is important. In this study, the effect of Kombucha tea (KT), obtained by microbial fermentation of sugared black tea, was investigated on gut-microbiota during the progression of NAFLD. The results indicated a decrease in Erysipelotrichia class by treatment with KT in comparison to the methionine/choline-deficient (MCD)-fed db/db mice. Allobaculum, Turicibacter, and Clostridium genera, were only detected in MCD-fed db/db mice and were decreased after treatment with KT, whereas Lactobacillus was more abundant in MCD + KT-fed mice than in MCD only-fed mice and Mucispirillum, was found only in the MCD + KT-fed mice group. Our results demonstrated that the change of intestinal microbiota was influenced by KT intake, contributing to combat NAFLD.
Collapse
Affiliation(s)
- Youngmi Jung
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Inyoung Kim
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Mohamed Mannaa
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Jinnyun Kim
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Sihyung Wang
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Inmyoung Park
- 2Department of Asian Food and Culinary Arts, Youngsan University, Busan, 48015 Korea
| | - Jieun Kim
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| | - Young-Su Seo
- 1Department of Integrated Biological Science, Pusan National University, Busan, 46241 Korea
| |
Collapse
|
111
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 831] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
112
|
Chu X, Jin Q, Chen H, Wood GC, Petrick A, Strodel W, Gabrielsen J, Benotti P, Mirshahi T, Carey DJ, Still CD, DiStefano JK, Gerhard GS. CCL20 is up-regulated in non-alcoholic fatty liver disease fibrosis and is produced by hepatic stellate cells in response to fatty acid loading. J Transl Med 2018; 16:108. [PMID: 29690903 PMCID: PMC5937820 DOI: 10.1186/s12967-018-1490-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a prevalent complication of extreme obesity. Loading of the liver with fat can progress to inflammation and fibrosis including cirrhosis. The molecular factors involved in the progression from simple steatosis to fibrosis remain poorly understood. Methods Gene expression profiling using microarray, PCR array, and RNA sequencing was performed on RNA from liver biopsy tissue from patients with extreme obesity. Patients were grouped based on histological findings including normal liver histology with no steatosis, lobular inflammation, or fibrosis, and grades 1, 2, 3, and 4 fibrosis with coexistent steatosis and lobular inflammation. Validation of expression was conducted using quantitative PCR. Serum analysis was performed using ELISA. Expression analysis of hepatocytes and hepatic stellate cells in response to lipid loading were conducted in vitro using quantitative PCR and ELISA. Results Three orthogonal methods to profile human liver biopsy RNA each identified the chemokine CCL20 (CC chemokine ligand 20 or MIP-3 alpha) gene as one of the most up-regulated transcripts in NAFLD fibrosis relative to normal histology, validated in a replication group. CCL20 protein levels in serum measured in 224 NAFLD patients were increased in severe fibrosis (p < 0.001), with moderate correlation of hepatic transcript levels and serum levels. Expression of CCL20, but not its cognate receptor CC chemokine receptor 6, was significantly (p < 0.001) increased in response to fatty acid loading in LX-2 hepatic stellate cells, with relative increases greater than those in HepG2 hepatocyte cells. Conclusions These results suggest that expression of CCL20, an important inflammatory mediator, is increased in NAFLD fibrosis. CCL20 serves as a chemoattractant molecule for immature dendritic cells, which have been shown to produce many of the inflammatory molecules that mediate liver fibrosis. These data also point to hepatic stellate cells as a key cell type that may respond to lipid loading of the liver. Electronic supplementary material The online version of this article (10.1186/s12967-018-1490-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Chu
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Qunyan Jin
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hui Chen
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - G Craig Wood
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Anthony Petrick
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - William Strodel
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Jon Gabrielsen
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Peter Benotti
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Tooraj Mirshahi
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - David J Carey
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Christopher D Still
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | | | - Glenn S Gerhard
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA. .,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 960 Medical Education and Research Building (MERB), 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
113
|
de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 2018; 57:861-876. [PMID: 28875318 DOI: 10.1007/s00394-017-1524-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. RESULT The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium. CONCLUSION Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.
Collapse
Affiliation(s)
- Fabiana de Faria Ghetti
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Unidade de Nutrição Clínica, Hospital Universitário, Rua Catulo Breviglieri, s/n, Bairro Santa Catarina, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil.
| | - Daiane Gonçalves Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliano Machado de Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
114
|
Friedman JE, Dobrinskikh E, Alfonso‐Garcia A, Fast A, Janssen RC, Soderborg TK, Anderson AL, Reisz JA, D'Alessandro A, Frank DN, Robertson CE, de la Houssaye BA, Johnson LK, Orlicky DJ, Wang XX, Levi M, Potma EO, El Kasmi KC, Jonscher KR. Pyrroloquinoline quinone prevents developmental programming of microbial dysbiosis and macrophage polarization to attenuate liver fibrosis in offspring of obese mice. Hepatol Commun 2018; 2:313-328. [PMID: 29507905 PMCID: PMC5831029 DOI: 10.1002/hep4.1139] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/02/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
Increasingly, evidence suggests that exposure to maternal obesity creates an inflammatory environment in utero, exerting long-lasting postnatal signatures on the juvenile innate immune system and microbiome that may predispose offspring to development of fatty liver disease. We found that exposure to a maternal Western-style diet (WD) accelerated fibrogenesis in the liver of offspring and was associated with early recruitment of proinflammatory macrophages at 8-12 weeks and microbial dysbiosis as early as 3 weeks of age. We further demonstrated that bone marrow-derived macrophages (BMDMs) were polarized toward an inflammatory state at 8 weeks of age and that a potent antioxidant, pyrroloquinoline quinone (PQQ), reversed BMDM metabolic reprogramming from glycolytic toward oxidative metabolism by restoring trichloroacetic acid cycle function at isocitrate dehydrogenase. This resulted in reduced inflammation and inhibited collagen fibril formation in the liver at 20 weeks of age, even when PQQ was withdrawn at 3 weeks of age. Beginning at 3 weeks of age, WD-fed mice developed a decreased abundance of Parabacteroides and Lactobacillus, together with increased Ruminococcus and decreased tight junction gene expression by 20 weeks, whereas microbiota of mice exposed to PQQ retained compositional stability with age, which was associated with improved liver health. Conclusion: Exposure to a maternal WD induces early gut dysbiosis and disrupts intestinal tight junctions, resulting in BMDM polarization and induction of proinflammatory and profibrotic programs in the offspring that persist into adulthood. Disrupted macrophage and microbiota function can be attenuated by short-term maternal treatment with PQQ prior to weaning, suggesting that reshaping the early gut microbiota in combination with reprogramming macrophages during early weaning may alleviate the sustained proinflammatory environment, preventing the rapid progression of nonalcoholic fatty liver disease to nonalcoholic steatohepatitis in offspring of obese mothers. (Hepatology Communications 2018;2:313-328).
Collapse
Affiliation(s)
| | - Evgenia Dobrinskikh
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Alba Alfonso‐Garcia
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | - Alexander Fast
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | | | | | - Aimee L. Anderson
- Children's Hospital Colorado, Digestive Disease Institute and Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics
| | | | | | | | | | | | | | | | - Xiaoxin X. Wang
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Eric O. Potma
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | - Karim C. El Kasmi
- Children's Hospital Colorado, Digestive Disease Institute and Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics
| | - Karen R. Jonscher
- Department of AnesthesiologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
115
|
Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol 2018; 14:99-114. [PMID: 29286050 DOI: 10.1038/nrendo.2017.173] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus are common diseases that often coexist and might act synergistically to increase the risk of hepatic and extra-hepatic clinical outcomes. NAFLD affects up to 70-80% of patients with type 2 diabetes mellitus and up to 30-40% of adults with type 1 diabetes mellitus. The coexistence of NAFLD and diabetes mellitus increases the risk of developing not only the more severe forms of NAFLD but also chronic vascular complications of diabetes mellitus. Indeed, substantial evidence links NAFLD with an increased risk of developing cardiovascular disease and other cardiac and arrhythmic complications in patients with type 1 diabetes mellitus or type 2 diabetes mellitus. NAFLD is also associated with an increased risk of developing microvascular diabetic complications, especially chronic kidney disease. This Review focuses on the strong association between NAFLD and the risk of chronic vascular complications in patients with type 1 diabetes mellitus or type 2 diabetes mellitus, thereby promoting an increased awareness of the extra-hepatic implications of this increasingly prevalent and burdensome liver disease. We also discuss the putative underlying mechanisms by which NAFLD contributes to vascular diseases, as well as the emerging role of changes in the gut microbiota (dysbiosis) in the pathogenesis of NAFLD and associated vascular diseases.
Collapse
Affiliation(s)
- Giovanni Targher
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Amedeo Lonardo
- Azienda Ospedaliera Universitaria di Modena, Ospedale Civile Sant'Agostino Estense, Via Giardini 1355, 41126 Baggiovara, Modena, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, Institute of Developmental Sciences (IDS), MP887, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
116
|
Gut Microbiota as a Driver of Inflammation in Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2018; 2018:9321643. [PMID: 29563854 PMCID: PMC5833468 DOI: 10.1155/2018/9321643] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease and the consequent burden of metabolic syndrome have increased in recent years. Although the pathogenesis of nonalcoholic fatty liver disease is not completely understood, it is thought to be the hepatic manifestation of the dysregulation of insulin-dependent pathways leading to insulin resistance and adipose tissue accumulation in the liver. Recently, the gut-liver axis has been proposed as a key player in the pathogenesis of NAFLD, as the passage of bacteria-derived products into the portal circulation could lead to a trigger of innate immunity, which in turn leads to liver inflammation. Additionally, higher prevalence of intestinal dysbiosis, larger production of endogenous ethanol, and higher prevalence of increased intestinal permeability and bacterial translocation were found in patients with liver injury. In this review, we describe the role of intestinal dysbiosis in the activation of the inflammatory cascade in NAFLD.
Collapse
|
117
|
Saltzman ET, Palacios T, Thomsen M, Vitetta L. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Front Microbiol 2018; 9:61. [PMID: 29441049 PMCID: PMC5797576 DOI: 10.3389/fmicb.2018.00061] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Adverse fluctuations in the distribution of the intestinal microbiome cohort has been associated with the onset of intra- and extra-intestinal inflammatory conditions, like the metabolic syndrome (MetS) and it's hepatic manifestation, non-alcoholic fatty liver disease (NAFLD). The intestinal microbial community of obese compared to lean subjects has been shown to undergo configurational shifts in various genera, including but not limited to increased abundances of Prevotella, Escherichia, Peptoniphilus, and Parabacteroides and decreased levels of Bifidobacteria, Roseburia, and Eubacteria genera. At the phylum level, decreased Bacteroidetes and increased Firmicutes have been reported. The intestinal microbiota therefore presents an important target for designing novel therapeutic modalities that target extra-intestinal inflammatory disorders, such as NAFLD. This review hypothesizes that disruption of the intestinal-mucosal macrophage interface is a key factor in intestinal-liver axis disturbances. Intestinal immune responses implicated in the manifestation, maintenance and progression of NAFLD provide insights into the dialogue between the intestinal microbiome, the epithelia and mucosal immunity. The pro-inflammatory activity and immune imbalances implicated in NAFLD pathophysiology are reported to stem from dysbiosis of the intestinal epithelia which can serve as a source of hepatoxic effects. We posit that the hepatotoxic consequences of intestinal dysbiosis are compounded through intestinal microbiota-mediated inflammation of the local mucosa that encourages mucosal immune dysfunction, thus contributing important plausible insight in NAFLD pathogenesis. The administration of probiotics and prebiotics as a cure-all remedy for all chronic diseases is not advocated, instead, the incorporation of evidence based probiotic/prebiotic formulations as adjunctive modalities may enhance lifestyle modification management strategies for the amelioration of NAFLD.
Collapse
Affiliation(s)
- Emma T. Saltzman
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Talia Palacios
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Michael Thomsen
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| |
Collapse
|
118
|
Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 2018; 8:1466. [PMID: 29362454 PMCID: PMC5780381 DOI: 10.1038/s41598-018-19753-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
This study aimed to determine if there is an association between dysbiosis and nonalcoholic fatty liver disease (NAFLD) independent of obesity and insulin resistance (IR). This is a prospective cross-sectional study assessing the intestinal microbiome (IM) of 39 adults with biopsy-proven NAFLD (15 simple steatosis [SS]; 24 nonalcoholic steatohepatitis [NASH]) and 28 healthy controls (HC). IM composition (llumina MiSeq Platform) in NAFLD patients compared to HC were identified by two statistical methods (Metastats, Wilcoxon). Selected taxa was validated using quantitative PCR (qPCR). Metabolites in feces and serum were also analyzed. In NAFLD, 8 operational taxonomic units, 6 genera, 6 families and 2 phyla (Bacteroidetes, Firmicutes) were less abundant and; 1 genus (Lactobacillus) and 1 family (Lactobacillaceae) were more abundant compared to HC. Lower abundance in both NASH and SS patients compared to HC were confirmed by qPCR for Ruminococcus, Faecalibacterium prausnitzii and Coprococcus. No difference was found between NASH and SS. This lower abundance in NAFLD (NASH+SS) was independent of BMI and IR. NAFLD patients had higher concentrations of fecal propionate and isobutyric acid and serum 2-hydroxybutyrate and L-lactic acid. These findings suggest a potential role for a specific IM community and functional profile in the pathogenesis of NAFLD.
Collapse
|
119
|
Abstract
PURPOSE OF REVIEW An imbalance between pathogenic and protective microbiota characterizes dysbiosis. Presence of dysbiosis may affect immunity, tolerance, or disease depending on a variety of conditions. In the transplant patient population, the need for immunosuppression and widespread use of prophylactic and therapeutic antimicrobial agents create new posttransplant microbiota communities that remain to be fully defined. RECENT FINDINGS Studies in mice have demonstrated significant bidirectional interactions between microbiota-derived products and host immune cells. The stimulation of regulatory T cell and T helper cell type 17 cells by specific products leads to maintenance of immune homeostasis versus activation of inflammation, respectively. Dysbiosis may lead to development of antigen cross-reactivity, which may affect alloreactivity. Certain immunologic sequelae of microbiota are pronounced in chronic kidney disease, because of uremia and renal metabolism of microbiota metabolites. Dietary modifications, probiotics, and fecal microbiota transplant have been investigated for alteration of microbiota in humans. SUMMARY Researchers have begun to identify dysbioses associated with clinical conditions, including chronic kidney disease, posttransplant infection, and rejection. This information will allow clinicians not only to select at-risk patients for early intervention, but also to develop therapies that restore the microbiota to a state of homeostasis or tolerance.
Collapse
|
120
|
Woodhouse CA, Patel VC, Singanayagam A, Shawcross DL. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther 2018; 47:192-202. [PMID: 29083037 DOI: 10.1111/apt.14397] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/06/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mortality from chronic liver disease is rising exponentially. The liver is intimately linked to the gut via the portal vein, and exposure to gut microbiota and their metabolites translocating across the gut lumen may impact upon both the healthy and diseased liver. Modulation of gut microbiota could prove to be a potential therapeutic target. AIM To characterise the changes in the gut microbiome that occur in chronic liver disease and to assess the impact of manipulation of the microbiome on the liver. METHODS We conducted a PubMed search using search terms including 'microbiome', 'liver' and 'cirrhosis' as well as 'non-alcoholic fatty liver disease', 'steatohepatitis', 'alcohol' and 'primary sclerosing cholangitis'. Relevant articles were also selected from references of articles and review of the ClinicalTrials.gov website. RESULTS Reduced bacterial diversity, alcohol sensitivity and the development of gut dysbiosis are seen in several chronic liver diseases, including non-alcoholic fatty liver disease, alcohol-related liver disease and primary sclerosing cholangitis. Perturbations in gut commensals could lead to deficient priming of the immune system predisposing the development of immune-mediated diseases. Furthermore, transfer of stool from an animal with the metabolic syndrome may induce steatosis in a healthy counterpart. Patients with cirrhosis develop dysbiosis, small bowel bacterial overgrowth and increased gut wall permeability, allowing bacterial translocation and uptake of endotoxin inducing hepatic and systemic inflammation. CONCLUSIONS Manipulation of the gut microbiota with diet, probiotics or faecal microbiota transplantation to promote the growth of "healthy" bacteria may ameliorate the dysbiosis and alter prognosis.
Collapse
Affiliation(s)
- C A Woodhouse
- Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | - V C Patel
- Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | - A Singanayagam
- Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | - D L Shawcross
- Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| |
Collapse
|
121
|
Sookoian S, Pirola CJ. Systematic review with meta-analysis: the significance of histological disease severity in lean patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2018; 47:16-25. [PMID: 29083036 DOI: 10.1111/apt.14401] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current evidence suggests that lean and obese patients with nonalcoholic fatty liver disease (NAFLD) share an altered metabolic and cardiovascular profile. However, there is an incomplete understanding of the natural history of "lean-NAFLD." Indeed, an unanswered question is whether lean (BMI ≤ 25 Kg/m2 ) NAFLD-patients are protected from severe histological outcomes. AIM To perform a meta-analysis with the goal of providing a quantitative estimation of the magnitude of fibrosis, as well as histological features associated with the disease severity, in lean versus overweight/obese-NAFLD patients. METHODS Through a systematic search up to July 2017, we identified eight studies that compared histological outcomes in lean (n = 493) versus overweight/obese (n = 2209) patients. RESULTS Relative to lean-NAFLD, overweight/obese-NAFLD patients showed significantly (P = .032) higher fibrosis scores; the observed difference in means between the two groups, which is the absolute difference between the mean value of fibrosis score [0-4] ± standard error, was 0.28 ± 0.13. The risk of having nonalcoholic steatohepatitis-NASH (OR 0.58 95% CI 0.34-0.97) was significantly lower in lean-NAFLD (n = 322) than in overweight/obese-NAFLD (n = 1357), P = .04. Relative to lean-NAFLD, overweight/obese-NAFLD patients also have significantly greater NAFLD activity (difference in means ± SE: 0.58 ± 0.16, P = .0004) and steatosis (difference in means ± SE: 0.23 ± 0.07, P = .002) scores. CONCLUSIONS Lean-NAFLD patients tend to show less severe histological features as compared to overweight/obese-NAFLD patients. Subsequent longitudinal assessment is needed to understand the clinical impact of these findings; however, the significant ~ 25% increment of mean fibrosis score in overweight/obese patients suggests that obesity could predict a worse long-term prognosis.
Collapse
Affiliation(s)
- S Sookoian
- Institute of Medical Research A. Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Buenos Aires, Argentina
| | - C J Pirola
- Institute of Medical Research A. Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET)-University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
122
|
Castaño-Rodríguez N, Mitchell HM, Kaakoush NO. NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol 2017; 31:657-668. [PMID: 29566909 DOI: 10.1016/j.bpg.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. It is well-accepted that gut dysbiosis is associated with NAFLD, however, there is some conflicting evidence regarding the nature of these alterations. Infection with Helicobacter species, mainly H. pylori, has also been associated with increased NAFLD risk, however, some studies have failed to reproduce this finding. Further studies including large study samples and standardised procedures for microbiota analyses, H. pylori detection and NAFLD diagnostic criteria, are required. The mechanisms involving Helicobacter species and the intestinal microbiome in NAFLD pathogenesis appear to be part of the multiple-hit theory, in which increased intestinal permeability, inflammatory responses, altered choline, bile acids and carbohydrate metabolism, production of short-chain fatty acids, urea cycle and urea transport systems, altered maintenance of hepatic γδT-17 cells, insulin resistance, hormones secreted by the adipose tissue, metabolic hormones, bacterial metabolites and Helicobacter toxins, are all implicated.
Collapse
Affiliation(s)
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
123
|
Fang J, Sun X, Xue B, Fang N, Zhou M. Dahuang Zexie Decoction Protects against High-Fat Diet-Induced NAFLD by Modulating Gut Microbiota-Mediated Toll-Like Receptor 4 Signaling Activation and Loss of Intestinal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:2945803. [PMID: 29259643 PMCID: PMC5702401 DOI: 10.1155/2017/2945803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that intestinal dysbiosis, intestinal barrier dysfunction, and activated Toll-like receptor 4 (TLR4) signaling play key roles in the pathogenesis of NAFLD. Dahuang Zexie Decoction (DZD) has been verified to be effective for treating NAFLD, but the mechanisms remain unclear. In this study, we investigated the effects of DZD on NAFLD rats and determined whether such effects were associated with change of the gut microbiota, downregulated activity of the TLR4 signaling pathway, and increased expressions of tight junction (TJ) proteins in the gut. Male Sprague Dawley rats were fed high-fat diet (HFD) for 16 weeks to induce NAFLD and then given DZD intervention for 4 weeks. We found that DZD reduced body and liver weights of NAFLD rats, improved serum lipid levels and liver function parameters, and relieved NAFLD. We further found that DZD changed intestinal bacterial communities, inhibited the intestinal TLR4 signaling pathway, and restored the expressions of TJ proteins in the gut. Meanwhile ten potential components of DZD had been identified. These findings suggest that DZD may protects against NAFLD by modulating gut microbiota-mediated TLR4 signaling activation and loss of intestinal barrier. However, further studies are needed to clarify the mechanism by which DZD treats NAFLD.
Collapse
Affiliation(s)
- Jing Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqi Sun
- Department of Police Tactics, Nanjing Forest Police College, Nanjing 210023, China
| | - Boyu Xue
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanyuan Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Min Zhou
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
124
|
Li J, Sasaki GY, Dey P, Chitchumroonchokchai C, Labyk AN, McDonald JD, Kim JB, Bruno RS. Green tea extract protects against hepatic NFκB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling. J Nutr Biochem 2017; 53:58-65. [PMID: 29190550 DOI: 10.1016/j.jnutbio.2017.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Green tea extract (GTE) reduces NFκB-mediated inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized that its anti-inflammatory activities would be mediated in a Toll-like receptor 4 (TLR4)-dependent manner. Wild-type (WT) and loss-of-function TLR4-mutant (TLR4m) mice were fed a high-fat diet containing GTE at 0 or 2% for 8 weeks before assessing NASH, NFκB-mediated inflammation, TLR4 and its adaptor proteins MyD88 and TRIF, circulating endotoxin, and intestinal tight junction protein mRNA expression. TLR4m mice had lower (P<.05) body mass compared with WT mice but similar adiposity, whereas body mass and adiposity were lowered by GTE regardless of genotype. Liver steatosis, serum alanine aminotransferase, and hepatic lipid peroxidation were also lowered by GTE in WT mice, and were similarly lowered in TLR4m mice regardless of GTE. Phosphorylation of the NFκB p65 subunit and pro-inflammatory genes (TNFα, iNOS, MCP-1, MPO) were lowered by GTE in WT mice, and did not differ from the lowered levels in TLR4m mice regardless of GTE. TLR4m mice had lower TLR4 mRNA, which was also lowered by GTE in both genotypes. TRIF expression was unaffected by genotype and GTE, whereas MyD88 was lower in mice fed GTE regardless of genotype. Serum endotoxin was similarly lowered by GTE regardless of genotype. Tight junction protein mRNA levels were unaffected by genotype. However, GTE similarly increased claudin-1 mRNA in the duodenum and jejunum and mRNA levels of occludin and zonula occluden-1 in the jejunum and ileum. Thus, GTE protects against inflammation during NASH, likely by limiting gut-derived endotoxin translocation and TLR4/MyD88/NFκB activation.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Allison N Labyk
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
125
|
Lee PC, Yang LY, Wang YW, Huang SF, Lee KC, Hsieh YC, Yang YY, Hsieh SL, Hou MC, Lin HC, Lee FY, Lee SD. Mechanisms of the prevention and inhibition of the progression and development of non-alcoholic steatohepatitis by genetic and pharmacological decoy receptor 3 supplementation. Hepatol Res 2017; 47:1260-1271. [PMID: 28066964 DOI: 10.1111/hepr.12863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
AIMS Treatment of non-alcoholic steatohepatitis (NASH) is difficult due to the absence of a proven treatment and its comprehensive mechanisms. In the NASH animal model, upregulated hepatic inflammation and oxidative stress, with the resultant M1 polarization of macrophages as well as imbalanced adipocytokines, all accelerate NASH progression. As a member of the tumor necrosis factor receptor superfamily, decoy receptor 3 (DcR3) not only neutralizes the death ligands, but also performs immune modulations. In this study, we aimed to investigate the possible non-decoy effects of DcR3 on diet-induced NASH mice. METHODS Methionine- and choline-deficient (MCD) diet feeding for 9 weeks was applied to induce NASH in BALB/c mice. Decoy receptor 3 heterozygous transgenesis or pharmacological pretreatment with DcR3a for 1 month were designed as interventions. Intrahepatic inflammatory status as well as macrophage polarization, oxidative stress, and steatosis as well as lipogenic gene expression and fibrotic status were analyzed. Additionally, acute effects of DcR3a on HepG2 cells, Hep3B cells, and primary mouse hepatocytes in various MCD medium-stimulated changes were also evaluated. RESULTS Both DcR3 genetic and pharmacologic supplement significantly reduced MCD diet-induced hepatic M1 polarization. In addition, DcR3 supplement attenuated MCD diet-increased hepatic inflammation, oxidative stress, adipocytokine imbalance, steatosis, and fibrogenesis. Moreover, acute DcR3a incubation in HepG2 cells, Hep3B cells, and mouse hepatocytes could normalize the expression of genes related to lipid oxidation along with inflammation and oxidative stress. CONCLUSION The ability of DcR3 to attenuate hepatic steatosis and inflammation through its non-decoy effects of immune modulation and oxidative stress attenuation makes it a potential treatment for NASH.
Collapse
Affiliation(s)
- Pei-Chang Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Ling-Yu Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Wen Wang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiang-Fen Huang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infection, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Ying Yang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yuah Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
126
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|
127
|
Abstract
Purpose
This paper aims to summarize the available literatures, specifically in the following areas: metabolic and other side effects of aspartame; microbiota changes/dysbiosis and its effect on the gut-brain axis; changes on gut microbiota as a result of aspartame usage; metabolic effects (weight gain and glucose intolerance) of aspartame due to gut dysbiosis; and postulated effects of dysregulated microbiota-gut-brain axis on other aspartame side-effects (neurophysiological symptoms and immune dysfunction).
Design/methodology/approach
Aspartame is rapidly becoming a public health concern because of its purported side-effects especially neurophysiological symptom and immune dysregulation. It is also paradoxical that metabolic consequences including weight gain and impaired blood glucose levels have been observed in consumers. Exact mechanisms of above side-effects are unclear, and data are scarce but aspartame, and its metabolites may have caused disturbance in the microbiota-gut-brain axis.
Findings
Additional studies investigating the impact of aspartame on gut microbiota and metabolic health are needed.
Originality/value
Exact mechanism by which aspartame-induced gut dysbiosis and metabolic dysfunction requires further investigation.
Collapse
|
128
|
Rivero-Gutiérrez B, Gámez-Belmonte R, Suárez MD, Lavín JL, Aransay AM, Olivares M, Martínez-Augustin O, Sánchez de Medina F, Zarzuelo A. A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota. Mol Nutr Food Res 2017; 61. [PMID: 28463404 DOI: 10.1002/mnfr.201600622] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
We investigated the effect of a high fructose diet (HFD) on Sprague Dawley rats and the impact of a synbiotic composed of Lactobacillus fermentum CECT5716 and fructooligosaccharides. Feeding the HFD for 5 weeks resulted in liver steatosis and insulin resistance but not obesity. These changes were associated with increased production of short-chain fatty acids and increased Bacteroidetes in feces, with an augmented Bacteroidetes/Firmicutes ratio, among other changes in the microbiota. In addition, barrier function was weakened, with increased LPS plasma levels. These data are consistent with increased fructose availability in the distal gut due to saturation of absorptive mechanisms, leading to dysbiosis, endotoxemia, hepatic steatosis, and insulin resistance. Treatment with the synbiotic prevented some of the pathological effects, so that treated rats did not develop steatosis or systemic inflammation, while dysbiosis and barrier function were greatly ameliorated. In addition, the synbiotic had hypolipidemic effects. The synbiotic composed by L. fermentum CECT5716 and fructooligosaccharides has beneficial effects in a model of metabolic syndrome induced by a HFD, suggesting it might be clinically useful in this type of condition, particularly considering that high fructose intake has been related to metabolic syndrome in humans.
Collapse
Affiliation(s)
- Belén Rivero-Gutiérrez
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - María Dolores Suárez
- Department of Biochemistry and Molecular Biology II1, CIBERehd, School of Pharmacy, University of Granada, Spain
| | | | | | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II1, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain.,Instituto de Ciencia y tecnología de los Alimentos José Mataix, University of GRANADA, Spain
| | - Fermín Sánchez de Medina
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - Antonio Zarzuelo
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain
| |
Collapse
|
129
|
Liu XD, Lv P, Zhao ZZ, Xu XJ. Impact of nonalcoholic fatty liver disease on multiple human body systems. Shijie Huaren Xiaohua Zazhi 2017; 25:951-957. [DOI: 10.11569/wcjd.v25.i11.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicpathologic syndrome characterized by hepatocellular steatosis and fat deposition in individuals in the absence of significant alcohol intake and other specific factors that can impair liver function. According to epidemiological investigations, NAFLD has become one of the most common liver diseases in China. More and more studies show that NAFLD can influence many human body systems. This paper reviews the possible effect of NAFLD on the cardiovascular system, digestive system, respiratory system, urinary system, metabolic system and nervous system.
Collapse
|
130
|
Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J, Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 2017; 7:45176. [PMID: 28349964 PMCID: PMC5368635 DOI: 10.1038/srep45176] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Gut-derived bacterial lipopolysaccharide (LPS) and subsequent hepatic toll-like receptor 4 (TLR4) activation have been recognized to be involved in the onset of diet-induced nonalcoholic fatty liver disease (NAFLD), but little is known about the variation of LPS and TLR4 during the progression of NAFLD. Probiotics were able to inhibit proliferation of harmful bacteria and improve gastrointestinal barrier function. However, it's unclear whether LPS/TLR4 is involved in the protection effect of probiotics on NAFLD. In this study, we described characteristic of gut microbiota structure in the progression of NAFLD, and we also analyzed the relationship between gut microbiota and LPS/TLR4 in this process. Furthermore, we applied probiotics intervention to investigate the effect of probiotics on gut flora structure, intestinal integrity, serum LPS, liver TLR4 and liver pathology. Our results showed that serum LPS and liver TLR4 were highly increased during progression of NAFLD, with gut flora diversity and gut mircobiological colonization resistance (B/E) declining. Furthermore, probiotics could improve gut microbiota structure and liver pathology. Probiotics could also downregulate serum LPS and liver TLR4. Our results suggested that both gut flora alteration and endotoxemia may be involved in the progression of NAFLD. Probiotics may delay the progression of NAFLD via LPS/TLR4 signaling.
Collapse
Affiliation(s)
- Li Xue
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Juntao He
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ning Gao
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaokang Wu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zeshi Liu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiali Liu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiru Xu
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
131
|
Pérez-Matute P, Oteo JA. Is it enough to eliminate hepatitis C virus to reverse the damage caused by the infection? World J Clin Infect Dis 2017; 7:1-5. [DOI: 10.5495/wjcid.v7.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents one of the major causes of chronic liver disease, hepatocellular carcinoma and morbidity/mortality worldwide. It is also a major burden to the healthcare systems. A complete elimination of the HCV from the body through treatment is now possible. However, HCV not only alters the hepatic function. Several extra-hepatic manifestations are present in HCV-infected patients, which increase the mortality rate. Liver and gut are closely associated in what is called the “gut-liver axis”. A disrupted gut barrier leads to an increase in bacterial translocation and an activation of the mucosal immune system and secretion of inflammatory mediators that plays a key role in the progression of liver disease towards decompensated cirrhosis in HCV-infected patients. In addition, both qualitative and quantitative changes in the composition of the gut microbiota (GM) and states of chronic inflammation have been observed in patients with cirrhosis. Thus, a successful treatment of HCV infection should be also accompanied by a complete restoration of GM composition in order to avoid activation of the mucosal immune system, persistent inflammation and the development of long-term complications. Evaluation of GM composition after treatment could be of interest as a reliable indicator of the total or partial cure of these patients. However, studies focused on microbiota composition after HCV eradication from the body are lacking, which opens unique opportunities to deeply explore and investigate this exciting field.
Collapse
|
132
|
Targher G, Byrne CD. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat Rev Nephrol 2017; 13:297-310. [PMID: 28218263 DOI: 10.1038/nrneph.2017.16] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is caused by an accumulation of fat in the liver; the condition can progress over time to increase the risk of developing cirrhosis, end-stage liver disease and hepatocellular carcinoma. The prevalence of NAFLD is increasing rapidly owing to the global epidemics of obesity and type 2 diabetes mellitus (T2DM), and NAFLD has been predicted to become the most important indication for liver transplantation over the next decade. It is now increasingly clear that NAFLD not only affects the liver but can also increase the risk of developing extra-hepatic diseases, including T2DM, cardiovascular disease and chronic kidney disease (CKD), which have a considerable impact on health-care resources. Accumulating evidence indicates that NAFLD exacerbates insulin resistance, predisposes to atherogenic dyslipidaemia and releases a variety of proinflammatory factors, prothrombotic factors and profibrogenic molecules that can promote vascular and renal damage. Furthermore, communication or 'crosstalk' between affected organs or tissues in these diseases has the potential to further harm function and worsen patient outcomes, and increasing amounts of evidence point to a strong association between NAFLD and CKD. Whether a causal relationship between NAFLD and CKD exists remains to be definitively established.
Collapse
Affiliation(s)
- Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton.,Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
133
|
Verna EC. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in patients with HIV. Lancet Gastroenterol Hepatol 2017; 2:211-223. [PMID: 28404136 DOI: 10.1016/s2468-1253(16)30120-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
Liver disease is a leading cause of morbidity and mortality among people with HIV, and in this era of safer and more effective hepatitis C therapy, non-alcoholic fatty liver disease (NAFLD) could soon emerge as the most common liver disease in this population. NAFLD is common among patients with HIV, and might be more likely to progress to non-alcoholic steatohepatitis (NASH) and NAFLD-related fibrosis or cirrhosis in these patients than in individuals without HIV. Several mechanisms of NAFLD pathogenesis are postulated to explain the disease severity in patients with HIV; these mechanisms include the influence of the gut microbiome, and also metabolic, genetic, and immunological factors. Although treatment strategies are currently based on modification of NAFLD risk factors, many new drugs are now in clinical trials, including trials specifically in patients with HIV. Thus, the identification and risk-stratification of patients with HIV and NAFLD are becoming increasingly important for accurately counselling of these patients regarding their prognosis and for establishing the most appropriate disease-altering therapy.
Collapse
Affiliation(s)
- Elizabeth C Verna
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
134
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
135
|
Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017; 7:13839. [PMID: 28067223 PMCID: PMC5227332 DOI: 10.1038/ncomms13839] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/04/2016] [Indexed: 02/08/2023] Open
Abstract
The microbiota control regional immunity using mechanisms such as inducing IL-17A-producing γδ T (γδT-17) cells in various tissues. However, little is known regarding hepatic γδT cells that are constantly stimulated by gut commensal microbes. Here we show hepatic γδT cells are liver-resident cells and predominant producers of IL-17A. The microbiota sustain hepatic γδT-17 cell homeostasis, including activation, survival and proliferation. The global commensal quantity affects the number of liver-resident γδT-17 cells; indeed, E. coli alone can generate γδT-17 cells in a dose-dependent manner. Liver-resident γδT-17 cell homeostasis depends on hepatocyte-expressed CD1d, that present lipid antigen, but not Toll-like receptors or IL-1/IL-23 receptor signalling. Supplementing mice in vivo or loading hepatocytes in vitro with exogenous commensal lipid antigens augments the hepatic γδT-17 cell number. Moreover, the microbiota accelerate nonalcoholic fatty liver disease through hepatic γδT-17 cells. Thus, our work describes a unique liver-resident γδT-17 cell subset maintained by gut commensal microbes through CD1d/lipid antigens. γδ T cells are major producers of IL-17A in response to microbial infection. Here the authors show that a high load of commensal microbes can maintain homeostasis of IL-17A+ γδ T cells in the liver via CD1d antigen presentation, with implications for liver diseases.
Collapse
Affiliation(s)
- Fenglei Li
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolei Hao
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Li Bai
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zhexiong Lian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
136
|
Nash MJ, Frank DN, Friedman JE. Early Microbes Modify Immune System Development and Metabolic Homeostasis-The "Restaurant" Hypothesis Revisited. Front Endocrinol (Lausanne) 2017; 8:349. [PMID: 29326657 PMCID: PMC5733336 DOI: 10.3389/fendo.2017.00349] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the "Restaurant" hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate's gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Jacob E. Friedman,
| |
Collapse
|
137
|
Vanhove W, Peeters PM, Cleynen I, Van Assche G, Ferrante M, Vermeire S, Arijs I. Review Article. Absent in melanoma 2 (AIM2) in the intestine: diverging actions with converging consequences. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/infl-2017-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe intestinal mucosa is a difficult environment to maintain homeostasis as it is constantly challenged by microbial and food antigens. Maintaining an intact epithelial barrier, a continuous turnover of intestinal epithelial cells and normobiosis of the gut microbiota are essential components to prevent intestinal diseases such as inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Inflammasomes are critical immune regulators that are involved in all of these processes. They are multiprotein complexes able to assemble upon interaction with a noxious stimulus that will subsequently lead to caspase-1 activation. Activated caspase-1 will orchestrate the maturation and release of proinflammatory cytokines IL-1β and IL-18, and induce pyroptosis, an inflammatory form of cell death. Both cytokine release and pyroptosis are initiated after detection of molecular patterns by a distinct inflammasome sensor protein. Absent in melanoma 2 (AIM2) is such an inflammasome sensor that specifically responds to the presence of double stranded DNA (dsDNA) in the cytoplasm, leading to the recruitment and activation of caspase-1. Recent studies revealed additional roles of AIM2 in controlling epithelial cell proliferation, tight junction expression and the microbiome. Therefore, AIM2 plays a significant role in maintaining intestinal homeostasis. This review focuses on the multifunctional role of AIM2 in intestinal homeostasis by regulating intestinal immunity and preventing colorectal cancer development.
Collapse
|
138
|
Acharya C, Betrapally NS, Gillevet PM, Sterling RK, Akbarali H, White MB, Ganapathy D, Fagan A, Sikaroodi M, Bajaj JS. Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Aliment Pharmacol Ther 2017; 45:319-331. [PMID: 27868217 DOI: 10.1111/apt.13858] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Opioid use is epidemic in cirrhosis, which could precipitate hepatic encephalopathy (HE) potentially through gut dysbiosis and inflammation. AIM To define the effect of opioids on readmissions and on gut microbiota composition and functionality. METHODS Cohort 1 had 200 cirrhotic in-patients (with/without opioid use) followed prospectively through the index hospitalisation and 6 months post discharge. Readmissions (HE-related/unrelated) were compared between patients discharged on opioids compared to the rest, including using a multi-variable analysis. Cohort 2 consisted of 72 cirrhotics on chronic opioids who were age/model for end-stage liver disease (MELD) and prior HE-balanced with 72 cirrhotics not on opioids. Stool microbiota composition (multi-tagged sequencing), predicted functionality (PiCRUST), endotoxemia and systemic inflammation (IL-6, IL-17) were compared. RESULTS Cohort 1: Chronic opioid use was statistically similar between those admitted with/without HE, and was judged to be an HE precipitant in <5% of cases during the index hospitalisation. Of the 144 patients alive at 6 months, 82 were readmitted. The opioid users had a significantly higher all cause (69% vs. 48%, P = 0.008), but not HE-related readmissions (30% vs. 41%, P = 0.30). On regression, opioid therapy and female gender were predictive of readmission independent of MELD score and previous HE. Cohort 2: Significant dysbiosis was noted in the opioid cohort, especially in HE+opioid patients with lower autochthonous taxa and Bacteroidaceae relative abundance. PiCRUST showed highest aromatic amino acid and endotoxin production in opioid users. Opioid users also had higher endotoxemia and IL-6 but not IL-17. CONCLUSION Chronic opioid use in cirrhosis is associated with increased endotoxemia, dysbiosis and all-cause readmissions.
Collapse
Affiliation(s)
- C Acharya
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - N S Betrapally
- Microbiome Analysis Center, George Mason University, Manassas, VA, USA
| | - P M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA, USA
| | - R K Sterling
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - H Akbarali
- Department of Pharmacology and Toxicology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - M B White
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - D Ganapathy
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - A Fagan
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - M Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, USA
| | - J S Bajaj
- Division of Gastroenterology and Hepatology, McGuire VA Medical Center and Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
139
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
140
|
Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4047362. [PMID: 27957238 PMCID: PMC5124475 DOI: 10.1155/2016/4047362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day-1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage.
Collapse
|
141
|
Bhat M, Arendt BM, Bhat V, Renner EL, Humar A, Allard JP. Implication of the intestinal microbiome in complications of cirrhosis. World J Hepatol 2016; 8:1128-1136. [PMID: 27721918 PMCID: PMC5037326 DOI: 10.4254/wjh.v8.i27.1128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome (IM) is altered in patients with cirrhosis, and emerging literature suggests that this impacts on the development of complications. The PubMed database was searched from January 2000 to May 2015 for studies and review articles on the composition, pathophysiologic effects and therapeutic modulation of the IM in cirrhosis. The following combination of relevant text words and MeSH terms were used, namely intestinal microbiome, microbiota, or dysbiosis, and cirrhosis, encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome, variceal bleeding, hepatopulmonary syndrome, portopulmonary hypertension and hepatocellular carcinoma. The search results were evaluated for pertinence to the subject of IM and cirrhosis, as well as for quality of study design. The IM in cirrhosis is characterized by a decreased proportion of Bacteroides and Lactobacilli, and an increased proportion of Enterobacteriaceae compared to healthy controls. Except for alcoholic cirrhosis, the composition of the IM in cirrhosis is not affected by the etiology of the liver disease. The percentage of Enterobacteriaceae increases with worsening liver disease severity and decompensation and is associated with bacteremia, spontaneous bacterial peritonitis and hepatic encephalopathy. Lactulose, rifaximin and Lactobacillus-containing probiotics have been shown to partially reverse the cirrhosis associated enteric dysbiosis, in conjunction with improvement in encephalopathy. The IM is altered in cirrhosis, and this may contribute to the development of complications associated with end-stage liver disease. Therapies such as lactulose, rifaximin and probiotics may, at least partially, reverse the cirrhosis-associated changes in the IM. This, in turn, may prevent or alleviate the severity of complications.
Collapse
|
142
|
Bajaj JS, Sterling RK, Betrapally NS, Nixon DE, Fuchs M, Daita K, Heuman DM, Sikaroodi M, Hylemon PB, White MB, Ganapathy D, Gillevet PM. HCV eradication does not impact gut dysbiosis or systemic inflammation in cirrhotic patients. Aliment Pharmacol Ther 2016; 44:638-43. [PMID: 27417456 DOI: 10.1111/apt.13732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication of hepatitis C virus (HCV) is increasing but its residual impact on the pro-inflammatory milieu in cirrhosis, which is associated with gut dysbiosis, is unclear. AIM To define the impact of sustained virological response (SVR) on gut dysbiosis and systemic inflammation in HCV cirrhosis patients. METHODS Cirrhotic out-patients with HCV with/without SVR (achieved >1 year prior) and age-matched healthy controls underwent serum and stool collection. Serum was analysed for IL-6, TNF-α and endotoxin while stool microbiota analysis was performed using multitagged pyrosequencing. Microbial comparisons were made using UNIFRAC and cirrhosis dysbiosis ratio (lower score indicates dysbiosis). Comparisons were performed between cirrhotics with/without SVR and controls vs. cirrhotic patients. RESULTS A total of 105 HCV cirrhotics and 45 age-matched healthy controls were enrolled. Twenty-one patients had achieved SVR using pegylated interferon + ribavrin a median of 15 months prior. No significant differences on demographics, cirrhosis severity, concomitant medications or diabetes were seen between cirrhotics with/without SVR. There was no significant difference in overall microbiota composition (UNIFRAC P = 0.3) overall or within specific microbial families (cirrhosis dysbiosis ratio median 1.3 vs. 1.0, P = 0.45) between groups with/without SVR. This also extended towards IL-6, TNF-α and endotoxin levels. Both cirrhosis groups, however, had significant dysbiosis compared to healthy controls [UNIFRAC P = 0.01, cirrhosis dysbiosis ratio (1.1 vs. 2.9, P < 0.001)] along with higher levels of endotoxin, IL-6 and TNF-α. CONCLUSIONS Gut dysbiosis and a pro-inflammatory systemic milieu, are found in HCV cirrhosis regardless of SVR. This persistent dysbiosis could contribute towards varying rates of improvement after HCV eradication in cirrhosis.
Collapse
Affiliation(s)
- J S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - R K Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - N S Betrapally
- Microbiome Analysis Center, George Mason University, Manassas, VA, USA
| | - D E Nixon
- Division of Infectious Diseases, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - M Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - K Daita
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - D M Heuman
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - M Sikaroodi
- Department of Microbiology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - P B Hylemon
- Department of Microbiology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - M B White
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - D Ganapathy
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - P M Gillevet
- Department of Microbiology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| |
Collapse
|
143
|
Abenavoli L, Milic N, Di Renzo L, Preveden T, Medić-Stojanoska M, De Lorenzo A. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J Gastroenterol 2016; 22:7006-7016. [PMID: 27610012 PMCID: PMC4988304 DOI: 10.3748/wjg.v22.i31.7006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and it encompasses a spectrum from simple steatosis to steatohepatitis, fibrosis, or cirrhosis. The mechanisms involved in the occurrence of NAFLD and its progression are probably due to a metabolic profile expressed within the context of a genetic predisposition and is associated with a higher energy intake. The metabolic syndrome (MS) is a cluster of metabolic alterations associated with an increased risk for the development of cardiovascular diseases and diabetes. NAFLD patients have more than one feature of the MS, and now they are considered the hepatic components of the MS. Several scientific advances in understanding the association between NAFLD and MS have identified insulin resistance (IR) as the key aspect in the pathophysiology of both diseases. In the multi parallel hits theory of NAFLD pathogenesis, IR was described to be central in the predisposition of hepatocytes to be susceptible to other multiple pathogenetic factors. The recent knowledge gained from these advances can be applied clinically in the prevention and management of NAFLD and its associated metabolic changes. The present review analyses the current literature and highlights the new evidence on the metabolic aspects in the adult patients with NAFLD.
Collapse
|
144
|
Cardiovascular Disease and Myocardial Abnormalities in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1246-67. [PMID: 26809873 DOI: 10.1007/s10620-016-4040-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in many developed countries, affecting an estimated 30 % of the adult population. In this updated clinical review, we summarize the current knowledge regarding the strong association between NAFLD and the risk of coronary heart disease (CHD) and other functional, structural, and arrhythmic cardiac complications (e.g., left ventricular dysfunction, heart valve diseases and atrial fibrillation). We also briefly discuss the putative biological mechanisms linking NAFLD with these important extra-hepatic complications. To date, a large body of evidence has suggested that NAFLD is not simply a marker of CHD and other functional, structural, and arrhythmic cardiac complications, but also may play a part in the development and progression of these cardiac complications. The clinical implication of these findings is that patients with NAFLD may benefit from more intensive surveillance and early treatment interventions aimed at decreasing the risk of CHD and other cardiac and arrhythmic complications.
Collapse
|
145
|
Abstract
The gut microbiota influences essential human functions including digestion, energy metabolism, and inflammation by modulating multiple endocrine, neural, and immune pathways of the host. Its composition and complexity varies markedly across individuals and across different sites of the gut, but provides a certain level of resilience against external perturbation. Short-term antibiotic treatment is able to shift the gut microbiota to long-term alternative dysbiotic states, which may promote the development and aggravation of disease. Common features of post-antibiotic dysbiosis include a loss of taxonomic and functional diversity combined with reduced colonization resistance against invading pathogens, which harbors the danger of antimicrobial resistance. This review summarizes the antibiotic-related changes of the gut microbiota and potential consequences in health and disease.
Collapse
Affiliation(s)
- Kathleen Lange
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | | | | | | |
Collapse
|
146
|
He X, Ji G, Jia W, Li H. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. Int J Mol Sci 2016; 17:300. [PMID: 26999104 PMCID: PMC4813164 DOI: 10.3390/ijms17030300] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota are intricately involved in the development of obesity-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance. In the current review, we discuss the role of gut microbiota in the development of NAFLD by focusing on the mechanisms of gut microbiota-mediated host energy metabolism, insulin resistance, regulation of bile acids and choline metabolism, as well as gut microbiota-targeted therapy. We also discuss the application of a metabolomic approach to characterize gut microbial metabotypes in NAFLD.
Collapse
Affiliation(s)
- Xuyun He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
147
|
Cogger VC, Mohamad M, Solon-Biet SM, Senior AM, Warren A, O'Reilly JN, Tung BT, Svistounov D, McMahon AC, Fraser R, Raubenheimer D, Holmes AJ, Simpson SJ, Le Couteur DG. Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am J Physiol Heart Circ Physiol 2016; 310:H1064-70. [PMID: 26921440 DOI: 10.1152/ajpheart.00949.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Fenestrations are pores within the liver sinusoidal endothelial cells (LSECs) that line the sinusoids of the highly vascularized liver. Fenestrations facilitate the transfer of substrates between blood and hepatocytes. With pseudocapillarization of the hepatic sinusoid in old age, there is a loss of fenestrations. LSECs are uniquely exposed to gut-derived dietary and microbial substrates delivered by the portal circulation to the liver. Here we studied the effect of 25 diets varying in content of macronutrients and energy on LSEC fenestrations using the Geometric Framework method in a large cohort of mice aged 15 mo. Macronutrient distribution rather than total food or energy intake was associated with changes in fenestrations. Porosity and frequency were inversely associated with dietary fat intake, while fenestration diameter was inversely associated with protein or carbohydrate intake. Fenestrations were also linked to diet-induced changes in gut microbiome, with increased fenestrations associated with higher abundance of Firmicutes and reduced abundance of Bacteroidetes Diet-induced changes in levels of several fatty acids (C16:0, C19:0, and C20:4) were also significantly inversely associated with fenestrations, suggesting a link between dietary fat and modulation of lipid rafts in the LSECs. Diet influences fenestrations and these data reflect both the key role of the LSECs in clearing gut-derived molecules from the vascular circulation and the impact these molecules have on LSEC morphology.
Collapse
Affiliation(s)
- Victoria Carroll Cogger
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Mashani Mohamad
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Faculty of Pharmacy, Universiti Teknologi MARA, Bandar Puncak Alam, Selangor, Malaysia
| | - Samantha Marie Solon-Biet
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, Australia; The School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Alessandra Warren
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia
| | - Jennifer Nicole O'Reilly
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia
| | - Bui Thanh Tung
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, Sevilla, Spain
| | - Dmitri Svistounov
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Aisling Clare McMahon
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Department of Cardiovascular Sciences, University of Leicester British Heart Foundation Cardiovascular Research Centre, Leicester, United Kingdom
| | - Robin Fraser
- Department of Pathology, University of Otago, and Departments of Surgery, Gastroenterology and Medicine, Canterbury District Health Board, Christchurch, New Zealand; and
| | | | - Andrew J Holmes
- Charles Perkins Centre, University of Sydney, Sydney, Australia; School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | - David George Le Couteur
- Aging and Alzheimers Institute and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia;
| |
Collapse
|
148
|
Schröder T, Kucharczyk D, Bär F, Pagel R, Derer S, Jendrek ST, Sünderhauf A, Brethack AK, Hirose M, Möller S, Künstner A, Bischof J, Weyers I, Heeren J, Koczan D, Schmid SM, Divanovic S, Giles DA, Adamski J, Fellermann K, Lehnert H, Köhl J, Ibrahim S, Sina C. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis. Mol Metab 2016; 5:283-295. [PMID: 27069868 PMCID: PMC4812012 DOI: 10.1016/j.molmet.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. C57BL/6J-mtFVB/N mice (mt-ATP8, nt7778 G/T) display hepatic mitochondrial dysfunction. C57BL/6J-mtFVB/N mice display alterations in hepatic energy metabolism. C57BL/6J-mtFVB/N mice show no spontaneous hepatic steatosis or inflammation. C57BL/6J-mtFVB/N mice are susceptible to diet induced NASH. Study demonstrates causative role of mitochondrial dysfunction for NASH development.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- AMPK, AMP-activated proteinkinase
- ATP, adenosine triphosphate
- ATP8, ATP synthase protein 8
- Arg, arginine
- Asp, aspartic acid
- B6-mtB6, C57BL/6
- B6-mtFVB, C57BL/6-mtFVB/N
- C0, free dl-carnitine
- C16, hexadecanoyl-l-carntine
- C18, octadecanoyl-l-carnitine
- CD, control diet
- CD3, cluster of differentiation receptor 3
- CPT I, carnitine-palmitoyltransferase I
- CYP51A1, cytochrome P450, family 51, subfamily A, polypeptide 1
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- Gr1, granulocyte differentiation antigen 1
- H&E, hematoxylin–eosin staining
- H2O2, hydrogen peroxide
- Hsd17b7, 17-beta-hydroxysteroid dehydrogenase type 7
- IDI1, isopentenyl-diphosphate delta isomerase 1
- IL, interleukin
- IPA, ingenuity pathway analysis
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Lipid metabolism
- Ly6G, lymphocyte antigen 6 complex, locus G
- MCDD, methionine and choline deficient diet
- MSMO1, methylsterol monooxygenase 1
- Met, methionine
- Mitochondrial dysfunction
- Mitochondrial gene polymorphism
- NAFL, non-alcoholic liver steatosis
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- ND3, NADH dehydrogenase subunit 3
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation system
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SNPs, single nucleotide polymorphisms
- SOD2, superoxide dismutase 2
- STRING, Search Tool for the Retrieval of Interacting Genes/Proteins
- Steatohepatitis
- TNFα
- TNFα, tumor necrosis factor alpha
- Tyr, tyrosine
- WD, western-style diet
- mt, mitochondrial
- pAMPK, phosphorylated AMP-activated proteinkinase
Collapse
Affiliation(s)
- Torsten Schröder
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - David Kucharczyk
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Florian Bär
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - René Pagel
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Derer
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sebastian Torben Jendrek
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Annika Sünderhauf
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ann-Kathrin Brethack
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Misa Hirose
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Steffen Möller
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Ernst-Heydemann-Straße 8, D-18057 Rostock, Germany
| | - Axel Künstner
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Max Planck Institute for Evolutionary Biology, Guest Group Evolutionary Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Julia Bischof
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Imke Weyers
- University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Heeren
- University Hospital Hamburg-Eppendorf, Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, D-20246 Hamburg, Germany
| | - Dirk Koczan
- University of Rostock, Institute of Immunology, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Senad Divanovic
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Daniel Aaron Giles
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany; Technische Universität München, Lehrstuhl für Experimentelle Genetik, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus Fellermann
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Hendrik Lehnert
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Saleh Ibrahim
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christian Sina
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| |
Collapse
|
149
|
Lambert JE, Parnell JA, Eksteen B, Raman M, Bomhof MR, Rioux KP, Madsen KL, Reimer RA. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterol 2015; 15:169. [PMID: 26635079 PMCID: PMC4669628 DOI: 10.1186/s12876-015-0400-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
Background Evidence for the role of the gut microbiome in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is emerging. Strategies to manipulate the gut microbiota towards a healthier community structure are actively being investigated. Based on their ability to favorably modulate the gut microbiota, prebiotics may provide an inexpensive yet effective dietary treatment for NAFLD. Additionally, prebiotics have established benefits for glucose control and potentially weight control, both advantageous in managing fatty liver disease. Our objective is to evaluate the effects of prebiotic supplementation, adjunct to those achieved with diet-induced weight loss, on heptic injury and liver fat, the gut microbiota, inflammation, glucose tolerance, and satiety in patients with NAFLD. Methods/design In a double blind, placebo controlled, parallel group study, adults (BMI ≥25) with confirmed NAFLD will be randomized to either a 16 g/d prebiotic supplemented group or isocaloric placebo group for 24 weeks (n = 30/group). All participants will receive individualized dietary counseling sessions with a registered dietitian to achieve 10 % weight loss. Primary outcome measures include change in hepatic injury (fibrosis and inflammation) and liver fat. Secondary outcomes include change in body composition, appetite and dietary adherence, glycemic and insulinemic responses and inflammatory cytokines. Mechanisms related to prebiotic-induced changes in gut microbiota (shot-gun sequencing) and their metabolic by-products (volatile organic compounds) and de novo lipogenesis (using deuterium incorporation) will also be investigated. Discussion There are currently no medications or surgical procedures approved for the treatment of NAFLD and weight loss via lifestyle modification remains the cornerstone of current care recommendations. Given that prebiotics target multiple metabolic impairments associated with NAFLD, investigating their ability to modulate the gut microbiota and hepatic health in patients with NAFLD is warranted. Trial registration ClinicalTrials.gov (NCT02568605) Registered 30 September 2015
Collapse
Affiliation(s)
- Jennifer E Lambert
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Jill A Parnell
- Health and Physical Education, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada.
| | - Bertus Eksteen
- Snyder Institute for Chronic Diseases, Health Research and Innovation Center, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Maitreyi Raman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Marc R Bomhof
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Kevin P Rioux
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Department of Microbiology and Infectious Diseases, University of Calgary, 1863 Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Karen L Madsen
- Division of Gastroenterology, Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, 7-142 Katz Group-Rexall Centre, University of Alberta, Edmonton, AB, T6G 2C2, Canada.
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
150
|
Zeng W, Shan W, Gao L, Gao D, Hu Y, Wang G, Zhang N, Li Z, Tian X, Xu W, Peng J, Ma X, Yao J. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci Rep 2015; 5:16013. [PMID: 26525891 PMCID: PMC4630617 DOI: 10.1038/srep16013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
The inflammatory mediator high-mobility group box 1 (HMGB1) plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the regulation of HMGB1 in NAFLD, particularly through sirtuin 1 (SIRT1), remains unclear. In this study, we investigated the role of SIRT1-mediated inhibition of HMGB1 release in NAFLD and the effect of salvianolic acid B (SalB), which is a water-soluble phenolic acid extracted from Radix Salvia miltiorrhiza, on NAFLD through SIRT1/HMGB1 signaling. In vivo, SalB treatment significantly attenuated high-fat diet (HFD)-induced liver damage, hepatic steatosis, and inflammation. Importantly, SalB significantly inhibited HMGB1 nuclear translocation and release, accompanied by SIRT1 elevation. In HepG2 cells, palmitic acid (PA)-induced pro-inflammatory cytokines release were blocked by HMGB1 small interfering RNA (siRNA) transfection. Moreover, pharmacological SIRT1 inhibition by Ex527 induced HMGB1 translocation and release, whereas SIRT1 activation by resveratrol or SalB reversed this trend. SIRT1 siRNA abrogated the SalB-mediated inhibition of HMGB1 acetylation and release, suggesting that SalB-mediated protection occurs by SIRT1 targeting HMGB1 for deacetylation. We are the first to demonstrate that the SIRT1/HMGB1 pathway is a key therapeutic target for controlling NAFLD inflammation and that SalB confers protection against HFD- and PA-induced hepatic steatosis and inflammation through SIRT1-mediated HMGB1 deacetylation.
Collapse
Affiliation(s)
- Wenjing Zeng
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Wen Shan
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Lili Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Yan Hu
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Zhang
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhenlu Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wei Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|