101
|
Satoh Y, Tsuji K. Suppressive effect of the swallowing reflex by stimulation of the pedunculopontine tegmental nucleus. Neurosci Res 2020; 169:40-47. [PMID: 32649975 DOI: 10.1016/j.neures.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
This study investigates whether the swallowing reflex is modulated by stimulation of the pedunculopontine tegmental nucleus (PTg). Sprague-Dawley rats under urethane anesthesia were used. The swallowing reflex was induced by electrical stimulation of the superior laryngeal nerve and was identified by the electromyographic activities from the mylohyoid muscle. The number of swallows was reduced by electrical stimulation of the PTg. The latency of the onset of the first swallow was increased during stimulation of the PTg. The duration of electromyogram bursts of the mylohyoid muscle was significantly shorter during the PTg stimulation than with no stimulation. The number of swallows was reduced, latency of onset of the first swallow increased, the duration of electromyogram bursts of the mylohyoid muscle was significantly shorter and the peak-to-peak amplitude of electromyogram bursts of the mylohyoid muscle was significantly suppressed after microinjection of glutamate into the PTg. These results suggest that the PTg is involved in the control of swallowing.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Kojun Tsuji
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
102
|
Park CW, Jung BK, Ryu KY. Reduced free ubiquitin levels and proteasome activity in cultured neurons and brain tissues treated with amyloid beta aggregates. Mol Brain 2020; 13:89. [PMID: 32513213 PMCID: PMC7281939 DOI: 10.1186/s13041-020-00632-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases are characterized by progressive cognitive decline and the loss of neurons in the central nervous system; many are also characterized by abnormal aggregation of misfolded proteins. Ubiquitin (Ub) is a eukaryotic protein that plays pivotal roles in protein degradation and cellular signaling. Ubiquitinated aggregates are observed in neurodegenerative diseases; this ultimately results in reduced levels of available or free Ub. However, it remains unclear whether neurotoxicity arises from the aggregates or a deficiency of free Ub. To investigate this, we treated primary neurons of mouse embryonic brains with amyloid beta (Aβ) 42 and found that free Ub levels were decreased and cell viability was reduced in Aβ42-treated neurons. As reduced levels of free Ub are closely related to impaired function of the proteasome, we evaluated proteasome activity and found that proteasome activity was reduced upon treatment of primary neurons and mouse brain slices with Aβ42. Therefore, we conclude that proteotoxic stress from Aβ42 treatment reduced the levels of available Ub and decreased proteasome activity, resulting in inflammatory stress and apoptosis of neurons.
Collapse
Affiliation(s)
- Chul-Woo Park
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Byung-Kwon Jung
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
103
|
Ubeda-Bañon I, Saiz-Sanchez D, Flores-Cuadrado A, Rioja-Corroto E, Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Cabello-de la Rosa JP, Gallardo-Alcañiz MJ, Vaamonde-Gamo J, Relea-Calatayud F, Gonzalez-Lopez L, Mohedano-Moriano A, Rabano A, Martinez-Marcos A. The human olfactory system in two proteinopathies: Alzheimer's and Parkinson's diseases. Transl Neurodegener 2020; 9:22. [PMID: 32493457 PMCID: PMC7271529 DOI: 10.1186/s40035-020-00200-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative disorders. Their etiologies are idiopathic, and treatments are symptomatic and orientated towards cognitive or motor deficits. Neuropathologically, both are proteinopathies with pathological aggregates (plaques of amyloid-β peptide and neurofibrillary tangles of tau protein in Alzheimer's disease, and Lewy bodies mostly composed of α-synuclein in Parkinson's disease). These deposits appear in the nervous system in a predictable and accumulative sequence with six neuropathological stages. Both disorders present a long prodromal period, characterized by preclinical signs including hyposmia. Interestingly, the olfactory system, particularly the anterior olfactory nucleus, is initially and preferentially affected by the pathology. Cerebral atrophy revealed by magnetic resonance imaging must be complemented by histological analyses to ascertain whether neuronal and/or glial loss or neuropil remodeling are responsible for volumetric changes. It has been proposed that these proteinopathies could act in a prion-like manner in which a misfolded protein would be able to force native proteins into pathogenic folding (seeding), which then propagates through neurons and glia (spreading). Existing data have been examined to establish why some neuronal populations are vulnerable while others are resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading. Connectomic approaches reveal a number of hubs in the olfactory system (anterior olfactory nucleus, olfactory entorhinal cortex and cortical amygdala) that are key interconnectors with the main hubs (the entorhinal-hippocampal-cortical and amygdala-dorsal motor vagal nucleus) of network dysfunction in Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Isabel Ubeda-Bañon
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Ernesto Rioja-Corroto
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| | | | | | - Julia Vaamonde-Gamo
- Neurology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Lucia Gonzalez-Lopez
- Pathology Service, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
| | | | - Alberto Rabano
- Neuropathology Department and Tissue Bank, CIEN Foundation, Carlos III Health Institute, Madrid, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha, 13005 Ciudad Real, Spain
| |
Collapse
|
104
|
Diederich NJ, Uchihara T, Grillner S, Goetz CG. The Evolution-Driven Signature of Parkinson's Disease. Trends Neurosci 2020; 43:475-492. [PMID: 32499047 DOI: 10.1016/j.tins.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
In this review, we approach Parkinson's disease (PD) in the context of an evolutionary mismatch of central nervous system functions. The neurons at risk have hyperbranched axons, extensive transmitter release sites, display spontaneous spiking, and elevated mitochondrial stress. They function in networks largely unchanged throughout vertebrate evolution, but now connecting to the expanded human cortex. Their breakdown is favoured by longevity. At the cellular level, mitochondrial dysfunction starts at the synapses, then involves axons and cell bodies. At the behavioural level, network dysfunctions provoke the core motor syndrome of parkinsonism including freezing and failed gait automatization, and non-motor deficits including inactive blindsight and autonomic dysregulation. The proposed evolutionary re-interpretation of PD-prone cellular phenotypes and of prototypical clinical symptoms allows a new conceptual framework for future research.
Collapse
Affiliation(s)
- Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, L-1210 Luxembourg City, Luxembourg.
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo 164-8607, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
105
|
Bryois J, Skene NG, Hansen TF, Kogelman LJA, Watson HJ, Liu Z, Brueggeman L, Breen G, Bulik CM, Arenas E, Hjerling-Leffler J, Sullivan PF. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nat Genet 2020; 52:482-493. [PMID: 32341526 PMCID: PMC7930801 DOI: 10.1038/s41588-020-0610-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease.
Collapse
Affiliation(s)
- Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nathan G Skene
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- UK Dementia Research Institute at Imperial College, London, UK
| | - Thomas Folkmann Hansen
- Danish Headache Center, Dept of Neurology, Copenhagen University Hospital, Glostrup, Denmark
- Institute of Biological Psychiatry, Copenhagen University Hospital MHC Sct Hans, Roskilde, Denmark
- Novo Nordic Foundations Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Lisette J A Kogelman
- Danish Headache Center, Dept of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Hunna J Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Psychology, Curtin University, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Zijing Liu
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
- UK Dementia Research Institute at Imperial College, London, UK
| | - Leo Brueggeman
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gerome Breen
- Institute of Psychiatry, MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
106
|
Shepherd TM, Ades-Aron B, Bruno M, Schambra HM, Hoch MJ. Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways. AJNR Am J Neuroradiol 2020; 41:777-784. [PMID: 32354712 DOI: 10.3174/ajnr.a6542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The brain stem is a complex configuration of small nuclei and pathways for motor, sensory, and autonomic control that are essential for life, yet internal brain stem anatomy is difficult to characterize in living subjects. We hypothesized that the 3D fast gray matter acquisition T1 inversion recovery sequence, which uses a short inversion time to suppress signal from white matter, could improve contrast resolution of brain stem pathways and nuclei with 3T MR imaging. MATERIALS AND METHODS After preliminary optimization for contrast resolution, the fast gray matter acquisition T1 inversion recovery sequence was performed in 10 healthy subjects (5 women; mean age, 28.8 ± 4.8 years) with the following parameters: TR/TE/TI = 3000/2.55/410 ms, flip angle = 4°, isotropic resolution = 0.8 mm, with 4 averages (acquired separately and averaged outside k-space to reduce motion; total scan time = 58 minutes). One subject returned for an additional 5-average study that was combined with a previous session to create a highest quality atlas for anatomic assignments. A 1-mm isotropic resolution, 12-minute version, proved successful in a patient with a prior infarct. RESULTS The fast gray matter acquisition T1 inversion recovery sequence generated excellent contrast resolution of small brain stem pathways in all 3 planes for all 10 subjects. Several nuclei could be resolved directly by image contrast alone or indirectly located due to bordering visualized structures (eg, locus coeruleus and pedunculopontine nucleus). CONCLUSIONS The fast gray matter acquisition T1 inversion recovery sequence has the potential to provide imaging correlates to clinical conditions that affect the brain stem, improve neurosurgical navigation, validate diffusion tractography of the brain stem, and generate a 3D atlas for automatic parcellation of specific brain stem structures.
Collapse
Affiliation(s)
- T M Shepherd
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.)
| | - B Ades-Aron
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.).,Electrical and Computer Engineering (B.A.-A.)
| | - M Bruno
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.)
| | - H M Schambra
- Neurology (H.M.S.), New York University, New York, New York
| | - M J Hoch
- Department of Radiology (M.J.H.), University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
107
|
Ultrasonography of the Vagus Nerve in the Diagnosis of Parkinson's Disease. PARKINSONS DISEASE 2020; 2020:2627471. [PMID: 32318257 PMCID: PMC7150709 DOI: 10.1155/2020/2627471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
Abstract
Background It is currently impossible to diagnose Parkinson's disease (PD) in the premotor phase even though at the time of motor symptom onset the number of already degenerated dopaminergic substantia nigra neurons is considerable. Degeneration of the dorsal nucleus of the vagus nerve (VN) has been reported early in the disease course, and it could lead to impaired function of the VN, resulting in certain nonmotor symptoms of PD. Therefore, we raised a hypothesis that the loss of VN neurons could result in a smaller diameter of the VN among PD patients. Methods 20 PD patients and 20 age- and gender-matched individuals without any neurodegenerative disease were enrolled in a pilot study. The diameters of the right and left VNs were measured using ultrasonography, their average was calculated, and the narrower VN diameter was noted separately. Results No difference was found between the PD and control groups neither in the average VN diameter (mean 1.17; 95% confidence interval (CI) 1.10–1.24 vs. 1.13; 1.07–1.18, mm; p=0.353) nor in the narrower VN diameter (mean 1.11; 95% confidence interval (CI) 1.02–1.20 vs. 1.07; 1.02–1.13, mm; p=0.421). The narrower VN diameter and the average VN diameter were not able to distinguish between PD patients and controls (area under curve (AUC) = 0.588, 95% CI = 0.408–0.767, and p=0.344; and AUC = 0.578, 95% CI = 0.396–0.759, and p=0.402). Conclusions To conclude, no differences were found in VN diameter between the PD and control groups. Therefore, our data do not support the hypothesis that PD could be associated with a smaller diameter of the VN.
Collapse
|
108
|
Del Pino R, Murueta-Goyena A, Acera M, Carmona-Abellan M, Tijero B, Lucas-Jiménez O, Ojeda N, Ibarretxe-Bilbao N, Peña J, Gabilondo I, Gómez-Esteban JC. Autonomic dysfunction is associated with neuropsychological impairment in Lewy body disease. J Neurol 2020; 267:1941-1951. [PMID: 32170444 DOI: 10.1007/s00415-020-09783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to analyze the association of autonomic dysfunction with cognition, depression, apathy, and fatigue in Lewy body disease (LBD). METHODS We included 61 patients [49 with idiopathic Parkinson's disease, 7 with dementia with Lewy bodies, and 5 E46K-SNCA mutation carriers] and 22 healthy controls. All participants underwent a comprehensive battery of neuropsychological and clinical measures, autonomic symptom assessment with the SCOPA-AUT, analysis of non-invasive hemodynamic parameters during deep breathing, the Valsalva maneuver, and a 20-min tilt test, and electrochemical skin conductance measurement at rest (Sudoscan). Student's t tests were used to assess group differences, and bivariate correlations and stepwise linear regressions to explore associations between autonomic function, cognition, depression, apathy, and fatigue. RESULTS Compared to controls, patients who had significant impairment (p < 0.05) in cognition, higher depression, apathy, and fatigue, more autonomic symptoms and objective autonomic dysfunction, reduced deep breathing heart rate variability [expiratory-to-inspiratory (E/I) ratio], prolonged pressure recovery time, and lower blood pressure in Valsalva late phase II and phase IV, while 24.1% had orthostatic hypotension in the tilt test. Autonomic parameters significantly correlated with cognitive and neuropsychiatric outcomes, systolic blood pressure during the Valsalva maneuver predicting apathy and depression. The E/I ratio was the main predictor of cognitive performance (17.6% for verbal fluency to 32.8% for visual memory). CONCLUSION Cardiovascular autonomic dysfunction is associated with cognitive and neuropsychiatric impairment in LBD, heart rate variability during deep breathing and systolic blood pressure changes during the Valsalva procedure are the main predictors of neuropsychological performance and depression/apathy symptoms, respectively.
Collapse
Affiliation(s)
- Rocío Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain. .,International University of La Rioja, La Rioja, Spain.
| | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain
| | - Mar Carmona-Abellan
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Olaia Lucas-Jiménez
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Bizkaia, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, CP, 48903, Barakaldo, Bizkaia, Spain.,Neurology Department, Cruces University Hospital, Barakaldo, Bizkaia, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
109
|
Wong JJ, Chang DHF, Qi D, Men W, Gao JH, Lee TMC. The pontine-driven somatic gaze tract contributes to affective processing in humans. Neuroimage 2020; 213:116692. [PMID: 32135263 DOI: 10.1016/j.neuroimage.2020.116692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
The relevance of subcortical structures for affective processing is not fully understood. Inspired by the gerbil retino-raphe pathway that has been shown to regulate affective behavior and previous human work showing that the pontine region is important for processing emotion, we asked whether well-established tracts in humans traveling between the eye and the brain stem contribute to functions beyond their conventionally understood roles. Here we report neuroimaging findings showing that optic chiasm-brain stem diffusivity predict responses reflecting perceived arousal and valence. Analyses of subsequent task-evoked connectivity further revealed that visual affective processing implicates the brain stem, particularly the pontine region at an early stage of the cascade, projecting to cortico-limbic regions in a feedforward manner. The optimal model implies that all intrinsic connections between the regions of interest are unidirectional and outwards from the pontine region. These findings suggest that affective processing implicates regions outside the cortico-limbic network. The involvement of a phylogenetically older locus in the pons that has consequences in oculomotor control may imply adaptive consequences of affect detection.
Collapse
Affiliation(s)
- Jing Jun Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Department of Psychology, The University of Hong Kong, Hong Kong
| | - Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jia-Hong Gao
- Center for MRI Research and McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong; Laboratory of Social Cognitive and Affective Neuroscience, The University of Hong Kong, Hong Kong; Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China.
| |
Collapse
|
110
|
Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 2020; 15:19. [PMID: 32143659 PMCID: PMC7060612 DOI: 10.1186/s13024-020-00368-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The two main pathological hallmarks of Parkinson’s disease are loss of dopamine neurons in the substantia nigra pars compacta and proteinaceous amyloid fibrils composed mostly of α-synuclein, called Lewy pathology. Levodopa to enhance dopaminergic transmission remains one of the most effective treatment for alleviating the motor symptoms of Parkinson’s disease (Olanow, Mov Disord 34:812–815, 2019). In addition, deep brain stimulation (Bronstein et al., Arch Neurol 68:165, 2011) to modulate basal ganglia circuit activity successfully alleviates some motor symptoms. MRI guided focused ultrasound in the subthalamic nucleus is a promising therapeutic strategy as well (Martinez-Fernandez et al., Lancet Neurol 17:54–63, 2018). However, to date, there exists no treatment that stops the progression of this disease. The findings that α-synuclein can be released from neurons and inherited through interconnected neural networks opened the door for discovering novel treatment strategies to prevent the formation and spread of Lewy pathology with the goal of halting PD in its tracks. This hypothesis is based on discoveries that pathologic aggregates of α-synuclein induce the endogenous α-synuclein protein to adopt a similar pathologic conformation, and is thus self-propagating. Phase I clinical trials are currently ongoing to test treatments such as immunotherapy to prevent the neuron to neuron spread of extracellular aggregates. Although tremendous progress has been made in understanding how Lewy pathology forms and spreads throughout the brain, cell intrinsic factors also play a critical role in the formation of pathologic α-synuclein, such as mechanisms that increase endogenous α-synuclein levels, selective expression profiles in distinct neuron subtypes, mutations and altered function of proteins involved in α-synuclein synthesis and degradation, and oxidative stress. Strategies that prevent the formation of pathologic α-synuclein should consider extracellular release and propagation, as well as neuron intrinsic mechanisms.
Collapse
|
111
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
112
|
Laucius O, Jucevičiūtė N, Vaitkus A, Balnytė R, Rastenytė D, Petrikonis K. Evaluating the functional and structural changes in the vagus nerve: Should the vagus nerve be tested in patients with atrial fibrillation? Med Hypotheses 2020; 138:109608. [PMID: 32044542 DOI: 10.1016/j.mehy.2020.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
One of the multiple factors believed to contribute to the initiation and maintenance of atrial fibrillation (AF) is altered activity of the autonomic nervous system. Debate continues about the role of the vagus nerve (CNX) in AF since its effect depends on the level of its activation as well as on simultaneous sympathetic activation. Surplus either vagal or sympathetic activity may rarely induce the development of AF; however, typically loss of balance between the both systems mediates the induction and maintenance of AF. Vagal stimulation has been proposed as a novel treatment approach for AF because the anti-arrhythmic effects of low-level vagus nerve stimulation have been shown both in patients and animal models. We hypothesize that in typical cases of AF without any clear trigger by either autonomic nervous system, significant changes in vagus somatosensory evoked potentials and a smaller cross-sectional area of CNX could be detected, representing functional and structural changes in CNX, respectively.
Collapse
Affiliation(s)
- Ovidijus Laucius
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Neringa Jucevičiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Antanas Vaitkus
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Daiva Rastenytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kęstutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
113
|
Scarpa A, Cassandro C, Vitale C, Ralli M, Policastro A, Barone P, Cassandro E, Pellecchia MT. A comparison of auditory and vestibular dysfunction in Parkinson's disease and Multiple System Atrophy. Parkinsonism Relat Disord 2020; 71:51-57. [PMID: 32032926 DOI: 10.1016/j.parkreldis.2020.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Vertigo and disequilibrium are common symptoms in idiopathic Parkinson's disease (PD) and in Multiple System Atrophy (MSA). Hearing loss has been recently recognized as an additional non-motor feature in PD. The aim of this study is to evaluate audio-vestibular function in patients affected by PD and MSA. METHODS Fifteen patients with PD, 16 patients with MSA and 20 age-matched healthy controls (HC) were enrolled. Audio-vestibular examination included pure-tone audiometry (PTA), vestibular bed-side examination, video Head Impulse Test (vHIT), and cervical Vestibular-Evoked Myogenic Potentials (cVEMPs). RESULTS PD and MSA patients showed worse PTA thresholds compared to HC at high frequencies. MSA patients showed worse PTA thresholds at 125 Hz compared to HC. In patients with PD, a direct correlation between disease duration and PTA thresholds was found at 2000 Hz and 4000 Hz. In patients with MSA, disease duration was directly related to PTA thresholds at 125 Hz and 250 Hz. Among PD patients, cVEMPs were absent bilaterally in 46.7% and unilaterally in 13.3% of the subjects. Among MSA patients, cVEMPs were absent bilaterally in 26.7% and unilaterally in 40% of the subjects; p13 latency was significantly increased in PD patients as compared to HC. A significant inverse relationship was found between disease duration and cVEMP amplitude in MSA patients. CONCLUSION We found that high-frequency hearing loss and cVEMP abnormalities are frequent features of both MSA and PD, suggesting that an audio-vestibular dysfunction may be present in these patients even in the absence of self-reported auditory or vestibular symptoms.
Collapse
Affiliation(s)
- Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | - Carmine Vitale
- Department of Motor Sciences and Wellness, University Parthenope, Naples, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Rome, Rome, Italy
| | | | - Paolo Barone
- Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Italy
| | - Ettore Cassandro
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | |
Collapse
|
114
|
Ma A, Lau KK, Thyagarajan D. Voice changes in Parkinson's disease: What are they telling us? J Clin Neurosci 2020; 72:1-7. [PMID: 31952969 DOI: 10.1016/j.jocn.2019.12.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Emerging evidence suggests voice dysfunction is the earliest sign of motor impairment in Parkinson's disease (PD). The complexity and fine motor control involved in vocalization may result in dysfunction here before the limbs. The voice in PD demonstrates characteristic changes on perceptual and acoustic analyses. The physiological and anatomical correlates of these have been investigated through laryngoscopy, stroboscopy, photoglottography, laryngeal electromyography, computed-tomography, pulmonary function testing and aerodynamic assessments. These have revealed numerous abnormalities including incomplete glottic closure and vocal fold hypoadduction/bowing to account for these voice changes. Many of these phenomena are likely related to rigidity or bradykinesia of the laryngeal muscles. The early onset of voice changes is resonant with the pathophysiological insights offered by Braak's hypothesis and murine models of the disease. These physiological abnormalities and pathological models largely stand to support dopaminergic and non-dopaminergic mechanisms being implicated in the pathogenesis of voice dysfunction. This review focuses on characterizing the voice changes in PD. These stand as a promising area of enquiry to further our understanding of the pathophysiology of the disease and offer potential to be utilized as an early diagnostic biomarker or marker of disease progression.
Collapse
Affiliation(s)
- Andrew Ma
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria 3004, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Kenneth K Lau
- Monash Imaging, Monash Health, Melbourne, Victoria 3168, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Dominic Thyagarajan
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria 3004, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
115
|
Depletion of hypothalamic hypocretin/orexin neurons correlates with impaired memory in a Parkinson's disease animal model. Exp Neurol 2020; 323:113110. [DOI: 10.1016/j.expneurol.2019.113110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
116
|
Russo M, Carrarini C, Dono F, Rispoli MG, Di Pietro M, Di Stefano V, Ferri L, Bonanni L, Sensi SL, Onofrj M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front Pharmacol 2019; 10:1379. [PMID: 31920635 PMCID: PMC6913661 DOI: 10.3389/fphar.2019.01379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Martina Di Pietro
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center of Excellence on Aging and Translational Medicine—CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders—iMIND, University of California, Irvine, Irvine, CA, United States
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
117
|
Tahami Monfared AA, Meier G, Perry R, Joe D. Burden of Disease and Current Management of Dementia with Lewy Bodies: A Literature Review. Neurol Ther 2019; 8:289-305. [PMID: 31512165 PMCID: PMC6858913 DOI: 10.1007/s40120-019-00154-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION A significant proportion of dementia is concretely estimated to be attributable to dementia with Lewy bodies (DLB)-one of the most common types of progressive dementia; however, there is a paucity of literature on this disease. We aimed to examine available evidence to gain a better understanding of its treatment landscape, clinical management, and disease burden. METHODS A systematic literature review captured any DLB studies that report on randomised controlled trials (RCTs), epidemiology, disease progression, and economic data. An additional targeted literature review captured studies reporting on clinical management and quality of life (QoL) in this disease. Publication date was limited to 1 January 2007-26 March 2018, with the exception for RCTs, where no time restrictions were applied. FINDINGS Of the 3486 studies initially identified, 55 studies were eligible for inclusion. The studies were mainly from Europe (n = 29), the USA (n = 9), and Japan (n = 8). Mini-Mental State Examination and Neuropsychiatric Inventory scores were the most commonly reported clinical outcomes in RCTs (n = 14). The most frequently identified interventions reported in RCTs were donepezil and memantine. Patients with DLB typically reported worse outcomes in relation to efficacy and safety, cognitive impairment, survival, and QoL compared with those with Alzheimer's disease (AD). Additionally, patients with DLB were associated with higher hospitalisation rates and cost of care. Furthermore, there is a reliance on a small number of consensus guidelines. Of these, only one set of guidelines (DLB Consortium) was developed specifically for DLB. CONCLUSION The paucity of data indicates an unmet need in this therapy area. Although several studies look into the clinical and pathological aspects of DLB, consensus guidelines and studies on healthcare utilisation in patients with dementia have largely focused on AD. Additionally, most of the findings were made in comparison with AD. FUNDING Eisai Inc.
Collapse
Affiliation(s)
- Amir Abbas Tahami Monfared
- Eisai Inc., Woodcliff Lake, USA.
- Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
118
|
McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease. Neuron 2019; 101:1042-1056. [PMID: 30897356 DOI: 10.1016/j.neuron.2019.03.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a complex, multi-system neurodegenerative disorder. The second most common neurodegenerative disorder after Alzheimer's disease, it affects approximately 1% of adults over age 60. Diagnosis follows the development of one or more of the core motor features of the disease, including tremor, slowing of movement (bradykinesia), and rigidity. However, there are numerous other motor and nonmotor disease manifestations. Many PD symptoms result directly from neurodegeneration; others are driven by aberrant activity patterns in surviving neurons. This latter phenomenon, PD circuit dysfunction, is an area of intense study, as it likely underlies our ability to treat many disease symptoms in the face of (currently) irreversible neurodegeneration. This Review will discuss key clinical features of PD and their basis in neural circuit dysfunction. We will first review important disease symptoms and some of the responsible neuropathology. We will then describe the basal ganglia-thalamocortical circuit, the major locus of PD-related circuit dysfunction, and some of the models that have influenced its study. We will review PD-related changes in network activity, subdividing findings into those that touch on the rate, rhythm, or synchronization of neurons. Finally, we suggest some critical remaining questions for the field and areas for new developments.
Collapse
Affiliation(s)
- Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
119
|
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. [PMID: 31327002 PMCID: PMC6736046 DOI: 10.1093/brain/awz193] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience, Free University Berlin, Berlin, Germany
| | - Maria C G Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, Medical School of the University of São Paulo, Brazil
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | | | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milan, Italy
| | - Clare Loane
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Max C Keuken
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience research unit, Amsterdam, The Netherlands
- University of Leiden, Cognitive Psychology, Leiden, The Netherlands
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Falk Lüsebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Klaus Fliessbach
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Raymond Dolan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing, University College London, UK
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Kamil Uludag
- Centre for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Helmut Heinsen
- University of São Paulo Medical School, São Paulo, Brazil
- Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- University of São Paulo Medical School, São Paulo, Brazil
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi I L Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
120
|
Hussein M, Koura R. Auditory and vestibular dysfunction in patients with Parkinson’s disease. THE EGYPTIAN JOURNAL OF OTOLARYNGOLOGY 2019. [DOI: 10.4103/ejo.ejo_18_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
121
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
122
|
Vitanova KS, Stringer KM, Benitez DP, Brenton J, Cummings DM. Dementia associated with disorders of the basal ganglia. J Neurosci Res 2019; 97:1728-1741. [PMID: 31392765 DOI: 10.1002/jnr.24508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
Dementia is now the leading cause of death in the United Kingdom, accounting for over 12% of all deaths and is the fifth most common cause of death worldwide. As treatments for heart disease and cancers improve and the population ages, the number of sufferers will only increase, with the chance of developing dementia doubling every 5 years after the age of 65. Finding an effective treatment is ever more critical to avert this pandemic health (and economic) crisis. To date, most dementia-related research has focused on the cortex and the hippocampus; however, with dementia becoming more fully recognized as aspects of diseases historically categorized as motor disorders (e.g., Parkinson's and Huntington's diseases), the role of the basal ganglia in dementia is coming to the fore. Conversely, it is highly likely that neuronal pathways in these structures traditionally considered as spared in Alzheimer's disease are also affected, particularly in later stages of the disease. In this review, we examine some of the limited evidence linking the basal ganglia to dementia.
Collapse
Affiliation(s)
- Karina S Vitanova
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Diana P Benitez
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Jonathan Brenton
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Damian M Cummings
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
123
|
Ferini-Strambi L, Fasiello E, Sforza M, Salsone M, Galbiati A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev Neurother 2019; 19:1069-1087. [PMID: 31277555 DOI: 10.1080/14737175.2019.1640603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction: Rapid eye movement (REM) sleep behavior disorder (RBD) is a REM sleep parasomnia characterized by dream enacting behaviors allowed by the loss of physiological atonia during REM sleep. This disorder is recognized as a prodromal stage of neurodegenerative disease, in particular Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). Therefore, a timely identification of biomarkers able to predict an early conversion into neurodegeneration is of utmost importance. Areas covered: In this review, the authors provide updated evidence regarding the presence of neuropsychological, electrophysiological and neuroimaging markers in isolated RBD (iRBD) patients when the neurodegeneration is yet to come. Expert opinion: Cognitive profile of iRBD patients is characterized by the presence of impairment in visuospatial abilities and executive function that is observed in α-synucleinopathies. However, longitudinal studies showed that impaired executive functions, rather than visuospatial abilities, augmented conversion risk. Cortical slowdown during wake and REM sleep suggest the presence of an ongoing neurodegenerative process paralleled by cognitive decline. Neuroimaging findings showed that impairment nigrostriatal dopaminergic system might be a good marker to identify those patients at higher risk of short-term conversion. Although a growing body of evidence the identification of biomarkers still represents a critical issue in iRBD.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Elisabetta Fasiello
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Marco Sforza
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council , Catanzaro , Italy
| | - Andrea Galbiati
- Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, IRCCS San Raffaele Scientific Institute , Milan , Italy.,Faculty of Psychology, "Vita-Salute" San Raffaele University , Milan , Italy
| |
Collapse
|
124
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
125
|
Singh P, Bhat R. Binding of Noradrenaline to Native and Intermediate States during the Fibrillation of α-Synuclein Leads to the Formation of Stable and Structured Cytotoxic Species. ACS Chem Neurosci 2019; 10:2741-2755. [PMID: 30917654 DOI: 10.1021/acschemneuro.8b00650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is characterized by the deterioration of dopaminergic neurons of substantia nigra pars compacta along with a substantial loss of noradrenergic neurons of the locus coeruleus, which is the major source of noradrenaline (NA) in the brain. We have investigated the interaction of NA with α-synuclein (α-syn), the major protein constituent of Lewy bodies that are the pathological hallmark of Parkinson's disease (PD). It is expected that NA, like dopamine, could bind to α-syn and modulate its aggregation propensity and kinetics, which could also contribute to the onset of PD. We have, thus, evaluated the thermodynamic parameters of interaction of NA with α-syn monomer as well as species formed at different stages during its fibrillation pathway and have investigated the conformational and aggregation properties using various spectroscopic and calorimetric techniques. Binding isotherms of NA with α-syn species formed at different time points in the pathway have been observed to be exothermic in nature, suggesting hydrogen bonding interactions and weak affinity with binding constants in the millimolar range in all the cases. The interaction site of NA for α-syn was determined using Förster resonance energy transfer measurements that resulted in its binding in close proximity (23 Å) of an Alexa-labeled A90C mutant of α-syn. Docking studies further suggested binding of NA to the C-terminal as well as the non-amyloid-β component (NAC) region of α-syn. We have shown that α-syn oligomerization into sodium dodecyl sulfate resistant, higher-order, β-sheet-rich species is dependent on the oxidation of NA. Under non-reducing conditions, NA was also found to disaggregate the intermediates, populated during the fibrillation pathway, which are more cytotoxic compared to amyloid fibrils, as observed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide cytotoxicity assay using a human neuroblastoma cell line. On the basis of these and earlier data, we propose that NA-induced formation of α-syn oligomers may contribute to the progressive loss of the noradrenergic neuronal population and the pronounced Lewy body deposition observed in patients with PD.
Collapse
Affiliation(s)
- Priyanka Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
126
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
127
|
Musgrove RE, Helwig M, Bae EJ, Aboutalebi H, Lee SJ, Ulusoy A, Di Monte DA. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 2019; 129:3738-3753. [PMID: 31194700 DOI: 10.1172/jci127330] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Specific neuronal populations display high vulnerability to pathological processes in Parkinson's disease (PD). The dorsal motor nucleus of the vagus nerve (DMnX) is a primary site of pathological α-synuclein deposition and may play a key role in the spreading of α-synuclein lesions within and outside the CNS. Using in vivo models, we show that cholinergic neurons forming this nucleus are particularly susceptible to oxidative challenges and accumulation of reactive oxidative species (ROS). Targeted α-synuclein overexpression within these neurons triggered an oxidative stress that became significantly more pronounced after exposure to the ROS-generating agent paraquat. A more severe oxidative stress resulted in enhanced production of oxidatively modified forms of α-synuclein, increased α-synuclein aggregation into oligomeric species and marked degeneration of DMnX neurons. Enhanced oxidative stress also affected neuron-to-neuron protein transfer, causing an increased spreading of α-synuclein from the DMnX toward more rostral brain regions. In vitro experiments confirmed a greater propensity of α-synuclein to pass from cell to cell under pro-oxidant conditions, and identified nitrated α-synuclein forms as highly transferable protein species. These findings substantiate the relevance of oxidative injury in PD pathogenetic processes, establish a relationship between oxidative stress and vulnerability to α-synuclein pathology and define a new mechanism, enhanced cell-to-cell α-synuclein transmission, by which oxidative stress could promote PD development and progression.
Collapse
Affiliation(s)
- Ruth E Musgrove
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Helwig
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eun-Jin Bae
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Helia Aboutalebi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
128
|
Díaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA, Orellana JA. Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia 2019; 67:1598-1619. [PMID: 31033038 DOI: 10.1002/glia.23631] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Diverse studies have suggested that cytoplasmic inclusions of misfolded α-synuclein in neuronal and glial cells are main pathological features of different α-synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α-synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron-glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α-synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+ ]i ), and purinergic and glutamatergic signaling. Relevantly, the α-synuclein-induced opening of hemichannels and pannexons resulted in alterations in [Ca2+ ]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α-synuclein-mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α-synucleinopathies.
Collapse
Affiliation(s)
- Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
129
|
Aoki Y, Kazui H, Pascal-Marqui RD, Ishii R, Yoshiyama K, Kanemoto H, Suzuki Y, Sato S, Hata M, Canuet L, Iwase M, Ikeda M. EEG Resting-State Networks in Dementia with Lewy Bodies Associated with Clinical Symptoms. Neuropsychobiology 2019; 77:206-218. [PMID: 30654367 DOI: 10.1159/000495620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by progressive cognitive decline, fluctuating cognition, visual hallucinations, rapid eye movement sleep behavior disorder, and parkinsonism. DLB is the second most common type of degenerative dementia of all dementia cases. However, DLB, particularly in the early stage, is underdiagnosed and sometimes misdiagnosed with other types of dementia. Thus, it is of great interest investigating neurophysiological markers of DLB. METHOD We introduced exact low-resolution brain electromagnetic tomography (eLORETA)-independent component analysis (ICA) to assess activities of 5 electroencephalography (EEG) resting-state networks (RSNs) in 41 drug-free DLB patients. RESULTS Compared to 80 healthy controls, DLB patients had significantly decreased activities in occipital visual and sensorimotor networks, where DLB patients and healthy controls showed no age dependences in all EEG-RSN activities. Also, we found correlations between all EEG-RSN activities and DLB symptoms. Specifically, decreased occipital α activity showed correlations with worse brain functions related to attention/concentration, visuospatial discrimination, and global cognition. Enhanced visual perception network activity correlated with milder levels of depression and anxiety. Enhanced self-referential network activity correlated with milder levels of depression. Enhanced memory perception network activity correlated with better semantic memory, visuospatial discrimination function, and global cognitive function as well as with severer visual hallucination. In addition, decreased sensorimotor network activity correlated with a better semantic memory. CONCLUSION These results indicate that eLORETA-ICA can detect EEG-RSN activity alterations in DLB related to symptoms. Therefore, eLORETA-ICA with EEG data can be a useful noninvasive tool for sensitive detection of EEG-RSN activity changes characteristic of DLB and for understanding the neurophysiological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Yasunori Aoki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan, .,Department of Psychiatry, Nippon Life Hospital, Osaka, Japan,
| | - Hiroaki Kazui
- Department of Neuropsychiatry, Kochi University, Kochi, Japan
| | - Roberto D Pascal-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland.,Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Psychiatry, Mizuma Hospital, Osaka, Japan.,Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Osaka, Japan
| | - Yukiko Suzuki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shunsuke Sato
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Leonides Canuet
- Department of Clinical Psychology and Psychobiology, La Laguna University, Tenerife, Spain
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
130
|
Mason DM, Wang Y, Bhatia TN, Miner KM, Trbojevic SA, Stolz JF, Luk KC, Leak RK. The center of olfactory bulb-seeded α-synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathol 2019; 29:741-770. [PMID: 30854742 DOI: 10.1111/bpa.12718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
At early disease stages, Lewy body disorders are characterized by limbic vs. brainstem α-synucleinopathy, but most preclinical studies have focused solely on the nigrostriatal pathway. Furthermore, male gender and advanced age are two major risk factors for this family of conditions, but their influence on the topographical extents of α-synucleinopathy and the degree of cell loss are uncertain. To fill these gaps, we infused α-synuclein fibrils in the olfactory bulb/anterior olfactory nucleus complex-one of the earliest and most frequently affected brain regions in Lewy body disorders-in 3-month-old female and male mice and in 11-month-old male mice. After 6 months, we observed that α-synucleinopathy did not expand significantly beyond the limbic connectome in the 9-month-old male and female mice or in the 17-month-old male mice. However, the 9-month-old male mice had developed greater α-synucleinopathy, smell impairment and cell loss than age-matched females. By 10.5 months post-infusion, fibril treatment hastened mortality in the 21.5-month-old males, but the inclusions remained centered in the limbic system in the survivors. Although fibril infusions reduced the number of cells expressing tyrosine hydroxylase in the substantia nigra of young males at 6 months post-infusion, this was not attributable to true cell death. Furthermore, mesencephalic α-synucleinopathy, if present, was centered in mesolimbic circuits (ventral tegmental area/accumbens) rather than within strict boundaries of the nigral pars compacta, which were defined here by tyrosine hydroxylase immunolabel. Nonprimate models cannot be expected to faithfully recapitulate human Lewy body disorders, but our murine model seems reasonably suited to (i) capture some aspects of Stage IIb of Lewy body disorders, which displays a heavier limbic than brainstem component compared to incipient Parkinson's disease; and (ii) leverage sex differences and the acceleration of mortality following induction of olfactory α-synucleinopathy.
Collapse
Affiliation(s)
- Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Yaqin Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara A Trbojevic
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| |
Collapse
|
131
|
Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T, da Silva Correia SM, da Cunha JEG, Möbius W, Outeiro TF, Álvarez VG, Banchelli M, D'Andrea C, de Angelis M, Zafar S, Rabano A, Matteini P, Zerr I. Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 2019; 85:691-703. [PMID: 30805957 DOI: 10.1002/ana.25446] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Currently, the exact reasons why different α-synucleinopathies exhibit variable pathologies and phenotypes are still unknown. A potential explanation may be the existence of distinctive α-synuclein conformers or strains. Here, we intend to analyze the seeding activity of dementia with Lewy bodies (DLB) and Parkinson's disease (PD) brain-derived α-synuclein seeds by real-time quaking-induced conversion (RT-QuIC) and to investigate the structure and morphology of the α-synuclein aggregates generated by RT-QuIC. METHODS A misfolded α-synuclein-enriched brain fraction from frontal cortex and substantia nigra pars compacta tissue, isolated by several filtration and centrifugation steps, was subjected to α-synuclein/RT-QuIC analysis. Our study included neuropathologically well-characterized cases with DLB, PD, and controls (Ctrl). Biochemical and morphological analyses of RT-QuIC products were conducted by western blot, dot blot analysis, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. RESULTS Independently from the brain region, we observed different seeding kinetics of α-synuclein in the RT-QuIC in patients with DLB compared to PD and Ctrl. Biochemical characterization of the RT-QuIC product indicated the generation of a proteinase K-resistant and fibrillary α-synuclein species in DLB-seeded reactions, whereas PD and control seeds failed in the conversion of wild-type α-synuclein substrate. INTERPRETATION Structural variances of α-synuclein seeding kinetics and products in DLB and PD indicated, for the first time, the existence of different α-synuclein strains in these groups. Therefore, our study contributes to a better understanding of the clinical heterogeneity among α-synucleinopathies, offers an opportunity for a specific diagnosis, and opens new avenues for the future development of strain-specific therapies. Ann Neurol 2019;85:691-703.
Collapse
Affiliation(s)
- Niccolò Candelise
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain and IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitale de Llobregat, Spain
| | - Anna Villar-Piqué
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tobias Thom
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susana Margarida da Silva Correia
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Wiebke Möbius
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine Medicine Department of Neurogenetics, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Valentina González Álvarez
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Martina Banchelli
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Alberto Rabano
- Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Madrid, Spain
| | - Paolo Matteini
- Institute of Applied Physics (IFAC), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
132
|
Kresl P, Rahimi J, Gelpi E, Aldecoa I, Ricken G, Danics K, Keller E, Kovacs GG. Accumulation of prion protein in the vagus nerve in creutzfeldt-jakob disease. Ann Neurol 2019; 85:782-787. [PMID: 30801763 PMCID: PMC6593447 DOI: 10.1002/ana.25451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
Disease‐associated proteins are thought to propagate along neuronal processes in neurodegenerative diseases. To detect disease‐associated prion protein (PrPSc) in the vagus nerve in different forms and molecular subtypes of Creutzfeldt–Jakob disease (CJD), we applied 3 different anti‐PrP antibodies. We screened the vagus nerve in 162 sporadic and 30 genetic CJD cases. Four of 31 VV‐2 type sporadic CJD and 7 of 30 genetic CJD cases showed vagal PrPSc immunodeposits with distinct morphology. Thus, PrPSc in CJD affects the vagus nerve analogously to α‐synuclein in Parkinson disease. The morphologically diverse deposition of PrPSc in genetic and sporadic CJD argues against uniform mechanisms of propagation of PrPSc. Ann Neurol 2019;85:782–787
Collapse
Affiliation(s)
- Philip Kresl
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria
| | - Jasmin Rahimi
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - Ellen Gelpi
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria.,Neurological Tissue Bank, Biobanc Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, and Pathology Department, Biomedical Diagnostic Center, Barcelona Hospital Clinic, Barcelona, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank, Biobanc Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, and Pathology Department, Biomedical Diagnostic Center, Barcelona Hospital Clinic, Barcelona, Spain
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Danics
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Eva Keller
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria.,Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
133
|
Oliveira LM, Oliveira MA, Moriya HT, Moreira TS, Takakura AC. Respiratory disturbances in a mouse model of Parkinson's disease. Exp Physiol 2019; 104:729-739. [PMID: 30758090 DOI: 10.1113/ep087507] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 μg μl-1 ; 0.5 μl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-Bӧtzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
134
|
Effects of α-Synuclein Monomers Administration in the Gigantocellular Reticular Nucleus on Neurotransmission in Mouse Model. Neurochem Res 2019; 44:968-977. [PMID: 30758814 PMCID: PMC6437297 DOI: 10.1007/s11064-019-02732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Abstract
The aim of the study was to examine the Braak's hypothesis to explain the spreading and distribution of the neuropathological changes observed in the course of Parkinson's disease among ascending neuroanatomical regions. We investigated the neurotransmitter levels (monoamines and amino acid concentration) as well as tyrosine hydroxylase (TH) and transglutaminase-2 (TG2) mRNA expression in the mouse striata (ST) after intracerebral α-synuclein (ASN) administration into gigantocellular reticular nucleus (Gi). Male C57BL/10 Tar mice were used in this study. ASN was administrated by stereotactic injection into Gi area (4 μl; 1 μg/μl) and mice were decapitated after 1, 4 or 12 weeks post injection. The neurotransmitters concentration in ST were evaluated using HPLC detection. TH and TG2 mRNA expression were examined by Real-Time PCR method. At 4 and 12 weeks after ASN administration we observed decrease of DA concentration in ST relative to control groups and we found a significantly higher concentration one of the DA metabolites-DOPAC. At these time points, we also noticed the increase in DA turnover determined as DOPAC/DA ratio. Additionally, at 4 and 12 weeks after ASN injection we noted decreasing of TH mRNA expression. Our findings corresponds with the Braak's theory about the presence of the first neuropathological changes within brainstem and then with time affecting higher neuroanatomical regions. These results obtained after administration of ASN monomers to the Gi area may be useful to explain the pathogenesis of Parkinson's disease.
Collapse
|
135
|
Tagliafierro L, Zamora ME, Chiba-Falek O. Multiplication of the SNCA locus exacerbates neuronal nuclear aging. Hum Mol Genet 2019; 28:407-421. [PMID: 30304516 PMCID: PMC6337700 DOI: 10.1093/hmg/ddy355] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/26/2023] Open
Abstract
Human-induced Pluripotent Stem Cell (hiPSC)-derived models have advanced the study of neurodegenerative diseases, including Parkinson's disease (PD). While age is the strongest risk factor for these disorders, hiPSC-derived models represent rejuvenated neurons. We developed hiPSC-derived Aged dopaminergic and cholinergic neurons to model PD and related synucleinopathies. Our new method induces aging through a `semi-natural' process, by passaging multiple times at the Neural Precursor Cell stage, prior to final differentiation. Characterization of isogenic hiPSC-derived neurons using heterochromatin and nuclear envelope markers, as well as DNA damage and global DNA methylation, validated our age-inducing method. Next, we compared neurons derived from a patient with SNCA-triplication (SNCA-Tri) and a Control. The SNCA-Tri neurons displayed exacerbated nuclear aging, showing advanced aging signatures already at the Juvenile stage. Noteworthy, the Aged SNCA-Tri neurons showed more α-synuclein aggregates per cell versus the Juvenile. We suggest a link between the effects of aging and SNCA overexpression on neuronal nuclear architecture.
Collapse
Affiliation(s)
- Lidia Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Madison Elena Zamora
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
136
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
137
|
Yu W, Yang W, Li X, Li X, Yu S. Alpha-synuclein oligomerization increases its effect on promoting NMDA receptor internalization. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:87-100. [PMID: 31933723 PMCID: PMC6944010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
The internalization of NMDA receptors (NMDARs) is promoted by monomeric α-synuclein (α-syn). Because of the pathogenic role of oligomeric α-syn, the effect of aggregated α-syn on this regulation deserves investigation. Several α-syn oligomers were prepared by incubating recombinant human α-syn in phosphate-buffered saline (PBS), plasma of normal controls (NC) and patients with Parkinson's disease (PD). The α-syn oligomers formed in PBS are not phosphorylated and are different from the α-syn oligomers formed in the plasma of NC and PD that are moderately and highly phosphorylated at serine 129, which is a key phosphorylation site of the α-syn molecule in PD patients. After being added into the culture medium, the α-syn monomers and its oligomers formed in different methods and rapidly entered into MES23.5 dopaminergic cells and induced an increase in the expression of Rab5B, an endocytic protein that has been shown to regulate clathrin-mediated endocytosis of NMDARs. The levels of surface GluN1, a subunit obligatory for the assembly of functional NMDAR, were reduced, but the total GluN1 changes didn't show a parallel reduction of the surface of GluN1, indicating the internalization of GluN1. Compared with the monomers, the oligomers, especially those formed in PD plasma, were more potent in promoting GluN1 internalization, and were abolished by clathrin inhibitor pitstop2. The above results suggest that α-syn oligomers, especially those formed in PD plasma, increase the effect of α-syn in promoting the internalization of NMDAR GluN1 subunits, possibly through a clathrin-mediated endocytic mechanism.
Collapse
Affiliation(s)
- Wenjiao Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
- Clinical Center for Parkinson’s Disease, Capital Medical UniversityBeijing, China
- National Clinical Research Center for Geriatric DisordersBeijing, China
- Parkinson Disease Center of Beijing Institute for Brain DisordersBeijing, China
| | - Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
- Clinical Center for Parkinson’s Disease, Capital Medical UniversityBeijing, China
- National Clinical Research Center for Geriatric DisordersBeijing, China
- Parkinson Disease Center of Beijing Institute for Brain DisordersBeijing, China
| | - Xuran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
- Clinical Center for Parkinson’s Disease, Capital Medical UniversityBeijing, China
- National Clinical Research Center for Geriatric DisordersBeijing, China
- Parkinson Disease Center of Beijing Institute for Brain DisordersBeijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
- Clinical Center for Parkinson’s Disease, Capital Medical UniversityBeijing, China
- National Clinical Research Center for Geriatric DisordersBeijing, China
- Parkinson Disease Center of Beijing Institute for Brain DisordersBeijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
- Clinical Center for Parkinson’s Disease, Capital Medical UniversityBeijing, China
- National Clinical Research Center for Geriatric DisordersBeijing, China
- Parkinson Disease Center of Beijing Institute for Brain DisordersBeijing, China
- Beijing Key Laboratory for Parkinson’s DiseaseBeijing, China
| |
Collapse
|
138
|
Abstract
For decades it has been speculated that Parkinson's Disease (PD) is associated with dysfunction of the vestibular system, especially given that postural instability is one of the major symptoms of the disorder. Nonetheless, clear evidence of such a connection has been slow to emerge. There are still relatively few studies of the vestibulo-ocular reflexes (VORs) in PD. However, substantial evidence of vestibulo-spinal reflex deficits, in the form of abnormal vestibular-evoked myogenic potentials (VEMPs), now exists. The evidence for abnormalities in the subjective visual vertical is less consistent. However, some studies suggest that the integration of visual and vestibular information may be abnormal in PD. In the last few years, a number of studies have been published which demonstrate that the neuropathology associated with PD, such as Lewy bodies, is present in the central vestibular system. Increasingly, stochastic or noisy galvanic vestibular stimulation (nGVS) is being investigated as a potential treatment for PD, and a number of studies have presented evidence in support of this idea. The aim of this review is to summarize and critically evaluate the human and animal evidence relating to the connection between the vestibular system and PD.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences and The Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand Centre of Research Excellence, Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
139
|
McClymont SA, Hook PW, Soto AI, Reed X, Law WD, Kerans SJ, Waite EL, Briceno NJ, Thole JF, Heckman MG, Diehl NN, Wszolek ZK, Moore CD, Zhu H, Akiyama JA, Dickel DE, Visel A, Pennacchio LA, Ross OA, Beer MA, McCallion AS. Parkinson-Associated SNCA Enhancer Variants Revealed by Open Chromatin in Mouse Dopamine Neurons. Am J Hum Genet 2018; 103:874-892. [PMID: 30503521 DOI: 10.1016/j.ajhg.2018.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The progressive loss of midbrain (MB) dopaminergic (DA) neurons defines the motor features of Parkinson disease (PD), and modulation of risk by common variants in PD has been well established through genome-wide association studies (GWASs). We acquired open chromatin signatures of purified embryonic mouse MB DA neurons because we anticipated that a fraction of PD-associated genetic variation might mediate the variants' effects within this neuronal population. Correlation with >2,300 putative enhancers assayed in mice revealed enrichment for MB cis-regulatory elements (CREs), and these data were reinforced by transgenic analyses of six additional sequences in zebrafish and mice. One CRE, within intron 4 of the familial PD gene SNCA, directed reporter expression in catecholaminergic neurons from transgenic mice and zebrafish. Sequencing of this CRE in 986 individuals with PD and 992 controls revealed two common variants associated with elevated PD risk. To assess potential mechanisms of action, we screened >16,000 proteins for DNA binding capacity and identified a subset whose binding is impacted by these enhancer variants. Additional genotyping across the SNCA locus identified a single PD-associated haplotype, containing the minor alleles of both of the aforementioned PD-risk variants. Our work posits a model for how common variation at SNCA might modulate PD risk and highlights the value of cell-context-dependent guided searches for functional non-coding variation.
Collapse
Affiliation(s)
- Sarah A McClymont
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul W Hook
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra I Soto
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xylena Reed
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William D Law
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel J Kerans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric L Waite
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicole J Briceno
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joey F Thole
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nancy N Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Cedric D Moore
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Track, Mayo Graduate School, Jacksonville, FL 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
140
|
Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto GE, Hayat SMG, Sahebkar A. Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives. Mol Neurobiol 2018; 56:4799-4811. [PMID: 30397850 DOI: 10.1007/s12035-018-1419-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder accompanied by depletion of dopamine and loss of dopaminergic neurons in the brain that is believed to be responsible for the motor and non-motor symptoms in this disease. The main drug prescribed for Parkinsonian patients is L-dopa, which can be converted to dopamine by passing through the blood-brain barrier. Although L-dopa is able to improve motor function and improve the quality of life in the patients, there is inter-individual variability and some patients do not achieve the therapeutic effect. Variations in treatment response and side effects of current drugs have convinced scientists to think of treating Parkinson's disease at the cellular and molecular level. Molecular and cellular therapy for Parkinson's disease include (i) cell transplantation therapy with human embryonic stem (ES) cells, human induced pluripotent stem (iPS) cells and human fetal mesencephalic tissue, (ii) immunological and inflammatory therapy which is done using antibodies, and (iii) gene therapy with AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA interference-based therapy, CRISPR-Cas9 gene editing system, and alternative methods such as optogenetics and chemogenetics. Although these methods currently have a series of challenges, they seem to be promising techniques for Parkinson's treatment in future. In this study, these prospective therapeutic approaches are reviewed.
Collapse
Affiliation(s)
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Departments of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
141
|
Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA. Regional vesicular acetylcholine transporter distribution in human brain: A [ 18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526:2884-2897. [PMID: 30255936 DOI: 10.1002/cne.24541] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18 F]fluoroethoxybenzovesamicol ([18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18 F]FEOBV binding in some cortical regions and the striatum.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Michigan Alzheimer Disease Center, Ann Arbor, Michigan
| | - Nicolaas I Bohnen
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Martijn L T M Muller
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - William T Dauer
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Kirk A Frey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert A Koeppe
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
142
|
Pisa Syndrome in Parkinson's Disease: Evidence for Bilateral Vestibulospinal Dysfunction. PARKINSONS DISEASE 2018; 2018:8673486. [PMID: 30410718 PMCID: PMC6205319 DOI: 10.1155/2018/8673486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022]
Abstract
Introduction Pisa syndrome (PS) is a postural complication of Parkinson's disease (PD). Yet, its pathophysiology remains unclear, although a multifactorial component is probable. Cervical vestibular evoked myogenic potentials (cVEMPs) explore vestibulospinal pathway, but they have not been measured yet in PD patients with PS (PDPS) to assess a potential vestibular impairment. Materials and Methods We enrolled 15 PD patients, 15 PDPS patients, and 30 healthy controls (HCs). They underwent neurological examination and were examined with Unified Parkinson's Disease Rating Scale II-III (UPDRSII-III), audiovestibular workup, and cVEMP recordings. Data were analysed with Chi-square, one-way ANOVA, multinomial regression, nonparametric, and Spearman's tests. Results cVEMPs were significantly impaired in both PD and PDPS compared with HCs. PDPS exhibited more severe cVEMP abnormalities with prevalent bilateral loss of potentials, compared with the PD group, in which a prevalent unilateral loss was instead observed. No clinical-neurophysiological correlations emerged. Conclusions Differently from HC, cVEMPs are altered in PD. Severity of cVEMPs alterations increases from PD without PS to PDPS, suggesting an involvement of vestibulospinal pathway in the pathophysiology of PS. Our results provide evidence for a significant impairment of cVEMPs in PDPS patients and encourage further studies to test validity of cVEMPs as diagnostic and prognostic biomarkers of PD progression.
Collapse
|
143
|
Chi H, Chang HY, Sang TK. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E3082. [PMID: 30304824 PMCID: PMC6213751 DOI: 10.3390/ijms19103082] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell death in the central nervous system has always been a challenging process to decipher. In normal physiological conditions, neuronal cell death is restricted in the adult brain, even in aged individuals. However, in the pathological conditions of various neurodegenerative diseases, cell death and shrinkage in a specific region of the brain represent a fundamental pathological feature across different neurodegenerative diseases. In this review, we will briefly go through the general pathways of cell death and describe evidence for cell death in the context of individual common neurodegenerative diseases, discussing our current understanding of cell death by connecting with renowned pathogenic proteins, including Tau, amyloid-beta, alpha-synuclein, huntingtin and TDP-43.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| |
Collapse
|
144
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
145
|
Walter U, Tsiberidou P, Kersten M, Storch A, Löhle M. Atrophy of the Vagus Nerve in Parkinson's Disease Revealed by High-Resolution Ultrasonography. Front Neurol 2018; 9:805. [PMID: 30319534 PMCID: PMC6170613 DOI: 10.3389/fneur.2018.00805] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background: The vagus nerve has been suggested to represent one major route of disease progression in Parkinson's disease (PD). Here, we examined whether patients with idiopathic PD exhibit an atrophy of the vagus nerve in comparison to age-matched controls. Methods: In this cross-sectional study, performed between July 2017 and January 2018, we measured the caliber (cross-sectional area) of the mid-cervical vagus, accessory and phrenic nerves in 20 patients with PD (disease duration: 10.1 ± 7.4 years) and 61 (including 20 age-matched) controls using high-resolution ultrasonography. Ultrasonography and assessments of autonomic function were performed by blinded raters. Results: Mean vagus nerve calibers were lower in patients with PD compared to age-matched controls (right: 0.64 ± 0.17 vs. 1.04 ± 0.20; left: 0.69 ± 0.18 vs. 0.87 ± 0.15 mm2; p < 0.001) while accessory and phrenic nerve calibers did not differ. In controls, age correlated negatively with calibers of the accessory and the phrenic nerve (each p ≤ 0.001), and trended to correlate with vagus nerve caliber (p = 0.023). In patients with PD and age-matched controls combined, the summed caliber of the right and left vagus nerves correlated with the burden of autonomic symptoms on the PD Non-Motor Symptoms Questionnaire (r = -0.46; p = 0.003). Moreover, the caliber of the right but not of the left vagus nerve correlated with the parasympathetic domain of heart rate variability (r = 0.58; p = 0.001). Conclusions: PD is associated with a bilateral atrophy of the vagus nerve but not of the spinal accessory or the phrenic nerves. Our findings suggest that viscero-afferent and viscero-efferent vagal fibers are predominantly affected in PD.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases, Rostock/Greifswald, Rostock, Germany
| | | | - Maxi Kersten
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases, Rostock/Greifswald, Rostock, Germany
| | - Matthias Löhle
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases, Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
146
|
Verdurand M, Levigoureux E, Zeinyeh W, Berthier L, Mendjel-Herda M, Cadarossanesaib F, Bouillot C, Iecker T, Terreux R, Lancelot S, Chauveau F, Billard T, Zimmer L. In Silico, in Vitro, and in Vivo Evaluation of New Candidates for α-Synuclein PET Imaging. Mol Pharm 2018; 15:3153-3166. [DOI: 10.1021/acs.molpharmaceut.8b00229] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathieu Verdurand
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
| | - Elise Levigoureux
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
- Hospices Civils de Lyon, Lyon 69361, France
| | - Wael Zeinyeh
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
| | - Laurent Berthier
- Université de Lyon, Université Claude Bernard Lyon 1, Institute of Biology and Chemistry of Proteins, CNRS UMR5305, Lyon 69361, France
| | - Meriem Mendjel-Herda
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
| | | | | | | | - Raphaël Terreux
- Université de Lyon, Université Claude Bernard Lyon 1, Institute of Biology and Chemistry of Proteins, CNRS UMR5305, Lyon 69361, France
| | - Sophie Lancelot
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
- Hospices Civils de Lyon, Lyon 69361, France
| | - Fabien Chauveau
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
| | - Thierry Billard
- CERMEP-Imaging Platform, Bron 69677, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institute of Chemistry and Biochemistry, CNRS UMR5246, Villeurbanne 69100, France
| | - Luc Zimmer
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 69361, France
- Hospices Civils de Lyon, Lyon 69361, France
- CERMEP-Imaging Platform, Bron 69677, France
| |
Collapse
|
147
|
Jan A, Jansonius B, Delaidelli A, Bhanshali F, An YA, Ferreira N, Smits LM, Negri GL, Schwamborn JC, Jensen PH, Mackenzie IR, Taubert S, Sorensen PH. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun 2018; 6:54. [PMID: 29961428 PMCID: PMC6027557 DOI: 10.1186/s40478-018-0554-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.
Collapse
|
148
|
Knudsen K, Hartmann B, Fedorova TD, Østergaard K, Krogh K, Møller N, Holst JJ, Borghammer P. Pancreatic Polypeptide in Parkinson's Disease: A Potential Marker of Parasympathetic Denervation. JOURNAL OF PARKINSONS DISEASE 2018; 7:645-652. [PMID: 28922171 DOI: 10.3233/jpd-171189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Parkinson's disease (PD) patients experience several non-motor symptoms from the gastrointestinal tract that may partly be caused by parasympathetic deficiency. The pancreas is densely innervated by the vagus nerve, which mediates early meal-induced secretion of pancreatic polypeptide (PP). Early secretion after sham feeding has been validated as a marker of vagal integrity. Thus, the aim was to evaluate the ratio of increased PP plasma levels after sham feeding in PD and correlate findings with gastrointestinal transit time (GITT). METHODS Twenty-five PD patients and 17 controls were included. PP, insulin, and blood glucose levels were measured before, during, and after sham feeding with white bread and chocolate spread. GITT was measured using radiopaque markers. Furthermore, faeces samples were analyzed for pancreatic elastase enzyme as a marker of exocrine pancreatic function. RESULTS PD patients showed significantly lower PP ratio levels after sham feeding, which was most pronounced at 10 minutes. No significant association was seen between attenuated PP response and GITT in PD patients. No between-group differences were seen in glucose or insulin levels over time, but PD patients showed generally lower insulin levels compared to controls. No difference was found in faeces pancreatic elastase. CONCLUSIONS Early-to-moderate stage PD patients demonstrated significantly decreased PP response after sham feeding suggestive of vagal denervation.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research and Department of Medical Sciences, University of Copenhagen, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| | | | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Denmark and Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Department of Medical Sciences, University of Copenhagen, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark
| |
Collapse
|
149
|
Peripheral and central autonomic nervous system: does the sympathetic or parasympathetic nervous system bear the brunt of the pathology during the course of sporadic PD? Cell Tissue Res 2018; 373:267-286. [PMID: 29869180 DOI: 10.1007/s00441-018-2851-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/03/2018] [Indexed: 01/24/2023]
Abstract
It is a well-established fact that the sympathetic, parasympathetic and enteric nervous systems are affected at early stages in Parkinson's disease (PD). However, it is not yet clarified whether the earliest pathological events preferentially occur in any of these three divisions of the autonomic nervous system (ANS). Significant involvement of the peripheral autonomic nervous system of the heart and gastrointestinal tract has been documented in PD. Accumulating evidence suggests that the PD pathology spreads centripetally from the peripheral to central nervous system through autonomic nerve fibers, implicating the ANS as a major culprit in PD pathogenesis and a potential target for therapy. This study begins with a brief overview of the structures of the central and peripheral autonomic nervous system and then outlines the major clinicopathological manifestations of cardiovascular and gastrointestinal disturbances in PD.
Collapse
|
150
|
Johnson M, Salvatore M, Maiolo S, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 2018; 165-167:1-25. [DOI: 10.1016/j.pneurobio.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
|