101
|
Bahadory S, Sadraei J, Zibaei M, Pirestani M, Dalimi A. In vitro anti-gastrointestinal cancer activity of Toxocara canis-derived peptide: Analyzing the expression level of factors related to cell proliferation and tumor growth. Front Pharmacol 2022; 13:878724. [PMID: 36204226 PMCID: PMC9530354 DOI: 10.3389/fphar.2022.878724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Recently, a hypothesis about the negative relationship between cancers and parasites has been proposed and investigated; some parasitic worms and their products can affect the cancer cell proliferation. Due to the potential anti-cancer effect of helminthic parasites, in the present study, the excretory–secretory protein of Toxocara canis (T. canis) parasite was used to evaluate the possible anti-cancer properties and their effect on gastrointestinal and liver cancer cell proliferation-related genes in laboratory conditions. Methods and materials: The selected synthesized peptide fraction from the T. canis excretory–secretory Troponin protein peptide (ES TPP) was exposed at 32, 64, 128, and 256 μg/ml concentrations to three gastrointestinal cancer cell lines AGS, HT-29, and Caco 2, as well as HDF cells as normal cell lines. We used the MTT assay to evaluate cellular changes and cell viability (CV). Variations in gene (Bcl-2, APAF1, ZEB1, VEGF, cyclin-D1, and caspase-3) expression were analyzed by real-time RT-PCR. Results: After 24 h of exposure to pept1ides and cell lines, a decrease in CV was observed at a concentration of 64 μg/ml and compared to the control group. Then, after 48 h, a significant decrease in the CV of Caco 2 cells was observed at a concentration of 32 μg/ml; in the other cancer cell lines, concentrations above 32 μg/ml were effective. The peptide was able to significantly alter the expression of the studied genes at a concentration of 100 μg/ml. Conclusion: Although the studied peptide at high concentrations could have a statistically significant effect on cancer cells, it is still far from the standard drug and can be optimized and promising in future studies.
Collapse
Affiliation(s)
- Saeed Bahadory
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadraei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Javid Sadraei,
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
102
|
Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells. Stem Cells Int 2022; 2022:1850305. [PMID: 36132168 PMCID: PMC9484933 DOI: 10.1155/2022/1850305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background. A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers’ attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2
-chloro-5
-nitrobenzenesulfonyl)−2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results. In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion. CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.
Collapse
|
103
|
Lima APB, Melo AS, Ferreira GM, da Silva GN. Chrysin inhibits the cell viability, induces apoptosis and modulates expression of genes related to epigenetic events in bladder cancer cells. Nat Prod Res 2022; 37:1877-1881. [PMID: 36093567 DOI: 10.1080/14786419.2022.2121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study was conducted with the aim of exploring the molecular and cellular mechanisms of action of the chrysin (natural flavonoid compound) on bladder tumour cell lines with different status of TP53 (RT4, 5637 and T24). The cells were treated with different concentrations of chrysin (20, 40, 60, 80 and 100 µM) to analyze the cell viability, nuclear division index, mutagenicity, apoptosis rates and expression of genes related to epigenetic events (DNMT1, HAT1 and HDAC1). Results showed that the treatment with chrysin reduced the cell viability and caused apoptosis, regardless TP53. Moreover, in the TP53-mutated cell lines, chrysin modulated the expression of the DNMT1, HAT1 and HDAC1 epigenetic genes, which might be a plus to the death observed in the cells with p53 mutation.
Collapse
Affiliation(s)
- Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - André Sacramento Melo
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Gabriel Monteze Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (CBIOL), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
104
|
Langeh U, Kumar V, Singh C, Singh A. Drug-herb combination therapy in cancer management. Mol Biol Rep 2022; 49:11009-11024. [PMID: 36083521 DOI: 10.1007/s11033-022-07861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the second leading cause of fatality all over the world. Various unwanted side effects are being reported with the use of conventional chemotherapy. The plant derived bioactive compounds are the prominent alternative medicinal approach for reduction of chemotherapy associated side effects. The data is collected from Pubmed, Sci-hub, Google scholar, and Research gate were systematically searched up to year 2020. Several herbal drugs have been investigated and found with grateful anti-cancer potentials hence, it can be used in combination with chemotherapy for the depletion of associated side-effects. Herbal drugs and their extracts contain a mixture of active ingredients, which show interactions within themselves and along with chemotherapeutic agents to show either synergistic or antagonistic therapeutic effects. Therefore, it is necessary to develop alternative treatment to control chemotherapy associated side-effects. In this review, we discussed some of the significant chemical compounds, which could be efficient against cancer. This review focuses on the different herbal drugs that play an important role in the treatment of cancer and its associated side-effects. This study aimed to evaluate the efficacy of herbal treatment in combination with chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Charan Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
105
|
Hao Z, Pan Z, Qian W. Atractylenolide I Inhibits Triple-Negative Breast Cancer Cell Proliferation and Promotes Apoptosis via Blocking the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive agent Atractylenolide I (AT-1) has been shown to possess therapeutic value for treating various malignancies. The purpose of the current study is to clarify the potential effect of AT-1 on the development of triple-negative breast cancer (TNBC) and to investigate relevant
signaling pathways involved in its mechanism. MTT assay was used to assess the effect of different concentrations of AT-1 on cell survival rate in MCF-10A normal breast epithelial cell line and MDA-MB-231 TNBC cell line. Exogenous IL-6 and WP1066 respectively acted as the agonist and the inhibitor
of JAK2/STAT3. Determination of MDA-MB-231 cell viability, proliferation and apoptosis employed MTT, colony formation assay and TUNEL. Western blotting was conducted to measure the expression of proliferation- and apoptosis-related proteins. The viability of MCF-10A cells was unaffected by
AT-1, whereas in MDA-MB-231 cells the proliferation level was decreased and the apoptosis level was increased after AT-1 treatment. IL-6 partially restored the expression of AT-1-blocked JAK2/STAT3, and WP1066 inhibited JAK2/STAT3 expression in combination with IL-6 and AT-1. Furthermore,
compared with the AT-1 group, co-incubation of IL-6 and AT-1 partially restored the proliferative capacity and reduced the apoptosis of MDA-MB-231 cells, while WP1066 reversed these effects in combination with IL-6 and AT-1. AT-1 suppressed proliferation and promoted apoptosis in TNBC cells
likely through inhibiting the activation of JAK2/STAT3 signaling pathway. The findings from this study may provide guidance for future studies on AT-1 and theoretical basis of AT-1 pharmacological activities.
Collapse
Affiliation(s)
- Zhiye Hao
- Department of Oncology, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing Province, 102618, China
| | - Zheng Pan
- Department of Respiratory Medicine, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin Province, 300162, China
| | - Wei Qian
- Department of Intensive Care Unit, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Huangcun Town, Daxing District, Beijing, 102618, China
| |
Collapse
|
106
|
Laser empowered ‘chemo-free’ phytotherapy: Newer approach in anticancer therapeutics delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
107
|
Zhang X, Wang J, Fan Y, Zhao Z, Paraghamian SE, Hawkins GM, Buckingham L, O'Donnell J, Hao T, Suo H, Yin Y, Sun W, Kong W, Sun D, Zhao L, Zhou C, Bae-Jump VL. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and -resistant ovarian cancer cells. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04276-8. [PMID: 36006482 DOI: 10.1007/s00432-022-04276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Although paclitaxel is a promising first-line chemotherapeutic drug for ovarian cancer, acquired resistance to paclitaxel is one of the leading causes of treatment failure, limiting its clinical application. Asparagus officinalis has been shown to have anti-tumorigenic effects on cell growth, apoptosis, cellular stress and invasion of various types of cancer cells and has also been shown to synergize with paclitaxel to inhibit cell proliferation in ovarian cancer. METHODS Human ovarian cancer cell lines MES and its PTX-resistant counterpart MES-TP cell lines were used and were treated with Asparagus officinalis and paclitaxel alone as well as in combination. Cell proliferation, cellular stress, invasion and DMA damage were investigated and the synergistic effect of a combined therapy analyzed. RESULTS In this study, we found that Asparagus officinalis combined with low-dose paclitaxel synergistically inhibited cell proliferation, induced cellular stress and apoptosis and reduced cell invasion in paclitaxel-sensitive and -resistant ovarian cancer cell lines. The combined treatment effects were dependent on DNA damage pathways and suppressing microtubule dynamics, and the AKT/mTOR pathway and microtubule-associated proteins regulated the inhibitory effect through different mechanisms in paclitaxel-sensitive and -resistant cells. CONCLUSION These findings suggest that the combination of Asparagus officinalis and paclitaxel have potential clinical implications for development as a novel ovarian cancer treatment strategy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Yali Fan
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Sarah E Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Gabrielle M Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Lindsey Buckingham
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Jillian O'Donnell
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Hongyan Suo
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, People's Republic of China
| | - Delin Sun
- Shandong Juxinyuan Asparagus Industry Development Research Institute, HeZe, 274400, Shandong, People's Republic of China
| | - Luyu Zhao
- Shandong Juxinyuan Agricultural Technology Co. LTD, HeZe, 274400, Shandong, People's Republic of China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 170 Manning Dr, Chapel Hill, NC, 27599, USA. .,Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
108
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
109
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
110
|
Complementary and Integrative Approaches to Cancer: A Pilot Survey of Attitudes and Habits among Cancer Patients in Italy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2923967. [PMID: 35958921 PMCID: PMC9359845 DOI: 10.1155/2022/2923967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
Background. Cancer patients are among the main consumers of traditional, complementary, integrative, and alternative medicine (TCIM) such as natural products (herbals, integrators, etc.) and mind and body practices (yoga, acupuncture, etc.). Methods. A questionnaire on TCIM was submitted to 415 Italian cancer patients. The questionnaire consisted of three sections: (i) biographical and clinical information; (ii) use of natural substances; and (iii) use of mind-body practices. Results. 406 patients completed the questionnaire. The prevalence of TCIM use was 72.3%. Of them, 75.6% started to use TCIM after a tumor diagnosis. The main reasons for using TCIM were to mitigate side effects (65.0%), to regain physical and mental balance (35.9%), to relieve pain (18.3%), and to improve the efficacy of cancer therapy (16.0%). 44.7% of patients taking natural products used them during conventional therapies (chemotherapy, radiotherapy, etc.), and in 67.5% of cases without consulting a doctor. As a consequence, only about 50% of patients taking natural substances used these compounds appropriately, and the most common errors were related with the purpose of reducing the side effects of the therapy (52.3%) and for boosting immune system (32.1%). Conclusions. There is an impelling need to provide patients with scientifically validated information to raise awareness about the benefits and risks of using TCIM.
Collapse
|
111
|
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022; 27:molecules27154834. [PMID: 35956786 PMCID: PMC9369512 DOI: 10.3390/molecules27154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.
Collapse
|
112
|
Chiawpanit C, Panwong S, Sawasdee N, Yenchitsomanus PT, Panya A. Genistein Sensitizes Human Cholangiocarcinoma Cell Lines to Be Susceptible to Natural Killer Cells. BIOLOGY 2022; 11:biology11081098. [PMID: 35892954 PMCID: PMC9330512 DOI: 10.3390/biology11081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma (CCA) is a lethal bile duct cancer, which has poor treatment outcomes due to its high resistance to chemotherapy and cancer recurrence. Activation of aberrant anti-apoptotic signaling pathway has been reported to be a mechanism of chemoresistance and immune escape of CCA. Therefore, reversal of anti-apoptotic signaling pathway represents a feasible approach to potentiate effective treatments, especially for CCA with high chemoresistance. In this study, we demonstrated the effects of genistein on reactivation of apoptosis cascade and increase the susceptibility of CCA cells to natural killer (NK-92) cells. Genistein at 50 and 100 µM significantly activated extrinsic apoptotic pathway in CCA cells (KKU055, KKU100, and KKU213A), which was evident by reduction of procaspase-8 and -3 expression. Pretreatment of CCA cells with genistein at 50 µM, but not NK-92 cells, significantly increased NK-92 cell killing ability over the untreated control, suggesting the ability of genistein to sensitize CCA cells. Interestingly, genistein treatment could greatly lower the expression of cFLIP, an anti-apoptotic protein involved in the immune escape pathway, in addition to upregulation of death receptors, Fas- and TRAIL-receptors, in CCA cells, which might be the underlying molecular mechanism of genistein to sensitize CCA to be susceptible to NK-92 cells. Taken together, this finding revealed the benefit of genistein as a sensitizer to enhance the efficiency of NK cell immunotherapy for CCA.
Collapse
Affiliation(s)
- Chutipa Chiawpanit
- Doctoral Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suthida Panwong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Doctoral Program in Applied Microbiology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nunghathai Sawasdee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (P.-t.Y.)
- Division of Molecular Medicine, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-943346
| |
Collapse
|
113
|
Jawarneh S, Talib WH. Combination of Ashwagandha Water Extract and Intermittent Fasting as a Therapy to Overcome Cisplatin Resistance in Breast Cancer: An in vitro and in vivo Study. Front Nutr 2022; 9:863619. [PMID: 35859750 PMCID: PMC9290527 DOI: 10.3389/fnut.2022.863619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is considered a universal public health dilemma in women. Due to the high toxicity and low selectivity of conventional anticancer therapies, there is a growing trend of using plant-derived natural products in cancer prevention and therapy. Ashwagandha (Withania somnifera, WS) has been used in the Mediterranean region and Ayurvedic medicine for millennia as a functional food and a medicinal plant with anticancer activity. Besides, intermittent fasting (IF) has been engaged recently in cancer treatment. Hence, the combination of WS and IF provides possible solutions to treat cancer and reduce chemoresistance when combined with chemotherapy. In this study, WS root (WSR), IF, and cisplatin were tested on cisplatin-sensitive (EMT6/P) and cisplatin-resistant (EMT6/CPR) mouse mammary cell lines. The phytochemical content of the WSR extract was analyzed using liquid chromatography–mass spectrometry (LC-MS) analysis. Antiproliferative and apoptotic effects were assessed for WSR extract, cisplatin, and their combination in vitro using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT) and caspase-3 assays. An in vivo study was used to assess the effect of WSR extract, IF, cisplatin, and their combinations in mice inculcated with EMT6/P and EMT6/CPR cells. The safety profile was also investigated using liver enzymes and creatinine assays. In vitro, WSR extract and cisplatin had a synergistic effect in both cell lines. The same combination induced an apoptotic effect higher than the single treatment in both cell lines. In vivo, several combinations of WSR extract, IF, or cisplatin caused significant tumor size reduction and improved the cure rate in mice implanted with EMT6/P and EMT6/CPR cell lines. IF-treated groups showed a significant reduction in serum glucose and an elevation in β-hydroxybutyrate (BHB) levels. In the safety profile, WSR extract, IF, and their combinations were safe. Overall, the combination of WSR extract and IF provides a promising solution for breast cancer treatment besides cisplatin by reducing the proliferation of cancer cells through induction of apoptosis. Moreover, they minimize cisplatin toxicity to the liver and kidney.
Collapse
|
114
|
Fujiike AY, Lee CYAL, Rodrigues FST, Oliveira LCB, Barbosa-Dekker AM, Dekker RFH, Cólus IMS, Serpeloni JM. Anticancer effects of carboxymethylated (1→3)(1→6)-β-D-glucan (botryosphaeran) on multicellular tumor spheroids of MCF-7 cells as a model of breast cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:521-537. [PMID: 35255775 DOI: 10.1080/15287394.2022.2048153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most common cancer worldwide among the female population. The fungal exopolysaccharide botryosphaeran is a (1→3)(1→6)-β-D-glucan with limited solubility in water that can be promoted through carboxymethylation. Thus, the aim of this study was to examine in-vitro anticancer effects of carboxymethylated-botryosphaeran (CM-BOT) on breast cancer MCF-7 cells cultivated in multicellular tumor spheroids (MCTS). CM-BOT (≥ 600 µ/ml) decreased the viability (resazurin assay) of MCF-7 grown in monolayers after 24 hr incubation. Although CM-BOT did not markedly alter viability of MCTS in the resazurin assay after 24, 48 or 72 hr, CM-BOT ≥ 600 µg/ml produced cell-death by apoptosis after 72 hr utilizing the triple staining assay and labeling dead cells with propidium iodide, which can also be visualized on the architecture of MCTS. CM-BOT (1000 µg/ml) inhibited cell proliferation, which resulted in MCTSs with smaller diameters than controls. CM-BOT at all concentrations examined decreased the ability of MCF-7 to form colonies and to migrate in the extracellular matrix. This is the first report using MCTS-architecture to study anti-tumor effects of β-glucans. Our findings are important in the search for compounds for use in breast cancer therapy, or as adjuvants in reducing the adverse effects of mammary tumor chemotherapy.
Collapse
Affiliation(s)
- Andressa Y Fujiike
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Celina Y A L Lee
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fabiana S T Rodrigues
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Larissa C B Oliveira
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Ilce M S Cólus
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliana M Serpeloni
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
115
|
Yalçin-Özkat G. Computational studies with flavonoids and terpenoids as BRPF1 inhibitors: in silico biological activity prediction, molecular docking, molecular dynamics simulations, MM/PBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:533-550. [PMID: 35822928 DOI: 10.1080/1062936x.2022.2096113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The BRPF1 protein is encoded by the BRPF1 gene. In addition, the BRPF1 gene is known to be upregulated in leukaemia. Recent studies have shown that it is also overexpressed in hepatocellular carcinoma (HCC) as well. Therefore, BRPF1 is a significant target for anti-cancer drug development studies, especially on HCC. 40 terpenoids and flavonoids were chosen because of their anticancer properties given in the literature. In this study, the biological activity of molecules was also investigated with in silico structure-activity relationship analysis. In addition, interactions between a series of terpenoids and flavonoids and the BRPF1 protein were investigated by molecular docking and molecular dynamics simulations. The energy change caused by the interactions of BRPF1 with different compounds was also evaluated by MM/PBSA calculations. It has been revealed that compound 5 (-9.2 kcal/mol), a kind of secoclerodane type diterpenoid, has a higher affinity both compared to other flavonoids and terpenoids, and 9F9 (-7.9 kcal/mol), a selective BRPF1 inhibitor. The study presented in this article demonstrates that compound 5, as a natural product, could form a chemical scaffold for the development of selective BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- G Yalçin-Özkat
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Magdeburg, Germany
- Bioengineering Department, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
116
|
Wu CF, Wu CY, Lin CF, Liu YW, Lin TC, Liao HJ, Chang GR. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother 2022; 151:113128. [PMID: 35609368 DOI: 10.1016/j.biopha.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The haskap (Lonicera caerulea L., Caprifoliaceae) berry has been widely used in traditional medicine in Kuril Islands, Russia, Japan, and China. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin in haskap berries, and C3G induces antiproliferative pharmacological activity in various cancer cells. However, no study has investigated its anti-lung large-cell carcinoma (LCC) pharmacological role. Therefore, this study determined whether C3G alone or C3G combined with 5-fluorouracil (5-FU) inhibits human lung LCC. We determined the tumor growth, apoptosis, inflammation, and metastasis in the H661 lung LCC lines xenografted into BALB/c nude mice. The mice were administered saline (control), 5-FU, C3G, or both C3G and 5-FU. Relative to the control mice, those treated with C3G alone or both C3G and 5-FU exhibited impaired tumor growth; increased tumor apoptosis; decreased inflammatory cytokine levels (e.g., IL-1β, TNF-α, C-reactive protein, and IL-6); decreased inflammation-related factors, including cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; increased inhibition of NF-κB kinase α mRNA; and downregulated metastasis-related factors, such as transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor. In addition, C3G alone or combined with 5-FU affected the expression of the tumor microenvironment-related factors Ki67, CD45, PDL1, and CD73. Compared with the mice treated with 5-FU or C3G alone, those treated with both C3G and 5-FU exhibited significantly impaired tumor growth, decreased tumor sizes, and increased tumor inhibition. This in vivo study demonstrated that C3G alone or combined with 5-FU may impair the growth of lung LCC and inhibit tumorigenesis. The findings indicate that C3G alone or C3G combined with 5-FU may be beneficial for treating human lung LCC.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| |
Collapse
|
117
|
Alves ALV, da Silva LS, Faleiros CA, Silva VAO, Reis RM. The Role of Ingenane Diterpenes in Cancer Therapy: From Bioactive Secondary Compounds to Small Molecules. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diterpenes are a class of critical taxonomic markers of the Euphorbiaceae family, representing small compounds (eg, molecules) with a wide range of biological activities and multi-target therapeutic potential. Diterpenes can exert different activities, including antitumor and multi-drug resistance-reversing activities, and antiviral, immunomodulatory, and anti-inflammatory effects, mainly due to their great structural diversity. In particular, one polycyclic skeleton has been highlighted: ingenane. Besides this natural diterpene, promising polycyclic skeletons may be submitted to chemical modification—by in silico approaches, chemical reactions, or biotransformation—putatively providing more active analogs (eg, ingenol derivatives), which are currently under pre-clinical investigation. This review outlines the current mechanisms of action and potential therapeutic implications of ingenol diterpenes as small cancer molecules.
Collapse
Affiliation(s)
- Ana Laura V. Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane S. da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Camila A. Faleiros
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Viviane A. O. Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
118
|
Monga J, Suthar SK, Rohila D, Joseph A, Chauhan CS, Sharma M. (+)-Cyanidan-3-ol inhibits epidermoid squamous cell carcinoma growth via inhibiting AKT/mTOR signaling through modulating CIP2A-PP2A axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154116. [PMID: 35525235 DOI: 10.1016/j.phymed.2022.154116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Despite recent advances in the treatment of squamous cell skin cancer (SCSC), the disease persists, and treatment resistance develops. Thus, identifying new targets and developing new therapeutic approaches showing low vulnerability to drug resistance is highly needed. PURPOSE This study aimed to reveal a novel targeted phytotherapeutic strategy for SCSC treatment alone or in combination with standard targeted anticancer molecules. STUDY DESIGN A library of natural products was utilized to identify molecules that inhibit the growth of skin cancer cells. The anticancer potential of the selected compound was evaluated in human skin squamous carcinoma models, in vitro and in vivo. A comprehensive ingenuity pathway analysis (IPA) strategy and molecular biology technology was adopted to investigate the therapeutic mechanisms in human SCSC. METHODS The Matrigel invasion chamber, foci formation and soft agar colony formation assays were employed to study the cells invasion and migration potential in vitro. In vivo antitumor effects were evaluated in DMBA/TPA-induced skin papilloma and A431 human skin squamous carcinoma xenograft tumor models. An integrative IPA was employed to identify mechanisms and protein targets in human SCSC.Compounds synergies were determined by the bliss model and evaluated using human SCSC cell lines and xenograft tumors. Histological staining, immunofluorescence imaging, real-time PCR, Western blots, and flow cytometric analyses were employed to analyze apoptosis and cell signaling mechanisms. RESULTS We identified (+)-cyanidan-3-ol (CD-3) as a selective compound for inhibiting the growth of SCSC cell lines. CD-3 inhibited tumor growth and burden without apparent toxicity and prolonged the survival of tumor-bearing mice. CD-3 inhibitory effects on SCSC growth are mediated via cell cycle arrest and caspase-dependent apoptosis induction. Mechanistic studies showed that CD-3 activates PP2A via inhibiting CIP2A and produces tumor growth inhibitory effects via promoting dephosphorylation of oncogenic AKT/mTOR signaling proteins in SCSC cells and xenograft tumors in a PP2A dependent manner. Furthermore, the combination of CD-3 and mTOR inhibitors (mTORi) synergistically reduced oncogenic phenotypes. CONCLUSIONS Our study suggests that PP2A activation is an effective strategy for SCSC treatment and the CD-3 and mTORi combination may serve as a promising treatment for SCSC.
Collapse
Affiliation(s)
- Jitender Monga
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Sharad Kumar Suthar
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Deepak Rohila
- Department of Immunology, Zhejiang University, Hangzhou 310058, China
| | - Alex Joseph
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Chetan Singh Chauhan
- Bhupal Nobles' Institue of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur 313001, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India; College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana 133203, India.
| |
Collapse
|
119
|
A Resveratrol Phenylacetamide Derivative Perturbs the Cytoskeleton Dynamics Interfering with the Migration Potential in Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy is commonly used for cancer treatment, however the lack of selectivity on healthy cells and the development of resistance phenomena are the major issues. A better understanding of cancer genetics helped the development of new targeted anticancer treatments, which permit drug delivery with high specificity and lower toxicity. Moreover, the multi-target drug design concept represents the current trend for future drug research and development. Starting from good results previously obtained by our research group on the resveratrol (RSV) phenylacetamide derivative 2, which displayed an interesting anti-inflammatory and anti-proliferative activity towards the breast cancer cells MCF-7 and MDA-MB-231, we identified other features, as the ability to perturb the cytoskeleton dynamics and interfere with the migration and metastatic processes. In vitro and in silico studies demonstrate that the derivative 2 is a tubulin and actin polymerization inhibitor and an actin depolymerization promotor. In addition, it interferes with the metastatic potential in both the breast cancer cells, inhibiting the in vitro cell migration and decreasing the spheroids number. These promising results demonstrate that the RSV phenylacetamide derivative 2 could be an important starting point in the discovery and development of safer and more efficacy multi-targeted agents.
Collapse
|
120
|
In Vitro Assessment of Antiproliferative Activity and Cytotoxicity Modulation of Capsicum chinense By-Product Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capsicum chinense J., also known locally as habanero pepper, is a medicinal herb known for its pharmacological properties. Its properties are attributed to the capsaicinoids and polyphenols found in its fruit and polyphenols in its by-products. The anticancer potential of C. chinense by-products remains unexplored. This study aimed to evaluate the antiproliferative activity and modulation of the cytotoxicity of extracts obtained from C. chinense by-products of plants grown on black and red soils of Yucatan, Mexico. Dry by-product extracts were obtained using maceration, a Soxhlet, and supercritical fluid extraction. In vitro antiproliferative activity and cytotoxicity modulation were evaluated by the sulforhodamine B method. The extract of leaves of plants grown on black soil obtained by maceration displayed selective high cytotoxicity against colorectal cancer cells, IC50 HCT–15 = 16.23 ± 2.89 µg mL−1. The leaf and stem extracts of plants grown on red soil obtained by maceration potentiated the vinblastine’s effect against parental breast cancer cells, MCF–7/Sens, with a reversion factor of 362.50-fold. Additionally, the extract of stems from plants grown on black soil obtained by supercritical fluid extraction and all the by-product extracts from plants grown on black soil obtained through maceration increased the effect of vinblastine against MCF–7/Vin+ with a reversion factor from 5.06- to 7.78-fold. These results highlight the anticancer potential of C. chinense by-products.
Collapse
|
121
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
122
|
Qiao D, Xing J, Duan Y, Wang S, Yao G, Zhang S, Jin J, Lin Z, Chen L, Piao Y. The molecular mechanism of baicalein repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154046. [PMID: 35306368 DOI: 10.1016/j.phymed.2022.154046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Baicalein (BAI) has a significant anti-cancerous function in the treatment of gastric cancer (GC). Focal adhesion kinase (FAK) is a key regulatory molecule in integrin and growth factor receptor mediated signaling. MicroRNA-7 (miR-7), has been considered as a potential tumor suppressor in a variety of cancers. However, the possible mechanisms by which BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway remain unclear. PURPOSE To investigate the molecular mechanism and effects of BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. METHODS Gastric cancer cell lines with FAK knockdown and overexpression were constructed by lentivirus transfection. After BAI treatment, the effects of FAK protein on proliferation, metastasis and angiogenesis of gastric cancer cells were detected by MTT, EdU, colony formation, wound healing, transwell and Matrigel tube formation assays. In vivo experiment was performed by xenograft model. Immunofluorescence and western blot assay were used to detect the effects of FAK protein on the expression levels of EMT markers and PI3K/AKT signaling pathway related proteins. qRT-PCR and luciferase reporter assay were used to clarify the targeting relationship between miR-7 and FAK. RESULTS BAI can regulate FAK to affect proliferation, metastasis and angiogenesis of gastric cancer cells through PI3K/AKT signaling pathway. qRT-PCR showed BAI can upregulated the expression of miR-7 and luciferase reporter assay showed the targeting relationship between miR-7 and FAK. Additionally, miR-7 mediates cell proliferation, metastasis and angiogenesis by directly targeting FAK 3'UTR to inhibit FAK expression. CONCLUSION BAI repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway.
Collapse
Affiliation(s)
- Dan Qiao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yunxiao Duan
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shiyu Wang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Guangyuan Yao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shengjun Zhang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jingchun Jin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Zhenhua Lin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China.
| |
Collapse
|
123
|
Lee S, Hong E, Jo E, Kim ZH, Yim KJ, Woo SH, Choi YS, Jang HJ. Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway. J Microbiol Biotechnol 2022; 32:645-656. [PMID: 35283426 PMCID: PMC9628887 DOI: 10.4014/jmb.2110.10019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.
Collapse
Affiliation(s)
- Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Kyung June Yim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung Hwan Woo
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4563 E-mail:
| |
Collapse
|
124
|
Kumar A, Kaur S, Dhiman S, Singh PP, Bhatia G, Thakur S, Tuli HS, Sharma U, Kumar S, Almutary AG, Alnuqaydan AM, Hussain A, Haque S, Dhama K, Kaur S. Targeting Akt/NF-κB/p53 Pathway and Apoptosis Inducing Potential of 1,2-Benzenedicarboxylic Acid, Bis (2-Methyl Propyl) Ester Isolated from Onosma bracteata Wall. against Human Osteosarcoma (MG-63) Cells. Molecules 2022; 27:molecules27113478. [PMID: 35684419 PMCID: PMC9182111 DOI: 10.3390/molecules27113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 μM, 56.05 μM, and 47.12 μM, respectively. In Mg-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (−151.13 kcal/mol) and CDK1 (−133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sukhvinder Dhiman
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Prithvi Pal Singh
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Bhatia
- Department of Biochemistry, Pt. Jawaharlal Nehru Government Medical College and Hospital Chamba, Chamba 176310, India;
| | - Sharad Thakur
- Biotechnology Division, COVID-19 Project, CSIR-IHBT, Palampur 176061, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subodh Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
- Correspondence: (A.G.A.); or (S.K.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, Dubai 345050, United Arab Emirates;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
- Correspondence: (A.G.A.); or (S.K.)
| |
Collapse
|
125
|
Hou J, Yun Y, Cui C, Kim S. Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice. Cell Prolif 2022; 55:e13246. [PMID: 35534947 PMCID: PMC9201376 DOI: 10.1111/cpr.13246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES There are presently a few viable ways to reduce cardiotoxicity of doxorubicin (Dox). The combination of chemotherapy agents with natural compounds delivers greater efficacy and reduces adverse effects in recent researches for cancer treatment. Here, we examined the potential effect of ginsenoside Rh2 on a Dox-based regimen in chemotherapy treatment. MATERIALS AND METHODS Human breast tumour (MDA-MB-231) xenograft nude mice, human cardiac ventricle fibroblasts, and human umbilical vein endothelial cells (HUVEC) were employed in the present study. Histology, immunohistochemistry, immunofluorescence, western blot, antibody array, and RNA-sequencing analyses were utilized to assess the protective effect of Rh2 on cardiotoxicity induced by Dox and the underlying mechanisms. RESULTS Rh2-reduced cardiotoxicity by inhibiting the cardiac histopathological changes, apoptosis and necrosis, and consequent inflammation. Pathological remodelling was attenuated by reducing fibroblast to myofibroblast transition (FMT) and endothelial-mesenchymal transition (EndMT) in hearts. RNA-sequencing analysis showed that Dox treatment predominantly targets cell cycle and attachment of microtubules and boosted tumour necrosis, chemokine and interferon-gamma production, response to cytokine and chemokine, and T cell activation, whereas Rh2 regulated these effects. Intriguingly, Rh2 also attenuated fibrosis via promoting senescence in myofibroblasts and reversing established myofibroblast differentiation in EndMT. CONCLUSIONS Rh2 regulates multiple pathways in the Dox-provoked heart, proposing a potential candidate for cancer supplement and therapy-associated cardiotoxicity.
Collapse
Affiliation(s)
- Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Yeejin Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Changhao Cui
- Research and Development Team 4, Sempio Foods Company, Cheongju, South Korea
| | - Sunchang Kim
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
126
|
Tripathi AM, Khan S, Chaudhury NK. Radiomitigation by Melatonin in C57BL/6 Mice: Possible Implications as Adjuvant in Radiotherapy and Chemotherapy. In Vivo 2022; 36:1203-1221. [PMID: 35478105 DOI: 10.21873/invivo.12820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Melatonin (N-acetyl-5-methoxytryptamine), a chief secretory molecule of the pineal gland, has multiple properties, and numerous clinical investigations regarding its actions are in progress. This study investigated the radiomitigative role of melatonin in C57BL/6 mice. MATERIALS AND METHODS Melatonin (100 mg/kg) was orally administered once daily starting at 1 h on day 1 and subsequently every 24 h until day 7 after whole-body irradiation (WBI) and survival was monitored for 30 days. The bone marrow, spleen, and intestine were studied to evaluate the mitigative potential of melatonin after radiation-induced damage. RESULTS Melatonin significantly improved the survival upto 60% and 90% after 9 Gy (lethal) and 7.5 Gy (sub-lethal) WBI, respectively. Melatonin alleviated WBI-induced myelosuppression and pancytopenia, and increased white blood cell, red blood cell, platelet, and lymphocyte (CD4+ and CD8+) counts in peripheral blood. Bone marrow and spleen cellularity were restored through enhanced haematopoiesis. Melatonin ameliorated the damage in the small intestine, and promoted recovery of villi length, crypts number, and goblet cell count. CONCLUSION Melatonin mitigates the radiation-induced injury in the gastrointestinal and haematopoietic systems. The observed radiomitigative properties of melatonin can also be useful in the context of adjuvant therapy for cancer and radiotherapy.
Collapse
Affiliation(s)
- Akanchha Mani Tripathi
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| |
Collapse
|
127
|
Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. J Drug Target 2022; 30:801-818. [DOI: 10.1080/1061186x.2022.2069782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
128
|
Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Front Pharmacol 2022; 13:863082. [PMID: 35496320 PMCID: PMC9047796 DOI: 10.3389/fphar.2022.863082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei, Taiwan
| | - Jingyi Wu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Liyue Huang
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China,*Correspondence: Ching-Feng Weng, ,
| |
Collapse
|
129
|
Cytotoxicity of Thioalkaloid-Enriched Nuphar lutea Extract and Purified 6,6′-Dihydroxythiobinupharidine in Acute Myeloid Leukemia Cells: The Role of Oxidative Stress and Intracellular Calcium. Pharmaceuticals (Basel) 2022; 15:ph15040410. [PMID: 35455407 PMCID: PMC9032197 DOI: 10.3390/ph15040410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a purified thioalkaloid 6,6′-dihydroxythiobinupharidine (DTBN). Treatment with 0.3–10 µg/mL NUP caused a dose- and time-dependent reduction in proliferation and viability of human AML cells (KG-1a, HL60 and U937). This was associated with apoptosis induction manifested by annexin-V/propidium iodide binding as well as cleavage of caspases 8, 9, and 3 as well as poly (ADP-ribose) polymerase. Caspase-dependence of the apoptotic effect was confirmed using the pan-caspase inhibitor Q-VD-OPH. NUP induced significant biphasic changes in the cytosolic levels of reactive oxygen species (ROS) compared to untreated cells—a decrease at early time points (2–4 h) and an increase after a longer incubation (24 h). ROS accumulation was accompanied by lowering the cellular glutathione (GSH) levels. In addition, NUP treatment resulted in elevation of the cytosolic Ca2+ (Ca2+cyt) levels. The thiol antioxidant and glutathione precursor N-acetyl cysteine prevented NUP-induced ROS accumulation and markedly inhibited apoptosis. A similar antiapoptotic effect was obtained by Ca2+cyt chelating using BAPTA. These data indicate that NUP-induced cell death is mediated, at least in part, by the induction of oxidative stress and Ca2+cyt accumulation. However, a substantial apoptotic activity of pure DTBN (0.05–0.25 µg/mL), was found to be independent of cytosolic ROS or Ca2+, suggesting that alternative mechanisms are involved in DTBN-induced cytotoxicity. Notably, neither NUP nor DTBN treatment significantly induced cell death of normal human peripheral blood mononuclear cells. Our results provide the basis for further investigation of the antileukemic potential of NUP and its active constituents.
Collapse
|
130
|
Natural Compounds Targeting Cancer-Associated Fibroblasts against Digestive System Tumor Progression: Therapeutic Insights. Biomedicines 2022; 10:biomedicines10030713. [PMID: 35327514 PMCID: PMC8945097 DOI: 10.3390/biomedicines10030713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical for cancer occurrence and progression in the tumor microenvironment (TME), due to their versatile roles in extracellular matrix remodeling, tumor–stroma crosstalk, immunomodulation, and angiogenesis. CAFs are the most abundant stromal component in the TME and undergo epigenetic modification and abnormal signaling cascade activation, such as transforming growth factor-β (TGF-β) and Wnt pathways that maintain the distinct phenotype of CAFs, which differs from normal fibroblasts. CAFs have been considered therapeutic targets due to their putative oncogenic functions. Current digestive system cancer treatment strategies often result in lower survival outcomes and fail to prevent cancer progression; therefore, comprehensive characterization of the tumor-promoting and -restraining CAF activities might facilitate the design of new therapeutic approaches. In this review, we summarize the enormous literature on natural compounds that mediate the crosstalk of CAFs with digestive system cancer cells, discuss how the biology and the multifaceted functions of CAFs contribute to cancer progression, and finally, pave the way for CAF-related antitumor therapies.
Collapse
|
131
|
Caballero M, Barreto N, Bonfanti AP, Munhoz J, Rocha e Silva T, Sutti R, Verinaud L, Pinheiro de Mato FC, Lanfredi GP, Rapôso C. Isolated Components From Spider Venom Targeting Human Glioblastoma Cells and Its Potential Combined Therapy With Rapamycin. Front Mol Biosci 2022; 9:752668. [PMID: 35359607 PMCID: PMC8964069 DOI: 10.3389/fmolb.2022.752668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Glioblastomas (GBs) are responsible for a higher mortality rate among gliomas, corresponding to more than 50% of them and representing a challenge in terms of therapy and prognosis. Peptide-based antineoplastic therapy is a vast and promising field, and these molecules are one of the main classes present in spider venoms. Recently, our research group demonstrated the cytotoxic effects of Phoneutria nigriventer spider venom (PnV) in GBs. The present study aimed to select the purified PnV-components with potential antineoplastic effects, as well as to compare different metabolic conditions. Human GB (NG97) cells were treated with the PnV fractions: F1 (less than 3 kDa), F2 (between 3 and 10 kDa), and F3 (greater than 10 kDa). After treatments, viability (MTT), proliferation (CFSE), death (Annexin V/propidium iodide-PI), and cell cycle (PI) assays were performed. The F1 and F2 fractions in acute periods (1 and 5 h) and low concentrations (0.1 and 1 μg/ml) showed more relevant effects and were repurified in subfractions (SF1–SF11); from these, SF3 and SF4 showed the most significant effects. The previous inhibition of mTOR by rapamycin had a synergistic effect with SFs, reducing cell viability even more significantly than the untreated control. Taken together, the results point to components present in SF3 and SF4 as potential prototypes for the development of new drugs for GB treatment and stimulate studies to use these compounds in combination therapy with a rapamycin-like activity. Future studies will be conducted to characterize, synthesize the molecules, and to evaluate the efficacy and safety in preclinical models.
Collapse
Affiliation(s)
- Marcus Caballero
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Natalia Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Felipe Cezar Pinheiro de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Campinas, Brazil
| | - Guilherme Pauperio Lanfredi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), São Paulo, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Catarina Rapôso,
| |
Collapse
|
132
|
Rawat L, Nayak V. Piperlongumine induces ROS mediated apoptosis by transcriptional regulation of SMAD4/P21/P53 genes and synergizes with doxorubicin in osteosarcoma cells. Chem Biol Interact 2022; 354:109832. [PMID: 35085581 DOI: 10.1016/j.cbi.2022.109832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 01/21/2023]
Abstract
Piperlongumine is a herbal drug, with well-known anti-microbial and anti-neoplastic properties. The anti-carcinogenic potential of piperlongumine has been extensively explored for breast, colorectal, lungs, pancreatic, prostate, and oral carcinoma. However, a few numbers of studies are available on its bio-activity in osteosarcoma. Therefore, the present study aimed at exploring the therapeutic potential and possible mechanisms of action of piperlongumine in three human osteosarcoma cell lines in-vitro. The cytotoxicity of piperlongumine was determined by MTT assay, which shows dose and time-dependent inhibition of MG-63, 143B and KHOS/NP cells. Piperlongumine arrest the cells in G2/M phase of cell cycle and increases reactive oxygen species production, which possibly leads to lethal oxidative stress and apoptosis. Piperlongumine treatment significantly upregulated the expression of genes BAX, P21, P53, and SMAD4; while the BCL-2, SURVIVIN, TNFA, and NFKB genes expression was found down-regulated. Furthermore, piperlongumine exposure inhibited the migration of osteosarcoma cells as the expression of migration marker genes CDH2, CTNNB1, FN1, and TWIST were found to be down-regulated. The drug combination studies show the synergistic effect of piperlongumine with the conventional chemotherapeutic drug doxorubicin in osteosarcoma cells. Taken together, the above results suggest that PL displays anticancer properties against osteosarcoma and can be used as a therapeutic agent for osteosarcoma treatment in clinical settings.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India.
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
133
|
Zhen S, Chen S, Geng S, Zhang H, Chen Y, Liu B. Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction and Bioactivities of Flavonoids in Ampelopsis grossedentata Leaves. Foods 2022; 11:foods11050668. [PMID: 35267301 PMCID: PMC8909306 DOI: 10.3390/foods11050668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
We performed ultrasound-assisted extraction coupled with natural deep eutectic solvents (NADES) to achieve the green and efficient preparation of flavonoid extract from Ampelopsis grossedentata leaves. We then evaluated its antioxidant and antiproliferative activities. A NADES consisting of choline chloride and glucose at a molar ratio of 4:1 with 20% water was determined to be the most suitable solvent. The optimal extraction conditions were: a liquid-to-solid ratio of 30 mL/g, an ultrasonication power of 490 W, and an ultrasonication time of 6.5 min. The actual flavonoid yield was 83.93%, which was close to the predicted yield. Further, 86.75% of the flavonoids were recovered by adding the same volume of phosphate buffer saline (100 mM, pH of 7.0) to the extract solution. Although the chemical antioxidant activities of the flavonoid extract were slightly inferior to those of dihydromyricetin, the flavonoid extract could still effectively inhibit the proliferation of human breast MDA-MB-231 cells by inducing cell apoptosis, retarding the cell cycle, changing the mitochondrial membrane potential and scavenging intracellular reactive oxygen species (ROS). The obtained results can provide a reference in the development of plant-derived functional foods.
Collapse
Affiliation(s)
- Shiyu Zhen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
| | - Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Correspondence: (Y.C.); (B.L.)
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; (S.Z.); (S.C.); (S.G.); (H.Z.)
- Correspondence: (Y.C.); (B.L.)
| |
Collapse
|
134
|
Amintas S, Dupin C, Boutin J, Beaumont P, Moreau-Gaudry F, Bedel A, Krisa S, Vendrely V, Dabernat S. Bioactive food components for colorectal cancer prevention and treatment: A good match. Crit Rev Food Sci Nutr 2022; 63:6615-6629. [PMID: 35128990 DOI: 10.1080/10408398.2022.2036095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide, accounts for about 10% of the total cancer cases, and ranks as the second cause of death by cancer. CRC is more prevalent in developed countries in close causal relation with occidental diets. Due to anatomy, the diet has a strong impact on CRC. High contents in meat are acknowledged risk factors whereas a diet rich in fruits and vegetables is an established CRC protective factor. Fruits and vegetables contain numerous Bioactive Food Components (BFCs), physiologically active food compounds, beneficial on health. Preventive and therapeutic benefits of BFCs in cancer have increasingly been reported over the past 20 years. BFCs show both chemopreventive and anti-tumor properties in CRC but more interestingly, abundant research describes BFCs as enhancers of conventional cancer treatments. Despite these promising results, their clinical transferability is slowed down by bioavailability interrogations and their poorly understood hormetic effect. In this review, we would like to reposition BFCs as well-fitted for applications in CRC. We provide a synthetic overview of trustworthy BFC applications in CRC, with a special highlight on combinatory approaches and conventional cancer treatment potentiation strategies.
Collapse
Affiliation(s)
- Samuel Amintas
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Charles Dupin
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Julian Boutin
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | | | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| | | | - Véronique Vendrely
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Sandrine Dabernat
- Bordeaux University, Bordeaux, France
- INSERM U1312, BoRdeaux institute In onCology - BRIC, Bordeaux, France
- Biochemistry Laboratory, Bordeaux. University Hospital, Bordeaux, France
| |
Collapse
|
135
|
Petri A, Alexandratou E, Yova D. Assessment of natural antioxidants' effect on PDT cytotoxicity through fluorescence microscopy image analysis. Lasers Surg Med 2022; 54:311-319. [PMID: 34431540 DOI: 10.1002/lsm.23469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/27/2021] [Accepted: 08/08/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) is a cancer treatment modality mediated by reactive oxygen species (ROS). However, the intracellular antioxidant defense system antagonizes PDT-generated ROS, impeding PDT efficacy. This study aimed to evaluate the enhancement of PDT cytotoxicity by its combination with natural antioxidants in pro-oxidant concentrations. METHODS A rich natural antioxidant mixture originating from Pinus halepensis bark extract was studied for its potential to enhance the efficacy of m-tetrahydroxyphenylchlorin (m-THPC)-PDT on LNCaP prostate cancer cells, in vitro. Various P. halepensis concentrations, at two different incubation times, were used in combination with m-THPC-PDT. Assessment of cellular viability and intracellular ROS levels evaluated the treatments' outcome. A novel method was developed for the assessment of the intracellular ROS levels, based on image analysis and data extraction from fluorescence microscopy images. RESULTS P. halepensis bark extract increased the intracellular ROS levels in a concentration-dependent but not in an incubation-dependent manner. The higher concentrations used (≥50 μg/ml) reduced cellular viability even by 50%. One hour pretreatment with 30 μg/ml P. halepensis before m-THPC-PDT exceeded the levels of cellular death by approximately 15%. CONCLUSIONS The results provided evidence of the cytotoxic effect of P. halepensis bark extract on LNCaP cells, showing the potential of P. halepensis to be used as an anticancer agent in prostate cancer treatment. The results also provided evidence of enhancement of m-THPC-PDT by P. halepensis bark extract showed the potential to be used as a supplementary agent to improve prostate cancer PDT treatment.
Collapse
Affiliation(s)
- Aspasia Petri
- Greek Atomic Energy Commission, Non-Ionizing Radiation Office, Ag. Paraskevi, Greece
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical, University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical, University of Athens, Athens, Greece
| | - Dido Yova
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical, University of Athens, Athens, Greece
| |
Collapse
|
136
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|
137
|
Ahmad SR, Ghosh P. A systematic investigation on flavonoids, catechin, β-sitosterol and lignin glycosides from Saraca asoca (ashoka) having anti-cancer & antioxidant properties with no side effect. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
138
|
Muñoz-López S, Sánchez-Melgar A, Martín M, Albasanz JL. Resveratrol enhances A 1 and hinders A 2A adenosine receptors signaling in both HeLa and SH-SY5Y cells: Potential mechanism of its antitumoral action. Front Endocrinol (Lausanne) 2022; 13:1007801. [PMID: 36407311 PMCID: PMC9669387 DOI: 10.3389/fendo.2022.1007801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite great efforts, effective treatment against cancer has not yet been found. However, natural compounds such as the polyphenol resveratrol have emerged as promising preventive agent in cancer therapy. The mode of action of resveratrol is still poorly understood, but it can modulate many signaling pathways related to the initiation and progression of cancer. Adenosinergic signaling may be involved in the antitumoral action of resveratrol since resveratrol binds to the orthosteric binding site of adenosine A2A receptors and acts as a non-selective agonist for adenosine receptors. In the present study, we measured the impact of resveratrol treatment on different adenosinergic pathway components (i.e. adenosine receptors levels, 5'-nucleotidase, adenosine deaminase, and adenylyl cyclase activities, protein kinase A levels, intracellular adenosine and other related metabolites levels) and cell viability and proliferation in HeLa and SH-SY5Y cell lines. Results revealed changes leading to turning off cAMP signaling such as decreased levels of A2A receptors and reduced adenylyl cyclase activation, increased levels of A1 receptors and increased adenylyl cyclase inhibition, and lower levels of PKA. All these changes could contribute to the antitumoral action of resveratrol. Interestingly, these effects were almost identical in HeLa and SH-SY5Y cells suggesting that resveratrol enhances A1 and hinders A2A adenosine receptors signaling as part of a potential mechanism of antitumoral action.
Collapse
|
139
|
Evaluation of antitumoral effect of mistletoe fruit extract on Ehrlich ascites tumor cells with muse cell analyzer and argyrophilic nucleolar organizer region staining method. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Mistletoe has been used alone or as a complementary therapy in the treatment of different diseases for years. In this study, the antitumoral effect of mistletoe fruit extract on Ehrlich ascites tumor (EAT) cells was evaluated.
Materials and Methods
EAT cells from preformed stock mice were transferred to culture dishes containing 5-fluorouracil (5-FU) and mistletoe extracts at different doses (100, 200, 400, and 800 μg/ml). These cells were incubated at 37 °C in an environment with 95% humidity and 5% CO2. At the end of the incubations, the apoptosis status of the cells, cell cycle, mitochondrial membrane potential, and proliferation status with the argyrophilic (Ag) nucleolar organizer region staining (NORs) method were evaluated.
Results
As a result, it was observed that the mistletoe fruit extract and 5-FU induce apoptosis of EAT cells. It was concluded that the 5-FU substance arrests the cell cycle at the G0/G1 stage, while the mistletoe arrests the cell cycle at the S and G2/M stages. The depolarization rate of the mistletoe treated cells was higher. As a result of the evaluation made with the AgNORs method, it was seen that mistletoe and 5-FU could be effective in reducing the proliferation of EAT cells.
Conclusions
It was seen that mistletoe fruit extract could be effective in stimulating the apoptosis and depolarization of cancer cells. The results of other studies in the literature and our study support each other. It was concluded that the mistletoe plant may be useful in cancer treatment.
Collapse
|
140
|
Butein and Frondoside-A Combination Exhibits Additive Anti-Cancer Effects on Tumor Cell Viability, Colony Growth, and Invasion and Synergism on Endothelial Cell Migration. Int J Mol Sci 2021; 23:ijms23010431. [PMID: 35008855 PMCID: PMC8745659 DOI: 10.3390/ijms23010431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the significant advances in targeted- and immuno-therapies, lung and breast cancer are at the top list of cancer incidence and mortality worldwide as of 2020. Combination therapy consisting of a mixture of different drugs taken at once is currently the main approach in cancer management. Natural compounds are extensively investigated for their promising anti-cancer potential. This study explored the anti-cancer potential of butein, a biologically active flavonoid, on two major solid tumors, namely, A549 lung and MDA-MB-231 breast cancer cells alone and in combination with another natural anti-cancer compound, frondoside-A. We demonstrated that butein decreases A549 and MDA-MB-231 cancer cell viability and colony growth in vitro in addition to tumor growth on chick embryo chorioallantoic membrane (CAM) in vivo without inducing any noticeable toxicity. Additionally, non-toxic concentrations of butein significantly reduced the migration and invasion of both cell lines, suggesting its potential anti-metastatic effect. We showed that butein anti-cancer effects are due, at least in part, to a potent inhibition of STAT3 phosphorylation, leading to PARP cleavage and consequently cell death. Moreover, we demonstrated that combining butein with frondoside-A leads to additive effects on inhibiting A549 and MDA-MB-231 cellular viability, induction of caspase 3/7 activity, inhibition of colony growth, and inhibition of cellular migration and invasion. This combination reached a synergistic effect on the inhibition of HUVECs migration in vitro. Collectively, this study provides sufficient rationale to further carry out animal studies to confirm the relevance of these compounds’ combination in cancer therapy.
Collapse
|
141
|
Khan S, Hussain A, Attar F, Bloukh SH, Edis Z, Sharifi M, Balali E, Nemati F, Derakhshankhah H, Zeinabad HA, Nabi F, Khan RH, Hao X, Lin Y, Hua L, Ten Hagen TLM, Falahati M. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed Pharmacother 2021; 146:112531. [PMID: 34906771 DOI: 10.1016/j.biopha.2021.112531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.
Collapse
Affiliation(s)
- Suliman Khan
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ebrahim Balali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Pathology, Univesity of Berne, Berne, Switzerland
| | - Faisal Nabi
- Biotechnology Unit, Aligarh Muslim University, India
| | | | - Xiao Hao
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yueting Lin
- High Level Talent Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linlin Hua
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
142
|
Chiaino E, Micucci M, Budriesi R, Mattioli LB, Marzetti C, Corsini M, Frosini M. Hibiscus Flower and Olive Leaf Extracts Activate Apoptosis in SH-SY5Y Cells. Antioxidants (Basel) 2021; 10:antiox10121962. [PMID: 34943065 PMCID: PMC8750347 DOI: 10.3390/antiox10121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
Compounds of natural origin may constitute an interesting tool for the treatment of neuroblastoma, the most prevalent extracranial solid tumor in children. PRES is a commercially available food supplement, composed of a 13:2 (w/w) extracts mix of Olea europaea L. leaves (OE) and Hibiscus sabdariffa L. flowers (HS). Its potential towards neuroblastoma is still unexplored and was thus investigated in human neuroblastoma SH-SY5Y cells. PRES decreased the viability of cells in a concentration-dependent fashion (24 h IC50 247.2 ± 31.8 µg/mL). Cytotoxicity was accompanied by an increase in early and late apoptotic cells (AV-PI assay) and sub G0/G1 cells (cell cycle analysis), ROS formation, reduction in mitochondrial membrane potential, and caspases activities. The ROS scavenger N-acetyl-L-cysteine reverted the cytotoxic effects of PRES, suggesting a key role played by ROS in PRES-mediated SH-SY5Y cell death. Finally, the effects of OE and HS extracts were singularly tested and compared to those of the corresponding mixture. OE- or HS-mediated cytotoxicity was always significantly lower than that caused by PRES, suggesting a synergic effect. In conclusion, the present findings highlight the potential of PRES for the treatment of neuroblastoma and offers the basis for a further characterization of the mechanisms underlying its effects.
Collapse
Affiliation(s)
- Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Matteo Micucci
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 800131 Rome, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
| | - Laura Beatrice Mattioli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
| | | | - Maddalena Corsini
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Correspondence: ; Tel.: +390577-235-355
| |
Collapse
|
143
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
144
|
Batbold U, Liu JJ. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC. Molecules 2021; 26:molecules26237200. [PMID: 34885780 PMCID: PMC8658962 DOI: 10.3390/molecules26237200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
Conventional chemotherapy remains an integral part of lung cancer therapy, regardless of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosensitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and H23 cell lines. The potential for this combination was examined by the combination index (CI). Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxygen species (ROS) activation with the highest rate in the combination treatment group. Furthermore, our results highlight the chemosensitization ability of AS when combined with DTX. It was closely associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins' expressions and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management of NSCLC patients.
Collapse
Affiliation(s)
- Uyanga Batbold
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jun-Jen Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
145
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
146
|
R R, Shafreen M, Kumar N. Inhibition of Proliferation in Ovarian Cancer Cell Line (PA-1) by the Action of Green Compound "Betanin". Appl Biochem Biotechnol 2021; 194:71-83. [PMID: 34762269 DOI: 10.1007/s12010-021-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
Ovarian carcinoma has a cure rate of 30% which makes it deadlier than any other disease. There are a number of genetic and epigenetic changes that lead to ovarian carcinoma cell transformation. Chemoprevention of cancer through application of natural compounds is the need of present generation as other methods are rigorous and have many side effects. Betanin, a compound from Beta vulgaris extract is used in present study to check its potential for inhibition of (PA-1) cancer cell proliferation. Determination of IC50 values through MTT assay was carried out, in addition measurement of mitochondrial membrane potential (MMP), effect of reactive oxygen species (ROS) generation, and induction of apoptosis in ovarian cancer cells through betanin was also observed. Results have shown betanin as a potential candidate for inhibition of ovarian cancer cell proliferation and it can be taken up as a serious compound for further studies for its application in cancer cure.
Collapse
Affiliation(s)
- Rakshanaa R
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, 613403, Tamil Nadu, India
| | - Mohiraa Shafreen
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, 613403, Tamil Nadu, India
| | - Nitin Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, 613403, Tamil Nadu, India.
| |
Collapse
|
147
|
Henklewska M, Pawlak A, Li RF, Yi J, Zbyryt I, Obmińska-Mrukowicz B. Benzyl Isothiocyanate, a Vegetable-Derived Compound, Induces Apoptosis via ROS Accumulation and DNA Damage in Canine Lymphoma and Leukemia Cells. Int J Mol Sci 2021; 22:ijms222111772. [PMID: 34769202 PMCID: PMC8583731 DOI: 10.3390/ijms222111772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of neoplastic diseases in companion animals is one of the most important problems of modern veterinary medicine. Given the growing interest in substances of natural origin as potential anti-cancer drugs, our goal was to examine the effectiveness of benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, against canine lymphoma and leukemia. These are the one of the most common canine cancer types, and chemotherapy is the only treatment option. The study involved established cell lines originating from various hematopoietic malignancies: CLBL-1, GL-1, CLB70 and CNK-89, immortalized noncancerous cell lines: MDCK and NIH-3T3 and canine peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of BITC, apoptosis induction, caspase activity and ROS generation were evaluated by flow cytometry. H2AX phosphorylation was assessed by western blot. The study showed that the compound was especially active against B lymphocyte-derived malignant cells. Their death resulted from caspase-dependent apoptosis. BITC induced ROS accumulation, and glutathione precursor N-acetyl-l-cysteine reversed the effect of the compound, thus proving the role of oxidative stress in BITC activity. In addition, exposure to the compound induced DNA damage in the tested cells. This is the first study that provides information on the activity of BITC in canine hematopoietic malignancies and suggests that the compound may be particularly useful in B-cell neoplasms treatment.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
- Correspondence:
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Rong-Fang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Iwona Zbyryt
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| |
Collapse
|
148
|
Oleil Hydroxytyrosol (HTOL) Exerts Anti-Myeloma Activity by Antagonizing Key Survival Pathways in Malignant Plasma Cells. Int J Mol Sci 2021; 22:ijms222111639. [PMID: 34769070 PMCID: PMC8584245 DOI: 10.3390/ijms222111639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Polyphenols from olive oil are endowed with several biological activities. Chemical modifications have been recently applied to these compounds to improve their therapeutic activity in different pathological settings, including cancer. Herein, we describe the in vitro effects on multiple myeloma (MM) cells of oleil hydroxytyrosol (HTOL), a synthetic fatty ester of natural hydroxytyrosol with oleic acid. HTOL reduced the viability of various human MM cell lines (HMCLs), even when co-cultured with bone marrow stromal cells, triggering ER stress, UPR and apoptosis, while it was not cytotoxic against healthy peripheral blood mononuclear cells or B lymphocytes. Whole-transcriptome profiling of HTOL-treated MM cells, coupled with protein expression analyses, indicate that HTOL antagonizes key survival pathways for malignant plasma cells, including the undruggable IRF4–c-MYC oncogenic axis. Accordingly, c-MYC gain- and loss-of-function strategies demonstrate that HTOL anti-tumor activity was, at least in part, due to c-MYC targeting. Taken together, these findings underscore the anti-MM potential of HTOL, providing the molecular framework for further investigation of HTOL-based treatments as novel anti-cancer agents.
Collapse
|
149
|
Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, Mohana-Kumaran N. Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114391. [PMID: 34224811 DOI: 10.1016/j.jep.2021.114391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents. AIM OF THE STUDY To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines. MATERIALS AND METHODS The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays. RESULTS In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days. CONCLUSION Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.
Collapse
Affiliation(s)
- Gregory Domnic
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | | | | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | |
Collapse
|
150
|
Meng RY, Jin H, Nguyen TV, Chai OH, Park BH, Kim SM. Ursolic Acid Accelerates Paclitaxel-Induced Cell Death in Esophageal Cancer Cells by Suppressing Akt/FOXM1 Signaling Cascade. Int J Mol Sci 2021; 22:11486. [PMID: 34768915 PMCID: PMC8584129 DOI: 10.3390/ijms222111486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid extracted from various plants, inhibits cell growth, metastasis, and tumorigenesis in various cancers. Chemotherapy resistance and the side effects of paclitaxel (PTX), a traditional chemotherapy reagent, have limited the curative effect of PTX in esophageal cancer. In this study, we investigate whether UA promotes the anti-tumor effect of PTX and explore the underlying mechanism of their combined effect in esophageal squamous cell carcinoma (ESCC). Combination treatment with UA and PTX inhibited cell proliferation and cell growth more effectively than either treatment alone by inducing more significant apoptosis, as indicated by increased sub-G1 phase distribution and protein levels of cleaved-PARP and cleaved caspase-9. Similar to the cell growth suppressive effect, the combination of UA and PTX significantly inhibited cell migration by targeting uPA, MMP-9, and E-cadherin in ESCC cells. In addition, combination treatment with UA and PTX significantly activated p-GSK-3β and suppressed the activation of Akt and FOXM1 in ESCC cells. Those effects were enhanced by the Akt inhibitor LY2940002 and inverted by the Akt agonist SC79. In an in vivo evaluation of a murine xenograft model of esophageal cancer, combination treatment with UA and PTX suppressed tumor growth significantly better than UA or PTX treatment alone. Thus, UA effectively potentiates the anti-tumor efficacy of PTX by targeting the Akt/FOXM1 cascade since combination treatment shows significantly more anti-tumor potential than PTX alone both in vitro and in vivo. Combination treatment with UA and PTX could be a new strategy for curing esophageal cancer patients.
Collapse
Affiliation(s)
- Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Thi Van Nguyen
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea; (T.V.N.); (O.-H.C.)
| | - Ok-Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea; (T.V.N.); (O.-H.C.)
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| |
Collapse
|